spi.h 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154
  1. /*
  2. * Copyright (C) 2005 David Brownell
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. */
  14. #ifndef __LINUX_SPI_H
  15. #define __LINUX_SPI_H
  16. #include <linux/device.h>
  17. #include <linux/mod_devicetable.h>
  18. #include <linux/slab.h>
  19. #include <linux/kthread.h>
  20. #include <linux/completion.h>
  21. #include <linux/scatterlist.h>
  22. struct dma_chan;
  23. struct spi_master;
  24. struct spi_transfer;
  25. /*
  26. * INTERFACES between SPI master-side drivers and SPI infrastructure.
  27. * (There's no SPI slave support for Linux yet...)
  28. */
  29. extern struct bus_type spi_bus_type;
  30. /**
  31. * struct spi_statistics - statistics for spi transfers
  32. * @lock: lock protecting this structure
  33. *
  34. * @messages: number of spi-messages handled
  35. * @transfers: number of spi_transfers handled
  36. * @errors: number of errors during spi_transfer
  37. * @timedout: number of timeouts during spi_transfer
  38. *
  39. * @spi_sync: number of times spi_sync is used
  40. * @spi_sync_immediate:
  41. * number of times spi_sync is executed immediately
  42. * in calling context without queuing and scheduling
  43. * @spi_async: number of times spi_async is used
  44. *
  45. * @bytes: number of bytes transferred to/from device
  46. * @bytes_tx: number of bytes sent to device
  47. * @bytes_rx: number of bytes received from device
  48. *
  49. * @transfer_bytes_histo:
  50. * transfer bytes histogramm
  51. */
  52. struct spi_statistics {
  53. spinlock_t lock; /* lock for the whole structure */
  54. unsigned long messages;
  55. unsigned long transfers;
  56. unsigned long errors;
  57. unsigned long timedout;
  58. unsigned long spi_sync;
  59. unsigned long spi_sync_immediate;
  60. unsigned long spi_async;
  61. unsigned long long bytes;
  62. unsigned long long bytes_rx;
  63. unsigned long long bytes_tx;
  64. #define SPI_STATISTICS_HISTO_SIZE 17
  65. unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
  66. };
  67. void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
  68. struct spi_transfer *xfer,
  69. struct spi_master *master);
  70. #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count) \
  71. do { \
  72. unsigned long flags; \
  73. spin_lock_irqsave(&(stats)->lock, flags); \
  74. (stats)->field += count; \
  75. spin_unlock_irqrestore(&(stats)->lock, flags); \
  76. } while (0)
  77. #define SPI_STATISTICS_INCREMENT_FIELD(stats, field) \
  78. SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
  79. /**
  80. * struct spi_device - Master side proxy for an SPI slave device
  81. * @dev: Driver model representation of the device.
  82. * @master: SPI controller used with the device.
  83. * @max_speed_hz: Maximum clock rate to be used with this chip
  84. * (on this board); may be changed by the device's driver.
  85. * The spi_transfer.speed_hz can override this for each transfer.
  86. * @chip_select: Chipselect, distinguishing chips handled by @master.
  87. * @mode: The spi mode defines how data is clocked out and in.
  88. * This may be changed by the device's driver.
  89. * The "active low" default for chipselect mode can be overridden
  90. * (by specifying SPI_CS_HIGH) as can the "MSB first" default for
  91. * each word in a transfer (by specifying SPI_LSB_FIRST).
  92. * @bits_per_word: Data transfers involve one or more words; word sizes
  93. * like eight or 12 bits are common. In-memory wordsizes are
  94. * powers of two bytes (e.g. 20 bit samples use 32 bits).
  95. * This may be changed by the device's driver, or left at the
  96. * default (0) indicating protocol words are eight bit bytes.
  97. * The spi_transfer.bits_per_word can override this for each transfer.
  98. * @irq: Negative, or the number passed to request_irq() to receive
  99. * interrupts from this device.
  100. * @controller_state: Controller's runtime state
  101. * @controller_data: Board-specific definitions for controller, such as
  102. * FIFO initialization parameters; from board_info.controller_data
  103. * @modalias: Name of the driver to use with this device, or an alias
  104. * for that name. This appears in the sysfs "modalias" attribute
  105. * for driver coldplugging, and in uevents used for hotplugging
  106. * @cs_gpio: gpio number of the chipselect line (optional, -ENOENT when
  107. * when not using a GPIO line)
  108. *
  109. * @statistics: statistics for the spi_device
  110. *
  111. * A @spi_device is used to interchange data between an SPI slave
  112. * (usually a discrete chip) and CPU memory.
  113. *
  114. * In @dev, the platform_data is used to hold information about this
  115. * device that's meaningful to the device's protocol driver, but not
  116. * to its controller. One example might be an identifier for a chip
  117. * variant with slightly different functionality; another might be
  118. * information about how this particular board wires the chip's pins.
