disk-io.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #include "sysfs.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work_struct *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  60. struct btrfs_root *root);
  61. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  62. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  63. struct btrfs_root *root);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work_struct work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work_struct work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  153. { .id = 0, .name_stem = "tree" },
  154. };
  155. void __init btrfs_init_lockdep(void)
  156. {
  157. int i, j;
  158. /* initialize lockdep class names */
  159. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  160. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  161. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  162. snprintf(ks->names[j], sizeof(ks->names[j]),
  163. "btrfs-%s-%02d", ks->name_stem, j);
  164. }
  165. }
  166. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  167. int level)
  168. {
  169. struct btrfs_lockdep_keyset *ks;
  170. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  171. /* find the matching keyset, id 0 is the default entry */
  172. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  173. if (ks->id == objectid)
  174. break;
  175. lockdep_set_class_and_name(&eb->lock,
  176. &ks->keys[level], ks->names[level]);
  177. }
  178. #endif
  179. /*
  180. * extents on the btree inode are pretty simple, there's one extent
  181. * that covers the entire device
  182. */
  183. static struct extent_map *btree_get_extent(struct inode *inode,
  184. struct page *page, size_t pg_offset, u64 start, u64 len,
  185. int create)
  186. {
  187. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  188. struct extent_map *em;
  189. int ret;
  190. read_lock(&em_tree->lock);
  191. em = lookup_extent_mapping(em_tree, start, len);
  192. if (em) {
  193. em->bdev =
  194. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  195. read_unlock(&em_tree->lock);
  196. goto out;
  197. }
  198. read_unlock(&em_tree->lock);
  199. em = alloc_extent_map();
  200. if (!em) {
  201. em = ERR_PTR(-ENOMEM);
  202. goto out;
  203. }
  204. em->start = 0;
  205. em->len = (u64)-1;
  206. em->block_len = (u64)-1;
  207. em->block_start = 0;
  208. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  209. write_lock(&em_tree->lock);
  210. ret = add_extent_mapping(em_tree, em, 0);
  211. if (ret == -EEXIST) {
  212. free_extent_map(em);
  213. em = lookup_extent_mapping(em_tree, start, len);
  214. if (!em)
  215. em = ERR_PTR(-EIO);
  216. } else if (ret) {
  217. free_extent_map(em);
  218. em = ERR_PTR(ret);
  219. }
  220. write_unlock(&em_tree->lock);
  221. out:
  222. return em;
  223. }
  224. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  225. {
  226. return btrfs_crc32c(seed, data, len);
  227. }
  228. void btrfs_csum_final(u32 crc, char *result)
  229. {
  230. put_unaligned_le32(~crc, result);
  231. }
  232. /*
  233. * compute the csum for a btree block, and either verify it or write it
  234. * into the csum field of the block.
  235. */
  236. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  237. int verify)
  238. {
  239. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  240. char *result = NULL;
  241. unsigned long len;
  242. unsigned long cur_len;
  243. unsigned long offset = BTRFS_CSUM_SIZE;
  244. char *kaddr;
  245. unsigned long map_start;
  246. unsigned long map_len;
  247. int err;
  248. u32 crc = ~(u32)0;
  249. unsigned long inline_result;
  250. len = buf->len - offset;
  251. while (len > 0) {
  252. err = map_private_extent_buffer(buf, offset, 32,
  253. &kaddr, &map_start, &map_len);
  254. if (err)
  255. return 1;
  256. cur_len = min(len, map_len - (offset - map_start));
  257. crc = btrfs_csum_data(kaddr + offset - map_start,
  258. crc, cur_len);
  259. len -= cur_len;
  260. offset += cur_len;
  261. }
  262. if (csum_size > sizeof(inline_result)) {
  263. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  264. if (!result)
  265. return 1;
  266. } else {
  267. result = (char *)&inline_result;
  268. }
  269. btrfs_csum_final(crc, result);
  270. if (verify) {
  271. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  272. u32 val;
  273. u32 found = 0;
  274. memcpy(&found, result, csum_size);
  275. read_extent_buffer(buf, &val, 0, csum_size);
  276. printk_ratelimited(KERN_INFO
  277. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  278. "level %d\n",
  279. root->fs_info->sb->s_id, buf->start,
  280. val, found, btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. eb->start, parent_transid, btrfs_header_generation(eb));
  318. ret = 1;
  319. clear_extent_buffer_uptodate(eb);
  320. out:
  321. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  322. &cached_state, GFP_NOFS);
  323. return ret;
  324. }
  325. /*
  326. * Return 0 if the superblock checksum type matches the checksum value of that
  327. * algorithm. Pass the raw disk superblock data.
  328. */
  329. static int btrfs_check_super_csum(char *raw_disk_sb)
  330. {
  331. struct btrfs_super_block *disk_sb =
  332. (struct btrfs_super_block *)raw_disk_sb;
  333. u16 csum_type = btrfs_super_csum_type(disk_sb);
  334. int ret = 0;
  335. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  336. u32 crc = ~(u32)0;
  337. const int csum_size = sizeof(crc);
  338. char result[csum_size];
  339. /*
  340. * The super_block structure does not span the whole
  341. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  342. * is filled with zeros and is included in the checkum.
  343. */
  344. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  345. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  346. btrfs_csum_final(crc, result);
  347. if (memcmp(raw_disk_sb, result, csum_size))
  348. ret = 1;
  349. if (ret && btrfs_super_generation(disk_sb) < 10) {
  350. printk(KERN_WARNING
  351. "BTRFS: super block crcs don't match, older mkfs detected\n");
  352. ret = 0;
  353. }
  354. }
  355. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  356. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  357. csum_type);
  358. ret = 1;
  359. }
  360. return ret;
  361. }
  362. /*
  363. * helper to read a given tree block, doing retries as required when
  364. * the checksums don't match and we have alternate mirrors to try.
  365. */
  366. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  367. struct extent_buffer *eb,
  368. u64 start, u64 parent_transid)
  369. {
  370. struct extent_io_tree *io_tree;
  371. int failed = 0;
  372. int ret;
  373. int num_copies = 0;
  374. int mirror_num = 0;
  375. int failed_mirror = 0;
  376. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  377. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  378. while (1) {
  379. ret = read_extent_buffer_pages(io_tree, eb, start,
  380. WAIT_COMPLETE,
  381. btree_get_extent, mirror_num);
  382. if (!ret) {
  383. if (!verify_parent_transid(io_tree, eb,
  384. parent_transid, 0))
  385. break;
  386. else
  387. ret = -EIO;
  388. }
  389. /*
  390. * This buffer's crc is fine, but its contents are corrupted, so
  391. * there is no reason to read the other copies, they won't be
  392. * any less wrong.
  393. */
  394. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  395. break;
  396. num_copies = btrfs_num_copies(root->fs_info,
  397. eb->start, eb->len);
  398. if (num_copies == 1)
  399. break;
  400. if (!failed_mirror) {
  401. failed = 1;
  402. failed_mirror = eb->read_mirror;
  403. }
  404. mirror_num++;
  405. if (mirror_num == failed_mirror)
  406. mirror_num++;
  407. if (mirror_num > num_copies)
  408. break;
  409. }
  410. if (failed && !ret && failed_mirror)
  411. repair_eb_io_failure(root, eb, failed_mirror);
  412. return ret;
  413. }
  414. /*
  415. * checksum a dirty tree block before IO. This has extra checks to make sure
  416. * we only fill in the checksum field in the first page of a multi-page block
  417. */
  418. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  419. {
  420. u64 start = page_offset(page);
  421. u64 found_start;
  422. struct extent_buffer *eb;
  423. eb = (struct extent_buffer *)page->private;
  424. if (page != eb->pages[0])
  425. return 0;
  426. found_start = btrfs_header_bytenr(eb);
  427. if (WARN_ON(found_start != start || !PageUptodate(page)))
  428. return 0;
  429. csum_tree_block(root, eb, 0);
  430. return 0;
  431. }
  432. static int check_tree_block_fsid(struct btrfs_root *root,
  433. struct extent_buffer *eb)
  434. {
  435. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  436. u8 fsid[BTRFS_UUID_SIZE];
  437. int ret = 1;
  438. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  439. while (fs_devices) {
  440. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  441. ret = 0;
  442. break;
  443. }
  444. fs_devices = fs_devices->seed;
  445. }
  446. return ret;
  447. }
  448. #define CORRUPT(reason, eb, root, slot) \
  449. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  450. "root=%llu, slot=%d", reason, \
  451. btrfs_header_bytenr(eb), root->objectid, slot)
  452. static noinline int check_leaf(struct btrfs_root *root,
  453. struct extent_buffer *leaf)
  454. {
  455. struct btrfs_key key;
  456. struct btrfs_key leaf_key;
  457. u32 nritems = btrfs_header_nritems(leaf);
  458. int slot;
  459. if (nritems == 0)
  460. return 0;
  461. /* Check the 0 item */
  462. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  463. BTRFS_LEAF_DATA_SIZE(root)) {
  464. CORRUPT("invalid item offset size pair", leaf, root, 0);
  465. return -EIO;
  466. }
  467. /*
  468. * Check to make sure each items keys are in the correct order and their
  469. * offsets make sense. We only have to loop through nritems-1 because
  470. * we check the current slot against the next slot, which verifies the
  471. * next slot's offset+size makes sense and that the current's slot
  472. * offset is correct.
  473. */
  474. for (slot = 0; slot < nritems - 1; slot++) {
  475. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  476. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  477. /* Make sure the keys are in the right order */
  478. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  479. CORRUPT("bad key order", leaf, root, slot);
  480. return -EIO;
  481. }
  482. /*
  483. * Make sure the offset and ends are right, remember that the
  484. * item data starts at the end of the leaf and grows towards the
  485. * front.
