file.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include "f2fs.h"
  23. #include "node.h"
  24. #include "segment.h"
  25. #include "xattr.h"
  26. #include "acl.h"
  27. #include <trace/events/f2fs.h>
  28. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  29. struct vm_fault *vmf)
  30. {
  31. struct page *page = vmf->page;
  32. struct inode *inode = file_inode(vma->vm_file);
  33. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  34. block_t old_blk_addr;
  35. struct dnode_of_data dn;
  36. int err, ilock;
  37. f2fs_balance_fs(sbi);
  38. sb_start_pagefault(inode->i_sb);
  39. /* block allocation */
  40. ilock = mutex_lock_op(sbi);
  41. set_new_dnode(&dn, inode, NULL, NULL, 0);
  42. err = get_dnode_of_data(&dn, page->index, ALLOC_NODE);
  43. if (err) {
  44. mutex_unlock_op(sbi, ilock);
  45. goto out;
  46. }
  47. old_blk_addr = dn.data_blkaddr;
  48. if (old_blk_addr == NULL_ADDR) {
  49. err = reserve_new_block(&dn);
  50. if (err) {
  51. f2fs_put_dnode(&dn);
  52. mutex_unlock_op(sbi, ilock);
  53. goto out;
  54. }
  55. }
  56. f2fs_put_dnode(&dn);
  57. mutex_unlock_op(sbi, ilock);
  58. lock_page(page);
  59. if (page->mapping != inode->i_mapping ||
  60. page_offset(page) >= i_size_read(inode) ||
  61. !PageUptodate(page)) {
  62. unlock_page(page);
  63. err = -EFAULT;
  64. goto out;
  65. }
  66. /*
  67. * check to see if the page is mapped already (no holes)
  68. */
  69. if (PageMappedToDisk(page))
  70. goto out;
  71. /* fill the page */
  72. wait_on_page_writeback(page);
  73. /* page is wholly or partially inside EOF */
  74. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  75. unsigned offset;
  76. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  77. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  78. }
  79. set_page_dirty(page);
  80. SetPageUptodate(page);
  81. file_update_time(vma->vm_file);
  82. out:
  83. sb_end_pagefault(inode->i_sb);
  84. return block_page_mkwrite_return(err);
  85. }
  86. static const struct vm_operations_struct f2fs_file_vm_ops = {
  87. .fault = filemap_fault,
  88. .page_mkwrite = f2fs_vm_page_mkwrite,
  89. .remap_pages = generic_file_remap_pages,
  90. };
  91. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  92. {
  93. struct inode *inode = file->f_mapping->host;
  94. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  95. int ret = 0;
  96. bool need_cp = false;
  97. struct writeback_control wbc = {
  98. .sync_mode = WB_SYNC_ALL,
  99. .nr_to_write = LONG_MAX,
  100. .for_reclaim = 0,
  101. };
  102. if (inode->i_sb->s_flags & MS_RDONLY)
  103. return 0;
  104. trace_f2fs_sync_file_enter(inode);
  105. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  106. if (ret) {
  107. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  108. return ret;
  109. }
  110. /* guarantee free sections for fsync */
  111. f2fs_balance_fs(sbi);
  112. mutex_lock(&inode->i_mutex);
  113. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  114. goto out;
  115. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  116. need_cp = true;
  117. else if (is_cp_file(inode))
  118. need_cp = true;
  119. else if (!space_for_roll_forward(sbi))
  120. need_cp = true;
  121. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  122. need_cp = true;
  123. if (need_cp) {
  124. /* all the dirty node pages should be flushed for POR */
  125. ret = f2fs_sync_fs(inode->i_sb, 1);
  126. } else {
  127. /* if there is no written node page, write its inode page */
  128. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  129. ret = f2fs_write_inode(inode, NULL);
  130. if (ret)
  131. goto out;
  132. }
  133. filemap_fdatawait_range(sbi->node_inode->i_mapping,
  134. 0, LONG_MAX);
  135. ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
  136. }
  137. out:
  138. mutex_unlock(&inode->i_mutex);
  139. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  140. return ret;
  141. }
  142. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  143. {
  144. file_accessed(file);
  145. vma->vm_ops = &f2fs_file_vm_ops;
  146. return 0;
  147. }
  148. static int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  149. {
  150. int nr_free = 0, ofs = dn->ofs_in_node;
  151. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  152. struct f2fs_node *raw_node;