  119. */
  120. struct spi_device {
  121. struct device dev;
  122. struct spi_master *master;
  123. u32 max_speed_hz;
  124. u8 chip_select;
  125. u8 bits_per_word;
  126. u16 mode;
  127. #define SPI_CPHA 0x01 /* clock phase */
  128. #define SPI_CPOL 0x02 /* clock polarity */
  129. #define SPI_MODE_0 (0|0) /* (original MicroWire) */
  130. #define SPI_MODE_1 (0|SPI_CPHA)
  131. #define SPI_MODE_2 (SPI_CPOL|0)
  132. #define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
  133. #define SPI_CS_HIGH 0x04 /* chipselect active high? */
  134. #define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */
  135. #define SPI_3WIRE 0x10 /* SI/SO signals shared */
  136. #define SPI_LOOP 0x20 /* loopback mode */
  137. #define SPI_NO_CS 0x40 /* 1 dev/bus, no chipselect */
  138. #define SPI_READY 0x80 /* slave pulls low to pause */
  139. #define SPI_TX_DUAL 0x100 /* transmit with 2 wires */
  140. #define SPI_TX_QUAD 0x200 /* transmit with 4 wires */
  141. #define SPI_RX_DUAL 0x400 /* receive with 2 wires */
  142. #define SPI_RX_QUAD 0x800 /* receive with 4 wires */
  143. int irq;
  144. void *controller_state;
  145. void *controller_data;
  146. char modalias[SPI_NAME_SIZE];
  147. int cs_gpio; /* chip select gpio */
  148. /* the statistics */
  149. struct spi_statistics statistics;
  150. /*
  151. * likely need more hooks for more protocol options affecting how
  152. * the controller talks to each chip, like:
  153. * - memory packing (12 bit samples into low bits, others zeroed)
  154. * - priority
  155. * - drop chipselect after each word
  156. * - chipselect delays
  157. * - ...
  158. */
  159. };
  160. static inline struct spi_device *to_spi_device(struct device *dev)
  161. {
  162. return dev ? container_of(dev, struct spi_device, dev) : NULL;
  163. }
  164. /* most drivers won't need to care about device refcounting */
  165. static inline struct spi_device *spi_dev_get(struct spi_device *spi)
  166. {
  167. return (spi && get_device(&spi->dev)) ? spi : NULL;
  168. }
  169. static inline void spi_dev_put(struct spi_device *spi)
  170. {
  171. if (spi)
  172. put_device(&spi->dev);
  173. }
  174. /* ctldata is for the bus_master driver's runtime state */
  175. static inline void *spi_get_ctldata(struct spi_device *spi)
  176. {
  177. return spi->controller_state;
  178. }
  179. static inline void spi_set_ctldata(struct spi_device *spi, void *state)
  180. {
  181. spi->controller_state = state;
  182. }
  183. /* device driver data */
  184. static inline void spi_set_drvdata(struct spi_device *spi, void *data)
  185. {
  186. dev_set_drvdata(&spi->dev, data);
  187. }
  188. static inline void *spi_get_drvdata(struct spi_device *spi)
  189. {
  190. return dev_get_drvdata(&spi->dev);
  191. }
  192. struct spi_message;
  193. struct spi_transfer;
  194. /**
  195. * struct spi_driver - Host side "protocol" driver
  196. * @id_table: List of SPI devices supported by this driver
  197. * @probe: Binds this driver to the spi device. Drivers can verify
  198. * that the device is actually present, and may need to configure
  199. * characteristics (such as bits_per_word) which weren't needed for
  200. * the initial configuration done during system setup.
  201. * @remove: Unbinds this driver from the spi device
  202. * @shutdown: Standard shutdown callback used during system state
  203. * transitions such as powerdown/halt and kexec
  204. * @driver: SPI device drivers should initialize the name and owner
  205. * field of this structure.
  206. *
  207. * This represents the kind of device driver that uses SPI messages to
  208. * interact with the hardware at the other end of a SPI link. It's called
  209. * a "protocol" driver because it works through messages rather than talking
  210. * directly to SPI hardware (which is what the underlying SPI controller
  211. * driver does to pass those messages). These protocols are defined in the
  212. * specification for the device(s) supported by the driver.
  213. *
  214. * As a rule, those device protocols represent the lowest level interface
  215. * supported by a driver, and it will support upper level interfaces too.
  216. * Examples of such upper levels include frameworks like MTD, networking,
  217. * MMC, RTC, filesystem character device nodes, and hardware monitoring.
  218. */
  219. struct spi_driver {
  220. const struct spi_device_id *id_table;
  221. int (*probe)(struct spi_device *spi);
  222. int (*remove)(struct spi_device *spi);
  223. void (*shutdown)(struct spi_device *spi);
  224. struct device_driver driver;
  225. };
  226. static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
  227. {
  228. return drv ? container_of(drv, struct spi_driver, driver) : NULL;
  229. }
  230. extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
  231. /**
  232. * spi_unregister_driver - reverse effect of spi_register_driver
  233. * @sdrv: the driver to unregister
  234. * Context: can sleep
  235. */
  236. static inline void spi_unregister_driver(struct spi_driver *sdrv)
  237. {
  238. if (sdrv)
  239. driver_unregister(&sdrv->driver);
  240. }
  241. /* use a define to avoid include chaining to get THIS_MODULE */
  242. #define spi_register_driver(driver) \
  243. __spi_register_driver(THIS_MODULE, driver)
  244. /**
  245. * module_spi_driver() - Helper macro for registering a SPI driver
  246. * @__spi_driver: spi_driver struct
  247. *
  248. * Helper macro for SPI drivers which do not do anything special in module
  249. * init/exit. This eliminates a lot of boilerplate. Each module may only
  250. * use this macro once, and calling it replaces module_init() and module_exit()
  251. */
  252. #define module_spi_driver(__spi_driver) \
  253. module_driver(__spi_driver, spi_register_driver, \
  254. spi_unregister_driver)
  255. /**
  256. * struct spi_master - interface to SPI master controller
  257. * @dev: device interface to this driver
  258. * @list: link with the global spi_master list
  259. * @bus_num: board-specific (and often SOC-specific) identifier for a
  260. * given SPI controller.
  261. * @num_chipselect: chipselects are used to distinguish individual
  262. * SPI slaves, and are numbered from zero to num_chipselects.