  486. */
  487. if (btrfs_item_offset_nr(leaf, slot) !=
  488. btrfs_item_end_nr(leaf, slot + 1)) {
  489. CORRUPT("slot offset bad", leaf, root, slot);
  490. return -EIO;
  491. }
  492. /*
  493. * Check to make sure that we don't point outside of the leaf,
  494. * just incase all the items are consistent to eachother, but
  495. * all point outside of the leaf.
  496. */
  497. if (btrfs_item_end_nr(leaf, slot) >
  498. BTRFS_LEAF_DATA_SIZE(root)) {
  499. CORRUPT("slot end outside of leaf", leaf, root, slot);
  500. return -EIO;
  501. }
  502. }
  503. return 0;
  504. }
  505. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  506. u64 phy_offset, struct page *page,
  507. u64 start, u64 end, int mirror)
  508. {
  509. u64 found_start;
  510. int found_level;
  511. struct extent_buffer *eb;
  512. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  513. int ret = 0;
  514. int reads_done;
  515. if (!page->private)
  516. goto out;
  517. eb = (struct extent_buffer *)page->private;
  518. /* the pending IO might have been the only thing that kept this buffer
  519. * in memory. Make sure we have a ref for all this other checks
  520. */
  521. extent_buffer_get(eb);
  522. reads_done = atomic_dec_and_test(&eb->io_pages);
  523. if (!reads_done)
  524. goto err;
  525. eb->read_mirror = mirror;
  526. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  527. ret = -EIO;
  528. goto err;
  529. }
  530. found_start = btrfs_header_bytenr(eb);
  531. if (found_start != eb->start) {
  532. printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
  533. "%llu %llu\n",
  534. found_start, eb->start);
  535. ret = -EIO;
  536. goto err;
  537. }
  538. if (check_tree_block_fsid(root, eb)) {
  539. printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
  540. eb->start);
  541. ret = -EIO;
  542. goto err;
  543. }
  544. found_level = btrfs_header_level(eb);
  545. if (found_level >= BTRFS_MAX_LEVEL) {
  546. btrfs_info(root->fs_info, "bad tree block level %d",
  547. (int)btrfs_header_level(eb));
  548. ret = -EIO;
  549. goto err;
  550. }
  551. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  552. eb, found_level);
  553. ret = csum_tree_block(root, eb, 1);
  554. if (ret) {
  555. ret = -EIO;
  556. goto err;
  557. }
  558. /*
  559. * If this is a leaf block and it is corrupt, set the corrupt bit so
  560. * that we don't try and read the other copies of this block, just
  561. * return -EIO.
  562. */
  563. if (found_level == 0 && check_leaf(root, eb)) {
  564. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  565. ret = -EIO;
  566. }
  567. if (!ret)
  568. set_extent_buffer_uptodate(eb);
  569. err:
  570. if (reads_done &&
  571. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  572. btree_readahead_hook(root, eb, eb->start, ret);
  573. if (ret) {
  574. /*
  575. * our io error hook is going to dec the io pages
  576. * again, we have to make sure it has something
  577. * to decrement
  578. */
  579. atomic_inc(&eb->io_pages);
  580. clear_extent_buffer_uptodate(eb);
  581. }
  582. free_extent_buffer(eb);
  583. out:
  584. return ret;
  585. }
  586. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  587. {
  588. struct extent_buffer *eb;
  589. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  590. eb = (struct extent_buffer *)page->private;
  591. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  592. eb->read_mirror = failed_mirror;
  593. atomic_dec(&eb->io_pages);
  594. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  595. btree_readahead_hook(root, eb, eb->start, -EIO);
  596. return -EIO; /* we fixed nothing */
  597. }
  598. static void end_workqueue_bio(struct bio *bio, int err)
  599. {
  600. struct end_io_wq *end_io_wq = bio->bi_private;
  601. struct btrfs_fs_info *fs_info;
  602. fs_info = end_io_wq->info;
  603. end_io_wq->error = err;
  604. btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
  605. if (bio->bi_rw & REQ_WRITE) {
  606. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  607. btrfs_queue_work(fs_info->endio_meta_write_workers,
  608. &end_io_wq->work);
  609. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  610. btrfs_queue_work(fs_info->endio_freespace_worker,
  611. &end_io_wq->work);
  612. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  613. btrfs_queue_work(fs_info->endio_raid56_workers,
  614. &end_io_wq->work);
  615. else
  616. btrfs_queue_work(fs_info->endio_write_workers,
  617. &end_io_wq->work);
  618. } else {
  619. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  620. btrfs_queue_work(fs_info->endio_raid56_workers,
  621. &end_io_wq->work);
  622. else if (end_io_wq->metadata)
  623. btrfs_queue_work(fs_info->endio_meta_workers,
  624. &end_io_wq->work);
  625. else
  626. btrfs_queue_work(fs_info->endio_workers,
  627. &end_io_wq->work);
  628. }
  629. }
  630. /*
  631. * For the metadata arg you want
  632. *
  633. * 0 - if data
  634. * 1 - if normal metadta
  635. * 2 - if writing to the free space cache area
  636. * 3 - raid parity work
  637. */
  638. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  639. int metadata)
  640. {
  641. struct end_io_wq *end_io_wq;
  642. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  643. if (!end_io_wq)
  644. return -ENOMEM;
  645. end_io_wq->private = bio->bi_private;
  646. end_io_wq->end_io = bio->bi_end_io;
  647. end_io_wq->info = info;
  648. end_io_wq->error = 0;
  649. end_io_wq->bio = bio;
  650. end_io_wq->metadata = metadata;
  651. bio->bi_private = end_io_wq;
  652. bio->bi_end_io = end_workqueue_bio;
  653. return 0;
  654. }
  655. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  656. {
  657. unsigned long limit = min_t(unsigned long,
  658. info->thread_pool_size,
  659. info->fs_devices->open_devices);
  660. return 256 * limit;
  661. }
  662. static void run_one_async_start(struct btrfs_work_struct *work)
  663. {
  664. struct async_submit_bio *async;
  665. int ret;
  666. async = container_of(work, struct async_submit_bio, work);
  667. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  668. async->mirror_num, async->bio_flags,
  669. async->bio_offset);
  670. if (ret)
  671. async->error = ret;
  672. }
  673. static void run_one_async_done(struct btrfs_work_struct *work)
  674. {
  675. struct btrfs_fs_info *fs_info;
  676. struct async_submit_bio *async;
  677. int limit;
  678. async = container_of(work, struct async_submit_bio, work);
  679. fs_info = BTRFS_I(async->inode)->root->fs_info;
  680. limit = btrfs_async_submit_limit(fs_info);
  681. limit = limit * 2 / 3;
  682. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  683. waitqueue_active(&fs_info->async_submit_wait))
  684. wake_up(&fs_info->async_submit_wait);
  685. /* If an error occured we just want to clean up the bio and move on */
  686. if (async->error) {
  687. bio_endio(async->bio, async->error);
  688. return;
  689. }
  690. async->submit_bio_done(async->inode, async->rw, async->bio,
  691. async->mirror_num, async->bio_flags,
  692. async->bio_offset);
  693. }
  694. static void run_one_async_free(struct btrfs_work_struct *work)
  695. {
  696. struct async_submit_bio *async;
  697. async = container_of(work, struct async_submit_bio, work);
  698. kfree(async);
  699. }
  700. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  701. int rw, struct bio *bio, int mirror_num,
  702. unsigned long bio_flags,
  703. u64 bio_offset,
  704. extent_submit_bio_hook_t *submit_bio_start,
  705. extent_submit_bio_hook_t *submit_bio_done)
  706. {
  707. struct async_submit_bio *async;
  708. async = kmalloc(sizeof(*async), GFP_NOFS);
  709. if (!async)
  710. return -ENOMEM;
  711. async->inode = inode;
  712. async->rw = rw;
  713. async->bio = bio;
  714. async->mirror_num = mirror_num;
  715. async->submit_bio_start = submit_bio_start;
  716. async->submit_bio_done = submit_bio_done;
  717. btrfs_init_work(&async->work, run_one_async_start,
  718. run_one_async_done, run_one_async_free);
  719. async->bio_flags = bio_flags;
  720. async->bio_offset = bio_offset;
  721. async->error = 0;
  722. atomic_inc(&fs_info->nr_async_submits);
  723. if (rw & REQ_SYNC)
  724. btrfs_set_work_high_priority(&async->work);
  725. btrfs_queue_work(fs_info->workers, &async->work);
  726. while (atomic_read(&fs_info->async_submit_draining) &&
  727. atomic_read(&fs_info->nr_async_submits)) {
  728. wait_event(fs_info->async_submit_wait,
  729. (atomic_read(&fs_info->nr_async_submits) == 0));
  730. }
  731. return 0;
  732. }
  733. static int btree_csum_one_bio(struct bio *bio)
  734. {
  735. struct bio_vec *bvec = bio->bi_io_vec;
  736. int bio_index = 0;
  737. struct btrfs_root *root;
  738. int ret = 0;
  739. WARN_ON(bio->bi_vcnt <= 0);
  740. while (bio_index < bio->bi_vcnt) {
  741. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  742. ret = csum_dirty_buffer(root, bvec->bv_page);
  743. if (ret)
  744. break;
  745. bio_index++;
  746. bvec++;
  747. }
  748. return ret;
  749. }
  750. static int __btree_submit_bio_start(struct inode *inode, int rw,
  751. struct bio *bio, int mirror_num,
  752. unsigned long bio_flags,
  753. u64 bio_offset)
  754. {
  755. /*
  756. * when we're called for a write, we're already in the async
  757. * submission context. Just jump into btrfs_map_bio
  758. */
  759. return btree_csum_one_bio(bio);
  760. }
  761. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  762. int mirror_num, unsigned long bio_flags,
  763. u64 bio_offset)
  764. {
  765. int ret;
  766. /*
  767. * when we're called for a write, we're already in the async
  768. * submission context. Just jump into btrfs_map_bio
  769. */
  770. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  771. if (ret)
  772. bio_endio(bio, ret);
  773. return ret;
  774. }
  775. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  776. {
  777. if (bio_flags & EXTENT_BIO_TREE_LOG)
  778. return 0;
  779. #ifdef CONFIG_X86
  780. if (cpu_has_xmm4_2)
  781. return 0;
  782. #endif
  783. return 1;
  784. }
  785. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  786. int mirror_num, unsigned long bio_flags,
  787. u64 bio_offset)
  788. {
  789. int async = check_async_write(inode, bio_flags);
  790. int ret;
  791. if (!(rw & REQ_WRITE)) {
  792. /*
  793. * called for a read, do the setup so that checksum validation
  794. * can happen in the async kernel threads
  795. */
  796. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  797. bio, 1);
  798. if (ret)
  799. goto out_w_error;
  800. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  801. mirror_num, 0);
  802. } else if (!async) {
  803. ret = btree_csum_one_bio(bio);
  804. if (ret)
  805. goto out_w_error;
  806. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  807. mirror_num, 0);
  808. } else {
  809. /*
  810. * kthread helpers are used to submit writes so that
  811. * checksumming can happen in parallel across all CPUs
  812. */
  813. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  814. inode, rw, bio, mirror_num, 0,
  815. bio_offset,
  816. __btree_submit_bio_start,
  817. __btree_submit_bio_done);
  818. }
  819. if (ret) {
  820. out_w_error:
  821. bio_endio(bio, ret);
  822. }
  823. return ret;
  824. }
  825. #ifdef CONFIG_MIGRATION
  826. static int btree_migratepage(struct address_space *mapping,
  827. struct page *newpage, struct page *page,
  828. enum migrate_mode mode)
  829. {
  830. /*
  831. * we can't safely write a btree page from here,
  832. * we haven't done the locking hook
  833. */
  834. if (PageDirty(page))
  835. return -EAGAIN;
  836. /*
  837. * Buffers may be managed in a filesystem specific way.
