intel_dpll_mgr.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794
  1. /*
  2. * Copyright © 2006-2016 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. #include "intel_drv.h"
  24. struct intel_shared_dpll *
  25. intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
  26. enum intel_dpll_id id)
  27. {
  28. return &dev_priv->shared_dplls[id];
  29. }
  30. enum intel_dpll_id
  31. intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
  32. struct intel_shared_dpll *pll)
  33. {
  34. if (WARN_ON(pll < dev_priv->shared_dplls||
  35. pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
  36. return -1;
  37. return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
  38. }
  39. void
  40. intel_shared_dpll_config_get(struct intel_shared_dpll_config *config,
  41. struct intel_shared_dpll *pll,
  42. struct intel_crtc *crtc)
  43. {
  44. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  45. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  46. config[id].crtc_mask |= 1 << crtc->pipe;
  47. }
  48. void
  49. intel_shared_dpll_config_put(struct intel_shared_dpll_config *config,
  50. struct intel_shared_dpll *pll,
  51. struct intel_crtc *crtc)
  52. {
  53. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  54. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  55. config[id].crtc_mask &= ~(1 << crtc->pipe);
  56. }
  57. /* For ILK+ */
  58. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  59. struct intel_shared_dpll *pll,
  60. bool state)
  61. {
  62. bool cur_state;
  63. struct intel_dpll_hw_state hw_state;
  64. if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
  65. return;
  66. cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
  67. I915_STATE_WARN(cur_state != state,
  68. "%s assertion failure (expected %s, current %s)\n",
  69. pll->name, onoff(state), onoff(cur_state));
  70. }
  71. void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  72. {
  73. struct drm_device *dev = crtc->base.dev;
  74. struct drm_i915_private *dev_priv = to_i915(dev);
  75. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  76. if (WARN_ON(pll == NULL))
  77. return;
  78. mutex_lock(&dev_priv->dpll_lock);
  79. WARN_ON(!pll->config.crtc_mask);
  80. if (!pll->active_mask) {
  81. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  82. WARN_ON(pll->on);
  83. assert_shared_dpll_disabled(dev_priv, pll);
  84. pll->funcs.mode_set(dev_priv, pll);
  85. }
  86. mutex_unlock(&dev_priv->dpll_lock);
  87. }
  88. /**
  89. * intel_enable_shared_dpll - enable PCH PLL
  90. * @dev_priv: i915 private structure
  91. * @pipe: pipe PLL to enable
  92. *
  93. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  94. * drives the transcoder clock.
  95. */
  96. void intel_enable_shared_dpll(struct intel_crtc *crtc)
  97. {
  98. struct drm_device *dev = crtc->base.dev;
  99. struct drm_i915_private *dev_priv = to_i915(dev);
  100. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  101. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  102. unsigned old_mask;
  103. if (WARN_ON(pll == NULL))
  104. return;
  105. mutex_lock(&dev_priv->dpll_lock);
  106. old_mask = pll->active_mask;
  107. if (WARN_ON(!(pll->config.crtc_mask & crtc_mask)) ||
  108. WARN_ON(pll->active_mask & crtc_mask))
  109. goto out;
  110. pll->active_mask |= crtc_mask;
  111. DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
  112. pll->name, pll->active_mask, pll->on,
  113. crtc->base.base.id);
  114. if (old_mask) {
  115. WARN_ON(!pll->on);
  116. assert_shared_dpll_enabled(dev_priv, pll);
  117. goto out;
  118. }
  119. WARN_ON(pll->on);
  120. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  121. pll->funcs.enable(dev_priv, pll);
  122. pll->on = true;
  123. out:
  124. mutex_unlock(&dev_priv->dpll_lock);
  125. }
  126. void intel_disable_shared_dpll(struct intel_crtc *crtc)
  127. {
  128. struct drm_device *dev = crtc->base.dev;
  129. struct drm_i915_private *dev_priv = to_i915(dev);
  130. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  131. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  132. /* PCH only available on ILK+ */
  133. if (INTEL_INFO(dev)->gen < 5)
  134. return;
  135. if (pll == NULL)
  136. return;
  137. mutex_lock(&dev_priv->dpll_lock);
  138. if (WARN_ON(!(pll->active_mask & crtc_mask)))
  139. goto out;
  140. DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
  141. pll->name, pll->active_mask, pll->on,
  142. crtc->base.base.id);
  143. assert_shared_dpll_enabled(dev_priv, pll);
  144. WARN_ON(!pll->on);
  145. pll->active_mask &= ~crtc_mask;
  146. if (pll->active_mask)
  147. goto out;
  148. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  149. pll->funcs.disable(dev_priv, pll);
  150. pll->on = false;
  151. out:
  152. mutex_unlock(&dev_priv->dpll_lock);
  153. }
  154. static struct intel_shared_dpll *
  155. intel_find_shared_dpll(struct intel_crtc *crtc,
  156. struct intel_crtc_state *crtc_state,
  157. enum intel_dpll_id range_min,
  158. enum intel_dpll_id range_max)
  159. {
  160. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  161. struct intel_shared_dpll *pll;
  162. struct intel_shared_dpll_config *shared_dpll;
  163. enum intel_dpll_id i;
  164. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  165. for (i = range_min; i <= range_max; i++) {
  166. pll = &dev_priv->shared_dplls[i];
  167. /* Only want to check enabled timings first */
  168. if (shared_dpll[i].crtc_mask == 0)
  169. continue;
  170. if (memcmp(&crtc_state->dpll_hw_state,
  171. &shared_dpll[i].hw_state,
  172. sizeof(crtc_state->dpll_hw_state)) == 0) {
  173. DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
  174. crtc->base.base.id, crtc->base.name, pll->name,
  175. shared_dpll[i].crtc_mask,
  176. pll->active_mask);
  177. return pll;
  178. }
  179. }
  180. /* Ok no matching timings, maybe there's a free one? */
  181. for (i = range_min; i <= range_max; i++) {
  182. pll = &dev_priv->shared_dplls[i];
  183. if (shared_dpll[i].crtc_mask == 0) {
  184. DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
  185. crtc->base.base.id, crtc->base.name, pll->name);
  186. return pll;
  187. }
  188. }
  189. return NULL;
  190. }
  191. static void
  192. intel_reference_shared_dpll(struct intel_shared_dpll *pll,
  193. struct intel_crtc_state *crtc_state)
  194. {
  195. struct intel_shared_dpll_config *shared_dpll;
  196. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  197. enum intel_dpll_id i = pll->id;
  198. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  199. if (shared_dpll[i].crtc_mask == 0)
  200. shared_dpll[i].hw_state =
  201. crtc_state->dpll_hw_state;
  202. crtc_state->shared_dpll = pll;
  203. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  204. pipe_name(crtc->pipe));
  205. intel_shared_dpll_config_get(shared_dpll, pll, crtc);
  206. }
  207. void intel_shared_dpll_commit(struct drm_atomic_state *state)
  208. {
  209. struct drm_i915_private *dev_priv = to_i915(state->dev);
  210. struct intel_shared_dpll_config *shared_dpll;
  211. struct intel_shared_dpll *pll;
  212. enum intel_dpll_id i;
  213. if (!to_intel_atomic_state(state)->dpll_set)
  214. return;
  215. shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  216. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  217. pll = &dev_priv->shared_dplls[i];
  218. pll->config = shared_dpll[i];
  219. }
  220. }
  221. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  222. struct intel_shared_dpll *pll,