  263. * each slave has a chipselect signal, but it's common that not
  264. * every chipselect is connected to a slave.
  265. * @dma_alignment: SPI controller constraint on DMA buffers alignment.
  266. * @mode_bits: flags understood by this controller driver
  267. * @bits_per_word_mask: A mask indicating which values of bits_per_word are
  268. * supported by the driver. Bit n indicates that a bits_per_word n+1 is
  269. * supported. If set, the SPI core will reject any transfer with an
  270. * unsupported bits_per_word. If not set, this value is simply ignored,
  271. * and it's up to the individual driver to perform any validation.
  272. * @min_speed_hz: Lowest supported transfer speed
  273. * @max_speed_hz: Highest supported transfer speed
  274. * @flags: other constraints relevant to this driver
  275. * @bus_lock_spinlock: spinlock for SPI bus locking
  276. * @bus_lock_mutex: mutex for SPI bus locking
  277. * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
  278. * @setup: updates the device mode and clocking records used by a
  279. * device's SPI controller; protocol code may call this. This
  280. * must fail if an unrecognized or unsupported mode is requested.
  281. * It's always safe to call this unless transfers are pending on
  282. * the device whose settings are being modified.
  283. * @transfer: adds a message to the controller's transfer queue.
  284. * @cleanup: frees controller-specific state
  285. * @can_dma: determine whether this master supports DMA
  286. * @queued: whether this master is providing an internal message queue
  287. * @kworker: thread struct for message pump
  288. * @kworker_task: pointer to task for message pump kworker thread
  289. * @pump_messages: work struct for scheduling work to the message pump
  290. * @queue_lock: spinlock to syncronise access to message queue
  291. * @queue: message queue
  292. * @idling: the device is entering idle state
  293. * @cur_msg: the currently in-flight message
  294. * @cur_msg_prepared: spi_prepare_message was called for the currently
  295. * in-flight message
  296. * @cur_msg_mapped: message has been mapped for DMA
  297. * @xfer_completion: used by core transfer_one_message()
  298. * @busy: message pump is busy
  299. * @running: message pump is running
  300. * @rt: whether this queue is set to run as a realtime task
  301. * @auto_runtime_pm: the core should ensure a runtime PM reference is held
  302. * while the hardware is prepared, using the parent
  303. * device for the spidev
  304. * @max_dma_len: Maximum length of a DMA transfer for the device.
  305. * @prepare_transfer_hardware: a message will soon arrive from the queue
  306. * so the subsystem requests the driver to prepare the transfer hardware
  307. * by issuing this call
  308. * @transfer_one_message: the subsystem calls the driver to transfer a single
  309. * message while queuing transfers that arrive in the meantime. When the
  310. * driver is finished with this message, it must call
  311. * spi_finalize_current_message() so the subsystem can issue the next
  312. * message
  313. * @unprepare_transfer_hardware: there are currently no more messages on the
  314. * queue so the subsystem notifies the driver that it may relax the
  315. * hardware by issuing this call
  316. * @set_cs: set the logic level of the chip select line. May be called
  317. * from interrupt context.
  318. * @prepare_message: set up the controller to transfer a single message,
  319. * for example doing DMA mapping. Called from threaded
  320. * context.
  321. * @transfer_one: transfer a single spi_transfer.
  322. * - return 0 if the transfer is finished,
  323. * - return 1 if the transfer is still in progress. When
  324. * the driver is finished with this transfer it must
  325. * call spi_finalize_current_transfer() so the subsystem
  326. * can issue the next transfer. Note: transfer_one and
  327. * transfer_one_message are mutually exclusive; when both
  328. * are set, the generic subsystem does not call your
  329. * transfer_one callback.
  330. * @handle_err: the subsystem calls the driver to handle an error that occurs
  331. * in the generic implementation of transfer_one_message().
  332. * @unprepare_message: undo any work done by prepare_message().
  333. * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
  334. * number. Any individual value may be -ENOENT for CS lines that
  335. * are not GPIOs (driven by the SPI controller itself).
  336. * @statistics: statistics for the spi_master
  337. * @dma_tx: DMA transmit channel
  338. * @dma_rx: DMA receive channel
  339. * @dummy_rx: dummy receive buffer for full-duplex devices
  340. * @dummy_tx: dummy transmit buffer for full-duplex devices
  341. * @fw_translate_cs: If the boot firmware uses different numbering scheme
  342. * what Linux expects, this optional hook can be used to translate
  343. * between the two.
  344. *
  345. * Each SPI master controller can communicate with one or more @spi_device
  346. * children. These make a small bus, sharing MOSI, MISO and SCK signals
  347. * but not chip select signals. Each device may be configured to use a
  348. * different clock rate, since those shared signals are ignored unless
  349. * the chip is selected.
  350. *
  351. * The driver for an SPI controller manages access to those devices through
  352. * a queue of spi_message transactions, copying data between CPU memory and
  353. * an SPI slave device. For each such message it queues, it calls the
  354. * message's completion function when the transaction completes.
  355. */
  356. struct spi_master {
  357. struct device dev;
  358. struct list_head list;
  359. /* other than negative (== assign one dynamically), bus_num is fully
  360. * board-specific. usually that simplifies to being SOC-specific.
  361. * example: one SOC has three SPI controllers, numbered 0..2,
  362. * and one board's schematics might show it using SPI-2. software
  363. * would normally use bus_num=2 for that controller.
  364. */
  365. s16 bus_num;
  366. /* chipselects will be integral to many controllers; some others
  367. * might use board-specific GPIOs.