  838. * We must have no buffers or drop them.
  839. */
  840. if (page_has_private(page) &&
  841. !try_to_release_page(page, GFP_KERNEL))
  842. return -EAGAIN;
  843. return migrate_page(mapping, newpage, page, mode);
  844. }
  845. #endif
  846. static int btree_writepages(struct address_space *mapping,
  847. struct writeback_control *wbc)
  848. {
  849. struct btrfs_fs_info *fs_info;
  850. int ret;
  851. if (wbc->sync_mode == WB_SYNC_NONE) {
  852. if (wbc->for_kupdate)
  853. return 0;
  854. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  855. /* this is a bit racy, but that's ok */
  856. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  857. BTRFS_DIRTY_METADATA_THRESH);
  858. if (ret < 0)
  859. return 0;
  860. }
  861. return btree_write_cache_pages(mapping, wbc);
  862. }
  863. static int btree_readpage(struct file *file, struct page *page)
  864. {
  865. struct extent_io_tree *tree;
  866. tree = &BTRFS_I(page->mapping->host)->io_tree;
  867. return extent_read_full_page(tree, page, btree_get_extent, 0);
  868. }
  869. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  870. {
  871. if (PageWriteback(page) || PageDirty(page))
  872. return 0;
  873. return try_release_extent_buffer(page);
  874. }
  875. static void btree_invalidatepage(struct page *page, unsigned int offset,
  876. unsigned int length)
  877. {
  878. struct extent_io_tree *tree;
  879. tree = &BTRFS_I(page->mapping->host)->io_tree;
  880. extent_invalidatepage(tree, page, offset);
  881. btree_releasepage(page, GFP_NOFS);
  882. if (PagePrivate(page)) {
  883. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  884. "page private not zero on page %llu",
  885. (unsigned long long)page_offset(page));
  886. ClearPagePrivate(page);
  887. set_page_private(page, 0);
  888. page_cache_release(page);
  889. }
  890. }
  891. static int btree_set_page_dirty(struct page *page)
  892. {
  893. #ifdef DEBUG
  894. struct extent_buffer *eb;
  895. BUG_ON(!PagePrivate(page));
  896. eb = (struct extent_buffer *)page->private;
  897. BUG_ON(!eb);
  898. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  899. BUG_ON(!atomic_read(&eb->refs));
  900. btrfs_assert_tree_locked(eb);
  901. #endif
  902. return __set_page_dirty_nobuffers(page);
  903. }
  904. static const struct address_space_operations btree_aops = {
  905. .readpage = btree_readpage,
  906. .writepages = btree_writepages,
  907. .releasepage = btree_releasepage,
  908. .invalidatepage = btree_invalidatepage,
  909. #ifdef CONFIG_MIGRATION
  910. .migratepage = btree_migratepage,
  911. #endif
  912. .set_page_dirty = btree_set_page_dirty,
  913. };
  914. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  915. u64 parent_transid)
  916. {
  917. struct extent_buffer *buf = NULL;
  918. struct inode *btree_inode = root->fs_info->btree_inode;
  919. int ret = 0;
  920. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  921. if (!buf)
  922. return 0;
  923. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  924. buf, 0, WAIT_NONE, btree_get_extent, 0);
  925. free_extent_buffer(buf);
  926. return ret;
  927. }
  928. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  929. int mirror_num, struct extent_buffer **eb)
  930. {
  931. struct extent_buffer *buf = NULL;
  932. struct inode *btree_inode = root->fs_info->btree_inode;
  933. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  934. int ret;
  935. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  936. if (!buf)
  937. return 0;
  938. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  939. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  940. btree_get_extent, mirror_num);
  941. if (ret) {
  942. free_extent_buffer(buf);
  943. return ret;
  944. }
  945. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  946. free_extent_buffer(buf);
  947. return -EIO;
  948. } else if (extent_buffer_uptodate(buf)) {
  949. *eb = buf;
  950. } else {
  951. free_extent_buffer(buf);
  952. }
  953. return 0;
  954. }
  955. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  956. u64 bytenr, u32 blocksize)
  957. {
  958. return find_extent_buffer(root->fs_info, bytenr);
  959. }
  960. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  961. u64 bytenr, u32 blocksize)
  962. {
  963. return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
  964. }
  965. int btrfs_write_tree_block(struct extent_buffer *buf)
  966. {
  967. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  968. buf->start + buf->len - 1);
  969. }
  970. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  971. {
  972. return filemap_fdatawait_range(buf->pages[0]->mapping,
  973. buf->start, buf->start + buf->len - 1);
  974. }
  975. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  976. u32 blocksize, u64 parent_transid)
  977. {
  978. struct extent_buffer *buf = NULL;
  979. int ret;
  980. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  981. if (!buf)
  982. return NULL;
  983. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  984. if (ret) {
  985. free_extent_buffer(buf);
  986. return NULL;
  987. }
  988. return buf;
  989. }
  990. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  991. struct extent_buffer *buf)
  992. {
  993. struct btrfs_fs_info *fs_info = root->fs_info;
  994. if (btrfs_header_generation(buf) ==
  995. fs_info->running_transaction->transid) {
  996. btrfs_assert_tree_locked(buf);
  997. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  998. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  999. -buf->len,
  1000. fs_info->dirty_metadata_batch);
  1001. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1002. btrfs_set_lock_blocking(buf);
  1003. clear_extent_buffer_dirty(buf);
  1004. }
  1005. }
  1006. }
  1007. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1008. u32 stripesize, struct btrfs_root *root,
  1009. struct btrfs_fs_info *fs_info,
  1010. u64 objectid)
  1011. {
  1012. root->node = NULL;
  1013. root->commit_root = NULL;
  1014. root->sectorsize = sectorsize;
  1015. root->nodesize = nodesize;
  1016. root->leafsize = leafsize;
  1017. root->stripesize = stripesize;
  1018. root->ref_cows = 0;
  1019. root->track_dirty = 0;
  1020. root->in_radix = 0;
  1021. root->orphan_item_inserted = 0;
  1022. root->orphan_cleanup_state = 0;
  1023. root->objectid = objectid;
  1024. root->last_trans = 0;
  1025. root->highest_objectid = 0;
  1026. root->nr_delalloc_inodes = 0;
  1027. root->nr_ordered_extents = 0;
  1028. root->name = NULL;
  1029. root->inode_tree = RB_ROOT;
  1030. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1031. root->block_rsv = NULL;
  1032. root->orphan_block_rsv = NULL;
  1033. INIT_LIST_HEAD(&root->dirty_list);
  1034. INIT_LIST_HEAD(&root->root_list);
  1035. INIT_LIST_HEAD(&root->delalloc_inodes);
  1036. INIT_LIST_HEAD(&root->delalloc_root);
  1037. INIT_LIST_HEAD(&root->ordered_extents);
  1038. INIT_LIST_HEAD(&root->ordered_root);
  1039. INIT_LIST_HEAD(&root->logged_list[0]);
  1040. INIT_LIST_HEAD(&root->logged_list[1]);
  1041. spin_lock_init(&root->orphan_lock);
  1042. spin_lock_init(&root->inode_lock);
  1043. spin_lock_init(&root->delalloc_lock);
  1044. spin_lock_init(&root->ordered_extent_lock);
  1045. spin_lock_init(&root->accounting_lock);
  1046. spin_lock_init(&root->log_extents_lock[0]);
  1047. spin_lock_init(&root->log_extents_lock[1]);
  1048. mutex_init(&root->objectid_mutex);
  1049. mutex_init(&root->log_mutex);
  1050. init_waitqueue_head(&root->log_writer_wait);
  1051. init_waitqueue_head(&root->log_commit_wait[0]);
  1052. init_waitqueue_head(&root->log_commit_wait[1]);
  1053. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1054. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1055. atomic_set(&root->log_commit[0], 0);
  1056. atomic_set(&root->log_commit[1], 0);
  1057. atomic_set(&root->log_writers, 0);
  1058. atomic_set(&root->log_batch, 0);
  1059. atomic_set(&root->orphan_inodes, 0);
  1060. atomic_set(&root->refs, 1);
  1061. root->log_transid = 0;
  1062. root->log_transid_committed = -1;
  1063. root->last_log_commit = 0;
  1064. if (fs_info)
  1065. extent_io_tree_init(&root->dirty_log_pages,
  1066. fs_info->btree_inode->i_mapping);
  1067. memset(&root->root_key, 0, sizeof(root->root_key));
  1068. memset(&root->root_item, 0, sizeof(root->root_item));
  1069. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1070. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1071. if (fs_info)
  1072. root->defrag_trans_start = fs_info->generation;
  1073. else
  1074. root->defrag_trans_start = 0;
  1075. init_completion(&root->kobj_unregister);
  1076. root->defrag_running = 0;
  1077. root->root_key.objectid = objectid;
  1078. root->anon_dev = 0;
  1079. spin_lock_init(&root->root_item_lock);
  1080. }
  1081. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1082. {
  1083. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1084. if (root)
  1085. root->fs_info = fs_info;
  1086. return root;
  1087. }
  1088. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1089. /* Should only be used by the testing infrastructure */
  1090. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1091. {
  1092. struct btrfs_root *root;
  1093. root = btrfs_alloc_root(NULL);
  1094. if (!root)
  1095. return ERR_PTR(-ENOMEM);
  1096. __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
  1097. root->dummy_root = 1;
  1098. return root;
  1099. }
  1100. #endif
  1101. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1102. struct btrfs_fs_info *fs_info,
  1103. u64 objectid)
  1104. {
  1105. struct extent_buffer *leaf;
  1106. struct btrfs_root *tree_root = fs_info->tree_root;
  1107. struct btrfs_root *root;
  1108. struct btrfs_key key;
  1109. int ret = 0;
  1110. uuid_le uuid;
  1111. root = btrfs_alloc_root(fs_info);
  1112. if (!root)
  1113. return ERR_PTR(-ENOMEM);
  1114. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1115. tree_root->sectorsize, tree_root->stripesize,
  1116. root, fs_info, objectid);
  1117. root->root_key.objectid = objectid;
  1118. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1119. root->root_key.offset = 0;
  1120. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1121. 0, objectid, NULL, 0, 0, 0);
  1122. if (IS_ERR(leaf)) {
  1123. ret = PTR_ERR(leaf);
  1124. leaf = NULL;
  1125. goto fail;
  1126. }
  1127. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1128. btrfs_set_header_bytenr(leaf, leaf->start);
  1129. btrfs_set_header_generation(leaf, trans->transid);
  1130. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1131. btrfs_set_header_owner(leaf, objectid);
