security.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/dcache.h>
  15. #include <linux/module.h>
  16. #include <linux/init.h>
  17. #include <linux/kernel.h>
  18. #include <linux/security.h>
  19. #include <linux/integrity.h>
  20. #include <linux/ima.h>
  21. #include <linux/evm.h>
  22. #include <linux/fsnotify.h>
  23. #include <linux/mman.h>
  24. #include <linux/mount.h>
  25. #include <linux/personality.h>
  26. #include <linux/backing-dev.h>
  27. #include <net/flow.h>
  28. #define MAX_LSM_EVM_XATTR 2
  29. /* Boot-time LSM user choice */
  30. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  31. CONFIG_DEFAULT_SECURITY;
  32. static struct security_operations *security_ops;
  33. static struct security_operations default_security_ops = {
  34. .name = "default",
  35. };
  36. static inline int __init verify(struct security_operations *ops)
  37. {
  38. /* verify the security_operations structure exists */
  39. if (!ops)
  40. return -EINVAL;
  41. security_fixup_ops(ops);
  42. return 0;
  43. }
  44. static void __init do_security_initcalls(void)
  45. {
  46. initcall_t *call;
  47. call = __security_initcall_start;
  48. while (call < __security_initcall_end) {
  49. (*call) ();
  50. call++;
  51. }
  52. }
  53. /**
  54. * security_init - initializes the security framework
  55. *
  56. * This should be called early in the kernel initialization sequence.
  57. */
  58. int __init security_init(void)
  59. {
  60. printk(KERN_INFO "Security Framework initialized\n");
  61. security_fixup_ops(&default_security_ops);
  62. security_ops = &default_security_ops;
  63. do_security_initcalls();
  64. return 0;
  65. }
  66. void reset_security_ops(void)
  67. {
  68. security_ops = &default_security_ops;
  69. }
  70. /* Save user chosen LSM */
  71. static int __init choose_lsm(char *str)
  72. {
  73. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  74. return 1;
  75. }
  76. __setup("security=", choose_lsm);
  77. /**
  78. * security_module_enable - Load given security module on boot ?
  79. * @ops: a pointer to the struct security_operations that is to be checked.
  80. *
  81. * Each LSM must pass this method before registering its own operations
  82. * to avoid security registration races. This method may also be used
  83. * to check if your LSM is currently loaded during kernel initialization.
  84. *
  85. * Return true if:
  86. * -The passed LSM is the one chosen by user at boot time,
  87. * -or the passed LSM is configured as the default and the user did not
  88. * choose an alternate LSM at boot time.
  89. * Otherwise, return false.
  90. */
  91. int __init security_module_enable(struct security_operations *ops)
  92. {
  93. return !strcmp(ops->name, chosen_lsm);
  94. }
  95. /**
  96. * register_security - registers a security framework with the kernel
  97. * @ops: a pointer to the struct security_options that is to be registered
  98. *
  99. * This function allows a security module to register itself with the
  100. * kernel security subsystem. Some rudimentary checking is done on the @ops
  101. * value passed to this function. You'll need to check first if your LSM
  102. * is allowed to register its @ops by calling security_module_enable(@ops).
  103. *
  104. * If there is already a security module registered with the kernel,
  105. * an error will be returned. Otherwise %0 is returned on success.
  106. */
  107. int __init register_security(struct security_operations *ops)
  108. {
  109. if (verify(ops)) {
  110. printk(KERN_DEBUG "%s could not verify "
  111. "security_operations structure.\n", __func__);
  112. return -EINVAL;
  113. }
  114. if (security_ops != &default_security_ops)
  115. return -EAGAIN;
  116. security_ops = ops;
  117. return 0;
  118. }
  119. /* Security operations */
  120. int security_binder_set_context_mgr(struct task_struct *mgr)
  121. {
  122. return security_ops->binder_set_context_mgr(mgr);
  123. }
  124. int security_binder_transaction(struct task_struct *from,
  125. struct task_struct *to)
  126. {
  127. return security_ops->binder_transaction(from, to);
  128. }
  129. int security_binder_transfer_binder(struct task_struct *from,
  130. struct task_struct *to)
  131. {
  132. return security_ops->binder_transfer_binder(from, to);
  133. }
  134. int security_binder_transfer_file(struct task_struct *from,
  135. struct task_struct *to, struct file *file)
  136. {
  137. return security_ops->binder_transfer_file(from, to, file);
  138. }
  139. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  140. {
  141. #ifdef CONFIG_SECURITY_YAMA_STACKED
  142. int rc;
  143. rc = yama_ptrace_access_check(child, mode);
  144. if (rc)
  145. return rc;
  146. #endif
  147. return security_ops->ptrace_access_check(child, mode);
  148. }
  149. int security_ptrace_traceme(struct task_struct *parent)
  150. {
  151. #ifdef CONFIG_SECURITY_YAMA_STACKED
  152. int rc;
  153. rc = yama_ptrace_traceme(parent);
  154. if (rc)
  155. return rc;
  156. #endif
  157. return security_ops->ptrace_traceme(parent);
  158. }
  159. int security_capget(struct task_struct *target,
  160. kernel_cap_t *effective,
  161. kernel_cap_t *inheritable,
  162. kernel_cap_t *permitted)
  163. {
  164. return security_ops->capget(target, effective, inheritable, permitted);
  165. }
  166. int security_capset(struct cred *new, const struct cred *old,