  368. */
  369. u16 num_chipselect;
  370. /* some SPI controllers pose alignment requirements on DMAable
  371. * buffers; let protocol drivers know about these requirements.
  372. */
  373. u16 dma_alignment;
  374. /* spi_device.mode flags understood by this controller driver */
  375. u16 mode_bits;
  376. /* bitmask of supported bits_per_word for transfers */
  377. u32 bits_per_word_mask;
  378. #define SPI_BPW_MASK(bits) BIT((bits) - 1)
  379. #define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
  380. #define SPI_BPW_RANGE_MASK(min, max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))
  381. /* limits on transfer speed */
  382. u32 min_speed_hz;
  383. u32 max_speed_hz;
  384. /* other constraints relevant to this driver */
  385. u16 flags;
  386. #define SPI_MASTER_HALF_DUPLEX BIT(0) /* can't do full duplex */
  387. #define SPI_MASTER_NO_RX BIT(1) /* can't do buffer read */
  388. #define SPI_MASTER_NO_TX BIT(2) /* can't do buffer write */
  389. #define SPI_MASTER_MUST_RX BIT(3) /* requires rx */
  390. #define SPI_MASTER_MUST_TX BIT(4) /* requires tx */
  391. /*
  392. * on some hardware transfer size may be constrained
  393. * the limit may depend on device transfer settings
  394. */
  395. size_t (*max_transfer_size)(struct spi_device *spi);
  396. /* lock and mutex for SPI bus locking */
  397. spinlock_t bus_lock_spinlock;
  398. struct mutex bus_lock_mutex;
  399. /* flag indicating that the SPI bus is locked for exclusive use */
  400. bool bus_lock_flag;
  401. /* Setup mode and clock, etc (spi driver may call many times).
  402. *
  403. * IMPORTANT: this may be called when transfers to another
  404. * device are active. DO NOT UPDATE SHARED REGISTERS in ways
  405. * which could break those transfers.
  406. */
  407. int (*setup)(struct spi_device *spi);
  408. /* bidirectional bulk transfers
  409. *
  410. * + The transfer() method may not sleep; its main role is
  411. * just to add the message to the queue.
  412. * + For now there's no remove-from-queue operation, or
  413. * any other request management
  414. * + To a given spi_device, message queueing is pure fifo
  415. *
  416. * + The master's main job is to process its message queue,
  417. * selecting a chip then transferring data
  418. * + If there are multiple spi_device children, the i/o queue
  419. * arbitration algorithm is unspecified (round robin, fifo,
  420. * priority, reservations, preemption, etc)
  421. *
  422. * + Chipselect stays active during the entire message
  423. * (unless modified by spi_transfer.cs_change != 0).
  424. * + The message transfers use clock and SPI mode parameters
  425. * previously established by setup() for this device
  426. */
  427. int (*transfer)(struct spi_device *spi,
  428. struct spi_message *mesg);
  429. /* called on release() to free memory provided by spi_master */
  430. void (*cleanup)(struct spi_device *spi);
  431. /*
  432. * Used to enable core support for DMA handling, if can_dma()
  433. * exists and returns true then the transfer will be mapped
  434. * prior to transfer_one() being called. The driver should
  435. * not modify or store xfer and dma_tx and dma_rx must be set
  436. * while the device is prepared.
  437. */
  438. bool (*can_dma)(struct spi_master *master,
  439. struct spi_device *spi,
  440. struct spi_transfer *xfer);
  441. /*
  442. * These hooks are for drivers that want to use the generic
  443. * master transfer queueing mechanism. If these are used, the
  444. * transfer() function above must NOT be specified by the driver.
  445. * Over time we expect SPI drivers to be phased over to this API.
  446. */
  447. bool queued;
  448. struct kthread_worker kworker;
  449. struct task_struct *kworker_task;
  450. struct kthread_work pump_messages;
  451. spinlock_t queue_lock;
  452. struct list_head queue;
  453. struct spi_message *cur_msg;
  454. bool idling;
  455. bool busy;
  456. bool running;
  457. bool rt;
  458. bool auto_runtime_pm;
  459. bool cur_msg_prepared;
  460. bool cur_msg_mapped;
  461. struct completion xfer_completion;
  462. size_t max_dma_len;
  463. int (*prepare_transfer_hardware)(struct spi_master *master);
  464. int (*transfer_one_message)(struct spi_master *master,
  465. struct spi_message *mesg);
  466. int (*unprepare_transfer_hardware)(struct spi_master *master);
  467. int (*prepare_message)(struct spi_master *master,
  468. struct spi_message *message);
  469. int (*unprepare_message)(struct spi_master *master,
  470. struct spi_message *message);
  471. /*
  472. * These hooks are for drivers that use a generic implementation
  473. * of transfer_one_message() provied by the core.