  1132. root->node = leaf;
  1133. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1134. BTRFS_FSID_SIZE);
  1135. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1136. btrfs_header_chunk_tree_uuid(leaf),
  1137. BTRFS_UUID_SIZE);
  1138. btrfs_mark_buffer_dirty(leaf);
  1139. root->commit_root = btrfs_root_node(root);
  1140. root->track_dirty = 1;
  1141. root->root_item.flags = 0;
  1142. root->root_item.byte_limit = 0;
  1143. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1144. btrfs_set_root_generation(&root->root_item, trans->transid);
  1145. btrfs_set_root_level(&root->root_item, 0);
  1146. btrfs_set_root_refs(&root->root_item, 1);
  1147. btrfs_set_root_used(&root->root_item, leaf->len);
  1148. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1149. btrfs_set_root_dirid(&root->root_item, 0);
  1150. uuid_le_gen(&uuid);
  1151. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1152. root->root_item.drop_level = 0;
  1153. key.objectid = objectid;
  1154. key.type = BTRFS_ROOT_ITEM_KEY;
  1155. key.offset = 0;
  1156. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1157. if (ret)
  1158. goto fail;
  1159. btrfs_tree_unlock(leaf);
  1160. return root;
  1161. fail:
  1162. if (leaf) {
  1163. btrfs_tree_unlock(leaf);
  1164. free_extent_buffer(leaf);
  1165. }
  1166. kfree(root);
  1167. return ERR_PTR(ret);
  1168. }
  1169. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1170. struct btrfs_fs_info *fs_info)
  1171. {
  1172. struct btrfs_root *root;
  1173. struct btrfs_root *tree_root = fs_info->tree_root;
  1174. struct extent_buffer *leaf;
  1175. root = btrfs_alloc_root(fs_info);
  1176. if (!root)
  1177. return ERR_PTR(-ENOMEM);
  1178. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1179. tree_root->sectorsize, tree_root->stripesize,
  1180. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1181. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1182. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1183. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1184. /*
  1185. * log trees do not get reference counted because they go away
  1186. * before a real commit is actually done. They do store pointers
  1187. * to file data extents, and those reference counts still get
  1188. * updated (along with back refs to the log tree).
  1189. */
  1190. root->ref_cows = 0;
  1191. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1192. BTRFS_TREE_LOG_OBJECTID, NULL,
  1193. 0, 0, 0);
  1194. if (IS_ERR(leaf)) {
  1195. kfree(root);
  1196. return ERR_CAST(leaf);
  1197. }
  1198. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1199. btrfs_set_header_bytenr(leaf, leaf->start);
  1200. btrfs_set_header_generation(leaf, trans->transid);
  1201. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1202. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1203. root->node = leaf;
  1204. write_extent_buffer(root->node, root->fs_info->fsid,
  1205. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1206. btrfs_mark_buffer_dirty(root->node);
  1207. btrfs_tree_unlock(root->node);
  1208. return root;
  1209. }
  1210. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1211. struct btrfs_fs_info *fs_info)
  1212. {
  1213. struct btrfs_root *log_root;
  1214. log_root = alloc_log_tree(trans, fs_info);
  1215. if (IS_ERR(log_root))
  1216. return PTR_ERR(log_root);
  1217. WARN_ON(fs_info->log_root_tree);
  1218. fs_info->log_root_tree = log_root;
  1219. return 0;
  1220. }
  1221. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1222. struct btrfs_root *root)
  1223. {
  1224. struct btrfs_root *log_root;
  1225. struct btrfs_inode_item *inode_item;
  1226. log_root = alloc_log_tree(trans, root->fs_info);
  1227. if (IS_ERR(log_root))
  1228. return PTR_ERR(log_root);
  1229. log_root->last_trans = trans->transid;
  1230. log_root->root_key.offset = root->root_key.objectid;
  1231. inode_item = &log_root->root_item.inode;
  1232. btrfs_set_stack_inode_generation(inode_item, 1);
  1233. btrfs_set_stack_inode_size(inode_item, 3);
  1234. btrfs_set_stack_inode_nlink(inode_item, 1);
  1235. btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
  1236. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1237. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1238. WARN_ON(root->log_root);
  1239. root->log_root = log_root;
  1240. root->log_transid = 0;
  1241. root->log_transid_committed = -1;
  1242. root->last_log_commit = 0;
  1243. return 0;
  1244. }
  1245. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1246. struct btrfs_key *key)
  1247. {
  1248. struct btrfs_root *root;
  1249. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1250. struct btrfs_path *path;
  1251. u64 generation;
  1252. u32 blocksize;
  1253. int ret;
  1254. path = btrfs_alloc_path();
  1255. if (!path)
  1256. return ERR_PTR(-ENOMEM);
  1257. root = btrfs_alloc_root(fs_info);
  1258. if (!root) {
  1259. ret = -ENOMEM;
  1260. goto alloc_fail;
  1261. }
  1262. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1263. tree_root->sectorsize, tree_root->stripesize,
  1264. root, fs_info, key->objectid);
  1265. ret = btrfs_find_root(tree_root, key, path,
  1266. &root->root_item, &root->root_key);
  1267. if (ret) {
  1268. if (ret > 0)
  1269. ret = -ENOENT;
  1270. goto find_fail;
  1271. }
  1272. generation = btrfs_root_generation(&root->root_item);
  1273. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1274. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1275. blocksize, generation);
  1276. if (!root->node) {
  1277. ret = -ENOMEM;
  1278. goto find_fail;
  1279. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1280. ret = -EIO;
  1281. goto read_fail;
  1282. }
  1283. root->commit_root = btrfs_root_node(root);
  1284. out:
  1285. btrfs_free_path(path);
  1286. return root;
  1287. read_fail:
  1288. free_extent_buffer(root->node);
  1289. find_fail:
  1290. kfree(root);
  1291. alloc_fail:
  1292. root = ERR_PTR(ret);
  1293. goto out;
  1294. }
  1295. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1296. struct btrfs_key *location)
  1297. {
  1298. struct btrfs_root *root;
  1299. root = btrfs_read_tree_root(tree_root, location);
  1300. if (IS_ERR(root))
  1301. return root;
  1302. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1303. root->ref_cows = 1;
  1304. btrfs_check_and_init_root_item(&root->root_item);
  1305. }
  1306. return root;
  1307. }
  1308. int btrfs_init_fs_root(struct btrfs_root *root)
  1309. {
  1310. int ret;
  1311. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1312. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1313. GFP_NOFS);
  1314. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1315. ret = -ENOMEM;
  1316. goto fail;
  1317. }
  1318. btrfs_init_free_ino_ctl(root);
  1319. mutex_init(&root->fs_commit_mutex);
  1320. spin_lock_init(&root->cache_lock);
  1321. init_waitqueue_head(&root->cache_wait);
  1322. ret = get_anon_bdev(&root->anon_dev);
  1323. if (ret)
  1324. goto fail;
  1325. return 0;
  1326. fail:
  1327. kfree(root->free_ino_ctl);
  1328. kfree(root->free_ino_pinned);
  1329. return ret;
  1330. }
  1331. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1332. u64 root_id)
  1333. {
  1334. struct btrfs_root *root;
  1335. spin_lock(&fs_info->fs_roots_radix_lock);
  1336. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1337. (unsigned long)root_id);
  1338. spin_unlock(&fs_info->fs_roots_radix_lock);
  1339. return root;
  1340. }
  1341. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1342. struct btrfs_root *root)
  1343. {
  1344. int ret;
  1345. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1346. if (ret)
  1347. return ret;
  1348. spin_lock(&fs_info->fs_roots_radix_lock);
  1349. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1350. (unsigned long)root->root_key.objectid,
  1351. root);
  1352. if (ret == 0)
  1353. root->in_radix = 1;
  1354. spin_unlock(&fs_info->fs_roots_radix_lock);
  1355. radix_tree_preload_end();
  1356. return ret;
  1357. }
  1358. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1359. struct btrfs_key *location,
  1360. bool check_ref)
  1361. {
  1362. struct btrfs_root *root;
  1363. int ret;
  1364. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1365. return fs_info->tree_root;
  1366. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1367. return fs_info->extent_root;
  1368. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1369. return fs_info->chunk_root;
  1370. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1371. return fs_info->dev_root;
  1372. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1373. return fs_info->csum_root;
  1374. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1375. return fs_info->quota_root ? fs_info->quota_root :
  1376. ERR_PTR(-ENOENT);
  1377. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1378. return fs_info->uuid_root ? fs_info->uuid_root :
  1379. ERR_PTR(-ENOENT);
  1380. again:
  1381. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1382. if (root) {
  1383. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1384. return ERR_PTR(-ENOENT);
  1385. return root;
  1386. }
  1387. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1388. if (IS_ERR(root))
  1389. return root;
  1390. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1391. ret = -ENOENT;
  1392. goto fail;
  1393. }
  1394. ret = btrfs_init_fs_root(root);
  1395. if (ret)
  1396. goto fail;
  1397. ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
  1398. location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
  1399. if (ret < 0)
  1400. goto fail;
  1401. if (ret == 0)
  1402. root->orphan_item_inserted = 1;
  1403. ret = btrfs_insert_fs_root(fs_info, root);
  1404. if (ret) {
  1405. if (ret == -EEXIST) {
  1406. free_fs_root(root);
  1407. goto again;
  1408. }
  1409. goto fail;
  1410. }
  1411. return root;
  1412. fail:
  1413. free_fs_root(root);
  1414. return ERR_PTR(ret);
  1415. }
  1416. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1417. {
  1418. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1419. int ret = 0;
  1420. struct btrfs_device *device;
  1421. struct backing_dev_info *bdi;
  1422. rcu_read_lock();
  1423. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1424. if (!device->bdev)
  1425. continue;
  1426. bdi = blk_get_backing_dev_info(device->bdev);
  1427. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1428. ret = 1;
  1429. break;
  1430. }
  1431. }
  1432. rcu_read_unlock();
  1433. return ret;
  1434. }
  1435. /*
  1436. * If this fails, caller must call bdi_destroy() to get rid of the
  1437. * bdi again.