  223. struct intel_dpll_hw_state *hw_state)
  224. {
  225. uint32_t val;
  226. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  227. return false;
  228. val = I915_READ(PCH_DPLL(pll->id));
  229. hw_state->dpll = val;
  230. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  231. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  232. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  233. return val & DPLL_VCO_ENABLE;
  234. }
  235. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  236. struct intel_shared_dpll *pll)
  237. {
  238. I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  239. I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  240. }
  241. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  242. {
  243. u32 val;
  244. bool enabled;
  245. I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
  246. val = I915_READ(PCH_DREF_CONTROL);
  247. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  248. DREF_SUPERSPREAD_SOURCE_MASK));
  249. I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  250. }
  251. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  252. struct intel_shared_dpll *pll)
  253. {
  254. /* PCH refclock must be enabled first */
  255. ibx_assert_pch_refclk_enabled(dev_priv);
  256. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  257. /* Wait for the clocks to stabilize. */
  258. POSTING_READ(PCH_DPLL(pll->id));
  259. udelay(150);
  260. /* The pixel multiplier can only be updated once the
  261. * DPLL is enabled and the clocks are stable.
  262. *
  263. * So write it again.
  264. */
  265. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  266. POSTING_READ(PCH_DPLL(pll->id));
  267. udelay(200);
  268. }
  269. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  270. struct intel_shared_dpll *pll)
  271. {
  272. struct drm_device *dev = &dev_priv->drm;
  273. struct intel_crtc *crtc;
  274. /* Make sure no transcoder isn't still depending on us. */
  275. for_each_intel_crtc(dev, crtc) {
  276. if (crtc->config->shared_dpll == pll)
  277. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  278. }
  279. I915_WRITE(PCH_DPLL(pll->id), 0);
  280. POSTING_READ(PCH_DPLL(pll->id));
  281. udelay(200);
  282. }
  283. static struct intel_shared_dpll *
  284. ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  285. struct intel_encoder *encoder)
  286. {
  287. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  288. struct intel_shared_dpll *pll;
  289. enum intel_dpll_id i;
  290. if (HAS_PCH_IBX(dev_priv)) {
  291. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  292. i = (enum intel_dpll_id) crtc->pipe;
  293. pll = &dev_priv->shared_dplls[i];
  294. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  295. crtc->base.base.id, crtc->base.name, pll->name);
  296. } else {
  297. pll = intel_find_shared_dpll(crtc, crtc_state,
  298. DPLL_ID_PCH_PLL_A,
  299. DPLL_ID_PCH_PLL_B);
  300. }
  301. if (!pll)
  302. return NULL;
  303. /* reference the pll */
  304. intel_reference_shared_dpll(pll, crtc_state);
  305. return pll;
  306. }
  307. static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
  308. .mode_set = ibx_pch_dpll_mode_set,
  309. .enable = ibx_pch_dpll_enable,
  310. .disable = ibx_pch_dpll_disable,
  311. .get_hw_state = ibx_pch_dpll_get_hw_state,
  312. };
  313. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  314. struct intel_shared_dpll *pll)
  315. {
  316. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  317. POSTING_READ(WRPLL_CTL(pll->id));
  318. udelay(20);
  319. }
  320. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  321. struct intel_shared_dpll *pll)
  322. {
  323. I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
  324. POSTING_READ(SPLL_CTL);
  325. udelay(20);
  326. }
  327. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  328. struct intel_shared_dpll *pll)
  329. {
  330. uint32_t val;
  331. val = I915_READ(WRPLL_CTL(pll->id));
  332. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  333. POSTING_READ(WRPLL_CTL(pll->id));
  334. }
  335. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  336. struct intel_shared_dpll *pll)
  337. {
  338. uint32_t val;
  339. val = I915_READ(SPLL_CTL);
  340. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  341. POSTING_READ(SPLL_CTL);
  342. }
  343. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  344. struct intel_shared_dpll *pll,
  345. struct intel_dpll_hw_state *hw_state)
  346. {
  347. uint32_t val;
  348. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  349. return false;
  350. val = I915_READ(WRPLL_CTL(pll->id));
  351. hw_state->wrpll = val;
  352. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  353. return val & WRPLL_PLL_ENABLE;
  354. }
  355. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  356. struct intel_shared_dpll *pll,
  357. struct intel_dpll_hw_state *hw_state)
  358. {
  359. uint32_t val;
  360. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  361. return false;
  362. val = I915_READ(SPLL_CTL);
  363. hw_state->spll = val;
  364. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  365. return val & SPLL_PLL_ENABLE;
  366. }
  367. #define LC_FREQ 2700
  368. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  369. #define P_MIN 2
  370. #define P_MAX 64
  371. #define P_INC 2
  372. /* Constraints for PLL good behavior */
  373. #define REF_MIN 48
  374. #define REF_MAX 400
  375. #define VCO_MIN 2400
  376. #define VCO_MAX 4800
  377. struct hsw_wrpll_rnp {
  378. unsigned p, n2, r2;
  379. };
  380. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  381. {
  382. unsigned budget;
  383. switch (clock) {
  384. case 25175000:
  385. case 25200000:
  386. case 27000000:
  387. case 27027000:
  388. case 37762500:
  389. case 37800000:
  390. case 40500000:
  391. case 40541000:
  392. case 54000000:
  393. case 54054000:
  394. case 59341000:
  395. case 59400000:
  396. case 72000000:
  397. case 74176000:
  398. case 74250000:
  399. case 81000000:
  400. case 81081000:
  401. case 89012000:
  402. case 89100000:
  403. case 108000000:
  404. case 108108000:
  405. case 111264000:
  406. case 111375000:
  407. case 148352000:
  408. case 148500000:
  409. case 162000000:
  410. case 162162000:
  411. case 222525000:
  412. case 222750000:
  413. case 296703000:
  414. case 297000000:
  415. budget = 0;
  416. break;
  417. case 233500000:
  418. case 245250000:
  419. case 247750000:
  420. case 253250000:
  421. case 298000000:
  422. budget = 1500;
  423. break;
  424. case 169128000:
  425. case 169500000:
  426. case 179500000:
  427. case 202000000:
  428. budget = 2000;
  429. break;
  430. case 256250000:
  431. case 262500000:
  432. case 270000000:
  433. case 272500000:
  434. case 273750000:
  435. case 280750000:
  436. case 281250000:
  437. case 286000000:
  438. case 291750000:
  439. budget = 4000;
  440. break;
  441. case 267250000:
  442. case 268500000:
  443. budget = 5000;
  444. break;
  445. default:
  446. budget = 1000;
  447. break;
  448. }
  449. return budget;
  450. }
  451. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  452. unsigned r2, unsigned n2, unsigned p,
  453. struct hsw_wrpll_rnp *best)
  454. {
  455. uint64_t a, b, c, d, diff, diff_best;
  456. /* No best (r,n,p) yet */
  457. if (best->p == 0) {
  458. best->p = p;
  459. best->n2 = n2;
  460. best->r2 = r2;
  461. return;
  462. }
  463. /*
  464. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  465. * freq2k.
