rrpc.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513
  1. /*
  2. * Copyright (C) 2015 IT University of Copenhagen
  3. * Initial release: Matias Bjorling <m@bjorling.me>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License version
  7. * 2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
  15. */
  16. #include "rrpc.h"
  17. static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
  18. static DECLARE_RWSEM(rrpc_lock);
  19. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  20. struct nvm_rq *rqd, unsigned long flags);
  21. #define rrpc_for_each_lun(rrpc, rlun, i) \
  22. for ((i) = 0, rlun = &(rrpc)->luns[0]; \
  23. (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
  24. static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
  25. {
  26. struct rrpc_block *rblk = a->rblk;
  27. unsigned int pg_offset;
  28. lockdep_assert_held(&rrpc->rev_lock);
  29. if (a->addr == ADDR_EMPTY || !rblk)
  30. return;
  31. spin_lock(&rblk->lock);
  32. div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
  33. WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
  34. rblk->nr_invalid_pages++;
  35. spin_unlock(&rblk->lock);
  36. rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
  37. }
  38. static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
  39. unsigned int len)
  40. {
  41. sector_t i;
  42. spin_lock(&rrpc->rev_lock);
  43. for (i = slba; i < slba + len; i++) {
  44. struct rrpc_addr *gp = &rrpc->trans_map[i];
  45. rrpc_page_invalidate(rrpc, gp);
  46. gp->rblk = NULL;
  47. }
  48. spin_unlock(&rrpc->rev_lock);
  49. }
  50. static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
  51. sector_t laddr, unsigned int pages)
  52. {
  53. struct nvm_rq *rqd;
  54. struct rrpc_inflight_rq *inf;
  55. rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
  56. if (!rqd)
  57. return ERR_PTR(-ENOMEM);
  58. inf = rrpc_get_inflight_rq(rqd);
  59. if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
  60. mempool_free(rqd, rrpc->rq_pool);
  61. return NULL;
  62. }
  63. return rqd;
  64. }
  65. static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
  66. {
  67. struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
  68. rrpc_unlock_laddr(rrpc, inf);
  69. mempool_free(rqd, rrpc->rq_pool);
  70. }
  71. static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
  72. {
  73. sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
  74. sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
  75. struct nvm_rq *rqd;
  76. while (1) {
  77. rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
  78. if (rqd)
  79. break;
  80. schedule();
  81. }
  82. if (IS_ERR(rqd)) {
  83. pr_err("rrpc: unable to acquire inflight IO\n");
  84. bio_io_error(bio);
  85. return;
  86. }
  87. rrpc_invalidate_range(rrpc, slba, len);
  88. rrpc_inflight_laddr_release(rrpc, rqd);
  89. }
  90. static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
  91. {
  92. return (rblk->next_page == rrpc->dev->sec_per_blk);
  93. }
  94. /* Calculate relative addr for the given block, considering instantiated LUNs */
  95. static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  96. {
  97. struct nvm_block *blk = rblk->parent;
  98. int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
  99. return lun_blk * rrpc->dev->sec_per_blk;
  100. }
  101. /* Calculate global addr for the given block */
  102. static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  103. {
  104. struct nvm_block *blk = rblk->parent;
  105. return blk->id * rrpc->dev->sec_per_blk;
  106. }
  107. static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
  108. struct ppa_addr r)
  109. {
  110. struct ppa_addr l;
  111. int secs, pgs, blks, luns;
  112. sector_t ppa = r.ppa;
  113. l.ppa = 0;
  114. div_u64_rem(ppa, dev->sec_per_pg, &secs);
  115. l.g.sec = secs;
  116. sector_div(ppa, dev->sec_per_pg);
  117. div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
  118. l.g.pg = pgs;
  119. sector_div(ppa, dev->pgs_per_blk);
  120. div_u64_rem(ppa, dev->blks_per_lun, &blks);
  121. l.g.blk = blks;
  122. sector_div(ppa, dev->blks_per_lun);
  123. div_u64_rem(ppa, dev->luns_per_chnl, &luns);
  124. l.g.lun = luns;
  125. sector_div(ppa, dev->luns_per_chnl);
  126. l.g.ch = ppa;
  127. return l;
  128. }
  129. static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
  130. {
  131. struct ppa_addr paddr;
  132. paddr.ppa = addr;
  133. return linear_to_generic_addr(dev, paddr);
  134. }
  135. /* requires lun->lock taken */
  136. static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *new_rblk,
  137. struct rrpc_block **cur_rblk)
  138. {
  139. struct rrpc *rrpc = rlun->rrpc;
  140. if (*cur_rblk) {
  141. spin_lock(&(*cur_rblk)->lock);
  142. WARN_ON(!block_is_full(rrpc, *cur_rblk));
  143. spin_unlock(&(*cur_rblk)->lock);
  144. }
  145. *cur_rblk = new_rblk;
  146. }
  147. static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
  148. unsigned long flags)
  149. {
  150. struct nvm_block *blk;
  151. struct rrpc_block *rblk;
  152. blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
  153. if (!blk) {
  154. pr_err("nvm: rrpc: cannot get new block from media manager\n");
  155. return NULL;
  156. }
  157. rblk = rrpc_get_rblk(rlun, blk->id);
  158. blk->priv = rblk;
  159. bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
  160. rblk->next_page = 0;
  161. rblk->nr_invalid_pages = 0;
  162. atomic_set(&rblk->data_cmnt_size, 0);
  163. return rblk;
  164. }
  165. static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
  166. {
  167. nvm_put_blk(rrpc->dev, rblk->parent);
  168. }
  169. static void rrpc_put_blks(struct rrpc *rrpc)
  170. {
  171. struct rrpc_lun *rlun;
  172. int i;
  173. for (i = 0; i < rrpc->nr_luns; i++) {
  174. rlun = &rrpc->luns[i];
  175. if (rlun->cur)
  176. rrpc_put_blk(rrpc, rlun->cur);
  177. if (rlun->gc_cur)
  178. rrpc_put_blk(rrpc, rlun->gc_cur);
  179. }
  180. }
  181. static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
  182. {
  183. int next = atomic_inc_return(&rrpc->next_lun);
  184. return &rrpc->luns[next % rrpc->nr_luns];
  185. }
  186. static void rrpc_gc_kick(struct rrpc *rrpc)
  187. {
  188. struct rrpc_lun *rlun;
  189. unsigned int i;
  190. for (i = 0; i < rrpc->nr_luns; i++) {
  191. rlun = &rrpc->luns[i];
  192. queue_work(rrpc->krqd_wq, &rlun->ws_gc);
  193. }
  194. }
  195. /*
  196. * timed GC every interval.