  1438. */
  1439. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1440. {
  1441. int err;
  1442. bdi->capabilities = BDI_CAP_MAP_COPY;
  1443. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1444. if (err)
  1445. return err;
  1446. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1447. bdi->congested_fn = btrfs_congested_fn;
  1448. bdi->congested_data = info;
  1449. return 0;
  1450. }
  1451. /*
  1452. * called by the kthread helper functions to finally call the bio end_io
  1453. * functions. This is where read checksum verification actually happens
  1454. */
  1455. static void end_workqueue_fn(struct btrfs_work_struct *work)
  1456. {
  1457. struct bio *bio;
  1458. struct end_io_wq *end_io_wq;
  1459. int error;
  1460. end_io_wq = container_of(work, struct end_io_wq, work);
  1461. bio = end_io_wq->bio;
  1462. error = end_io_wq->error;
  1463. bio->bi_private = end_io_wq->private;
  1464. bio->bi_end_io = end_io_wq->end_io;
  1465. kfree(end_io_wq);
  1466. bio_endio(bio, error);
  1467. }
  1468. static int cleaner_kthread(void *arg)
  1469. {
  1470. struct btrfs_root *root = arg;
  1471. int again;
  1472. do {
  1473. again = 0;
  1474. /* Make the cleaner go to sleep early. */
  1475. if (btrfs_need_cleaner_sleep(root))
  1476. goto sleep;
  1477. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1478. goto sleep;
  1479. /*
  1480. * Avoid the problem that we change the status of the fs
  1481. * during the above check and trylock.
  1482. */
  1483. if (btrfs_need_cleaner_sleep(root)) {
  1484. mutex_unlock(&root->fs_info->cleaner_mutex);
  1485. goto sleep;
  1486. }
  1487. btrfs_run_delayed_iputs(root);
  1488. again = btrfs_clean_one_deleted_snapshot(root);
  1489. mutex_unlock(&root->fs_info->cleaner_mutex);
  1490. /*
  1491. * The defragger has dealt with the R/O remount and umount,
  1492. * needn't do anything special here.
  1493. */
  1494. btrfs_run_defrag_inodes(root->fs_info);
  1495. sleep:
  1496. if (!try_to_freeze() && !again) {
  1497. set_current_state(TASK_INTERRUPTIBLE);
  1498. if (!kthread_should_stop())
  1499. schedule();
  1500. __set_current_state(TASK_RUNNING);
  1501. }
  1502. } while (!kthread_should_stop());
  1503. return 0;
  1504. }
  1505. static int transaction_kthread(void *arg)
  1506. {
  1507. struct btrfs_root *root = arg;
  1508. struct btrfs_trans_handle *trans;
  1509. struct btrfs_transaction *cur;
  1510. u64 transid;
  1511. unsigned long now;
  1512. unsigned long delay;
  1513. bool cannot_commit;
  1514. do {
  1515. cannot_commit = false;
  1516. delay = HZ * root->fs_info->commit_interval;
  1517. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1518. spin_lock(&root->fs_info->trans_lock);
  1519. cur = root->fs_info->running_transaction;
  1520. if (!cur) {
  1521. spin_unlock(&root->fs_info->trans_lock);
  1522. goto sleep;
  1523. }
  1524. now = get_seconds();
  1525. if (cur->state < TRANS_STATE_BLOCKED &&
  1526. (now < cur->start_time ||
  1527. now - cur->start_time < root->fs_info->commit_interval)) {
  1528. spin_unlock(&root->fs_info->trans_lock);
  1529. delay = HZ * 5;
  1530. goto sleep;
  1531. }
  1532. transid = cur->transid;
  1533. spin_unlock(&root->fs_info->trans_lock);
  1534. /* If the file system is aborted, this will always fail. */
  1535. trans = btrfs_attach_transaction(root);
  1536. if (IS_ERR(trans)) {
  1537. if (PTR_ERR(trans) != -ENOENT)
  1538. cannot_commit = true;
  1539. goto sleep;
  1540. }
  1541. if (transid == trans->transid) {
  1542. btrfs_commit_transaction(trans, root);
  1543. } else {
  1544. btrfs_end_transaction(trans, root);
  1545. }
  1546. sleep:
  1547. wake_up_process(root->fs_info->cleaner_kthread);
  1548. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1549. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1550. &root->fs_info->fs_state)))
  1551. btrfs_cleanup_transaction(root);
  1552. if (!try_to_freeze()) {
  1553. set_current_state(TASK_INTERRUPTIBLE);
  1554. if (!kthread_should_stop() &&
  1555. (!btrfs_transaction_blocked(root->fs_info) ||
  1556. cannot_commit))
  1557. schedule_timeout(delay);
  1558. __set_current_state(TASK_RUNNING);
  1559. }
  1560. } while (!kthread_should_stop());
  1561. return 0;
  1562. }
  1563. /*
  1564. * this will find the highest generation in the array of
  1565. * root backups. The index of the highest array is returned,
  1566. * or -1 if we can't find anything.
  1567. *
  1568. * We check to make sure the array is valid by comparing the
  1569. * generation of the latest root in the array with the generation
  1570. * in the super block. If they don't match we pitch it.
  1571. */
  1572. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1573. {
  1574. u64 cur;
  1575. int newest_index = -1;
  1576. struct btrfs_root_backup *root_backup;
  1577. int i;
  1578. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1579. root_backup = info->super_copy->super_roots + i;
  1580. cur = btrfs_backup_tree_root_gen(root_backup);
  1581. if (cur == newest_gen)
  1582. newest_index = i;
  1583. }
  1584. /* check to see if we actually wrapped around */
  1585. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1586. root_backup = info->super_copy->super_roots;
  1587. cur = btrfs_backup_tree_root_gen(root_backup);
  1588. if (cur == newest_gen)
  1589. newest_index = 0;
  1590. }
  1591. return newest_index;
  1592. }
  1593. /*
  1594. * find the oldest backup so we know where to store new entries
  1595. * in the backup array. This will set the backup_root_index
  1596. * field in the fs_info struct
  1597. */
  1598. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1599. u64 newest_gen)
  1600. {
  1601. int newest_index = -1;
  1602. newest_index = find_newest_super_backup(info, newest_gen);
  1603. /* if there was garbage in there, just move along */
  1604. if (newest_index == -1) {
  1605. info->backup_root_index = 0;
  1606. } else {
  1607. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1608. }
  1609. }
  1610. /*
  1611. * copy all the root pointers into the super backup array.