  167. const kernel_cap_t *effective,
  168. const kernel_cap_t *inheritable,
  169. const kernel_cap_t *permitted)
  170. {
  171. return security_ops->capset(new, old,
  172. effective, inheritable, permitted);
  173. }
  174. int security_capable(const struct cred *cred, struct user_namespace *ns,
  175. int cap)
  176. {
  177. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  178. }
  179. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  180. int cap)
  181. {
  182. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  183. }
  184. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  185. {
  186. return security_ops->quotactl(cmds, type, id, sb);
  187. }
  188. int security_quota_on(struct dentry *dentry)
  189. {
  190. return security_ops->quota_on(dentry);
  191. }
  192. int security_syslog(int type)
  193. {
  194. return security_ops->syslog(type);
  195. }
  196. int security_settime(const struct timespec *ts, const struct timezone *tz)
  197. {
  198. return security_ops->settime(ts, tz);
  199. }
  200. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  201. {
  202. return security_ops->vm_enough_memory(mm, pages);
  203. }
  204. int security_bprm_set_creds(struct linux_binprm *bprm)
  205. {
  206. return security_ops->bprm_set_creds(bprm);
  207. }
  208. int security_bprm_check(struct linux_binprm *bprm)
  209. {
  210. int ret;
  211. ret = security_ops->bprm_check_security(bprm);
  212. if (ret)
  213. return ret;
  214. return ima_bprm_check(bprm);
  215. }
  216. void security_bprm_committing_creds(struct linux_binprm *bprm)
  217. {
  218. security_ops->bprm_committing_creds(bprm);
  219. }
  220. void security_bprm_committed_creds(struct linux_binprm *bprm)
  221. {
  222. security_ops->bprm_committed_creds(bprm);
  223. }
  224. int security_bprm_secureexec(struct linux_binprm *bprm)
  225. {
  226. return security_ops->bprm_secureexec(bprm);
  227. }
  228. int security_sb_alloc(struct super_block *sb)
  229. {
  230. return security_ops->sb_alloc_security(sb);
  231. }
  232. void security_sb_free(struct super_block *sb)
  233. {
  234. security_ops->sb_free_security(sb);
  235. }
  236. int security_sb_copy_data(char *orig, char *copy)
  237. {
  238. return security_ops->sb_copy_data(orig, copy);
  239. }
  240. EXPORT_SYMBOL(security_sb_copy_data);
  241. int security_sb_remount(struct super_block *sb, void *data)
  242. {
  243. return security_ops->sb_remount(sb, data);
  244. }
  245. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  246. {
  247. return security_ops->sb_kern_mount(sb, flags, data);
  248. }
  249. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  250. {
  251. return security_ops->sb_show_options(m, sb);
  252. }
  253. int security_sb_statfs(struct dentry *dentry)
  254. {
  255. return security_ops->sb_statfs(dentry);
  256. }
  257. int security_sb_mount(const char *dev_name, struct path *path,
  258. const char *type, unsigned long flags, void *data)
  259. {
  260. return security_ops->sb_mount(dev_name, path, type, flags, data);
  261. }
  262. int security_sb_umount(struct vfsmount *mnt, int flags)
  263. {
  264. return security_ops->sb_umount(mnt, flags);
  265. }
  266. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  267. {
  268. return security_ops->sb_pivotroot(old_path, new_path);
  269. }
  270. int security_sb_set_mnt_opts(struct super_block *sb,
  271. struct security_mnt_opts *opts,
  272. unsigned long kern_flags,
  273. unsigned long *set_kern_flags)
  274. {
  275. return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
  276. set_kern_flags);
  277. }
  278. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  279. int security_sb_clone_mnt_opts(const struct super_block *oldsb,
  280. struct super_block *newsb)
  281. {
  282. return security_ops->sb_clone_mnt_opts(oldsb, newsb);
  283. }
  284. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  285. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  286. {
  287. return security_ops->sb_parse_opts_str(options, opts);
  288. }
  289. EXPORT_SYMBOL(security_sb_parse_opts_str);
  290. int security_inode_alloc(struct inode *inode)
  291. {
  292. inode->i_security = NULL;
  293. return security_ops->inode_alloc_security(inode);
  294. }
  295. void security_inode_free(struct inode *inode)
  296. {
  297. integrity_inode_free(inode);
  298. security_ops->inode_free_security(inode);
  299. }
  300. int security_dentry_init_security(struct dentry *dentry, int mode,
  301. struct qstr *name, void **ctx,
  302. u32 *ctxlen)
  303. {
  304. return security_ops->dentry_init_security(dentry, mode, name,
  305. ctx, ctxlen);
  306. }
  307. EXPORT_SYMBOL(security_dentry_init_security);
  308. int security_inode_init_security(struct inode *inode, struct inode *dir,
  309. const struct qstr *qstr,
  310. const initxattrs initxattrs, void *fs_data)
  311. {
  312. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  313. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  314. int ret;
  315. if (unlikely(IS_PRIVATE(inode)))
  316. return 0;
  317. if (!initxattrs)
  318. return security_ops->inode_init_security(inode, dir, qstr,
  319. NULL, NULL, NULL);
  320. memset(new_xattrs, 0, sizeof(new_xattrs));
  321. lsm_xattr = new_xattrs;
  322. ret = security_ops->inode_init_security(inode, dir, qstr,
  323. &lsm_xattr->name,
  324. &lsm_xattr->value,
  325. &lsm_xattr->value_len);