  197. */
  198. static void rrpc_gc_timer(unsigned long data)
  199. {
  200. struct rrpc *rrpc = (struct rrpc *)data;
  201. rrpc_gc_kick(rrpc);
  202. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  203. }
  204. static void rrpc_end_sync_bio(struct bio *bio)
  205. {
  206. struct completion *waiting = bio->bi_private;
  207. if (bio->bi_error)
  208. pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
  209. complete(waiting);
  210. }
  211. /*
  212. * rrpc_move_valid_pages -- migrate live data off the block
  213. * @rrpc: the 'rrpc' structure
  214. * @block: the block from which to migrate live pages
  215. *
  216. * Description:
  217. * GC algorithms may call this function to migrate remaining live
  218. * pages off the block prior to erasing it. This function blocks
  219. * further execution until the operation is complete.
  220. */
  221. static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
  222. {
  223. struct request_queue *q = rrpc->dev->q;
  224. struct rrpc_rev_addr *rev;
  225. struct nvm_rq *rqd;
  226. struct bio *bio;
  227. struct page *page;
  228. int slot;
  229. int nr_sec_per_blk = rrpc->dev->sec_per_blk;
  230. u64 phys_addr;
  231. DECLARE_COMPLETION_ONSTACK(wait);
  232. if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
  233. return 0;
  234. bio = bio_alloc(GFP_NOIO, 1);
  235. if (!bio) {
  236. pr_err("nvm: could not alloc bio to gc\n");
  237. return -ENOMEM;
  238. }
  239. page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
  240. if (!page) {
  241. bio_put(bio);
  242. return -ENOMEM;
  243. }
  244. while ((slot = find_first_zero_bit(rblk->invalid_pages,
  245. nr_sec_per_blk)) < nr_sec_per_blk) {
  246. /* Lock laddr */
  247. phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
  248. try:
  249. spin_lock(&rrpc->rev_lock);
  250. /* Get logical address from physical to logical table */
  251. rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
  252. /* already updated by previous regular write */
  253. if (rev->addr == ADDR_EMPTY) {
  254. spin_unlock(&rrpc->rev_lock);
  255. continue;
  256. }
  257. rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
  258. if (IS_ERR_OR_NULL(rqd)) {
  259. spin_unlock(&rrpc->rev_lock);
  260. schedule();
  261. goto try;
  262. }
  263. spin_unlock(&rrpc->rev_lock);
  264. /* Perform read to do GC */
  265. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  266. bio_set_op_attrs(bio, REQ_OP_READ, 0);
  267. bio->bi_private = &wait;
  268. bio->bi_end_io = rrpc_end_sync_bio;
  269. /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
  270. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  271. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  272. pr_err("rrpc: gc read failed.\n");
  273. rrpc_inflight_laddr_release(rrpc, rqd);
  274. goto finished;
  275. }
  276. wait_for_completion_io(&wait);
  277. if (bio->bi_error) {
  278. rrpc_inflight_laddr_release(rrpc, rqd);
  279. goto finished;
  280. }
  281. bio_reset(bio);
  282. reinit_completion(&wait);
  283. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  284. bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
  285. bio->bi_private = &wait;
  286. bio->bi_end_io = rrpc_end_sync_bio;
  287. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  288. /* turn the command around and write the data back to a new
  289. * address
  290. */
  291. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  292. pr_err("rrpc: gc write failed.\n");
  293. rrpc_inflight_laddr_release(rrpc, rqd);
  294. goto finished;
  295. }
  296. wait_for_completion_io(&wait);
  297. rrpc_inflight_laddr_release(rrpc, rqd);
  298. if (bio->bi_error)
  299. goto finished;
  300. bio_reset(bio);
  301. }
  302. finished:
  303. mempool_free(page, rrpc->page_pool);
  304. bio_put(bio);
  305. if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
  306. pr_err("nvm: failed to garbage collect block\n");
  307. return -EIO;
  308. }
  309. return 0;
  310. }
  311. static void rrpc_block_gc(struct work_struct *work)
  312. {
  313. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  314. ws_gc);
  315. struct rrpc *rrpc = gcb->rrpc;
  316. struct rrpc_block *rblk = gcb->rblk;
  317. struct rrpc_lun *rlun = rblk->rlun;
  318. struct nvm_dev *dev = rrpc->dev;
  319. mempool_free(gcb, rrpc->gcb_pool);
  320. pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
  321. if (rrpc_move_valid_pages(rrpc, rblk))
  322. goto put_back;
  323. if (nvm_erase_blk(dev, rblk->parent, 0))
  324. goto put_back;
  325. rrpc_put_blk(rrpc, rblk);
  326. return;
  327. put_back:
  328. spin_lock(&rlun->lock);
  329. list_add_tail(&rblk->prio, &rlun->prio_list);
  330. spin_unlock(&rlun->lock);
  331. }
  332. /* the block with highest number of invalid pages, will be in the beginning
  333. * of the list
  334. */
  335. static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
  336. struct rrpc_block *rb)
  337. {
  338. if (ra->nr_invalid_pages == rb->nr_invalid_pages)
  339. return ra;
  340. return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