  1612. * this will bump the backup pointer by one when it is
  1613. * done
  1614. */
  1615. static void backup_super_roots(struct btrfs_fs_info *info)
  1616. {
  1617. int next_backup;
  1618. struct btrfs_root_backup *root_backup;
  1619. int last_backup;
  1620. next_backup = info->backup_root_index;
  1621. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1622. BTRFS_NUM_BACKUP_ROOTS;
  1623. /*
  1624. * just overwrite the last backup if we're at the same generation
  1625. * this happens only at umount
  1626. */
  1627. root_backup = info->super_for_commit->super_roots + last_backup;
  1628. if (btrfs_backup_tree_root_gen(root_backup) ==
  1629. btrfs_header_generation(info->tree_root->node))
  1630. next_backup = last_backup;
  1631. root_backup = info->super_for_commit->super_roots + next_backup;
  1632. /*
  1633. * make sure all of our padding and empty slots get zero filled
  1634. * regardless of which ones we use today
  1635. */
  1636. memset(root_backup, 0, sizeof(*root_backup));
  1637. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1638. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1639. btrfs_set_backup_tree_root_gen(root_backup,
  1640. btrfs_header_generation(info->tree_root->node));
  1641. btrfs_set_backup_tree_root_level(root_backup,
  1642. btrfs_header_level(info->tree_root->node));
  1643. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1644. btrfs_set_backup_chunk_root_gen(root_backup,
  1645. btrfs_header_generation(info->chunk_root->node));
  1646. btrfs_set_backup_chunk_root_level(root_backup,
  1647. btrfs_header_level(info->chunk_root->node));
  1648. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1649. btrfs_set_backup_extent_root_gen(root_backup,
  1650. btrfs_header_generation(info->extent_root->node));
  1651. btrfs_set_backup_extent_root_level(root_backup,
  1652. btrfs_header_level(info->extent_root->node));
  1653. /*
  1654. * we might commit during log recovery, which happens before we set
  1655. * the fs_root. Make sure it is valid before we fill it in.
  1656. */
  1657. if (info->fs_root && info->fs_root->node) {
  1658. btrfs_set_backup_fs_root(root_backup,
  1659. info->fs_root->node->start);
  1660. btrfs_set_backup_fs_root_gen(root_backup,
  1661. btrfs_header_generation(info->fs_root->node));
  1662. btrfs_set_backup_fs_root_level(root_backup,
  1663. btrfs_header_level(info->fs_root->node));
  1664. }
  1665. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1666. btrfs_set_backup_dev_root_gen(root_backup,
  1667. btrfs_header_generation(info->dev_root->node));
  1668. btrfs_set_backup_dev_root_level(root_backup,
  1669. btrfs_header_level(info->dev_root->node));
  1670. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1671. btrfs_set_backup_csum_root_gen(root_backup,
  1672. btrfs_header_generation(info->csum_root->node));
  1673. btrfs_set_backup_csum_root_level(root_backup,
  1674. btrfs_header_level(info->csum_root->node));
  1675. btrfs_set_backup_total_bytes(root_backup,
  1676. btrfs_super_total_bytes(info->super_copy));
  1677. btrfs_set_backup_bytes_used(root_backup,
  1678. btrfs_super_bytes_used(info->super_copy));
  1679. btrfs_set_backup_num_devices(root_backup,
  1680. btrfs_super_num_devices(info->super_copy));
  1681. /*
  1682. * if we don't copy this out to the super_copy, it won't get remembered
  1683. * for the next commit
  1684. */
  1685. memcpy(&info->super_copy->super_roots,
  1686. &info->super_for_commit->super_roots,
  1687. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1688. }
  1689. /*
  1690. * this copies info out of the root backup array and back into
  1691. * the in-memory super block. It is meant to help iterate through
  1692. * the array, so you send it the number of backups you've already
  1693. * tried and the last backup index you used.
  1694. *
  1695. * this returns -1 when it has tried all the backups
  1696. */
  1697. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1698. struct btrfs_super_block *super,
  1699. int *num_backups_tried, int *backup_index)
  1700. {
  1701. struct btrfs_root_backup *root_backup;
  1702. int newest = *backup_index;
  1703. if (*num_backups_tried == 0) {
  1704. u64 gen = btrfs_super_generation(super);
  1705. newest = find_newest_super_backup(info, gen);
  1706. if (newest == -1)
  1707. return -1;
  1708. *backup_index = newest;
  1709. *num_backups_tried = 1;
  1710. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1711. /* we've tried all the backups, all done */
  1712. return -1;
  1713. } else {
  1714. /* jump to the next oldest backup */
  1715. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1716. BTRFS_NUM_BACKUP_ROOTS;
  1717. *backup_index = newest;
  1718. *num_backups_tried += 1;
  1719. }
  1720. root_backup = super->super_roots + newest;
  1721. btrfs_set_super_generation(super,
  1722. btrfs_backup_tree_root_gen(root_backup));
  1723. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1724. btrfs_set_super_root_level(super,
  1725. btrfs_backup_tree_root_level(root_backup));
  1726. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1727. /*
  1728. * fixme: the total bytes and num_devices need to match or we should
  1729. * need a fsck
  1730. */
  1731. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1732. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1733. return 0;
  1734. }
  1735. /* helper to cleanup workers */
  1736. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1737. {
  1738. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1739. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1740. btrfs_destroy_workqueue(fs_info->workers);
  1741. btrfs_destroy_workqueue(fs_info->endio_workers);
  1742. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1743. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1744. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1745. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1746. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1747. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1748. btrfs_destroy_workqueue(fs_info->submit_workers);
  1749. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1750. btrfs_destroy_workqueue(fs_info->caching_workers);
  1751. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1752. btrfs_destroy_workqueue(fs_info->flush_workers);
  1753. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1754. }
  1755. static void free_root_extent_buffers(struct btrfs_root *root)
  1756. {
  1757. if (root) {
  1758. free_extent_buffer(root->node);
  1759. free_extent_buffer(root->commit_root);
  1760. root->node = NULL;
  1761. root->commit_root = NULL;
  1762. }
  1763. }
  1764. /* helper to cleanup tree roots */
  1765. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1766. {
  1767. free_root_extent_buffers(info->tree_root);
  1768. free_root_extent_buffers(info->dev_root);
  1769. free_root_extent_buffers(info->extent_root);
  1770. free_root_extent_buffers(info->csum_root);
  1771. free_root_extent_buffers(info->quota_root);
  1772. free_root_extent_buffers(info->uuid_root);
  1773. if (chunk_root)
  1774. free_root_extent_buffers(info->chunk_root);
  1775. }
  1776. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1777. {
  1778. int ret;
  1779. struct btrfs_root *gang[8];
  1780. int i;
  1781. while (!list_empty(&fs_info->dead_roots)) {
  1782. gang[0] = list_entry(fs_info->dead_roots.next,
  1783. struct btrfs_root, root_list);
  1784. list_del(&gang[0]->root_list);
  1785. if (gang[0]->in_radix) {
  1786. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1787. } else {
  1788. free_extent_buffer(gang[0]->node);
  1789. free_extent_buffer(gang[0]->commit_root);
  1790. btrfs_put_fs_root(gang[0]);
  1791. }
  1792. }
  1793. while (1) {
  1794. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1795. (void **)gang, 0,
  1796. ARRAY_SIZE(gang));
  1797. if (!ret)
  1798. break;
  1799. for (i = 0; i < ret; i++)
  1800. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1801. }
  1802. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1803. btrfs_free_log_root_tree(NULL, fs_info);
  1804. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1805. fs_info->pinned_extents);
  1806. }
  1807. }
  1808. int open_ctree(struct super_block *sb,
  1809. struct btrfs_fs_devices *fs_devices,
  1810. char *options)
  1811. {
  1812. u32 sectorsize;
  1813. u32 nodesize;
  1814. u32 leafsize;
  1815. u32 blocksize;
  1816. u32 stripesize;
  1817. u64 generation;
  1818. u64 features;
  1819. struct btrfs_key location;
  1820. struct buffer_head *bh;
  1821. struct btrfs_super_block *disk_super;
  1822. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1823. struct btrfs_root *tree_root;
  1824. struct btrfs_root *extent_root;
  1825. struct btrfs_root *csum_root;
  1826. struct btrfs_root *chunk_root;
  1827. struct btrfs_root *dev_root;
  1828. struct btrfs_root *quota_root;
  1829. struct btrfs_root *uuid_root;
  1830. struct btrfs_root *log_tree_root;
  1831. int ret;
  1832. int err = -EINVAL;
  1833. int num_backups_tried = 0;
  1834. int backup_index = 0;
  1835. int max_active;
  1836. int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1837. bool create_uuid_tree;
  1838. bool check_uuid_tree;
  1839. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1840. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1841. if (!tree_root || !chunk_root) {
  1842. err = -ENOMEM;
  1843. goto fail;
  1844. }
  1845. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1846. if (ret) {
  1847. err = ret;
  1848. goto fail;
  1849. }
  1850. ret = setup_bdi(fs_info, &fs_info->bdi);
  1851. if (ret) {
  1852. err = ret;
  1853. goto fail_srcu;
  1854. }
  1855. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1856. if (ret) {
  1857. err = ret;
  1858. goto fail_bdi;
  1859. }
  1860. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1861. (1 + ilog2(nr_cpu_ids));
  1862. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1863. if (ret) {
  1864. err = ret;
  1865. goto fail_dirty_metadata_bytes;
  1866. }
  1867. ret = percpu_counter_init(&fs_info->bio_counter, 0);
  1868. if (ret) {
  1869. err = ret;
  1870. goto fail_delalloc_bytes;
  1871. }
  1872. fs_info->btree_inode = new_inode(sb);
  1873. if (!fs_info->btree_inode) {
  1874. err = -ENOMEM;
  1875. goto fail_bio_counter;
  1876. }
  1877. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1878. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1879. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  1880. INIT_LIST_HEAD(&fs_info->trans_list);
  1881. INIT_LIST_HEAD(&fs_info->dead_roots);
  1882. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1883. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1884. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1885. spin_lock_init(&fs_info->delalloc_root_lock);
  1886. spin_lock_init(&fs_info->trans_lock);
  1887. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1888. spin_lock_init(&fs_info->delayed_iput_lock);
  1889. spin_lock_init(&fs_info->defrag_inodes_lock);
  1890. spin_lock_init(&fs_info->free_chunk_lock);