  326. if (ret)
  327. goto out;
  328. evm_xattr = lsm_xattr + 1;
  329. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  330. if (ret)
  331. goto out;
  332. ret = initxattrs(inode, new_xattrs, fs_data);
  333. out:
  334. for (xattr = new_xattrs; xattr->value != NULL; xattr++)
  335. kfree(xattr->value);
  336. return (ret == -EOPNOTSUPP) ? 0 : ret;
  337. }
  338. EXPORT_SYMBOL(security_inode_init_security);
  339. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  340. const struct qstr *qstr, const char **name,
  341. void **value, size_t *len)
  342. {
  343. if (unlikely(IS_PRIVATE(inode)))
  344. return -EOPNOTSUPP;
  345. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  346. len);
  347. }
  348. EXPORT_SYMBOL(security_old_inode_init_security);
  349. #ifdef CONFIG_SECURITY_PATH
  350. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  351. unsigned int dev)
  352. {
  353. if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
  354. return 0;
  355. return security_ops->path_mknod(dir, dentry, mode, dev);
  356. }
  357. EXPORT_SYMBOL(security_path_mknod);
  358. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  359. {
  360. if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
  361. return 0;
  362. return security_ops->path_mkdir(dir, dentry, mode);
  363. }
  364. EXPORT_SYMBOL(security_path_mkdir);
  365. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  366. {
  367. if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
  368. return 0;
  369. return security_ops->path_rmdir(dir, dentry);
  370. }
  371. int security_path_unlink(struct path *dir, struct dentry *dentry)
  372. {
  373. if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
  374. return 0;
  375. return security_ops->path_unlink(dir, dentry);
  376. }
  377. EXPORT_SYMBOL(security_path_unlink);
  378. int security_path_symlink(struct path *dir, struct dentry *dentry,
  379. const char *old_name)
  380. {
  381. if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
  382. return 0;
  383. return security_ops->path_symlink(dir, dentry, old_name);
  384. }
  385. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  386. struct dentry *new_dentry)
  387. {
  388. if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
  389. return 0;
  390. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  391. }
  392. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  393. struct path *new_dir, struct dentry *new_dentry,
  394. unsigned int flags)
  395. {
  396. if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
  397. (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
  398. return 0;
  399. if (flags & RENAME_EXCHANGE) {
  400. int err = security_ops->path_rename(new_dir, new_dentry,
  401. old_dir, old_dentry);
  402. if (err)
  403. return err;
  404. }
  405. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  406. new_dentry);
  407. }
  408. EXPORT_SYMBOL(security_path_rename);
  409. int security_path_truncate(struct path *path)
  410. {
  411. if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
  412. return 0;
  413. return security_ops->path_truncate(path);
  414. }
  415. int security_path_chmod(struct path *path, umode_t mode)
  416. {
  417. if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
  418. return 0;
  419. return security_ops->path_chmod(path, mode);
  420. }
  421. int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
  422. {
  423. if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
  424. return 0;
  425. return security_ops->path_chown(path, uid, gid);
  426. }
  427. int security_path_chroot(struct path *path)
  428. {
  429. return security_ops->path_chroot(path);
  430. }
  431. #endif
  432. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  433. {
  434. if (unlikely(IS_PRIVATE(dir)))
  435. return 0;
  436. return security_ops->inode_create(dir, dentry, mode);
  437. }
  438. EXPORT_SYMBOL_GPL(security_inode_create);
  439. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  440. struct dentry *new_dentry)
  441. {
  442. if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
  443. return 0;
  444. return security_ops->inode_link(old_dentry, dir, new_dentry);
  445. }
  446. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  447. {
  448. if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
  449. return 0;
  450. return security_ops->inode_unlink(dir, dentry);
  451. }
  452. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  453. const char *old_name)
  454. {
  455. if (unlikely(IS_PRIVATE(dir)))
  456. return 0;
  457. return security_ops->inode_symlink(dir, dentry, old_name);
  458. }
  459. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  460. {
  461. if (unlikely(IS_PRIVATE(dir)))
  462. return 0;
  463. return security_ops->inode_mkdir(dir, dentry, mode);
  464. }
  465. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  466. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  467. {
  468. if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
  469. return 0;
  470. return security_ops->inode_rmdir(dir, dentry);
  471. }
  472. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  473. {
  474. if (unlikely(IS_PRIVATE(dir)))
  475. return 0;
  476. return security_ops->inode_mknod(dir, dentry, mode, dev);
  477. }
  478. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  479. struct inode *new_dir, struct dentry *new_dentry,