  341. }
  342. /* linearly find the block with highest number of invalid pages
  343. * requires lun->lock
  344. */
  345. static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
  346. {
  347. struct list_head *prio_list = &rlun->prio_list;
  348. struct rrpc_block *rblock, *max;
  349. BUG_ON(list_empty(prio_list));
  350. max = list_first_entry(prio_list, struct rrpc_block, prio);
  351. list_for_each_entry(rblock, prio_list, prio)
  352. max = rblock_max_invalid(max, rblock);
  353. return max;
  354. }
  355. static void rrpc_lun_gc(struct work_struct *work)
  356. {
  357. struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
  358. struct rrpc *rrpc = rlun->rrpc;
  359. struct nvm_lun *lun = rlun->parent;
  360. struct rrpc_block_gc *gcb;
  361. unsigned int nr_blocks_need;
  362. nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
  363. if (nr_blocks_need < rrpc->nr_luns)
  364. nr_blocks_need = rrpc->nr_luns;
  365. spin_lock(&rlun->lock);
  366. while (nr_blocks_need > lun->nr_free_blocks &&
  367. !list_empty(&rlun->prio_list)) {
  368. struct rrpc_block *rblock = block_prio_find_max(rlun);
  369. struct nvm_block *block = rblock->parent;
  370. if (!rblock->nr_invalid_pages)
  371. break;
  372. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  373. if (!gcb)
  374. break;
  375. list_del_init(&rblock->prio);
  376. BUG_ON(!block_is_full(rrpc, rblock));
  377. pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
  378. gcb->rrpc = rrpc;
  379. gcb->rblk = rblock;
  380. INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
  381. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  382. nr_blocks_need--;
  383. }
  384. spin_unlock(&rlun->lock);
  385. /* TODO: Hint that request queue can be started again */
  386. }
  387. static void rrpc_gc_queue(struct work_struct *work)
  388. {
  389. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  390. ws_gc);
  391. struct rrpc *rrpc = gcb->rrpc;
  392. struct rrpc_block *rblk = gcb->rblk;
  393. struct rrpc_lun *rlun = rblk->rlun;
  394. spin_lock(&rlun->lock);
  395. list_add_tail(&rblk->prio, &rlun->prio_list);
  396. spin_unlock(&rlun->lock);
  397. mempool_free(gcb, rrpc->gcb_pool);
  398. pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
  399. rblk->parent->id);
  400. }
  401. static const struct block_device_operations rrpc_fops = {
  402. .owner = THIS_MODULE,
  403. };
  404. static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
  405. {
  406. unsigned int i;
  407. struct rrpc_lun *rlun, *max_free;
  408. if (!is_gc)
  409. return get_next_lun(rrpc);
  410. /* during GC, we don't care about RR, instead we want to make
  411. * sure that we maintain evenness between the block luns.
  412. */
  413. max_free = &rrpc->luns[0];
  414. /* prevent GC-ing lun from devouring pages of a lun with
  415. * little free blocks. We don't take the lock as we only need an
  416. * estimate.
  417. */
  418. rrpc_for_each_lun(rrpc, rlun, i) {
  419. if (rlun->parent->nr_free_blocks >
  420. max_free->parent->nr_free_blocks)
  421. max_free = rlun;
  422. }
  423. return max_free;
  424. }
  425. static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
  426. struct rrpc_block *rblk, u64 paddr)
  427. {
  428. struct rrpc_addr *gp;
  429. struct rrpc_rev_addr *rev;
  430. BUG_ON(laddr >= rrpc->nr_sects);
  431. gp = &rrpc->trans_map[laddr];
  432. spin_lock(&rrpc->rev_lock);
  433. if (gp->rblk)
  434. rrpc_page_invalidate(rrpc, gp);
  435. gp->addr = paddr;
  436. gp->rblk = rblk;
  437. rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
  438. rev->addr = laddr;
  439. spin_unlock(&rrpc->rev_lock);
  440. return gp;
  441. }
  442. static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  443. {
  444. u64 addr = ADDR_EMPTY;
  445. spin_lock(&rblk->lock);
  446. if (block_is_full(rrpc, rblk))
  447. goto out;
  448. addr = block_to_addr(rrpc, rblk) + rblk->next_page;
  449. rblk->next_page++;
  450. out:
  451. spin_unlock(&rblk->lock);
  452. return addr;
  453. }
  454. /* Map logical address to a physical page. The mapping implements a round robin
  455. * approach and allocates a page from the next lun available.
  456. *
  457. * Returns rrpc_addr with the physical address and block. Returns NULL if no
  458. * blocks in the next rlun are available.
  459. */
  460. static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
  461. int is_gc)
  462. {
  463. struct rrpc_lun *rlun;
  464. struct rrpc_block *rblk, **cur_rblk;
  465. struct nvm_lun *lun;
  466. u64 paddr;
  467. int gc_force = 0;
  468. rlun = rrpc_get_lun_rr(rrpc, is_gc);
  469. lun = rlun->parent;
  470. if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
  471. return NULL;
  472. /*
  473. * page allocation steps:
  474. * 1. Try to allocate new page from current rblk
  475. * 2a. If succeed, proceed to map it in and return
  476. * 2b. If fail, first try to allocate a new block from media manger,
  477. * and then retry step 1. Retry until the normal block pool is
  478. * exhausted.