  474. */
  475. void (*set_cs)(struct spi_device *spi, bool enable);
  476. int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
  477. struct spi_transfer *transfer);
  478. void (*handle_err)(struct spi_master *master,
  479. struct spi_message *message);
  480. /* gpio chip select */
  481. int *cs_gpios;
  482. /* statistics */
  483. struct spi_statistics statistics;
  484. /* DMA channels for use with core dmaengine helpers */
  485. struct dma_chan *dma_tx;
  486. struct dma_chan *dma_rx;
  487. /* dummy data for full duplex devices */
  488. void *dummy_rx;
  489. void *dummy_tx;
  490. int (*fw_translate_cs)(struct spi_master *master, unsigned cs);
  491. };
  492. static inline void *spi_master_get_devdata(struct spi_master *master)
  493. {
  494. return dev_get_drvdata(&master->dev);
  495. }
  496. static inline void spi_master_set_devdata(struct spi_master *master, void *data)
  497. {
  498. dev_set_drvdata(&master->dev, data);
  499. }
  500. static inline struct spi_master *spi_master_get(struct spi_master *master)
  501. {
  502. if (!master || !get_device(&master->dev))
  503. return NULL;
  504. return master;
  505. }
  506. static inline void spi_master_put(struct spi_master *master)
  507. {
  508. if (master)
  509. put_device(&master->dev);
  510. }
  511. /* PM calls that need to be issued by the driver */
  512. extern int spi_master_suspend(struct spi_master *master);
  513. extern int spi_master_resume(struct spi_master *master);
  514. /* Calls the driver make to interact with the message queue */
  515. extern struct spi_message *spi_get_next_queued_message(struct spi_master *master);
  516. extern void spi_finalize_current_message(struct spi_master *master);
  517. extern void spi_finalize_current_transfer(struct spi_master *master);
  518. /* the spi driver core manages memory for the spi_master classdev */
  519. extern struct spi_master *
  520. spi_alloc_master(struct device *host, unsigned size);
  521. extern int spi_register_master(struct spi_master *master);
  522. extern int devm_spi_register_master(struct device *dev,
  523. struct spi_master *master);
  524. extern void spi_unregister_master(struct spi_master *master);
  525. extern struct spi_master *spi_busnum_to_master(u16 busnum);
  526. /*---------------------------------------------------------------------------*/
  527. /*
  528. * I/O INTERFACE between SPI controller and protocol drivers
  529. *
  530. * Protocol drivers use a queue of spi_messages, each transferring data
  531. * between the controller and memory buffers.
  532. *
  533. * The spi_messages themselves consist of a series of read+write transfer
  534. * segments. Those segments always read the same number of bits as they
  535. * write; but one or the other is easily ignored by passing a null buffer
  536. * pointer. (This is unlike most types of I/O API, because SPI hardware
  537. * is full duplex.)
  538. *
  539. * NOTE: Allocation of spi_transfer and spi_message memory is entirely
  540. * up to the protocol driver, which guarantees the integrity of both (as
  541. * well as the data buffers) for as long as the message is queued.
  542. */
  543. /**
  544. * struct spi_transfer - a read/write buffer pair
  545. * @tx_buf: data to be written (dma-safe memory), or NULL
  546. * @rx_buf: data to be read (dma-safe memory), or NULL
  547. * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
  548. * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
  549. * @tx_nbits: number of bits used for writing. If 0 the default
  550. * (SPI_NBITS_SINGLE) is used.
  551. * @rx_nbits: number of bits used for reading. If 0 the default
  552. * (SPI_NBITS_SINGLE) is used.
  553. * @len: size of rx and tx buffers (in bytes)
  554. * @speed_hz: Select a speed other than the device default for this
  555. * transfer. If 0 the default (from @spi_device) is used.
  556. * @bits_per_word: select a bits_per_word other than the device default
  557. * for this transfer. If 0 the default (from @spi_device) is used.
  558. * @cs_change: affects chipselect after this transfer completes
  559. * @delay_usecs: microseconds to delay after this transfer before
  560. * (optionally) changing the chipselect status, then starting
  561. * the next transfer or completing this @spi_message.
  562. * @transfer_list: transfers are sequenced through @spi_message.transfers
  563. * @tx_sg: Scatterlist for transmit, currently not for client use
  564. * @rx_sg: Scatterlist for receive, currently not for client use
  565. *
  566. * SPI transfers always write the same number of bytes as they read.
  567. * Protocol drivers should always provide @rx_buf and/or @tx_buf.
  568. * In some cases, they may also want to provide DMA addresses for
  569. * the data being transferred; that may reduce overhead, when the
  570. * underlying driver uses dma.
  571. *
  572. * If the transmit buffer is null, zeroes will be shifted out
  573. * while filling @rx_buf. If the receive buffer is null, the data
  574. * shifted in will be discarded. Only "len" bytes shift out (or in).
  575. * It's an error to try to shift out a partial word. (For example, by
  576. * shifting out three bytes with word size of sixteen or twenty bits;
  577. * the former uses two bytes per word, the latter uses four bytes.)
  578. *
  579. * In-memory data values are always in native CPU byte order, translated
  580. * from the wire byte order (big-endian except with SPI_LSB_FIRST). So
  581. * for example when bits_per_word is sixteen, buffers are 2N bytes long
  582. * (@len = 2N) and hold N sixteen bit words in CPU byte order.
  583. *
  584. * When the word size of the SPI transfer is not a power-of-two multiple
  585. * of eight bits, those in-memory words include extra bits. In-memory
  586. * words are always seen by protocol drivers as right-justified, so the
  587. * undefined (rx) or unused (tx) bits are always the most significant bits.
  588. *
  589. * All SPI transfers start with the relevant chipselect active. Normally
  590. * it stays selected until after the last transfer in a message. Drivers
  591. * can affect the chipselect signal using cs_change.
  592. *
  593. * (i) If the transfer isn't the last one in the message, this flag is
  594. * used to make the chipselect briefly go inactive in the middle of the
  595. * message. Toggling chipselect in this way may be needed to terminate
  596. * a chip command, letting a single spi_message perform all of group of
  597. * chip transactions together.
  598. *
  599. * (ii) When the transfer is the last one in the message, the chip may
  600. * stay selected until the next transfer. On multi-device SPI busses
  601. * with nothing blocking messages going to other devices, this is just
  602. * a performance hint; starting a message to another device deselects
  603. * this one. But in other cases, this can be used to ensure correctness.