  480. unsigned int flags)
  481. {
  482. if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
  483. (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
  484. return 0;
  485. if (flags & RENAME_EXCHANGE) {
  486. int err = security_ops->inode_rename(new_dir, new_dentry,
  487. old_dir, old_dentry);
  488. if (err)
  489. return err;
  490. }
  491. return security_ops->inode_rename(old_dir, old_dentry,
  492. new_dir, new_dentry);
  493. }
  494. int security_inode_readlink(struct dentry *dentry)
  495. {
  496. if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
  497. return 0;
  498. return security_ops->inode_readlink(dentry);
  499. }
  500. int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
  501. bool rcu)
  502. {
  503. if (unlikely(IS_PRIVATE(inode)))
  504. return 0;
  505. return security_ops->inode_follow_link(dentry, inode, rcu);
  506. }
  507. int security_inode_permission(struct inode *inode, int mask)
  508. {
  509. if (unlikely(IS_PRIVATE(inode)))
  510. return 0;
  511. return security_ops->inode_permission(inode, mask);
  512. }
  513. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  514. {
  515. int ret;
  516. if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
  517. return 0;
  518. ret = security_ops->inode_setattr(dentry, attr);
  519. if (ret)
  520. return ret;
  521. return evm_inode_setattr(dentry, attr);
  522. }
  523. EXPORT_SYMBOL_GPL(security_inode_setattr);
  524. int security_inode_getattr(const struct path *path)
  525. {
  526. if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
  527. return 0;
  528. return security_ops->inode_getattr(path);
  529. }
  530. int security_inode_setxattr(struct dentry *dentry, const char *name,
  531. const void *value, size_t size, int flags)
  532. {
  533. int ret;
  534. if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
  535. return 0;
  536. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  537. if (ret)
  538. return ret;
  539. ret = ima_inode_setxattr(dentry, name, value, size);
  540. if (ret)
  541. return ret;
  542. return evm_inode_setxattr(dentry, name, value, size);
  543. }
  544. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  545. const void *value, size_t size, int flags)
  546. {
  547. if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
  548. return;
  549. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  550. evm_inode_post_setxattr(dentry, name, value, size);
  551. }
  552. int security_inode_getxattr(struct dentry *dentry, const char *name)
  553. {
  554. if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
  555. return 0;
  556. return security_ops->inode_getxattr(dentry, name);
  557. }
  558. int security_inode_listxattr(struct dentry *dentry)
  559. {
  560. if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
  561. return 0;
  562. return security_ops->inode_listxattr(dentry);
  563. }
  564. int security_inode_removexattr(struct dentry *dentry, const char *name)
  565. {
  566. int ret;
  567. if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
  568. return 0;
  569. ret = security_ops->inode_removexattr(dentry, name);
  570. if (ret)
  571. return ret;
  572. ret = ima_inode_removexattr(dentry, name);
  573. if (ret)
  574. return ret;
  575. return evm_inode_removexattr(dentry, name);
  576. }
  577. int security_inode_need_killpriv(struct dentry *dentry)
  578. {
  579. return security_ops->inode_need_killpriv(dentry);
  580. }
  581. int security_inode_killpriv(struct dentry *dentry)
  582. {
  583. return security_ops->inode_killpriv(dentry);
  584. }
  585. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  586. {
  587. if (unlikely(IS_PRIVATE(inode)))
  588. return -EOPNOTSUPP;
  589. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  590. }
  591. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  592. {
  593. if (unlikely(IS_PRIVATE(inode)))
  594. return -EOPNOTSUPP;
  595. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  596. }
  597. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  598. {
  599. if (unlikely(IS_PRIVATE(inode)))
  600. return 0;
  601. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  602. }
  603. EXPORT_SYMBOL(security_inode_listsecurity);
  604. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  605. {
  606. security_ops->inode_getsecid(inode, secid);
  607. }
  608. int security_file_permission(struct file *file, int mask)
  609. {
  610. int ret;
  611. ret = security_ops->file_permission(file, mask);
  612. if (ret)
  613. return ret;
  614. return fsnotify_perm(file, mask);
  615. }
  616. int security_file_alloc(struct file *file)
  617. {
  618. return security_ops->file_alloc_security(file);
  619. }
  620. void security_file_free(struct file *file)
  621. {
  622. security_ops->file_free_security(file);
  623. }
  624. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  625. {
  626. return security_ops->file_ioctl(file, cmd, arg);
  627. }
  628. static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
  629. {
  630. /*
  631. * Does we have PROT_READ and does the application expect
  632. * it to imply PROT_EXEC? If not, nothing to talk about...
  633. */
  634. if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
  635. return prot;
  636. if (!(current->personality & READ_IMPLIES_EXEC))
  637. return prot;
  638. /*
  639. * if that's an anonymous mapping, let it.