  479. * 3. If exhausted, and garbage collector is requesting the block,
  480. * go to the reserved block and retry step 1.
  481. * In the case that this fails as well, or it is not GC
  482. * requesting, report not able to retrieve a block and let the
  483. * caller handle further processing.
  484. */
  485. spin_lock(&rlun->lock);
  486. cur_rblk = &rlun->cur;
  487. rblk = rlun->cur;
  488. retry:
  489. paddr = rrpc_alloc_addr(rrpc, rblk);
  490. if (paddr != ADDR_EMPTY)
  491. goto done;
  492. if (!list_empty(&rlun->wblk_list)) {
  493. new_blk:
  494. rblk = list_first_entry(&rlun->wblk_list, struct rrpc_block,
  495. prio);
  496. rrpc_set_lun_cur(rlun, rblk, cur_rblk);
  497. list_del(&rblk->prio);
  498. goto retry;
  499. }
  500. spin_unlock(&rlun->lock);
  501. rblk = rrpc_get_blk(rrpc, rlun, gc_force);
  502. if (rblk) {
  503. spin_lock(&rlun->lock);
  504. list_add_tail(&rblk->prio, &rlun->wblk_list);
  505. /*
  506. * another thread might already have added a new block,
  507. * Therefore, make sure that one is used, instead of the
  508. * one just added.
  509. */
  510. goto new_blk;
  511. }
  512. if (unlikely(is_gc) && !gc_force) {
  513. /* retry from emergency gc block */
  514. cur_rblk = &rlun->gc_cur;
  515. rblk = rlun->gc_cur;
  516. gc_force = 1;
  517. spin_lock(&rlun->lock);
  518. goto retry;
  519. }
  520. pr_err("rrpc: failed to allocate new block\n");
  521. return NULL;
  522. done:
  523. spin_unlock(&rlun->lock);
  524. return rrpc_update_map(rrpc, laddr, rblk, paddr);
  525. }
  526. static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
  527. {
  528. struct rrpc_block_gc *gcb;
  529. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  530. if (!gcb) {
  531. pr_err("rrpc: unable to queue block for gc.");
  532. return;
  533. }
  534. gcb->rrpc = rrpc;
  535. gcb->rblk = rblk;
  536. INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
  537. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  538. }
  539. static void __rrpc_mark_bad_block(struct nvm_dev *dev, struct ppa_addr *ppa)
  540. {
  541. nvm_mark_blk(dev, *ppa, NVM_BLK_ST_BAD);
  542. nvm_set_bb_tbl(dev, ppa, 1, NVM_BLK_T_GRWN_BAD);
  543. }
  544. static void rrpc_mark_bad_block(struct rrpc *rrpc, struct nvm_rq *rqd)
  545. {
  546. struct nvm_dev *dev = rrpc->dev;
  547. void *comp_bits = &rqd->ppa_status;
  548. struct ppa_addr ppa, prev_ppa;
  549. int nr_ppas = rqd->nr_ppas;
  550. int bit;
  551. if (rqd->nr_ppas == 1)
  552. __rrpc_mark_bad_block(dev, &rqd->ppa_addr);
  553. ppa_set_empty(&prev_ppa);
  554. bit = -1;
  555. while ((bit = find_next_bit(comp_bits, nr_ppas, bit + 1)) < nr_ppas) {
  556. ppa = rqd->ppa_list[bit];
  557. if (ppa_cmp_blk(ppa, prev_ppa))
  558. continue;
  559. __rrpc_mark_bad_block(dev, &ppa);
  560. }
  561. }
  562. static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
  563. sector_t laddr, uint8_t npages)
  564. {
  565. struct rrpc_addr *p;
  566. struct rrpc_block *rblk;
  567. struct nvm_lun *lun;
  568. int cmnt_size, i;
  569. for (i = 0; i < npages; i++) {
  570. p = &rrpc->trans_map[laddr + i];
  571. rblk = p->rblk;
  572. lun = rblk->parent->lun;
  573. cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
  574. if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
  575. rrpc_run_gc(rrpc, rblk);
  576. }
  577. }
  578. static void rrpc_end_io(struct nvm_rq *rqd)
  579. {
  580. struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
  581. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  582. uint8_t npages = rqd->nr_ppas;
  583. sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
  584. if (bio_data_dir(rqd->bio) == WRITE) {
  585. if (rqd->error == NVM_RSP_ERR_FAILWRITE)
  586. rrpc_mark_bad_block(rrpc, rqd);
  587. rrpc_end_io_write(rrpc, rrqd, laddr, npages);
  588. }
  589. bio_put(rqd->bio);
  590. if (rrqd->flags & NVM_IOTYPE_GC)
  591. return;
  592. rrpc_unlock_rq(rrpc, rqd);
  593. if (npages > 1)
  594. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  595. mempool_free(rqd, rrpc->rq_pool);
  596. }
  597. static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  598. struct nvm_rq *rqd, unsigned long flags, int npages)
  599. {
  600. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  601. struct rrpc_addr *gp;
  602. sector_t laddr = rrpc_get_laddr(bio);
  603. int is_gc = flags & NVM_IOTYPE_GC;
  604. int i;
  605. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  606. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  607. return NVM_IO_REQUEUE;
  608. }
  609. for (i = 0; i < npages; i++) {
  610. /* We assume that mapping occurs at 4KB granularity */
  611. BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
  612. gp = &rrpc->trans_map[laddr + i];
  613. if (gp->rblk) {
  614. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