  466. *
  467. * delta = 1e6 *
  468. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  469. * freq2k;
  470. *
  471. * and we would like delta <= budget.
  472. *
  473. * If the discrepancy is above the PPM-based budget, always prefer to
  474. * improve upon the previous solution. However, if you're within the
  475. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  476. */
  477. a = freq2k * budget * p * r2;
  478. b = freq2k * budget * best->p * best->r2;
  479. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  480. diff_best = abs_diff(freq2k * best->p * best->r2,
  481. LC_FREQ_2K * best->n2);
  482. c = 1000000 * diff;
  483. d = 1000000 * diff_best;
  484. if (a < c && b < d) {
  485. /* If both are above the budget, pick the closer */
  486. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  487. best->p = p;
  488. best->n2 = n2;
  489. best->r2 = r2;
  490. }
  491. } else if (a >= c && b < d) {
  492. /* If A is below the threshold but B is above it? Update. */
  493. best->p = p;
  494. best->n2 = n2;
  495. best->r2 = r2;
  496. } else if (a >= c && b >= d) {
  497. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  498. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  499. best->p = p;
  500. best->n2 = n2;
  501. best->r2 = r2;
  502. }
  503. }
  504. /* Otherwise a < c && b >= d, do nothing */
  505. }
  506. static void
  507. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  508. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  509. {
  510. uint64_t freq2k;
  511. unsigned p, n2, r2;
  512. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  513. unsigned budget;
  514. freq2k = clock / 100;
  515. budget = hsw_wrpll_get_budget_for_freq(clock);
  516. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  517. * and directly pass the LC PLL to it. */
  518. if (freq2k == 5400000) {
  519. *n2_out = 2;
  520. *p_out = 1;
  521. *r2_out = 2;
  522. return;
  523. }
  524. /*
  525. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  526. * the WR PLL.
  527. *
  528. * We want R so that REF_MIN <= Ref <= REF_MAX.
  529. * Injecting R2 = 2 * R gives:
  530. * REF_MAX * r2 > LC_FREQ * 2 and
  531. * REF_MIN * r2 < LC_FREQ * 2
  532. *
  533. * Which means the desired boundaries for r2 are:
  534. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  535. *
  536. */
  537. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  538. r2 <= LC_FREQ * 2 / REF_MIN;
  539. r2++) {
  540. /*
  541. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  542. *
  543. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  544. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  545. * VCO_MAX * r2 > n2 * LC_FREQ and
  546. * VCO_MIN * r2 < n2 * LC_FREQ)
  547. *
  548. * Which means the desired boundaries for n2 are:
  549. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  550. */
  551. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  552. n2 <= VCO_MAX * r2 / LC_FREQ;
  553. n2++) {
  554. for (p = P_MIN; p <= P_MAX; p += P_INC)
  555. hsw_wrpll_update_rnp(freq2k, budget,
  556. r2, n2, p, &best);
  557. }
  558. }
  559. *n2_out = best.n2;
  560. *p_out = best.p;
  561. *r2_out = best.r2;
  562. }
  563. static struct intel_shared_dpll *
  564. hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  565. struct intel_encoder *encoder)
  566. {
  567. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  568. struct intel_shared_dpll *pll;
  569. int clock = crtc_state->port_clock;
  570. memset(&crtc_state->dpll_hw_state, 0,
  571. sizeof(crtc_state->dpll_hw_state));
  572. if (encoder->type == INTEL_OUTPUT_HDMI) {
  573. uint32_t val;
  574. unsigned p, n2, r2;
  575. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  576. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  577. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  578. WRPLL_DIVIDER_POST(p);
  579. crtc_state->dpll_hw_state.wrpll = val;
  580. pll = intel_find_shared_dpll(crtc, crtc_state,
  581. DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
  582. } else if (encoder->type == INTEL_OUTPUT_DP ||
  583. encoder->type == INTEL_OUTPUT_DP_MST ||
  584. encoder->type == INTEL_OUTPUT_EDP) {
  585. enum intel_dpll_id pll_id;
  586. switch (clock / 2) {
  587. case 81000:
  588. pll_id = DPLL_ID_LCPLL_810;
  589. break;
  590. case 135000:
  591. pll_id = DPLL_ID_LCPLL_1350;
  592. break;
  593. case 270000:
  594. pll_id = DPLL_ID_LCPLL_2700;
  595. break;
  596. default:
  597. DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
  598. return NULL;
  599. }
  600. pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
  601. } else if (encoder->type == INTEL_OUTPUT_ANALOG) {
  602. if (WARN_ON(crtc_state->port_clock / 2 != 135000))
  603. return NULL;
  604. crtc_state->dpll_hw_state.spll =
  605. SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  606. pll = intel_find_shared_dpll(crtc, crtc_state,
  607. DPLL_ID_SPLL, DPLL_ID_SPLL);
  608. } else {
  609. return NULL;
  610. }
  611. if (!pll)
  612. return NULL;
  613. intel_reference_shared_dpll(pll, crtc_state);
  614. return pll;
  615. }
  616. static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
  617. .enable = hsw_ddi_wrpll_enable,
  618. .disable = hsw_ddi_wrpll_disable,
  619. .get_hw_state = hsw_ddi_wrpll_get_hw_state,
  620. };
  621. static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
  622. .enable = hsw_ddi_spll_enable,
  623. .disable = hsw_ddi_spll_disable,
  624. .get_hw_state = hsw_ddi_spll_get_hw_state,
  625. };
  626. static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
  627. struct intel_shared_dpll *pll)
  628. {
  629. }
  630. static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
  631. struct intel_shared_dpll *pll)