  640. */
  641. if (!file)
  642. return prot | PROT_EXEC;
  643. /*
  644. * ditto if it's not on noexec mount, except that on !MMU we need
  645. * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
  646. */
  647. if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
  648. #ifndef CONFIG_MMU
  649. if (file->f_op->mmap_capabilities) {
  650. unsigned caps = file->f_op->mmap_capabilities(file);
  651. if (!(caps & NOMMU_MAP_EXEC))
  652. return prot;
  653. }
  654. #endif
  655. return prot | PROT_EXEC;
  656. }
  657. /* anything on noexec mount won't get PROT_EXEC */
  658. return prot;
  659. }
  660. int security_mmap_file(struct file *file, unsigned long prot,
  661. unsigned long flags)
  662. {
  663. int ret;
  664. ret = security_ops->mmap_file(file, prot,
  665. mmap_prot(file, prot), flags);
  666. if (ret)
  667. return ret;
  668. return ima_file_mmap(file, prot);
  669. }
  670. int security_mmap_addr(unsigned long addr)
  671. {
  672. return security_ops->mmap_addr(addr);
  673. }
  674. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  675. unsigned long prot)
  676. {
  677. return security_ops->file_mprotect(vma, reqprot, prot);
  678. }
  679. int security_file_lock(struct file *file, unsigned int cmd)
  680. {
  681. return security_ops->file_lock(file, cmd);
  682. }
  683. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  684. {
  685. return security_ops->file_fcntl(file, cmd, arg);
  686. }
  687. void security_file_set_fowner(struct file *file)
  688. {
  689. security_ops->file_set_fowner(file);
  690. }
  691. int security_file_send_sigiotask(struct task_struct *tsk,
  692. struct fown_struct *fown, int sig)
  693. {
  694. return security_ops->file_send_sigiotask(tsk, fown, sig);
  695. }
  696. int security_file_receive(struct file *file)
  697. {
  698. return security_ops->file_receive(file);
  699. }
  700. int security_file_open(struct file *file, const struct cred *cred)
  701. {
  702. int ret;
  703. ret = security_ops->file_open(file, cred);
  704. if (ret)
  705. return ret;
  706. return fsnotify_perm(file, MAY_OPEN);
  707. }
  708. int security_task_create(unsigned long clone_flags)
  709. {
  710. return security_ops->task_create(clone_flags);
  711. }
  712. void security_task_free(struct task_struct *task)
  713. {
  714. #ifdef CONFIG_SECURITY_YAMA_STACKED
  715. yama_task_free(task);
  716. #endif
  717. security_ops->task_free(task);
  718. }
  719. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  720. {
  721. return security_ops->cred_alloc_blank(cred, gfp);
  722. }
  723. void security_cred_free(struct cred *cred)
  724. {
  725. security_ops->cred_free(cred);
  726. }
  727. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  728. {
  729. return security_ops->cred_prepare(new, old, gfp);
  730. }
  731. void security_transfer_creds(struct cred *new, const struct cred *old)
  732. {
  733. security_ops->cred_transfer(new, old);
  734. }
  735. int security_kernel_act_as(struct cred *new, u32 secid)
  736. {
  737. return security_ops->kernel_act_as(new, secid);
  738. }
  739. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  740. {
  741. return security_ops->kernel_create_files_as(new, inode);
  742. }
  743. int security_kernel_fw_from_file(struct file *file, char *buf, size_t size)
  744. {
  745. int ret;
  746. ret = security_ops->kernel_fw_from_file(file, buf, size);
  747. if (ret)
  748. return ret;
  749. return ima_fw_from_file(file, buf, size);
  750. }
  751. EXPORT_SYMBOL_GPL(security_kernel_fw_from_file);
  752. int security_kernel_module_request(char *kmod_name)
  753. {
  754. return security_ops->kernel_module_request(kmod_name);
  755. }
  756. int security_kernel_module_from_file(struct file *file)
  757. {
  758. int ret;
  759. ret = security_ops->kernel_module_from_file(file);
  760. if (ret)
  761. return ret;
  762. return ima_module_check(file);
  763. }
  764. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  765. int flags)
  766. {
  767. return security_ops->task_fix_setuid(new, old, flags);
  768. }
  769. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  770. {
  771. return security_ops->task_setpgid(p, pgid);
  772. }
  773. int security_task_getpgid(struct task_struct *p)
  774. {
  775. return security_ops->task_getpgid(p);
  776. }
  777. int security_task_getsid(struct task_struct *p)
  778. {
  779. return security_ops->task_getsid(p);
  780. }
  781. void security_task_getsecid(struct task_struct *p, u32 *secid)
  782. {
  783. security_ops->task_getsecid(p, secid);
  784. }
  785. EXPORT_SYMBOL(security_task_getsecid);
  786. int security_task_setnice(struct task_struct *p, int nice)
  787. {
  788. return security_ops->task_setnice(p, nice);
  789. }
  790. int security_task_setioprio(struct task_struct *p, int ioprio)
  791. {
  792. return security_ops->task_setioprio(p, ioprio);
  793. }
  794. int security_task_getioprio(struct task_struct *p)
  795. {
  796. return security_ops->task_getioprio(p);
  797. }
  798. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  799. struct rlimit *new_rlim)
  800. {
  801. return security_ops->task_setrlimit(p, resource, new_rlim);
  802. }
  803. int security_task_setscheduler(struct task_struct *p)