  615. gp->addr);
  616. } else {
  617. BUG_ON(is_gc);
  618. rrpc_unlock_laddr(rrpc, r);
  619. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
  620. rqd->dma_ppa_list);
  621. return NVM_IO_DONE;
  622. }
  623. }
  624. rqd->opcode = NVM_OP_HBREAD;
  625. return NVM_IO_OK;
  626. }
  627. static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
  628. unsigned long flags)
  629. {
  630. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  631. int is_gc = flags & NVM_IOTYPE_GC;
  632. sector_t laddr = rrpc_get_laddr(bio);
  633. struct rrpc_addr *gp;
  634. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  635. return NVM_IO_REQUEUE;
  636. BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
  637. gp = &rrpc->trans_map[laddr];
  638. if (gp->rblk) {
  639. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
  640. } else {
  641. BUG_ON(is_gc);
  642. rrpc_unlock_rq(rrpc, rqd);
  643. return NVM_IO_DONE;
  644. }
  645. rqd->opcode = NVM_OP_HBREAD;
  646. rrqd->addr = gp;
  647. return NVM_IO_OK;
  648. }
  649. static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  650. struct nvm_rq *rqd, unsigned long flags, int npages)
  651. {
  652. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  653. struct rrpc_addr *p;
  654. sector_t laddr = rrpc_get_laddr(bio);
  655. int is_gc = flags & NVM_IOTYPE_GC;
  656. int i;
  657. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  658. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  659. return NVM_IO_REQUEUE;
  660. }
  661. for (i = 0; i < npages; i++) {
  662. /* We assume that mapping occurs at 4KB granularity */
  663. p = rrpc_map_page(rrpc, laddr + i, is_gc);
  664. if (!p) {
  665. BUG_ON(is_gc);
  666. rrpc_unlock_laddr(rrpc, r);
  667. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
  668. rqd->dma_ppa_list);
  669. rrpc_gc_kick(rrpc);
  670. return NVM_IO_REQUEUE;
  671. }
  672. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
  673. p->addr);
  674. }
  675. rqd->opcode = NVM_OP_HBWRITE;
  676. return NVM_IO_OK;
  677. }
  678. static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
  679. struct nvm_rq *rqd, unsigned long flags)
  680. {
  681. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  682. struct rrpc_addr *p;
  683. int is_gc = flags & NVM_IOTYPE_GC;
  684. sector_t laddr = rrpc_get_laddr(bio);
  685. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  686. return NVM_IO_REQUEUE;
  687. p = rrpc_map_page(rrpc, laddr, is_gc);
  688. if (!p) {
  689. BUG_ON(is_gc);
  690. rrpc_unlock_rq(rrpc, rqd);
  691. rrpc_gc_kick(rrpc);
  692. return NVM_IO_REQUEUE;
  693. }
  694. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
  695. rqd->opcode = NVM_OP_HBWRITE;
  696. rrqd->addr = p;
  697. return NVM_IO_OK;
  698. }
  699. static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
  700. struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
  701. {
  702. if (npages > 1) {
  703. rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
  704. &rqd->dma_ppa_list);
  705. if (!rqd->ppa_list) {
  706. pr_err("rrpc: not able to allocate ppa list\n");
  707. return NVM_IO_ERR;
  708. }
  709. if (bio_op(bio) == REQ_OP_WRITE)
  710. return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
  711. npages);
  712. return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
  713. }
  714. if (bio_op(bio) == REQ_OP_WRITE)
  715. return rrpc_write_rq(rrpc, bio, rqd, flags);
  716. return rrpc_read_rq(rrpc, bio, rqd, flags);
  717. }
  718. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  719. struct nvm_rq *rqd, unsigned long flags)
  720. {
  721. int err;
  722. struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
  723. uint8_t nr_pages = rrpc_get_pages(bio);
  724. int bio_size = bio_sectors(bio) << 9;
  725. if (bio_size < rrpc->dev->sec_size)
  726. return NVM_IO_ERR;
  727. else if (bio_size > rrpc->dev->max_rq_size)
  728. return NVM_IO_ERR;
  729. err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
  730. if (err)
  731. return err;
  732. bio_get(bio);
  733. rqd->bio = bio;
  734. rqd->ins = &rrpc->instance;
  735. rqd->nr_ppas = nr_pages;
  736. rrq->flags = flags;
  737. err = nvm_submit_io(rrpc->dev, rqd);
  738. if (err) {
  739. pr_err("rrpc: I/O submission failed: %d\n", err);
  740. bio_put(bio);
  741. if (!(flags & NVM_IOTYPE_GC)) {
  742. rrpc_unlock_rq(rrpc, rqd);
  743. if (rqd->nr_ppas > 1)
  744. nvm_dev_dma_free(rrpc->dev,
  745. rqd->ppa_list, rqd->dma_ppa_list);
  746. }
  747. return NVM_IO_ERR;
  748. }
  749. return NVM_IO_OK;
  750. }
  751. static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
  752. {
  753. struct rrpc *rrpc = q->queuedata;
  754. struct nvm_rq *rqd;
  755. int err;
  756. if (bio_op(bio) == REQ_OP_DISCARD) {
  757. rrpc_discard(rrpc, bio);