  632. {
  633. }
  634. static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
  635. struct intel_shared_dpll *pll,
  636. struct intel_dpll_hw_state *hw_state)
  637. {
  638. return true;
  639. }
  640. static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
  641. .enable = hsw_ddi_lcpll_enable,
  642. .disable = hsw_ddi_lcpll_disable,
  643. .get_hw_state = hsw_ddi_lcpll_get_hw_state,
  644. };
  645. struct skl_dpll_regs {
  646. i915_reg_t ctl, cfgcr1, cfgcr2;
  647. };
  648. /* this array is indexed by the *shared* pll id */
  649. static const struct skl_dpll_regs skl_dpll_regs[4] = {
  650. {
  651. /* DPLL 0 */
  652. .ctl = LCPLL1_CTL,
  653. /* DPLL 0 doesn't support HDMI mode */
  654. },
  655. {
  656. /* DPLL 1 */
  657. .ctl = LCPLL2_CTL,
  658. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  659. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  660. },
  661. {
  662. /* DPLL 2 */
  663. .ctl = WRPLL_CTL(0),
  664. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  665. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  666. },
  667. {
  668. /* DPLL 3 */
  669. .ctl = WRPLL_CTL(1),
  670. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  671. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  672. },
  673. };
  674. static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
  675. struct intel_shared_dpll *pll)
  676. {
  677. uint32_t val;
  678. val = I915_READ(DPLL_CTRL1);
  679. val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
  680. DPLL_CTRL1_LINK_RATE_MASK(pll->id));
  681. val |= pll->config.hw_state.ctrl1 << (pll->id * 6);
  682. I915_WRITE(DPLL_CTRL1, val);
  683. POSTING_READ(DPLL_CTRL1);
  684. }
  685. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  686. struct intel_shared_dpll *pll)
  687. {
  688. const struct skl_dpll_regs *regs = skl_dpll_regs;
  689. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  690. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  691. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  692. POSTING_READ(regs[pll->id].cfgcr1);
  693. POSTING_READ(regs[pll->id].cfgcr2);
  694. /* the enable bit is always bit 31 */
  695. I915_WRITE(regs[pll->id].ctl,
  696. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  697. if (intel_wait_for_register(dev_priv,
  698. DPLL_STATUS,
  699. DPLL_LOCK(pll->id),
  700. DPLL_LOCK(pll->id),
  701. 5))
  702. DRM_ERROR("DPLL %d not locked\n", pll->id);
  703. }
  704. static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
  705. struct intel_shared_dpll *pll)
  706. {
  707. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  708. }
  709. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  710. struct intel_shared_dpll *pll)
  711. {
  712. const struct skl_dpll_regs *regs = skl_dpll_regs;
  713. /* the enable bit is always bit 31 */
  714. I915_WRITE(regs[pll->id].ctl,
  715. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  716. POSTING_READ(regs[pll->id].ctl);
  717. }
  718. static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
  719. struct intel_shared_dpll *pll)
  720. {
  721. }
  722. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  723. struct intel_shared_dpll *pll,
  724. struct intel_dpll_hw_state *hw_state)
  725. {
  726. uint32_t val;
  727. const struct skl_dpll_regs *regs = skl_dpll_regs;
  728. bool ret;
  729. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  730. return false;
  731. ret = false;
  732. val = I915_READ(regs[pll->id].ctl);
  733. if (!(val & LCPLL_PLL_ENABLE))
  734. goto out;
  735. val = I915_READ(DPLL_CTRL1);
  736. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  737. /* avoid reading back stale values if HDMI mode is not enabled */
  738. if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
  739. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  740. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  741. }
  742. ret = true;
  743. out:
  744. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  745. return ret;
  746. }
  747. static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
  748. struct intel_shared_dpll *pll,
  749. struct intel_dpll_hw_state *hw_state)
  750. {
  751. uint32_t val;
  752. const struct skl_dpll_regs *regs = skl_dpll_regs;
  753. bool ret;
  754. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  755. return false;
  756. ret = false;
  757. /* DPLL0 is always enabled since it drives CDCLK */
  758. val = I915_READ(regs[pll->id].ctl);
  759. if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
  760. goto out;
  761. val = I915_READ(DPLL_CTRL1);
  762. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  763. ret = true;
  764. out:
  765. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  766. return ret;
  767. }
  768. struct skl_wrpll_context {
  769. uint64_t min_deviation; /* current minimal deviation */
  770. uint64_t central_freq; /* chosen central freq */
  771. uint64_t dco_freq; /* chosen dco freq */
  772. unsigned int p; /* chosen divider */
  773. };
  774. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  775. {
  776. memset(ctx, 0, sizeof(*ctx));
  777. ctx->min_deviation = U64_MAX;
  778. }
  779. /* DCO freq must be within +1%/-6% of the DCO central freq */
  780. #define SKL_DCO_MAX_PDEVIATION 100
  781. #define SKL_DCO_MAX_NDEVIATION 600
  782. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  783. uint64_t central_freq,
  784. uint64_t dco_freq,
  785. unsigned int divider)
  786. {
  787. uint64_t deviation;
  788. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  789. central_freq);
  790. /* positive deviation */
  791. if (dco_freq >= central_freq) {
  792. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  793. deviation < ctx->min_deviation) {