  604. * Some devices need protocol transactions to be built from a series of
  605. * spi_message submissions, where the content of one message is determined
  606. * by the results of previous messages and where the whole transaction
  607. * ends when the chipselect goes intactive.
  608. *
  609. * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
  610. * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
  611. * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
  612. * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
  613. *
  614. * The code that submits an spi_message (and its spi_transfers)
  615. * to the lower layers is responsible for managing its memory.
  616. * Zero-initialize every field you don't set up explicitly, to
  617. * insulate against future API updates. After you submit a message
  618. * and its transfers, ignore them until its completion callback.
  619. */
  620. struct spi_transfer {
  621. /* it's ok if tx_buf == rx_buf (right?)
  622. * for MicroWire, one buffer must be null
  623. * buffers must work with dma_*map_single() calls, unless
  624. * spi_message.is_dma_mapped reports a pre-existing mapping
  625. */
  626. const void *tx_buf;
  627. void *rx_buf;
  628. unsigned len;
  629. dma_addr_t tx_dma;
  630. dma_addr_t rx_dma;
  631. struct sg_table tx_sg;
  632. struct sg_table rx_sg;
  633. unsigned cs_change:1;
  634. unsigned tx_nbits:3;
  635. unsigned rx_nbits:3;
  636. #define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */
  637. #define SPI_NBITS_DUAL 0x02 /* 2bits transfer */
  638. #define SPI_NBITS_QUAD 0x04 /* 4bits transfer */
  639. u8 bits_per_word;
  640. u16 delay_usecs;
  641. u32 speed_hz;
  642. struct list_head transfer_list;
  643. };
  644. /**
  645. * struct spi_message - one multi-segment SPI transaction
  646. * @transfers: list of transfer segments in this transaction
  647. * @spi: SPI device to which the transaction is queued
  648. * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
  649. * addresses for each transfer buffer
  650. * @complete: called to report transaction completions
  651. * @context: the argument to complete() when it's called
  652. * @frame_length: the total number of bytes in the message
  653. * @actual_length: the total number of bytes that were transferred in all
  654. * successful segments
  655. * @status: zero for success, else negative errno
  656. * @queue: for use by whichever driver currently owns the message
  657. * @state: for use by whichever driver currently owns the message
  658. *
  659. * A @spi_message is used to execute an atomic sequence of data transfers,
  660. * each represented by a struct spi_transfer. The sequence is "atomic"
  661. * in the sense that no other spi_message may use that SPI bus until that
  662. * sequence completes. On some systems, many such sequences can execute as
  663. * as single programmed DMA transfer. On all systems, these messages are
  664. * queued, and might complete after transactions to other devices. Messages
  665. * sent to a given spi_device are always executed in FIFO order.
  666. *
  667. * The code that submits an spi_message (and its spi_transfers)
  668. * to the lower layers is responsible for managing its memory.
  669. * Zero-initialize every field you don't set up explicitly, to
  670. * insulate against future API updates. After you submit a message
  671. * and its transfers, ignore them until its completion callback.
  672. */
  673. struct spi_message {
  674. struct list_head transfers;
  675. struct spi_device *spi;
  676. unsigned is_dma_mapped:1;
  677. /* REVISIT: we might want a flag affecting the behavior of the
  678. * last transfer ... allowing things like "read 16 bit length L"
  679. * immediately followed by "read L bytes". Basically imposing
  680. * a specific message scheduling algorithm.
  681. *
  682. * Some controller drivers (message-at-a-time queue processing)
  683. * could provide that as their default scheduling algorithm. But
  684. * others (with multi-message pipelines) could need a flag to
  685. * tell them about such special cases.
  686. */
  687. /* completion is reported through a callback */
  688. void (*complete)(void *context);
  689. void *context;
  690. unsigned frame_length;
  691. unsigned actual_length;
  692. int status;
  693. /* for optional use by whatever driver currently owns the
  694. * spi_message ... between calls to spi_async and then later
  695. * complete(), that's the spi_master controller driver.
  696. */
  697. struct list_head queue;
  698. void *state;
  699. };
  700. static inline void spi_message_init_no_memset(struct spi_message *m)
  701. {
  702. INIT_LIST_HEAD(&m->transfers);
  703. }
  704. static inline void spi_message_init(struct spi_message *m)
  705. {
  706. memset(m, 0, sizeof *m);
  707. spi_message_init_no_memset(m);
  708. }
  709. static inline void
  710. spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
  711. {
  712. list_add_tail(&t->transfer_list, &m->transfers);
  713. }
  714. static inline void
  715. spi_transfer_del(struct spi_transfer *t)
  716. {
  717. list_del(&t->transfer_list);
  718. }
  719. /**
  720. * spi_message_init_with_transfers - Initialize spi_message and append transfers
  721. * @m: spi_message to be initialized
  722. * @xfers: An array of spi transfers
  723. * @num_xfers: Number of items in the xfer array
  724. *
  725. * This function initializes the given spi_message and adds each spi_transfer in
  726. * the given array to the message.
  727. */
  728. static inline void
  729. spi_message_init_with_transfers(struct spi_message *m,
  730. struct spi_transfer *xfers, unsigned int num_xfers)
  731. {
  732. unsigned int i;
  733. spi_message_init(m);
  734. for (i = 0; i < num_xfers; ++i)
  735. spi_message_add_tail(&xfers[i], m);
  736. }
  737. /* It's fine to embed message and transaction structures in other data
  738. * structures so long as you don't free them while they're in use.