  758. return BLK_QC_T_NONE;
  759. }
  760. rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
  761. if (!rqd) {
  762. pr_err_ratelimited("rrpc: not able to queue bio.");
  763. bio_io_error(bio);
  764. return BLK_QC_T_NONE;
  765. }
  766. memset(rqd, 0, sizeof(struct nvm_rq));
  767. err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
  768. switch (err) {
  769. case NVM_IO_OK:
  770. return BLK_QC_T_NONE;
  771. case NVM_IO_ERR:
  772. bio_io_error(bio);
  773. break;
  774. case NVM_IO_DONE:
  775. bio_endio(bio);
  776. break;
  777. case NVM_IO_REQUEUE:
  778. spin_lock(&rrpc->bio_lock);
  779. bio_list_add(&rrpc->requeue_bios, bio);
  780. spin_unlock(&rrpc->bio_lock);
  781. queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
  782. break;
  783. }
  784. mempool_free(rqd, rrpc->rq_pool);
  785. return BLK_QC_T_NONE;
  786. }
  787. static void rrpc_requeue(struct work_struct *work)
  788. {
  789. struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
  790. struct bio_list bios;
  791. struct bio *bio;
  792. bio_list_init(&bios);
  793. spin_lock(&rrpc->bio_lock);
  794. bio_list_merge(&bios, &rrpc->requeue_bios);
  795. bio_list_init(&rrpc->requeue_bios);
  796. spin_unlock(&rrpc->bio_lock);
  797. while ((bio = bio_list_pop(&bios)))
  798. rrpc_make_rq(rrpc->disk->queue, bio);
  799. }
  800. static void rrpc_gc_free(struct rrpc *rrpc)
  801. {
  802. if (rrpc->krqd_wq)
  803. destroy_workqueue(rrpc->krqd_wq);
  804. if (rrpc->kgc_wq)
  805. destroy_workqueue(rrpc->kgc_wq);
  806. }
  807. static int rrpc_gc_init(struct rrpc *rrpc)
  808. {
  809. rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
  810. rrpc->nr_luns);
  811. if (!rrpc->krqd_wq)
  812. return -ENOMEM;
  813. rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
  814. if (!rrpc->kgc_wq)
  815. return -ENOMEM;
  816. setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
  817. return 0;
  818. }
  819. static void rrpc_map_free(struct rrpc *rrpc)
  820. {
  821. vfree(rrpc->rev_trans_map);
  822. vfree(rrpc->trans_map);
  823. }
  824. static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
  825. {
  826. struct rrpc *rrpc = (struct rrpc *)private;
  827. struct nvm_dev *dev = rrpc->dev;
  828. struct rrpc_addr *addr = rrpc->trans_map + slba;
  829. struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
  830. u64 elba = slba + nlb;
  831. u64 i;
  832. if (unlikely(elba > dev->total_secs)) {
  833. pr_err("nvm: L2P data from device is out of bounds!\n");
  834. return -EINVAL;
  835. }
  836. for (i = 0; i < nlb; i++) {
  837. u64 pba = le64_to_cpu(entries[i]);
  838. unsigned int mod;
  839. /* LNVM treats address-spaces as silos, LBA and PBA are
  840. * equally large and zero-indexed.
  841. */
  842. if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
  843. pr_err("nvm: L2P data entry is out of bounds!\n");
  844. return -EINVAL;
  845. }
  846. /* Address zero is a special one. The first page on a disk is
  847. * protected. As it often holds internal device boot
  848. * information.
  849. */
  850. if (!pba)
  851. continue;
  852. div_u64_rem(pba, rrpc->nr_sects, &mod);
  853. addr[i].addr = pba;
  854. raddr[mod].addr = slba + i;
  855. }
  856. return 0;
  857. }
  858. static int rrpc_map_init(struct rrpc *rrpc)
  859. {
  860. struct nvm_dev *dev = rrpc->dev;
  861. sector_t i;
  862. int ret;
  863. rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
  864. if (!rrpc->trans_map)
  865. return -ENOMEM;
  866. rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
  867. * rrpc->nr_sects);
  868. if (!rrpc->rev_trans_map)
  869. return -ENOMEM;
  870. for (i = 0; i < rrpc->nr_sects; i++) {
  871. struct rrpc_addr *p = &rrpc->trans_map[i];
  872. struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
  873. p->addr = ADDR_EMPTY;
  874. r->addr = ADDR_EMPTY;
  875. }
  876. if (!dev->ops->get_l2p_tbl)
  877. return 0;
  878. /* Bring up the mapping table from device */
  879. ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
  880. rrpc_l2p_update, rrpc);
  881. if (ret) {
  882. pr_err("nvm: rrpc: could not read L2P table.\n");
  883. return -EINVAL;
  884. }
  885. return 0;
  886. }
  887. /* Minimum pages needed within a lun */
  888. #define PAGE_POOL_SIZE 16
  889. #define ADDR_POOL_SIZE 64
  890. static int rrpc_core_init(struct rrpc *rrpc)
  891. {
  892. down_write(&rrpc_lock);
  893. if (!rrpc_gcb_cache) {
  894. rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
  895. sizeof(struct rrpc_block_gc), 0, 0, NULL);
  896. if (!rrpc_gcb_cache) {
  897. up_write(&rrpc_lock);
  898. return -ENOMEM;
  899. }
  900. rrpc_rq_cache = kmem_cache_create("rrpc_rq",
  901. sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
  902. 0, 0, NULL);
  903. if (!rrpc_rq_cache) {
  904. kmem_cache_destroy(rrpc_gcb_cache);