  794. ctx->min_deviation = deviation;
  795. ctx->central_freq = central_freq;
  796. ctx->dco_freq = dco_freq;
  797. ctx->p = divider;
  798. }
  799. /* negative deviation */
  800. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  801. deviation < ctx->min_deviation) {
  802. ctx->min_deviation = deviation;
  803. ctx->central_freq = central_freq;
  804. ctx->dco_freq = dco_freq;
  805. ctx->p = divider;
  806. }
  807. }
  808. static void skl_wrpll_get_multipliers(unsigned int p,
  809. unsigned int *p0 /* out */,
  810. unsigned int *p1 /* out */,
  811. unsigned int *p2 /* out */)
  812. {
  813. /* even dividers */
  814. if (p % 2 == 0) {
  815. unsigned int half = p / 2;
  816. if (half == 1 || half == 2 || half == 3 || half == 5) {
  817. *p0 = 2;
  818. *p1 = 1;
  819. *p2 = half;
  820. } else if (half % 2 == 0) {
  821. *p0 = 2;
  822. *p1 = half / 2;
  823. *p2 = 2;
  824. } else if (half % 3 == 0) {
  825. *p0 = 3;
  826. *p1 = half / 3;
  827. *p2 = 2;
  828. } else if (half % 7 == 0) {
  829. *p0 = 7;
  830. *p1 = half / 7;
  831. *p2 = 2;
  832. }
  833. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  834. *p0 = 3;
  835. *p1 = 1;
  836. *p2 = p / 3;
  837. } else if (p == 5 || p == 7) {
  838. *p0 = p;
  839. *p1 = 1;
  840. *p2 = 1;
  841. } else if (p == 15) {
  842. *p0 = 3;
  843. *p1 = 1;
  844. *p2 = 5;
  845. } else if (p == 21) {
  846. *p0 = 7;
  847. *p1 = 1;
  848. *p2 = 3;
  849. } else if (p == 35) {
  850. *p0 = 7;
  851. *p1 = 1;
  852. *p2 = 5;
  853. }
  854. }
  855. struct skl_wrpll_params {
  856. uint32_t dco_fraction;
  857. uint32_t dco_integer;
  858. uint32_t qdiv_ratio;
  859. uint32_t qdiv_mode;
  860. uint32_t kdiv;
  861. uint32_t pdiv;
  862. uint32_t central_freq;
  863. };
  864. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  865. uint64_t afe_clock,
  866. uint64_t central_freq,
  867. uint32_t p0, uint32_t p1, uint32_t p2)
  868. {
  869. uint64_t dco_freq;
  870. switch (central_freq) {
  871. case 9600000000ULL:
  872. params->central_freq = 0;
  873. break;
  874. case 9000000000ULL:
  875. params->central_freq = 1;
  876. break;
  877. case 8400000000ULL:
  878. params->central_freq = 3;
  879. }
  880. switch (p0) {
  881. case 1:
  882. params->pdiv = 0;
  883. break;
  884. case 2:
  885. params->pdiv = 1;
  886. break;
  887. case 3:
  888. params->pdiv = 2;
  889. break;
  890. case 7:
  891. params->pdiv = 4;
  892. break;
  893. default:
  894. WARN(1, "Incorrect PDiv\n");
  895. }
  896. switch (p2) {
  897. case 5:
  898. params->kdiv = 0;
  899. break;
  900. case 2:
  901. params->kdiv = 1;
  902. break;
  903. case 3:
  904. params->kdiv = 2;
  905. break;
  906. case 1:
  907. params->kdiv = 3;
  908. break;
  909. default:
  910. WARN(1, "Incorrect KDiv\n");
  911. }
  912. params->qdiv_ratio = p1;
  913. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  914. dco_freq = p0 * p1 * p2 * afe_clock;
  915. /*
  916. * Intermediate values are in Hz.
  917. * Divide by MHz to match bsepc
  918. */
  919. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  920. params->dco_fraction =
  921. div_u64((div_u64(dco_freq, 24) -
  922. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  923. }
  924. static bool
  925. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  926. struct skl_wrpll_params *wrpll_params)
  927. {
  928. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  929. uint64_t dco_central_freq[3] = {8400000000ULL,
  930. 9000000000ULL,
  931. 9600000000ULL};
  932. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  933. 24, 28, 30, 32, 36, 40, 42, 44,
  934. 48, 52, 54, 56, 60, 64, 66, 68,
  935. 70, 72, 76, 78, 80, 84, 88, 90,
  936. 92, 96, 98 };
  937. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  938. static const struct {
  939. const int *list;
  940. int n_dividers;
  941. } dividers[] = {
  942. { even_dividers, ARRAY_SIZE(even_dividers) },
  943. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  944. };
  945. struct skl_wrpll_context ctx;
  946. unsigned int dco, d, i;
  947. unsigned int p0, p1, p2;
  948. skl_wrpll_context_init(&ctx);
  949. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  950. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  951. for (i = 0; i < dividers[d].n_dividers; i++) {
  952. unsigned int p = dividers[d].list[i];
  953. uint64_t dco_freq = p * afe_clock;
  954. skl_wrpll_try_divider(&ctx,
  955. dco_central_freq[dco],
  956. dco_freq,
  957. p);
  958. /*
  959. * Skip the remaining dividers if we're sure to
  960. * have found the definitive divider, we can't
  961. * improve a 0 deviation.
  962. */
  963. if (ctx.min_deviation == 0)
  964. goto skip_remaining_dividers;
  965. }
  966. }
  967. skip_remaining_dividers:
  968. /*
  969. * If a solution is found with an even divider, prefer
  970. * this one.
  971. */
  972. if (d == 0 && ctx.p)
  973. break;
  974. }
  975. if (!ctx.p) {
  976. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  977. return false;
  978. }
  979. /*
  980. * gcc incorrectly analyses that these can be used without being
  981. * initialized. To be fair, it's hard to guess.
  982. */
  983. p0 = p1 = p2 = 0;
  984. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  985. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  986. p0, p1, p2);
  987. return true;
  988. }
  989. static struct intel_shared_dpll *
  990. skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  991. struct intel_encoder *encoder)
  992. {
  993. struct intel_shared_dpll *pll;
  994. uint32_t ctrl1, cfgcr1, cfgcr2;
  995. int clock = crtc_state->port_clock;
  996. /*
  997. * See comment in intel_dpll_hw_state to understand why we always use 0
  998. * as the DPLL id in this function.