  739. */
  740. static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
  741. {
  742. struct spi_message *m;
  743. m = kzalloc(sizeof(struct spi_message)
  744. + ntrans * sizeof(struct spi_transfer),
  745. flags);
  746. if (m) {
  747. unsigned i;
  748. struct spi_transfer *t = (struct spi_transfer *)(m + 1);
  749. INIT_LIST_HEAD(&m->transfers);
  750. for (i = 0; i < ntrans; i++, t++)
  751. spi_message_add_tail(t, m);
  752. }
  753. return m;
  754. }
  755. static inline void spi_message_free(struct spi_message *m)
  756. {
  757. kfree(m);
  758. }
  759. extern int spi_setup(struct spi_device *spi);
  760. extern int spi_async(struct spi_device *spi, struct spi_message *message);
  761. extern int spi_async_locked(struct spi_device *spi,
  762. struct spi_message *message);
  763. static inline size_t
  764. spi_max_transfer_size(struct spi_device *spi)
  765. {
  766. struct spi_master *master = spi->master;
  767. if (!master->max_transfer_size)
  768. return SIZE_MAX;
  769. return master->max_transfer_size(spi);
  770. }
  771. /*---------------------------------------------------------------------------*/
  772. /* All these synchronous SPI transfer routines are utilities layered
  773. * over the core async transfer primitive. Here, "synchronous" means
  774. * they will sleep uninterruptibly until the async transfer completes.
  775. */
  776. extern int spi_sync(struct spi_device *spi, struct spi_message *message);
  777. extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
  778. extern int spi_bus_lock(struct spi_master *master);
  779. extern int spi_bus_unlock(struct spi_master *master);
  780. /**
  781. * spi_write - SPI synchronous write
  782. * @spi: device to which data will be written
  783. * @buf: data buffer
  784. * @len: data buffer size
  785. * Context: can sleep
  786. *
  787. * This function writes the buffer @buf.
  788. * Callable only from contexts that can sleep.
  789. *
  790. * Return: zero on success, else a negative error code.
  791. */
  792. static inline int
  793. spi_write(struct spi_device *spi, const void *buf, size_t len)
  794. {
  795. struct spi_transfer t = {
  796. .tx_buf = buf,
  797. .len = len,
  798. };
  799. struct spi_message m;
  800. spi_message_init(&m);
  801. spi_message_add_tail(&t, &m);
  802. return spi_sync(spi, &m);
  803. }
  804. /**
  805. * spi_read - SPI synchronous read
  806. * @spi: device from which data will be read
  807. * @buf: data buffer
  808. * @len: data buffer size
  809. * Context: can sleep
  810. *
  811. * This function reads the buffer @buf.
  812. * Callable only from contexts that can sleep.
  813. *
  814. * Return: zero on success, else a negative error code.
  815. */
  816. static inline int
  817. spi_read(struct spi_device *spi, void *buf, size_t len)
  818. {
  819. struct spi_transfer t = {
  820. .rx_buf = buf,
  821. .len = len,
  822. };
  823. struct spi_message m;
  824. spi_message_init(&m);
  825. spi_message_add_tail(&t, &m);
  826. return spi_sync(spi, &m);
  827. }
  828. /**
  829. * spi_sync_transfer - synchronous SPI data transfer
  830. * @spi: device with which data will be exchanged
  831. * @xfers: An array of spi_transfers
  832. * @num_xfers: Number of items in the xfer array
  833. * Context: can sleep
  834. *
  835. * Does a synchronous SPI data transfer of the given spi_transfer array.
  836. *
  837. * For more specific semantics see spi_sync().
  838. *
  839. * Return: Return: zero on success, else a negative error code.
  840. */
  841. static inline int
  842. spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
  843. unsigned int num_xfers)
  844. {
  845. struct spi_message msg;
  846. spi_message_init_with_transfers(&msg, xfers, num_xfers);
  847. return spi_sync(spi, &msg);
  848. }
  849. /* this copies txbuf and rxbuf data; for small transfers only! */
  850. extern int spi_write_then_read(struct spi_device *spi,
  851. const void *txbuf, unsigned n_tx,
  852. void *rxbuf, unsigned n_rx);
  853. /**
  854. * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
  855. * @spi: device with which data will be exchanged
  856. * @cmd: command to be written before data is read back
  857. * Context: can sleep
  858. *
  859. * Callable only from contexts that can sleep.
  860. *
  861. * Return: the (unsigned) eight bit number returned by the
  862. * device, or else a negative error code.
  863. */
  864. static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
  865. {
  866. ssize_t status;
  867. u8 result;
  868. status = spi_write_then_read(spi, &cmd, 1, &result, 1);
  869. /* return negative errno or unsigned value */
  870. return (status < 0) ? status : result;
  871. }
  872. /**
  873. * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
  874. * @spi: device with which data will be exchanged
  875. * @cmd: command to be written before data is read back
  876. * Context: can sleep
  877. *
  878. * The number is returned in wire-order, which is at least sometimes
  879. * big-endian.
  880. *
  881. * Callable only from contexts that can sleep.
  882. *
  883. * Return: the (unsigned) sixteen bit number returned by the
  884. * device, or else a negative error code.
  885. */
  886. static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
  887. {
  888. ssize_t status;
  889. u16 result;
  890. status = spi_write_then_read(spi, &cmd, 1, &result, 2);
  891. /* return negative errno or unsigned value */
  892. return (status < 0) ? status : result;
  893. }
  894. /**
  895. * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
  896. * @spi: device with which data will be exchanged
  897. * @cmd: command to be written before data is read back
  898. * Context: can sleep
  899. *
  900. * This function is similar to spi_w8r16, with the exception that it will
  901. * convert the read 16 bit data word from big-endian to native endianness.