  905. up_write(&rrpc_lock);
  906. return -ENOMEM;
  907. }
  908. }
  909. up_write(&rrpc_lock);
  910. rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
  911. if (!rrpc->page_pool)
  912. return -ENOMEM;
  913. rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
  914. rrpc_gcb_cache);
  915. if (!rrpc->gcb_pool)
  916. return -ENOMEM;
  917. rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
  918. if (!rrpc->rq_pool)
  919. return -ENOMEM;
  920. spin_lock_init(&rrpc->inflights.lock);
  921. INIT_LIST_HEAD(&rrpc->inflights.reqs);
  922. return 0;
  923. }
  924. static void rrpc_core_free(struct rrpc *rrpc)
  925. {
  926. mempool_destroy(rrpc->page_pool);
  927. mempool_destroy(rrpc->gcb_pool);
  928. mempool_destroy(rrpc->rq_pool);
  929. }
  930. static void rrpc_luns_free(struct rrpc *rrpc)
  931. {
  932. struct nvm_dev *dev = rrpc->dev;
  933. struct nvm_lun *lun;
  934. struct rrpc_lun *rlun;
  935. int i;
  936. if (!rrpc->luns)
  937. return;
  938. for (i = 0; i < rrpc->nr_luns; i++) {
  939. rlun = &rrpc->luns[i];
  940. lun = rlun->parent;
  941. if (!lun)
  942. break;
  943. dev->mt->release_lun(dev, lun->id);
  944. vfree(rlun->blocks);
  945. }
  946. kfree(rrpc->luns);
  947. }
  948. static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
  949. {
  950. struct nvm_dev *dev = rrpc->dev;
  951. struct rrpc_lun *rlun;
  952. int i, j, ret = -EINVAL;
  953. if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
  954. pr_err("rrpc: number of pages per block too high.");
  955. return -EINVAL;
  956. }
  957. spin_lock_init(&rrpc->rev_lock);
  958. rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
  959. GFP_KERNEL);
  960. if (!rrpc->luns)
  961. return -ENOMEM;
  962. /* 1:1 mapping */
  963. for (i = 0; i < rrpc->nr_luns; i++) {
  964. int lunid = lun_begin + i;
  965. struct nvm_lun *lun;
  966. if (dev->mt->reserve_lun(dev, lunid)) {
  967. pr_err("rrpc: lun %u is already allocated\n", lunid);
  968. goto err;
  969. }
  970. lun = dev->mt->get_lun(dev, lunid);
  971. if (!lun)
  972. goto err;
  973. rlun = &rrpc->luns[i];
  974. rlun->parent = lun;
  975. rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
  976. rrpc->dev->blks_per_lun);
  977. if (!rlun->blocks) {
  978. ret = -ENOMEM;
  979. goto err;
  980. }
  981. for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
  982. struct rrpc_block *rblk = &rlun->blocks[j];
  983. struct nvm_block *blk = &lun->blocks[j];
  984. rblk->parent = blk;
  985. rblk->rlun = rlun;
  986. INIT_LIST_HEAD(&rblk->prio);
  987. spin_lock_init(&rblk->lock);
  988. }
  989. rlun->rrpc = rrpc;
  990. INIT_LIST_HEAD(&rlun->prio_list);
  991. INIT_LIST_HEAD(&rlun->wblk_list);
  992. INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
  993. spin_lock_init(&rlun->lock);
  994. }
  995. return 0;
  996. err:
  997. return ret;
  998. }
  999. /* returns 0 on success and stores the beginning address in *begin */
  1000. static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
  1001. {
  1002. struct nvm_dev *dev = rrpc->dev;
  1003. struct nvmm_type *mt = dev->mt;
  1004. sector_t size = rrpc->nr_sects * dev->sec_size;
  1005. int ret;
  1006. size >>= 9;
  1007. ret = mt->get_area(dev, begin, size);
  1008. if (!ret)
  1009. *begin >>= (ilog2(dev->sec_size) - 9);
  1010. return ret;
  1011. }
  1012. static void rrpc_area_free(struct rrpc *rrpc)
  1013. {
  1014. struct nvm_dev *dev = rrpc->dev;
  1015. struct nvmm_type *mt = dev->mt;
  1016. sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
  1017. mt->put_area(dev, begin);
  1018. }
  1019. static void rrpc_free(struct rrpc *rrpc)
  1020. {
  1021. rrpc_gc_free(rrpc);
  1022. rrpc_map_free(rrpc);
  1023. rrpc_core_free(rrpc);
  1024. rrpc_luns_free(rrpc);
  1025. rrpc_area_free(rrpc);
  1026. kfree(rrpc);
  1027. }
  1028. static void rrpc_exit(void *private)
  1029. {
  1030. struct rrpc *rrpc = private;
  1031. del_timer(&rrpc->gc_timer);
  1032. flush_workqueue(rrpc->krqd_wq);
  1033. flush_workqueue(rrpc->kgc_wq);
  1034. rrpc_free(rrpc);
  1035. }
  1036. static sector_t rrpc_capacity(void *private)
  1037. {
  1038. struct rrpc *rrpc = private;
  1039. struct nvm_dev *dev = rrpc->dev;
  1040. sector_t reserved, provisioned;
  1041. /* cur, gc, and two emergency blocks for each lun */
  1042. reserved = rrpc->nr_luns * dev->sec_per_blk * 4;
  1043. provisioned = rrpc->nr_sects - reserved;
  1044. if (reserved > rrpc->nr_sects) {
  1045. pr_err("rrpc: not enough space available to expose storage.\n");
  1046. return 0;
  1047. }
  1048. sector_div(provisioned, 10);
  1049. return provisioned * 9 * NR_PHY_IN_LOG;
  1050. }
  1051. /*
  1052. * Looks up the logical address from reverse trans map and check if its valid by
  1053. * comparing the logical to physical address with the physical address.