  153. __le32 *addr;
  154. raw_node = page_address(dn->node_page);
  155. addr = blkaddr_in_node(raw_node) + ofs;
  156. for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
  157. block_t blkaddr = le32_to_cpu(*addr);
  158. if (blkaddr == NULL_ADDR)
  159. continue;
  160. update_extent_cache(NULL_ADDR, dn);
  161. invalidate_blocks(sbi, blkaddr);
  162. dec_valid_block_count(sbi, dn->inode, 1);
  163. nr_free++;
  164. }
  165. if (nr_free) {
  166. set_page_dirty(dn->node_page);
  167. sync_inode_page(dn);
  168. }
  169. dn->ofs_in_node = ofs;
  170. return nr_free;
  171. }
  172. void truncate_data_blocks(struct dnode_of_data *dn)
  173. {
  174. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  175. }
  176. static void truncate_partial_data_page(struct inode *inode, u64 from)
  177. {
  178. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  179. struct page *page;
  180. if (!offset)
  181. return;
  182. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT);
  183. if (IS_ERR(page))
  184. return;
  185. lock_page(page);
  186. wait_on_page_writeback(page);
  187. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  188. set_page_dirty(page);
  189. f2fs_put_page(page, 1);
  190. }
  191. static int truncate_blocks(struct inode *inode, u64 from)
  192. {
  193. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  194. unsigned int blocksize = inode->i_sb->s_blocksize;
  195. struct dnode_of_data dn;
  196. pgoff_t free_from;
  197. int count = 0, ilock = -1;
  198. int err;
  199. free_from = (pgoff_t)
  200. ((from + blocksize - 1) >> (sbi->log_blocksize));
  201. ilock = mutex_lock_op(sbi);
  202. set_new_dnode(&dn, inode, NULL, NULL, 0);
  203. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  204. if (err) {
  205. if (err == -ENOENT)
  206. goto free_next;
  207. mutex_unlock_op(sbi, ilock);
  208. return err;
  209. }
  210. if (IS_INODE(dn.node_page))
  211. count = ADDRS_PER_INODE;
  212. else
  213. count = ADDRS_PER_BLOCK;
  214. count -= dn.ofs_in_node;
  215. BUG_ON(count < 0);
  216. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  217. truncate_data_blocks_range(&dn, count);
  218. free_from += count;
  219. }
  220. f2fs_put_dnode(&dn);
  221. free_next:
  222. err = truncate_inode_blocks(inode, free_from);
  223. mutex_unlock_op(sbi, ilock);
  224. /* lastly zero out the first data page */
  225. truncate_partial_data_page(inode, from);
  226. return err;
  227. }
  228. void f2fs_truncate(struct inode *inode)
  229. {
  230. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  231. S_ISLNK(inode->i_mode)))
  232. return;
  233. if (!truncate_blocks(inode, i_size_read(inode))) {
  234. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  235. mark_inode_dirty(inode);
  236. }
  237. }
  238. static int f2fs_getattr(struct vfsmount *mnt,
  239. struct dentry *dentry, struct kstat *stat)
  240. {
  241. struct inode *inode = dentry->d_inode;
  242. generic_fillattr(inode, stat);
  243. stat->blocks <<= 3;
  244. return 0;
  245. }
  246. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  247. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  248. {
  249. struct f2fs_inode_info *fi = F2FS_I(inode);
  250. unsigned int ia_valid = attr->ia_valid;
  251. if (ia_valid & ATTR_UID)
  252. inode->i_uid = attr->ia_uid;
  253. if (ia_valid & ATTR_GID)
  254. inode->i_gid = attr->ia_gid;
  255. if (ia_valid & ATTR_ATIME)
  256. inode->i_atime = timespec_trunc(attr->ia_atime,
  257. inode->i_sb->s_time_gran);
  258. if (ia_valid & ATTR_MTIME)
  259. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  260. inode->i_sb->s_time_gran);
  261. if (ia_valid & ATTR_CTIME)
  262. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  263. inode->i_sb->s_time_gran);
  264. if (ia_valid & ATTR_MODE) {
  265. umode_t mode = attr->ia_mode;
  266. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  267. mode &= ~S_ISGID;
  268. set_acl_inode(fi, mode);
  269. }
  270. }
  271. #else
  272. #define __setattr_copy setattr_copy
  273. #endif
  274. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  275. {
  276. struct inode *inode = dentry->d_inode;
  277. struct f2fs_inode_info *fi = F2FS_I(inode);
  278. int err;
  279. err = inode_change_ok(inode, attr);
  280. if (err)