  999. */
  1000. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1001. if (encoder->type == INTEL_OUTPUT_HDMI) {
  1002. struct skl_wrpll_params wrpll_params = { 0, };
  1003. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1004. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1005. return NULL;
  1006. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1007. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1008. wrpll_params.dco_integer;
  1009. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1010. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1011. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1012. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1013. wrpll_params.central_freq;
  1014. } else if (encoder->type == INTEL_OUTPUT_DP ||
  1015. encoder->type == INTEL_OUTPUT_DP_MST ||
  1016. encoder->type == INTEL_OUTPUT_EDP) {
  1017. switch (crtc_state->port_clock / 2) {
  1018. case 81000:
  1019. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1020. break;
  1021. case 135000:
  1022. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1023. break;
  1024. case 270000:
  1025. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1026. break;
  1027. /* eDP 1.4 rates */
  1028. case 162000:
  1029. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
  1030. break;
  1031. case 108000:
  1032. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
  1033. break;
  1034. case 216000:
  1035. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
  1036. break;
  1037. }
  1038. cfgcr1 = cfgcr2 = 0;
  1039. } else {
  1040. return NULL;
  1041. }
  1042. memset(&crtc_state->dpll_hw_state, 0,
  1043. sizeof(crtc_state->dpll_hw_state));
  1044. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1045. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1046. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1047. if (encoder->type == INTEL_OUTPUT_EDP)
  1048. pll = intel_find_shared_dpll(crtc, crtc_state,
  1049. DPLL_ID_SKL_DPLL0,
  1050. DPLL_ID_SKL_DPLL0);
  1051. else
  1052. pll = intel_find_shared_dpll(crtc, crtc_state,
  1053. DPLL_ID_SKL_DPLL1,
  1054. DPLL_ID_SKL_DPLL3);
  1055. if (!pll)
  1056. return NULL;
  1057. intel_reference_shared_dpll(pll, crtc_state);
  1058. return pll;
  1059. }
  1060. static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
  1061. .enable = skl_ddi_pll_enable,
  1062. .disable = skl_ddi_pll_disable,
  1063. .get_hw_state = skl_ddi_pll_get_hw_state,
  1064. };
  1065. static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
  1066. .enable = skl_ddi_dpll0_enable,
  1067. .disable = skl_ddi_dpll0_disable,
  1068. .get_hw_state = skl_ddi_dpll0_get_hw_state,
  1069. };
  1070. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1071. struct intel_shared_dpll *pll)
  1072. {
  1073. uint32_t temp;
  1074. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1075. /* Non-SSC reference */
  1076. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1077. temp |= PORT_PLL_REF_SEL;
  1078. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1079. /* Disable 10 bit clock */
  1080. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1081. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1082. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1083. /* Write P1 & P2 */
  1084. temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
  1085. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  1086. temp |= pll->config.hw_state.ebb0;
  1087. I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
  1088. /* Write M2 integer */
  1089. temp = I915_READ(BXT_PORT_PLL(port, 0));
  1090. temp &= ~PORT_PLL_M2_MASK;
  1091. temp |= pll->config.hw_state.pll0;
  1092. I915_WRITE(BXT_PORT_PLL(port, 0), temp);
  1093. /* Write N */
  1094. temp = I915_READ(BXT_PORT_PLL(port, 1));
  1095. temp &= ~PORT_PLL_N_MASK;
  1096. temp |= pll->config.hw_state.pll1;
  1097. I915_WRITE(BXT_PORT_PLL(port, 1), temp);
  1098. /* Write M2 fraction */
  1099. temp = I915_READ(BXT_PORT_PLL(port, 2));
  1100. temp &= ~PORT_PLL_M2_FRAC_MASK;
  1101. temp |= pll->config.hw_state.pll2;
  1102. I915_WRITE(BXT_PORT_PLL(port, 2), temp);
  1103. /* Write M2 fraction enable */
  1104. temp = I915_READ(BXT_PORT_PLL(port, 3));
  1105. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  1106. temp |= pll->config.hw_state.pll3;
  1107. I915_WRITE(BXT_PORT_PLL(port, 3), temp);
  1108. /* Write coeff */
  1109. temp = I915_READ(BXT_PORT_PLL(port, 6));
  1110. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  1111. temp &= ~PORT_PLL_INT_COEFF_MASK;
  1112. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  1113. temp |= pll->config.hw_state.pll6;
  1114. I915_WRITE(BXT_PORT_PLL(port, 6), temp);
  1115. /* Write calibration val */
  1116. temp = I915_READ(BXT_PORT_PLL(port, 8));
  1117. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  1118. temp |= pll->config.hw_state.pll8;
  1119. I915_WRITE(BXT_PORT_PLL(port, 8), temp);
  1120. temp = I915_READ(BXT_PORT_PLL(port, 9));
  1121. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  1122. temp |= pll->config.hw_state.pll9;
  1123. I915_WRITE(BXT_PORT_PLL(port, 9), temp);
  1124. temp = I915_READ(BXT_PORT_PLL(port, 10));
  1125. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  1126. temp &= ~PORT_PLL_DCO_AMP_MASK;
  1127. temp |= pll->config.hw_state.pll10;
  1128. I915_WRITE(BXT_PORT_PLL(port, 10), temp);
  1129. /* Recalibrate with new settings */
  1130. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1131. temp |= PORT_PLL_RECALIBRATE;
  1132. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1133. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1134. temp |= pll->config.hw_state.ebb4;
  1135. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1136. /* Enable PLL */
  1137. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1138. temp |= PORT_PLL_ENABLE;
  1139. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1140. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1141. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
  1142. 200))
  1143. DRM_ERROR("PLL %d not locked\n", port);
  1144. /*
  1145. * While we write to the group register to program all lanes at once we
  1146. * can read only lane registers and we pick lanes 0/1 for that.