  804. {
  805. return security_ops->task_setscheduler(p);
  806. }
  807. int security_task_getscheduler(struct task_struct *p)
  808. {
  809. return security_ops->task_getscheduler(p);
  810. }
  811. int security_task_movememory(struct task_struct *p)
  812. {
  813. return security_ops->task_movememory(p);
  814. }
  815. int security_task_kill(struct task_struct *p, struct siginfo *info,
  816. int sig, u32 secid)
  817. {
  818. return security_ops->task_kill(p, info, sig, secid);
  819. }
  820. int security_task_wait(struct task_struct *p)
  821. {
  822. return security_ops->task_wait(p);
  823. }
  824. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  825. unsigned long arg4, unsigned long arg5)
  826. {
  827. #ifdef CONFIG_SECURITY_YAMA_STACKED
  828. int rc;
  829. rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
  830. if (rc != -ENOSYS)
  831. return rc;
  832. #endif
  833. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  834. }
  835. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  836. {
  837. security_ops->task_to_inode(p, inode);
  838. }
  839. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  840. {
  841. return security_ops->ipc_permission(ipcp, flag);
  842. }
  843. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  844. {
  845. security_ops->ipc_getsecid(ipcp, secid);
  846. }
  847. int security_msg_msg_alloc(struct msg_msg *msg)
  848. {
  849. return security_ops->msg_msg_alloc_security(msg);
  850. }
  851. void security_msg_msg_free(struct msg_msg *msg)
  852. {
  853. security_ops->msg_msg_free_security(msg);
  854. }
  855. int security_msg_queue_alloc(struct msg_queue *msq)
  856. {
  857. return security_ops->msg_queue_alloc_security(msq);
  858. }
  859. void security_msg_queue_free(struct msg_queue *msq)
  860. {
  861. security_ops->msg_queue_free_security(msq);
  862. }
  863. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  864. {
  865. return security_ops->msg_queue_associate(msq, msqflg);
  866. }
  867. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  868. {
  869. return security_ops->msg_queue_msgctl(msq, cmd);
  870. }
  871. int security_msg_queue_msgsnd(struct msg_queue *msq,
  872. struct msg_msg *msg, int msqflg)
  873. {
  874. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  875. }
  876. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  877. struct task_struct *target, long type, int mode)
  878. {
  879. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  880. }
  881. int security_shm_alloc(struct shmid_kernel *shp)
  882. {
  883. return security_ops->shm_alloc_security(shp);
  884. }
  885. void security_shm_free(struct shmid_kernel *shp)
  886. {
  887. security_ops->shm_free_security(shp);
  888. }
  889. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  890. {
  891. return security_ops->shm_associate(shp, shmflg);
  892. }
  893. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  894. {
  895. return security_ops->shm_shmctl(shp, cmd);
  896. }
  897. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  898. {
  899. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  900. }
  901. int security_sem_alloc(struct sem_array *sma)
  902. {
  903. return security_ops->sem_alloc_security(sma);
  904. }
  905. void security_sem_free(struct sem_array *sma)
  906. {
  907. security_ops->sem_free_security(sma);
  908. }
  909. int security_sem_associate(struct sem_array *sma, int semflg)
  910. {
  911. return security_ops->sem_associate(sma, semflg);
  912. }
  913. int security_sem_semctl(struct sem_array *sma, int cmd)
  914. {
  915. return security_ops->sem_semctl(sma, cmd);
  916. }
  917. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  918. unsigned nsops, int alter)
  919. {
  920. return security_ops->sem_semop(sma, sops, nsops, alter);
  921. }
  922. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  923. {
  924. if (unlikely(inode && IS_PRIVATE(inode)))
  925. return;
  926. security_ops->d_instantiate(dentry, inode);
  927. }
  928. EXPORT_SYMBOL(security_d_instantiate);
  929. int security_getprocattr(struct task_struct *p, char *name, char **value)
  930. {
  931. return security_ops->getprocattr(p, name, value);
  932. }
  933. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  934. {
  935. return security_ops->setprocattr(p, name, value, size);
  936. }
  937. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  938. {
  939. return security_ops->netlink_send(sk, skb);
  940. }
  941. int security_ismaclabel(const char *name)
  942. {
  943. return security_ops->ismaclabel(name);
  944. }
  945. EXPORT_SYMBOL(security_ismaclabel);
  946. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  947. {
  948. return security_ops->secid_to_secctx(secid, secdata, seclen);
  949. }
  950. EXPORT_SYMBOL(security_secid_to_secctx);
  951. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  952. {
  953. return security_ops->secctx_to_secid(secdata, seclen, secid);
  954. }
  955. EXPORT_SYMBOL(security_secctx_to_secid);
  956. void security_release_secctx(char *secdata, u32 seclen)
  957. {
  958. security_ops->release_secctx(secdata, seclen);
  959. }
  960. EXPORT_SYMBOL(security_release_secctx);