  1054. * Returns 0 on free, otherwise 1 if in use
  1055. */
  1056. static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
  1057. {
  1058. struct nvm_dev *dev = rrpc->dev;
  1059. int offset;
  1060. struct rrpc_addr *laddr;
  1061. u64 bpaddr, paddr, pladdr;
  1062. bpaddr = block_to_rel_addr(rrpc, rblk);
  1063. for (offset = 0; offset < dev->sec_per_blk; offset++) {
  1064. paddr = bpaddr + offset;
  1065. pladdr = rrpc->rev_trans_map[paddr].addr;
  1066. if (pladdr == ADDR_EMPTY)
  1067. continue;
  1068. laddr = &rrpc->trans_map[pladdr];
  1069. if (paddr == laddr->addr) {
  1070. laddr->rblk = rblk;
  1071. } else {
  1072. set_bit(offset, rblk->invalid_pages);
  1073. rblk->nr_invalid_pages++;
  1074. }
  1075. }
  1076. }
  1077. static int rrpc_blocks_init(struct rrpc *rrpc)
  1078. {
  1079. struct rrpc_lun *rlun;
  1080. struct rrpc_block *rblk;
  1081. int lun_iter, blk_iter;
  1082. for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
  1083. rlun = &rrpc->luns[lun_iter];
  1084. for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
  1085. blk_iter++) {
  1086. rblk = &rlun->blocks[blk_iter];
  1087. rrpc_block_map_update(rrpc, rblk);
  1088. }
  1089. }
  1090. return 0;
  1091. }
  1092. static int rrpc_luns_configure(struct rrpc *rrpc)
  1093. {
  1094. struct rrpc_lun *rlun;
  1095. struct rrpc_block *rblk;
  1096. int i;
  1097. for (i = 0; i < rrpc->nr_luns; i++) {
  1098. rlun = &rrpc->luns[i];
  1099. rblk = rrpc_get_blk(rrpc, rlun, 0);
  1100. if (!rblk)
  1101. goto err;
  1102. rrpc_set_lun_cur(rlun, rblk, &rlun->cur);
  1103. /* Emergency gc block */
  1104. rblk = rrpc_get_blk(rrpc, rlun, 1);
  1105. if (!rblk)
  1106. goto err;
  1107. rrpc_set_lun_cur(rlun, rblk, &rlun->gc_cur);
  1108. }
  1109. return 0;
  1110. err:
  1111. rrpc_put_blks(rrpc);
  1112. return -EINVAL;
  1113. }
  1114. static struct nvm_tgt_type tt_rrpc;
  1115. static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
  1116. int lun_begin, int lun_end)
  1117. {
  1118. struct request_queue *bqueue = dev->q;
  1119. struct request_queue *tqueue = tdisk->queue;
  1120. struct rrpc *rrpc;
  1121. sector_t soffset;
  1122. int ret;
  1123. if (!(dev->identity.dom & NVM_RSP_L2P)) {
  1124. pr_err("nvm: rrpc: device does not support l2p (%x)\n",
  1125. dev->identity.dom);
  1126. return ERR_PTR(-EINVAL);
  1127. }
  1128. rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
  1129. if (!rrpc)
  1130. return ERR_PTR(-ENOMEM);
  1131. rrpc->instance.tt = &tt_rrpc;
  1132. rrpc->dev = dev;
  1133. rrpc->disk = tdisk;
  1134. bio_list_init(&rrpc->requeue_bios);
  1135. spin_lock_init(&rrpc->bio_lock);
  1136. INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
  1137. rrpc->nr_luns = lun_end - lun_begin + 1;
  1138. rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns;
  1139. rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
  1140. /* simple round-robin strategy */
  1141. atomic_set(&rrpc->next_lun, -1);
  1142. ret = rrpc_area_init(rrpc, &soffset);
  1143. if (ret < 0) {
  1144. pr_err("nvm: rrpc: could not initialize area\n");
  1145. return ERR_PTR(ret);
  1146. }
  1147. rrpc->soffset = soffset;
  1148. ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
  1149. if (ret) {
  1150. pr_err("nvm: rrpc: could not initialize luns\n");
  1151. goto err;
  1152. }
  1153. rrpc->poffset = dev->sec_per_lun * lun_begin;
  1154. rrpc->lun_offset = lun_begin;
  1155. ret = rrpc_core_init(rrpc);
  1156. if (ret) {
  1157. pr_err("nvm: rrpc: could not initialize core\n");
  1158. goto err;
  1159. }
  1160. ret = rrpc_map_init(rrpc);
  1161. if (ret) {
  1162. pr_err("nvm: rrpc: could not initialize maps\n");
  1163. goto err;
  1164. }
  1165. ret = rrpc_blocks_init(rrpc);
  1166. if (ret) {
  1167. pr_err("nvm: rrpc: could not initialize state for blocks\n");
  1168. goto err;
  1169. }
  1170. ret = rrpc_luns_configure(rrpc);
  1171. if (ret) {
  1172. pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
  1173. goto err;
  1174. }
  1175. ret = rrpc_gc_init(rrpc);
  1176. if (ret) {
  1177. pr_err("nvm: rrpc: could not initialize gc\n");
  1178. goto err;
  1179. }
  1180. /* inherit the size from the underlying device */
  1181. blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
  1182. blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
  1183. pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
  1184. rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
  1185. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  1186. return rrpc;
  1187. err:
  1188. rrpc_free(rrpc);
  1189. return ERR_PTR(ret);
  1190. }
  1191. /* round robin, page-based FTL, and cost-based GC */
  1192. static struct nvm_tgt_type tt_rrpc = {
  1193. .name = "rrpc",
  1194. .version = {1, 0, 0},
  1195. .make_rq = rrpc_make_rq,
  1196. .capacity = rrpc_capacity,
  1197. .end_io = rrpc_end_io,
  1198. .init = rrpc_init,
  1199. .exit = rrpc_exit,
  1200. };
  1201. static int __init rrpc_module_init(void)
  1202. {
  1203. return nvm_register_tgt_type(&tt_rrpc);
  1204. }
  1205. static void rrpc_module_exit(void)
  1206. {
  1207. nvm_unregister_tgt_type(&tt_rrpc);
  1208. }
  1209. module_init(rrpc_module_init);
  1210. module_exit(rrpc_module_exit);
  1211. MODULE_LICENSE("GPL v2");
  1212. MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");