  1147. */
  1148. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  1149. temp &= ~LANE_STAGGER_MASK;
  1150. temp &= ~LANESTAGGER_STRAP_OVRD;
  1151. temp |= pll->config.hw_state.pcsdw12;
  1152. I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
  1153. }
  1154. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1155. struct intel_shared_dpll *pll)
  1156. {
  1157. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1158. uint32_t temp;
  1159. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1160. temp &= ~PORT_PLL_ENABLE;
  1161. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1162. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1163. }
  1164. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1165. struct intel_shared_dpll *pll,
  1166. struct intel_dpll_hw_state *hw_state)
  1167. {
  1168. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1169. uint32_t val;
  1170. bool ret;
  1171. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1172. return false;
  1173. ret = false;
  1174. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1175. if (!(val & PORT_PLL_ENABLE))
  1176. goto out;
  1177. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
  1178. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  1179. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1180. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  1181. hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
  1182. hw_state->pll0 &= PORT_PLL_M2_MASK;
  1183. hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
  1184. hw_state->pll1 &= PORT_PLL_N_MASK;
  1185. hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
  1186. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  1187. hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
  1188. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  1189. hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
  1190. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  1191. PORT_PLL_INT_COEFF_MASK |
  1192. PORT_PLL_GAIN_CTL_MASK;
  1193. hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
  1194. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  1195. hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
  1196. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  1197. hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
  1198. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  1199. PORT_PLL_DCO_AMP_MASK;
  1200. /*
  1201. * While we write to the group register to program all lanes at once we
  1202. * can read only lane registers. We configure all lanes the same way, so
  1203. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  1204. */
  1205. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  1206. if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
  1207. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  1208. hw_state->pcsdw12,
  1209. I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
  1210. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  1211. ret = true;
  1212. out:
  1213. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1214. return ret;
  1215. }
  1216. /* bxt clock parameters */
  1217. struct bxt_clk_div {
  1218. int clock;
  1219. uint32_t p1;
  1220. uint32_t p2;
  1221. uint32_t m2_int;
  1222. uint32_t m2_frac;
  1223. bool m2_frac_en;
  1224. uint32_t n;
  1225. int vco;
  1226. };
  1227. /* pre-calculated values for DP linkrates */
  1228. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1229. {162000, 4, 2, 32, 1677722, 1, 1},
  1230. {270000, 4, 1, 27, 0, 0, 1},
  1231. {540000, 2, 1, 27, 0, 0, 1},
  1232. {216000, 3, 2, 32, 1677722, 1, 1},
  1233. {243000, 4, 1, 24, 1258291, 1, 1},
  1234. {324000, 4, 1, 32, 1677722, 1, 1},
  1235. {432000, 3, 1, 32, 1677722, 1, 1}
  1236. };
  1237. static bool
  1238. bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
  1239. struct intel_crtc_state *crtc_state, int clock,
  1240. struct bxt_clk_div *clk_div)
  1241. {
  1242. struct dpll best_clock;
  1243. /* Calculate HDMI div */
  1244. /*
  1245. * FIXME: tie the following calculation into
  1246. * i9xx_crtc_compute_clock
  1247. */
  1248. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1249. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1250. clock, pipe_name(intel_crtc->pipe));
  1251. return false;
  1252. }
  1253. clk_div->p1 = best_clock.p1;
  1254. clk_div->p2 = best_clock.p2;
  1255. WARN_ON(best_clock.m1 != 2);
  1256. clk_div->n = best_clock.n;
  1257. clk_div->m2_int = best_clock.m2 >> 22;
  1258. clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1259. clk_div->m2_frac_en = clk_div->m2_frac != 0;
  1260. clk_div->vco = best_clock.vco;
  1261. return true;
  1262. }
  1263. static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
  1264. {
  1265. int i;
  1266. *clk_div = bxt_dp_clk_val[0];
  1267. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1268. if (bxt_dp_clk_val[i].clock == clock) {
  1269. *clk_div = bxt_dp_clk_val[i];
  1270. break;
  1271. }
  1272. }
  1273. clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
  1274. }
  1275. static bool bxt_ddi_set_dpll_hw_state(int clock,
  1276. struct bxt_clk_div *clk_div,
  1277. struct intel_dpll_hw_state *dpll_hw_state)
  1278. {
  1279. int vco = clk_div->vco;
  1280. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1281. uint32_t lanestagger;
  1282. if (vco >= 6200000 && vco <= 6700000) {
  1283. prop_coef = 4;
  1284. int_coef = 9;
  1285. gain_ctl = 3;
  1286. targ_cnt = 8;
  1287. } else if ((vco > 5400000 && vco < 6200000) ||
  1288. (vco >= 4800000 && vco < 5400000)) {
  1289. prop_coef = 5;
  1290. int_coef = 11;
  1291. gain_ctl = 3;
  1292. targ_cnt = 9;
  1293. } else if (vco == 5400000) {
  1294. prop_coef = 3;
  1295. int_coef = 8;
  1296. gain_ctl = 1;
  1297. targ_cnt = 9;
  1298. } else {
  1299. DRM_ERROR("Invalid VCO\n");
  1300. return false;
  1301. }
  1302. if (clock > 270000)
  1303. lanestagger = 0x18;
  1304. else if (clock > 135000)
  1305. lanestagger = 0x0d;
  1306. else if (clock > 67000)
  1307. lanestagger = 0x07;
  1308. else if (clock > 33000)
  1309. lanestagger = 0x04;
  1310. else
  1311. lanestagger = 0x02;
  1312. dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
  1313. dpll_hw_state->pll0 = clk_div->m2_int;
  1314. dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
  1315. dpll_hw_state->pll2 = clk_div->m2_frac;
  1316. if (clk_div->m2_frac_en)
  1317. dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
  1318. dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1319. dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
  1320. dpll_hw_state->pll8 = targ_cnt;
  1321. dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1322. dpll_hw_state->pll10 =
  1323. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1324. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1325. dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1326. dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
  1327. return true;
  1328. }
  1329. bool bxt_ddi_dp_set_dpll_hw_state(int clock,
  1330. struct intel_dpll_hw_state *dpll_hw_state)
  1331. {
  1332. struct bxt_clk_div clk_div = {0};
  1333. bxt_ddi_dp_pll_dividers(clock, &clk_div);
  1334. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1335. }
  1336. static struct intel_shared_dpll *
  1337. bxt_get_dpll(struct intel_crtc *crtc,
  1338. struct intel_crtc_state *crtc_state,
  1339. struct intel_encoder *encoder)
  1340. {
  1341. struct bxt_clk_div clk_div = {0};
  1342. struct intel_dpll_hw_state dpll_hw_state = {0};
  1343. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1344. struct intel_digital_port *intel_dig_port;
  1345. struct intel_shared_dpll *pll;
  1346. int i, clock = crtc_state->port_clock;
  1347. if (encoder->type == INTEL_OUTPUT_HDMI
  1348. && !bxt_ddi_hdmi_pll_dividers(crtc, crtc_state,
  1349. clock, &clk_div))
  1350. return false;
  1351. if ((encoder->type == INTEL_OUTPUT_DP ||
  1352. encoder->type == INTEL_OUTPUT_EDP) &&
  1353. !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  1354. return false;
  1355. memset(&crtc_state->dpll_hw_state, 0,
  1356. sizeof(crtc_state->dpll_hw_state));
  1357. crtc_state->dpll_hw_state = dpll_hw_state;
  1358. if (encoder->type == INTEL_OUTPUT_DP_MST) {
  1359. struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&encoder->base);
  1360. intel_dig_port = intel_mst->primary;
  1361. } else
  1362. intel_dig_port = enc_to_dig_port(&encoder->base);
  1363. /* 1:1 mapping between ports and PLLs */
  1364. i = (enum intel_dpll_id) intel_dig_port->port;
  1365. pll = intel_get_shared_dpll_by_id(dev_priv, i);
  1366. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  1367. crtc->base.base.id, crtc->base.name, pll->name);
  1368. intel_reference_shared_dpll(pll, crtc_state);
  1369. return pll;
  1370. }
  1371. static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
  1372. .enable = bxt_ddi_pll_enable,
  1373. .disable = bxt_ddi_pll_disable,
  1374. .get_hw_state = bxt_ddi_pll_get_hw_state,
  1375. };
  1376. static void intel_ddi_pll_init(struct drm_device *dev)
  1377. {
  1378. struct drm_i915_private *dev_priv = to_i915(dev);
  1379. if (INTEL_GEN(dev_priv) < 9) {
  1380. uint32_t val = I915_READ(LCPLL_CTL);
  1381. /*
  1382. * The LCPLL register should be turned on by the BIOS. For now
  1383. * let's just check its state and print errors in case
  1384. * something is wrong. Don't even try to turn it on.