  961. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  962. {
  963. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  964. }
  965. EXPORT_SYMBOL(security_inode_notifysecctx);
  966. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  967. {
  968. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  969. }
  970. EXPORT_SYMBOL(security_inode_setsecctx);
  971. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  972. {
  973. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  974. }
  975. EXPORT_SYMBOL(security_inode_getsecctx);
  976. #ifdef CONFIG_SECURITY_NETWORK
  977. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  978. {
  979. return security_ops->unix_stream_connect(sock, other, newsk);
  980. }
  981. EXPORT_SYMBOL(security_unix_stream_connect);
  982. int security_unix_may_send(struct socket *sock, struct socket *other)
  983. {
  984. return security_ops->unix_may_send(sock, other);
  985. }
  986. EXPORT_SYMBOL(security_unix_may_send);
  987. int security_socket_create(int family, int type, int protocol, int kern)
  988. {
  989. return security_ops->socket_create(family, type, protocol, kern);
  990. }
  991. int security_socket_post_create(struct socket *sock, int family,
  992. int type, int protocol, int kern)
  993. {
  994. return security_ops->socket_post_create(sock, family, type,
  995. protocol, kern);
  996. }
  997. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  998. {
  999. return security_ops->socket_bind(sock, address, addrlen);
  1000. }
  1001. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  1002. {
  1003. return security_ops->socket_connect(sock, address, addrlen);
  1004. }
  1005. int security_socket_listen(struct socket *sock, int backlog)
  1006. {
  1007. return security_ops->socket_listen(sock, backlog);
  1008. }
  1009. int security_socket_accept(struct socket *sock, struct socket *newsock)
  1010. {
  1011. return security_ops->socket_accept(sock, newsock);
  1012. }
  1013. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  1014. {
  1015. return security_ops->socket_sendmsg(sock, msg, size);
  1016. }
  1017. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  1018. int size, int flags)
  1019. {
  1020. return security_ops->socket_recvmsg(sock, msg, size, flags);
  1021. }
  1022. int security_socket_getsockname(struct socket *sock)
  1023. {
  1024. return security_ops->socket_getsockname(sock);
  1025. }
  1026. int security_socket_getpeername(struct socket *sock)
  1027. {
  1028. return security_ops->socket_getpeername(sock);
  1029. }
  1030. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  1031. {
  1032. return security_ops->socket_getsockopt(sock, level, optname);
  1033. }
  1034. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  1035. {
  1036. return security_ops->socket_setsockopt(sock, level, optname);
  1037. }
  1038. int security_socket_shutdown(struct socket *sock, int how)
  1039. {
  1040. return security_ops->socket_shutdown(sock, how);
  1041. }
  1042. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1043. {
  1044. return security_ops->socket_sock_rcv_skb(sk, skb);
  1045. }
  1046. EXPORT_SYMBOL(security_sock_rcv_skb);
  1047. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  1048. int __user *optlen, unsigned len)
  1049. {
  1050. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  1051. }
  1052. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  1053. {
  1054. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  1055. }
  1056. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  1057. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  1058. {
  1059. return security_ops->sk_alloc_security(sk, family, priority);
  1060. }
  1061. void security_sk_free(struct sock *sk)
  1062. {
  1063. security_ops->sk_free_security(sk);
  1064. }
  1065. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  1066. {
  1067. security_ops->sk_clone_security(sk, newsk);
  1068. }
  1069. EXPORT_SYMBOL(security_sk_clone);
  1070. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  1071. {
  1072. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  1073. }
  1074. EXPORT_SYMBOL(security_sk_classify_flow);
  1075. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  1076. {
  1077. security_ops->req_classify_flow(req, fl);
  1078. }
  1079. EXPORT_SYMBOL(security_req_classify_flow);
  1080. void security_sock_graft(struct sock *sk, struct socket *parent)
  1081. {
  1082. security_ops->sock_graft(sk, parent);
  1083. }
  1084. EXPORT_SYMBOL(security_sock_graft);
  1085. int security_inet_conn_request(struct sock *sk,
  1086. struct sk_buff *skb, struct request_sock *req)
  1087. {
  1088. return security_ops->inet_conn_request(sk, skb, req);
  1089. }
  1090. EXPORT_SYMBOL(security_inet_conn_request);
  1091. void security_inet_csk_clone(struct sock *newsk,
  1092. const struct request_sock *req)
  1093. {
  1094. security_ops->inet_csk_clone(newsk, req);
  1095. }
  1096. void security_inet_conn_established(struct sock *sk,
  1097. struct sk_buff *skb)
  1098. {
  1099. security_ops->inet_conn_established(sk, skb);
  1100. }
  1101. int security_secmark_relabel_packet(u32 secid)
  1102. {