  1891. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1892. spin_lock_init(&fs_info->super_lock);
  1893. spin_lock_init(&fs_info->buffer_lock);
  1894. rwlock_init(&fs_info->tree_mod_log_lock);
  1895. mutex_init(&fs_info->reloc_mutex);
  1896. seqlock_init(&fs_info->profiles_lock);
  1897. init_completion(&fs_info->kobj_unregister);
  1898. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1899. INIT_LIST_HEAD(&fs_info->space_info);
  1900. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1901. btrfs_mapping_init(&fs_info->mapping_tree);
  1902. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1903. BTRFS_BLOCK_RSV_GLOBAL);
  1904. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1905. BTRFS_BLOCK_RSV_DELALLOC);
  1906. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1907. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1908. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1909. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1910. BTRFS_BLOCK_RSV_DELOPS);
  1911. atomic_set(&fs_info->nr_async_submits, 0);
  1912. atomic_set(&fs_info->async_delalloc_pages, 0);
  1913. atomic_set(&fs_info->async_submit_draining, 0);
  1914. atomic_set(&fs_info->nr_async_bios, 0);
  1915. atomic_set(&fs_info->defrag_running, 0);
  1916. atomic64_set(&fs_info->tree_mod_seq, 0);
  1917. fs_info->sb = sb;
  1918. fs_info->max_inline = 8192 * 1024;
  1919. fs_info->metadata_ratio = 0;
  1920. fs_info->defrag_inodes = RB_ROOT;
  1921. fs_info->free_chunk_space = 0;
  1922. fs_info->tree_mod_log = RB_ROOT;
  1923. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1924. fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
  1925. /* readahead state */
  1926. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1927. spin_lock_init(&fs_info->reada_lock);
  1928. fs_info->thread_pool_size = min_t(unsigned long,
  1929. num_online_cpus() + 2, 8);
  1930. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1931. spin_lock_init(&fs_info->ordered_root_lock);
  1932. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1933. GFP_NOFS);
  1934. if (!fs_info->delayed_root) {
  1935. err = -ENOMEM;
  1936. goto fail_iput;
  1937. }
  1938. btrfs_init_delayed_root(fs_info->delayed_root);
  1939. mutex_init(&fs_info->scrub_lock);
  1940. atomic_set(&fs_info->scrubs_running, 0);
  1941. atomic_set(&fs_info->scrub_pause_req, 0);
  1942. atomic_set(&fs_info->scrubs_paused, 0);
  1943. atomic_set(&fs_info->scrub_cancel_req, 0);
  1944. init_waitqueue_head(&fs_info->replace_wait);
  1945. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1946. fs_info->scrub_workers_refcnt = 0;
  1947. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1948. fs_info->check_integrity_print_mask = 0;
  1949. #endif
  1950. spin_lock_init(&fs_info->balance_lock);
  1951. mutex_init(&fs_info->balance_mutex);
  1952. atomic_set(&fs_info->balance_running, 0);
  1953. atomic_set(&fs_info->balance_pause_req, 0);
  1954. atomic_set(&fs_info->balance_cancel_req, 0);
  1955. fs_info->balance_ctl = NULL;
  1956. init_waitqueue_head(&fs_info->balance_wait_q);
  1957. sb->s_blocksize = 4096;
  1958. sb->s_blocksize_bits = blksize_bits(4096);
  1959. sb->s_bdi = &fs_info->bdi;
  1960. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1961. set_nlink(fs_info->btree_inode, 1);
  1962. /*
  1963. * we set the i_size on the btree inode to the max possible int.
  1964. * the real end of the address space is determined by all of
  1965. * the devices in the system
  1966. */
  1967. fs_info->btree_inode->i_size = OFFSET_MAX;
  1968. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1969. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1970. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1971. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1972. fs_info->btree_inode->i_mapping);
  1973. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1974. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1975. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1976. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1977. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1978. sizeof(struct btrfs_key));
  1979. set_bit(BTRFS_INODE_DUMMY,
  1980. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1981. btrfs_insert_inode_hash(fs_info->btree_inode);
  1982. spin_lock_init(&fs_info->block_group_cache_lock);
  1983. fs_info->block_group_cache_tree = RB_ROOT;
  1984. fs_info->first_logical_byte = (u64)-1;
  1985. extent_io_tree_init(&fs_info->freed_extents[0],
  1986. fs_info->btree_inode->i_mapping);
  1987. extent_io_tree_init(&fs_info->freed_extents[1],
  1988. fs_info->btree_inode->i_mapping);
  1989. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1990. fs_info->do_barriers = 1;
  1991. mutex_init(&fs_info->ordered_operations_mutex);
  1992. mutex_init(&fs_info->ordered_extent_flush_mutex);
  1993. mutex_init(&fs_info->tree_log_mutex);
  1994. mutex_init(&fs_info->chunk_mutex);
  1995. mutex_init(&fs_info->transaction_kthread_mutex);
  1996. mutex_init(&fs_info->cleaner_mutex);
  1997. mutex_init(&fs_info->volume_mutex);
  1998. init_rwsem(&fs_info->extent_commit_sem);
  1999. init_rwsem(&fs_info->cleanup_work_sem);
  2000. init_rwsem(&fs_info->subvol_sem);
  2001. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2002. fs_info->dev_replace.lock_owner = 0;
  2003. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2004. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2005. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2006. mutex_init(&fs_info->dev_replace.lock);
  2007. spin_lock_init(&fs_info->qgroup_lock);
  2008. mutex_init(&fs_info->qgroup_ioctl_lock);
  2009. fs_info->qgroup_tree = RB_ROOT;
  2010. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2011. fs_info->qgroup_seq = 1;
  2012. fs_info->quota_enabled = 0;
  2013. fs_info->pending_quota_state = 0;
  2014. fs_info->qgroup_ulist = NULL;
  2015. mutex_init(&fs_info->qgroup_rescan_lock);
  2016. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2017. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2018. init_waitqueue_head(&fs_info->transaction_throttle);
  2019. init_waitqueue_head(&fs_info->transaction_wait);
  2020. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2021. init_waitqueue_head(&fs_info->async_submit_wait);
  2022. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2023. if (ret) {
  2024. err = ret;
  2025. goto fail_alloc;
  2026. }
  2027. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2028. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2029. invalidate_bdev(fs_devices->latest_bdev);
  2030. /*
  2031. * Read super block and check the signature bytes only
  2032. */
  2033. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2034. if (!bh) {
  2035. err = -EINVAL;
  2036. goto fail_alloc;
  2037. }
  2038. /*
  2039. * We want to check superblock checksum, the type is stored inside.
  2040. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2041. */
  2042. if (btrfs_check_super_csum(bh->b_data)) {
  2043. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2044. err = -EINVAL;
  2045. goto fail_alloc;
  2046. }
  2047. /*
  2048. * super_copy is zeroed at allocation time and we never touch the
  2049. * following bytes up to INFO_SIZE, the checksum is calculated from
  2050. * the whole block of INFO_SIZE
  2051. */
  2052. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2053. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2054. sizeof(*fs_info->super_for_commit));
  2055. brelse(bh);
  2056. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2057. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2058. if (ret) {
  2059. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2060. err = -EINVAL;
  2061. goto fail_alloc;
  2062. }
  2063. disk_super = fs_info->super_copy;
  2064. if (!btrfs_super_root(disk_super))
  2065. goto fail_alloc;
  2066. /* check FS state, whether FS is broken. */
  2067. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2068. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2069. /*
  2070. * run through our array of backup supers and setup
  2071. * our ring pointer to the oldest one
  2072. */
  2073. generation = btrfs_super_generation(disk_super);
  2074. find_oldest_super_backup(fs_info, generation);
  2075. /*
  2076. * In the long term, we'll store the compression type in the super
  2077. * block, and it'll be used for per file compression control.
  2078. */
  2079. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2080. ret = btrfs_parse_options(tree_root, options);
  2081. if (ret) {
  2082. err = ret;
  2083. goto fail_alloc;
  2084. }
  2085. features = btrfs_super_incompat_flags(disk_super) &
  2086. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2087. if (features) {
  2088. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2089. "unsupported optional features (%Lx).\n",
  2090. features);
  2091. err = -EINVAL;
  2092. goto fail_alloc;
  2093. }
  2094. if (btrfs_super_leafsize(disk_super) !=
  2095. btrfs_super_nodesize(disk_super)) {
  2096. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2097. "blocksizes don't match. node %d leaf %d\n",
  2098. btrfs_super_nodesize(disk_super),
  2099. btrfs_super_leafsize(disk_super));
  2100. err = -EINVAL;
  2101. goto fail_alloc;
  2102. }
  2103. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2104. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2105. "blocksize (%d) was too large\n",
  2106. btrfs_super_leafsize(disk_super));
  2107. err = -EINVAL;
  2108. goto fail_alloc;
  2109. }
  2110. features = btrfs_super_incompat_flags(disk_super);
  2111. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2112. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2113. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2114. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2115. printk(KERN_ERR "BTRFS: has skinny extents\n");
  2116. /*
  2117. * flag our filesystem as having big metadata blocks if
  2118. * they are bigger than the page size
  2119. */
  2120. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2121. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2122. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2123. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2124. }
  2125. nodesize = btrfs_super_nodesize(disk_super);
  2126. leafsize = btrfs_super_leafsize(disk_super);
  2127. sectorsize = btrfs_super_sectorsize(disk_super);
  2128. stripesize = btrfs_super_stripesize(disk_super);
  2129. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2130. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2131. /*
  2132. * mixed block groups end up with duplicate but slightly offset
  2133. * extent buffers for the same range. It leads to corruptions
  2134. */
  2135. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2136. (sectorsize != leafsize)) {
  2137. printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
  2138. "are not allowed for mixed block groups on %s\n",
  2139. sb->s_id);
  2140. goto fail_alloc;
  2141. }
  2142. /*
  2143. * Needn't use the lock because there is no other task which will
  2144. * update the flag.