  281. return err;
  282. if ((attr->ia_valid & ATTR_SIZE) &&
  283. attr->ia_size != i_size_read(inode)) {
  284. truncate_setsize(inode, attr->ia_size);
  285. f2fs_truncate(inode);
  286. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  287. }
  288. __setattr_copy(inode, attr);
  289. if (attr->ia_valid & ATTR_MODE) {
  290. err = f2fs_acl_chmod(inode);
  291. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  292. inode->i_mode = fi->i_acl_mode;
  293. clear_inode_flag(fi, FI_ACL_MODE);
  294. }
  295. }
  296. mark_inode_dirty(inode);
  297. return err;
  298. }
  299. const struct inode_operations f2fs_file_inode_operations = {
  300. .getattr = f2fs_getattr,
  301. .setattr = f2fs_setattr,
  302. .get_acl = f2fs_get_acl,
  303. #ifdef CONFIG_F2FS_FS_XATTR
  304. .setxattr = generic_setxattr,
  305. .getxattr = generic_getxattr,
  306. .listxattr = f2fs_listxattr,
  307. .removexattr = generic_removexattr,
  308. #endif
  309. };
  310. static void fill_zero(struct inode *inode, pgoff_t index,
  311. loff_t start, loff_t len)
  312. {
  313. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  314. struct page *page;
  315. int ilock;
  316. if (!len)
  317. return;
  318. f2fs_balance_fs(sbi);
  319. ilock = mutex_lock_op(sbi);
  320. page = get_new_data_page(inode, index, false);
  321. mutex_unlock_op(sbi, ilock);
  322. if (!IS_ERR(page)) {
  323. wait_on_page_writeback(page);
  324. zero_user(page, start, len);
  325. set_page_dirty(page);
  326. f2fs_put_page(page, 1);
  327. }
  328. }
  329. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  330. {
  331. pgoff_t index;
  332. int err;
  333. for (index = pg_start; index < pg_end; index++) {
  334. struct dnode_of_data dn;
  335. set_new_dnode(&dn, inode, NULL, NULL, 0);
  336. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  337. if (err) {
  338. if (err == -ENOENT)
  339. continue;
  340. return err;
  341. }
  342. if (dn.data_blkaddr != NULL_ADDR)
  343. truncate_data_blocks_range(&dn, 1);
  344. f2fs_put_dnode(&dn);
  345. }
  346. return 0;
  347. }
  348. static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
  349. {
  350. pgoff_t pg_start, pg_end;
  351. loff_t off_start, off_end;
  352. int ret = 0;
  353. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  354. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  355. off_start = offset & (PAGE_CACHE_SIZE - 1);
  356. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  357. if (pg_start == pg_end) {
  358. fill_zero(inode, pg_start, off_start,
  359. off_end - off_start);
  360. } else {
  361. if (off_start)
  362. fill_zero(inode, pg_start++, off_start,
  363. PAGE_CACHE_SIZE - off_start);
  364. if (off_end)
  365. fill_zero(inode, pg_end, 0, off_end);
  366. if (pg_start < pg_end) {
  367. struct address_space *mapping = inode->i_mapping;
  368. loff_t blk_start, blk_end;
  369. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  370. int ilock;
  371. f2fs_balance_fs(sbi);
  372. blk_start = pg_start << PAGE_CACHE_SHIFT;
  373. blk_end = pg_end << PAGE_CACHE_SHIFT;
  374. truncate_inode_pages_range(mapping, blk_start,
  375. blk_end - 1);
  376. ilock = mutex_lock_op(sbi);
  377. ret = truncate_hole(inode, pg_start, pg_end);
  378. mutex_unlock_op(sbi, ilock);
  379. }
  380. }
  381. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  382. i_size_read(inode) <= (offset + len)) {
  383. i_size_write(inode, offset);
  384. mark_inode_dirty(inode);
  385. }
  386. return ret;
  387. }
  388. static int expand_inode_data(struct inode *inode, loff_t offset,
  389. loff_t len, int mode)
  390. {
  391. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  392. pgoff_t index, pg_start, pg_end;
  393. loff_t new_size = i_size_read(inode);
  394. loff_t off_start, off_end;
  395. int ret = 0;
  396. ret = inode_newsize_ok(inode, (len + offset));
  397. if (ret)
  398. return ret;
  399. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  400. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  401. off_start = offset & (PAGE_CACHE_SIZE - 1);
  402. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  403. for (index = pg_start; index <= pg_end; index++) {
  404. struct dnode_of_data dn;
  405. int ilock;
  406. ilock = mutex_lock_op(sbi);
  407. set_new_dnode(&dn, inode, NULL, NULL, 0);