  1103. return security_ops->secmark_relabel_packet(secid);
  1104. }
  1105. EXPORT_SYMBOL(security_secmark_relabel_packet);
  1106. void security_secmark_refcount_inc(void)
  1107. {
  1108. security_ops->secmark_refcount_inc();
  1109. }
  1110. EXPORT_SYMBOL(security_secmark_refcount_inc);
  1111. void security_secmark_refcount_dec(void)
  1112. {
  1113. security_ops->secmark_refcount_dec();
  1114. }
  1115. EXPORT_SYMBOL(security_secmark_refcount_dec);
  1116. int security_tun_dev_alloc_security(void **security)
  1117. {
  1118. return security_ops->tun_dev_alloc_security(security);
  1119. }
  1120. EXPORT_SYMBOL(security_tun_dev_alloc_security);
  1121. void security_tun_dev_free_security(void *security)
  1122. {
  1123. security_ops->tun_dev_free_security(security);
  1124. }
  1125. EXPORT_SYMBOL(security_tun_dev_free_security);
  1126. int security_tun_dev_create(void)
  1127. {
  1128. return security_ops->tun_dev_create();
  1129. }
  1130. EXPORT_SYMBOL(security_tun_dev_create);
  1131. int security_tun_dev_attach_queue(void *security)
  1132. {
  1133. return security_ops->tun_dev_attach_queue(security);
  1134. }
  1135. EXPORT_SYMBOL(security_tun_dev_attach_queue);
  1136. int security_tun_dev_attach(struct sock *sk, void *security)
  1137. {
  1138. return security_ops->tun_dev_attach(sk, security);
  1139. }
  1140. EXPORT_SYMBOL(security_tun_dev_attach);
  1141. int security_tun_dev_open(void *security)
  1142. {
  1143. return security_ops->tun_dev_open(security);
  1144. }
  1145. EXPORT_SYMBOL(security_tun_dev_open);
  1146. #endif /* CONFIG_SECURITY_NETWORK */
  1147. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  1148. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
  1149. struct xfrm_user_sec_ctx *sec_ctx,
  1150. gfp_t gfp)
  1151. {
  1152. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
  1153. }
  1154. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  1155. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  1156. struct xfrm_sec_ctx **new_ctxp)
  1157. {
  1158. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  1159. }
  1160. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  1161. {
  1162. security_ops->xfrm_policy_free_security(ctx);
  1163. }
  1164. EXPORT_SYMBOL(security_xfrm_policy_free);
  1165. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  1166. {
  1167. return security_ops->xfrm_policy_delete_security(ctx);
  1168. }
  1169. int security_xfrm_state_alloc(struct xfrm_state *x,
  1170. struct xfrm_user_sec_ctx *sec_ctx)
  1171. {
  1172. return security_ops->xfrm_state_alloc(x, sec_ctx);
  1173. }
  1174. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1175. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1176. struct xfrm_sec_ctx *polsec, u32 secid)
  1177. {
  1178. return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
  1179. }
  1180. int security_xfrm_state_delete(struct xfrm_state *x)
  1181. {
  1182. return security_ops->xfrm_state_delete_security(x);
  1183. }
  1184. EXPORT_SYMBOL(security_xfrm_state_delete);
  1185. void security_xfrm_state_free(struct xfrm_state *x)
  1186. {
  1187. security_ops->xfrm_state_free_security(x);
  1188. }
  1189. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1190. {
  1191. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1192. }
  1193. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1194. struct xfrm_policy *xp,
  1195. const struct flowi *fl)
  1196. {
  1197. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1198. }
  1199. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1200. {
  1201. return security_ops->xfrm_decode_session(skb, secid, 1);
  1202. }
  1203. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1204. {
  1205. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1206. BUG_ON(rc);
  1207. }
  1208. EXPORT_SYMBOL(security_skb_classify_flow);
  1209. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  1210. #ifdef CONFIG_KEYS
  1211. int security_key_alloc(struct key *key, const struct cred *cred,
  1212. unsigned long flags)
  1213. {
  1214. return security_ops->key_alloc(key, cred, flags);
  1215. }
  1216. void security_key_free(struct key *key)
  1217. {
  1218. security_ops->key_free(key);
  1219. }
  1220. int security_key_permission(key_ref_t key_ref,
  1221. const struct cred *cred, unsigned perm)
  1222. {
  1223. return security_ops->key_permission(key_ref, cred, perm);
  1224. }
  1225. int security_key_getsecurity(struct key *key, char **_buffer)
  1226. {
  1227. return security_ops->key_getsecurity(key, _buffer);
  1228. }
  1229. #endif /* CONFIG_KEYS */
  1230. #ifdef CONFIG_AUDIT
  1231. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1232. {
  1233. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1234. }
  1235. int security_audit_rule_known(struct audit_krule *krule)
  1236. {
  1237. return security_ops->audit_rule_known(krule);
  1238. }
  1239. void security_audit_rule_free(void *lsmrule)
  1240. {
  1241. security_ops->audit_rule_free(lsmrule);
  1242. }
  1243. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1244. struct audit_context *actx)
  1245. {
  1246. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1247. }
  1248. #endif /* CONFIG_AUDIT */