  1385. */
  1386. if (val & LCPLL_CD_SOURCE_FCLK)
  1387. DRM_ERROR("CDCLK source is not LCPLL\n");
  1388. if (val & LCPLL_PLL_DISABLE)
  1389. DRM_ERROR("LCPLL is disabled\n");
  1390. }
  1391. }
  1392. struct dpll_info {
  1393. const char *name;
  1394. const int id;
  1395. const struct intel_shared_dpll_funcs *funcs;
  1396. uint32_t flags;
  1397. };
  1398. struct intel_dpll_mgr {
  1399. const struct dpll_info *dpll_info;
  1400. struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
  1401. struct intel_crtc_state *crtc_state,
  1402. struct intel_encoder *encoder);
  1403. };
  1404. static const struct dpll_info pch_plls[] = {
  1405. { "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
  1406. { "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
  1407. { NULL, -1, NULL, 0 },
  1408. };
  1409. static const struct intel_dpll_mgr pch_pll_mgr = {
  1410. .dpll_info = pch_plls,
  1411. .get_dpll = ibx_get_dpll,
  1412. };
  1413. static const struct dpll_info hsw_plls[] = {
  1414. { "WRPLL 1", DPLL_ID_WRPLL1, &hsw_ddi_wrpll_funcs, 0 },
  1415. { "WRPLL 2", DPLL_ID_WRPLL2, &hsw_ddi_wrpll_funcs, 0 },
  1416. { "SPLL", DPLL_ID_SPLL, &hsw_ddi_spll_funcs, 0 },
  1417. { "LCPLL 810", DPLL_ID_LCPLL_810, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1418. { "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1419. { "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1420. { NULL, -1, NULL, },
  1421. };
  1422. static const struct intel_dpll_mgr hsw_pll_mgr = {
  1423. .dpll_info = hsw_plls,
  1424. .get_dpll = hsw_get_dpll,
  1425. };
  1426. static const struct dpll_info skl_plls[] = {
  1427. { "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
  1428. { "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs, 0 },
  1429. { "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs, 0 },
  1430. { "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs, 0 },
  1431. { NULL, -1, NULL, },
  1432. };
  1433. static const struct intel_dpll_mgr skl_pll_mgr = {
  1434. .dpll_info = skl_plls,
  1435. .get_dpll = skl_get_dpll,
  1436. };
  1437. static const struct dpll_info bxt_plls[] = {
  1438. { "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
  1439. { "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
  1440. { "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
  1441. { NULL, -1, NULL, },
  1442. };
  1443. static const struct intel_dpll_mgr bxt_pll_mgr = {
  1444. .dpll_info = bxt_plls,
  1445. .get_dpll = bxt_get_dpll,
  1446. };
  1447. void intel_shared_dpll_init(struct drm_device *dev)
  1448. {
  1449. struct drm_i915_private *dev_priv = to_i915(dev);
  1450. const struct intel_dpll_mgr *dpll_mgr = NULL;
  1451. const struct dpll_info *dpll_info;
  1452. int i;
  1453. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1454. dpll_mgr = &skl_pll_mgr;
  1455. else if (IS_BROXTON(dev))
  1456. dpll_mgr = &bxt_pll_mgr;
  1457. else if (HAS_DDI(dev))
  1458. dpll_mgr = &hsw_pll_mgr;
  1459. else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  1460. dpll_mgr = &pch_pll_mgr;
  1461. if (!dpll_mgr) {
  1462. dev_priv->num_shared_dpll = 0;
  1463. return;
  1464. }
  1465. dpll_info = dpll_mgr->dpll_info;
  1466. for (i = 0; dpll_info[i].id >= 0; i++) {
  1467. WARN_ON(i != dpll_info[i].id);
  1468. dev_priv->shared_dplls[i].id = dpll_info[i].id;
  1469. dev_priv->shared_dplls[i].name = dpll_info[i].name;
  1470. dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
  1471. dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
  1472. }
  1473. dev_priv->dpll_mgr = dpll_mgr;
  1474. dev_priv->num_shared_dpll = i;
  1475. mutex_init(&dev_priv->dpll_lock);
  1476. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  1477. /* FIXME: Move this to a more suitable place */
  1478. if (HAS_DDI(dev))
  1479. intel_ddi_pll_init(dev);
  1480. }
  1481. struct intel_shared_dpll *
  1482. intel_get_shared_dpll(struct intel_crtc *crtc,
  1483. struct intel_crtc_state *crtc_state,
  1484. struct intel_encoder *encoder)
  1485. {
  1486. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1487. const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
  1488. if (WARN_ON(!dpll_mgr))
  1489. return NULL;
  1490. return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
  1491. }