  408. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  409. if (ret) {
  410. mutex_unlock_op(sbi, ilock);
  411. break;
  412. }
  413. if (dn.data_blkaddr == NULL_ADDR) {
  414. ret = reserve_new_block(&dn);
  415. if (ret) {
  416. f2fs_put_dnode(&dn);
  417. mutex_unlock_op(sbi, ilock);
  418. break;
  419. }
  420. }
  421. f2fs_put_dnode(&dn);
  422. mutex_unlock_op(sbi, ilock);
  423. if (pg_start == pg_end)
  424. new_size = offset + len;
  425. else if (index == pg_start && off_start)
  426. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  427. else if (index == pg_end)
  428. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  429. else
  430. new_size += PAGE_CACHE_SIZE;
  431. }
  432. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  433. i_size_read(inode) < new_size) {
  434. i_size_write(inode, new_size);
  435. mark_inode_dirty(inode);
  436. }
  437. return ret;
  438. }
  439. static long f2fs_fallocate(struct file *file, int mode,
  440. loff_t offset, loff_t len)
  441. {
  442. struct inode *inode = file_inode(file);
  443. long ret;
  444. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  445. return -EOPNOTSUPP;
  446. if (mode & FALLOC_FL_PUNCH_HOLE)
  447. ret = punch_hole(inode, offset, len, mode);
  448. else
  449. ret = expand_inode_data(inode, offset, len, mode);
  450. if (!ret) {
  451. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  452. mark_inode_dirty(inode);
  453. }
  454. return ret;
  455. }
  456. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  457. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  458. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  459. {
  460. if (S_ISDIR(mode))
  461. return flags;
  462. else if (S_ISREG(mode))
  463. return flags & F2FS_REG_FLMASK;
  464. else
  465. return flags & F2FS_OTHER_FLMASK;
  466. }
  467. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  468. {
  469. struct inode *inode = file_inode(filp);
  470. struct f2fs_inode_info *fi = F2FS_I(inode);
  471. unsigned int flags;
  472. int ret;
  473. switch (cmd) {
  474. case FS_IOC_GETFLAGS:
  475. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  476. return put_user(flags, (int __user *) arg);
  477. case FS_IOC_SETFLAGS:
  478. {
  479. unsigned int oldflags;
  480. ret = mnt_want_write(filp->f_path.mnt);
  481. if (ret)
  482. return ret;
  483. if (!inode_owner_or_capable(inode)) {
  484. ret = -EACCES;
  485. goto out;
  486. }
  487. if (get_user(flags, (int __user *) arg)) {
  488. ret = -EFAULT;
  489. goto out;
  490. }
  491. flags = f2fs_mask_flags(inode->i_mode, flags);
  492. mutex_lock(&inode->i_mutex);
  493. oldflags = fi->i_flags;
  494. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  495. if (!capable(CAP_LINUX_IMMUTABLE)) {
  496. mutex_unlock(&inode->i_mutex);
  497. ret = -EPERM;
  498. goto out;
  499. }
  500. }
  501. flags = flags & FS_FL_USER_MODIFIABLE;
  502. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  503. fi->i_flags = flags;
  504. mutex_unlock(&inode->i_mutex);
  505. f2fs_set_inode_flags(inode);
  506. inode->i_ctime = CURRENT_TIME;
  507. mark_inode_dirty(inode);
  508. out:
  509. mnt_drop_write(filp->f_path.mnt);
  510. return ret;
  511. }
  512. default:
  513. return -ENOTTY;
  514. }
  515. }
  516. #ifdef CONFIG_COMPAT
  517. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  518. {
  519. switch (cmd) {
  520. case F2FS_IOC32_GETFLAGS:
  521. cmd = F2FS_IOC_GETFLAGS;
  522. break;
  523. case F2FS_IOC32_SETFLAGS:
  524. cmd = F2FS_IOC_SETFLAGS;
  525. break;
  526. default:
  527. return -ENOIOCTLCMD;
  528. }
  529. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  530. }
  531. #endif
  532. const struct file_operations f2fs_file_operations = {
  533. .llseek = generic_file_llseek,
  534. .read = do_sync_read,
  535. .write = do_sync_write,
  536. .aio_read = generic_file_aio_read,
  537. .aio_write = generic_file_aio_write,
  538. .open = generic_file_open,
  539. .mmap = f2fs_file_mmap,
  540. .fsync = f2fs_sync_file,
  541. .fallocate = f2fs_fallocate,
  542. .unlocked_ioctl = f2fs_ioctl,
  543. #ifdef CONFIG_COMPAT
  544. .compat_ioctl = f2fs_compat_ioctl,
  545. #endif
  546. .splice_read = generic_file_splice_read,
  547. .splice_write = generic_file_splice_write,
  548. };