  902. *
  903. * Callable only from contexts that can sleep.
  904. *
  905. * Return: the (unsigned) sixteen bit number returned by the device in cpu
  906. * endianness, or else a negative error code.
  907. */
  908. static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
  909. {
  910. ssize_t status;
  911. __be16 result;
  912. status = spi_write_then_read(spi, &cmd, 1, &result, 2);
  913. if (status < 0)
  914. return status;
  915. return be16_to_cpu(result);
  916. }
  917. /*---------------------------------------------------------------------------*/
  918. /*
  919. * INTERFACE between board init code and SPI infrastructure.
  920. *
  921. * No SPI driver ever sees these SPI device table segments, but
  922. * it's how the SPI core (or adapters that get hotplugged) grows
  923. * the driver model tree.
  924. *
  925. * As a rule, SPI devices can't be probed. Instead, board init code
  926. * provides a table listing the devices which are present, with enough
  927. * information to bind and set up the device's driver. There's basic
  928. * support for nonstatic configurations too; enough to handle adding
  929. * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
  930. */
  931. /**
  932. * struct spi_board_info - board-specific template for a SPI device
  933. * @modalias: Initializes spi_device.modalias; identifies the driver.
  934. * @platform_data: Initializes spi_device.platform_data; the particular
  935. * data stored there is driver-specific.
  936. * @controller_data: Initializes spi_device.controller_data; some
  937. * controllers need hints about hardware setup, e.g. for DMA.
  938. * @irq: Initializes spi_device.irq; depends on how the board is wired.
  939. * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
  940. * from the chip datasheet and board-specific signal quality issues.
  941. * @bus_num: Identifies which spi_master parents the spi_device; unused
  942. * by spi_new_device(), and otherwise depends on board wiring.
  943. * @chip_select: Initializes spi_device.chip_select; depends on how
  944. * the board is wired.
  945. * @mode: Initializes spi_device.mode; based on the chip datasheet, board
  946. * wiring (some devices support both 3WIRE and standard modes), and
  947. * possibly presence of an inverter in the chipselect path.
  948. *
  949. * When adding new SPI devices to the device tree, these structures serve
  950. * as a partial device template. They hold information which can't always
  951. * be determined by drivers. Information that probe() can establish (such
  952. * as the default transfer wordsize) is not included here.
  953. *
  954. * These structures are used in two places. Their primary role is to
  955. * be stored in tables of board-specific device descriptors, which are
  956. * declared early in board initialization and then used (much later) to
  957. * populate a controller's device tree after the that controller's driver
  958. * initializes. A secondary (and atypical) role is as a parameter to
  959. * spi_new_device() call, which happens after those controller drivers
  960. * are active in some dynamic board configuration models.
  961. */
  962. struct spi_board_info {
  963. /* the device name and module name are coupled, like platform_bus;
  964. * "modalias" is normally the driver name.
  965. *
  966. * platform_data goes to spi_device.dev.platform_data,
  967. * controller_data goes to spi_device.controller_data,
  968. * irq is copied too
  969. */
  970. char modalias[SPI_NAME_SIZE];
  971. const void *platform_data;
  972. void *controller_data;
  973. int irq;
  974. /* slower signaling on noisy or low voltage boards */
  975. u32 max_speed_hz;
  976. /* bus_num is board specific and matches the bus_num of some
  977. * spi_master that will probably be registered later.
  978. *
  979. * chip_select reflects how this chip is wired to that master;
  980. * it's less than num_chipselect.
  981. */
  982. u16 bus_num;
  983. u16 chip_select;
  984. /* mode becomes spi_device.mode, and is essential for chips
  985. * where the default of SPI_CS_HIGH = 0 is wrong.
  986. */
  987. u16 mode;
  988. /* ... may need additional spi_device chip config data here.
  989. * avoid stuff protocol drivers can set; but include stuff
  990. * needed to behave without being bound to a driver:
  991. * - quirks like clock rate mattering when not selected
  992. */
  993. };
  994. #ifdef CONFIG_SPI
  995. extern int
  996. spi_register_board_info(struct spi_board_info const *info, unsigned n);
  997. #else
  998. /* board init code may ignore whether SPI is configured or not */
  999. static inline int
  1000. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  1001. { return 0; }
  1002. #endif
  1003. /* If you're hotplugging an adapter with devices (parport, usb, etc)
  1004. * use spi_new_device() to describe each device. You can also call
  1005. * spi_unregister_device() to start making that device vanish, but
  1006. * normally that would be handled by spi_unregister_master().
  1007. *
  1008. * You can also use spi_alloc_device() and spi_add_device() to use a two
  1009. * stage registration sequence for each spi_device. This gives the caller
  1010. * some more control over the spi_device structure before it is registered,
  1011. * but requires that caller to initialize fields that would otherwise
  1012. * be defined using the board info.
  1013. */
  1014. extern struct spi_device *
  1015. spi_alloc_device(struct spi_master *master);
  1016. extern int
  1017. spi_add_device(struct spi_device *spi);
  1018. extern struct spi_device *
  1019. spi_new_device(struct spi_master *, struct spi_board_info *);
  1020. extern void spi_unregister_device(struct spi_device *spi);
  1021. extern const struct spi_device_id *
  1022. spi_get_device_id(const struct spi_device *sdev);
  1023. static inline bool
  1024. spi_transfer_is_last(struct spi_master *master, struct spi_transfer *xfer)
  1025. {
  1026. return list_is_last(&xfer->transfer_list, &master->cur_msg->transfers);
  1027. }
  1028. #endif /* __LINUX_SPI_H */