  2145. */
  2146. btrfs_set_super_incompat_flags(disk_super, features);
  2147. features = btrfs_super_compat_ro_flags(disk_super) &
  2148. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2149. if (!(sb->s_flags & MS_RDONLY) && features) {
  2150. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2151. "unsupported option features (%Lx).\n",
  2152. features);
  2153. err = -EINVAL;
  2154. goto fail_alloc;
  2155. }
  2156. max_active = fs_info->thread_pool_size;
  2157. fs_info->workers =
  2158. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2159. max_active, 16);
  2160. fs_info->delalloc_workers =
  2161. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2162. fs_info->flush_workers =
  2163. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2164. fs_info->caching_workers =
  2165. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2166. /*
  2167. * a higher idle thresh on the submit workers makes it much more
  2168. * likely that bios will be send down in a sane order to the
  2169. * devices
  2170. */
  2171. fs_info->submit_workers =
  2172. btrfs_alloc_workqueue("submit", flags,
  2173. min_t(u64, fs_devices->num_devices,
  2174. max_active), 64);
  2175. fs_info->fixup_workers =
  2176. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2177. /*
  2178. * endios are largely parallel and should have a very
  2179. * low idle thresh
  2180. */
  2181. fs_info->endio_workers =
  2182. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2183. fs_info->endio_meta_workers =
  2184. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2185. fs_info->endio_meta_write_workers =
  2186. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2187. fs_info->endio_raid56_workers =
  2188. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2189. fs_info->rmw_workers =
  2190. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2191. fs_info->endio_write_workers =
  2192. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2193. fs_info->endio_freespace_worker =
  2194. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2195. fs_info->delayed_workers =
  2196. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2197. fs_info->readahead_workers =
  2198. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2199. fs_info->qgroup_rescan_workers =
  2200. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2201. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2202. fs_info->submit_workers && fs_info->flush_workers &&
  2203. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2204. fs_info->endio_meta_write_workers &&
  2205. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2206. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2207. fs_info->caching_workers && fs_info->readahead_workers &&
  2208. fs_info->fixup_workers && fs_info->delayed_workers &&
  2209. fs_info->qgroup_rescan_workers)) {
  2210. err = -ENOMEM;
  2211. goto fail_sb_buffer;
  2212. }
  2213. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2214. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2215. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2216. tree_root->nodesize = nodesize;
  2217. tree_root->leafsize = leafsize;
  2218. tree_root->sectorsize = sectorsize;
  2219. tree_root->stripesize = stripesize;
  2220. sb->s_blocksize = sectorsize;
  2221. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2222. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2223. printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
  2224. goto fail_sb_buffer;
  2225. }
  2226. if (sectorsize != PAGE_SIZE) {
  2227. printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
  2228. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2229. goto fail_sb_buffer;
  2230. }
  2231. mutex_lock(&fs_info->chunk_mutex);
  2232. ret = btrfs_read_sys_array(tree_root);
  2233. mutex_unlock(&fs_info->chunk_mutex);
  2234. if (ret) {
  2235. printk(KERN_WARNING "BTRFS: failed to read the system "
  2236. "array on %s\n", sb->s_id);
  2237. goto fail_sb_buffer;
  2238. }
  2239. blocksize = btrfs_level_size(tree_root,
  2240. btrfs_super_chunk_root_level(disk_super));
  2241. generation = btrfs_super_chunk_root_generation(disk_super);
  2242. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2243. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2244. chunk_root->node = read_tree_block(chunk_root,
  2245. btrfs_super_chunk_root(disk_super),
  2246. blocksize, generation);
  2247. if (!chunk_root->node ||
  2248. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2249. printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
  2250. sb->s_id);
  2251. goto fail_tree_roots;
  2252. }
  2253. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2254. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2255. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2256. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2257. ret = btrfs_read_chunk_tree(chunk_root);
  2258. if (ret) {
  2259. printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
  2260. sb->s_id);
  2261. goto fail_tree_roots;
  2262. }
  2263. /*
  2264. * keep the device that is marked to be the target device for the
  2265. * dev_replace procedure
  2266. */
  2267. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2268. if (!fs_devices->latest_bdev) {
  2269. printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
  2270. sb->s_id);
  2271. goto fail_tree_roots;
  2272. }
  2273. retry_root_backup:
  2274. blocksize = btrfs_level_size(tree_root,
  2275. btrfs_super_root_level(disk_super));
  2276. generation = btrfs_super_generation(disk_super);
  2277. tree_root->node = read_tree_block(tree_root,
  2278. btrfs_super_root(disk_super),
  2279. blocksize, generation);
  2280. if (!tree_root->node ||
  2281. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2282. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2283. sb->s_id);
  2284. goto recovery_tree_root;
  2285. }
  2286. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2287. tree_root->commit_root = btrfs_root_node(tree_root);
  2288. btrfs_set_root_refs(&tree_root->root_item, 1);
  2289. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2290. location.type = BTRFS_ROOT_ITEM_KEY;
  2291. location.offset = 0;
  2292. extent_root = btrfs_read_tree_root(tree_root, &location);
  2293. if (IS_ERR(extent_root)) {
  2294. ret = PTR_ERR(extent_root);
  2295. goto recovery_tree_root;
  2296. }
  2297. extent_root->track_dirty = 1;
  2298. fs_info->extent_root = extent_root;
  2299. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2300. dev_root = btrfs_read_tree_root(tree_root, &location);
  2301. if (IS_ERR(dev_root)) {
  2302. ret = PTR_ERR(dev_root);
  2303. goto recovery_tree_root;
  2304. }
  2305. dev_root->track_dirty = 1;
  2306. fs_info->dev_root = dev_root;
  2307. btrfs_init_devices_late(fs_info);
  2308. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2309. csum_root = btrfs_read_tree_root(tree_root, &location);
  2310. if (IS_ERR(csum_root)) {
  2311. ret = PTR_ERR(csum_root);
  2312. goto recovery_tree_root;
  2313. }
  2314. csum_root->track_dirty = 1;
  2315. fs_info->csum_root = csum_root;
  2316. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2317. quota_root = btrfs_read_tree_root(tree_root, &location);
  2318. if (!IS_ERR(quota_root)) {
  2319. quota_root->track_dirty = 1;
  2320. fs_info->quota_enabled = 1;
  2321. fs_info->pending_quota_state = 1;
  2322. fs_info->quota_root = quota_root;
  2323. }
  2324. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2325. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2326. if (IS_ERR(uuid_root)) {
  2327. ret = PTR_ERR(uuid_root);
  2328. if (ret != -ENOENT)
  2329. goto recovery_tree_root;
  2330. create_uuid_tree = true;
  2331. check_uuid_tree = false;
  2332. } else {
  2333. uuid_root->track_dirty = 1;
  2334. fs_info->uuid_root = uuid_root;
  2335. create_uuid_tree = false;
  2336. check_uuid_tree =
  2337. generation != btrfs_super_uuid_tree_generation(disk_super);
  2338. }
  2339. fs_info->generation = generation;
  2340. fs_info->last_trans_committed = generation;
  2341. ret = btrfs_recover_balance(fs_info);
  2342. if (ret) {
  2343. printk(KERN_WARNING "BTRFS: failed to recover balance\n");
  2344. goto fail_block_groups;
  2345. }
  2346. ret = btrfs_init_dev_stats(fs_info);
  2347. if (ret) {
  2348. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2349. ret);
  2350. goto fail_block_groups;
  2351. }
  2352. ret = btrfs_init_dev_replace(fs_info);
  2353. if (ret) {
  2354. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2355. goto fail_block_groups;
  2356. }
  2357. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2358. ret = btrfs_sysfs_add_one(fs_info);
  2359. if (ret) {
  2360. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2361. goto fail_block_groups;
  2362. }
  2363. ret = btrfs_init_space_info(fs_info);
  2364. if (ret) {
  2365. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2366. goto fail_sysfs;
  2367. }
  2368. ret = btrfs_read_block_groups(extent_root);
  2369. if (ret) {
  2370. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2371. goto fail_sysfs;
  2372. }
  2373. fs_info->num_tolerated_disk_barrier_failures =
  2374. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2375. if (fs_info->fs_devices->missing_devices >
  2376. fs_info->num_tolerated_disk_barrier_failures &&
  2377. !(sb->s_flags & MS_RDONLY)) {
  2378. printk(KERN_WARNING "BTRFS: "
  2379. "too many missing devices, writeable mount is not allowed\n");
  2380. goto fail_sysfs;
  2381. }
  2382. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2383. "btrfs-cleaner");
  2384. if (IS_ERR(fs_info->cleaner_kthread))
  2385. goto fail_sysfs;
  2386. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2387. tree_root,
  2388. "btrfs-transaction");
  2389. if (IS_ERR(fs_info->transaction_kthread))
  2390. goto fail_cleaner;
  2391. if (!btrfs_test_opt(tree_root, SSD) &&
  2392. !btrfs_test_opt(tree_root, NOSSD) &&
  2393. !fs_info->fs_devices->rotating) {
  2394. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2395. "mode\n");
  2396. btrfs_set_opt(fs_info->mount_opt, SSD);
  2397. }
  2398. /* Set the real inode map cache flag */
  2399. if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
  2400. btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
  2401. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2402. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2403. ret = btrfsic_mount(tree_root, fs_devices,
  2404. btrfs_test_opt(tree_root,
  2405. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2406. 1 : 0,
  2407. fs_info->check_integrity_print_mask);
  2408. if (ret)
  2409. printk(KERN_WARNING "BTRFS: failed to initialize"
  2410. " integrity check module %s\n", sb->s_id);
  2411. }
  2412. #endif
  2413. ret = btrfs_read_qgroup_config(fs_info);
  2414. if (ret)
  2415. goto fail_trans_kthread;
  2416. /* do not make disk changes in broken FS */
  2417. if (btrfs_super_log_root(disk_super) != 0) {
  2418. u64 bytenr = btrfs_super_log_root(disk_super);
  2419. if (fs_devices->rw_devices == 0) {
  2420. printk(KERN_WARNING "BTRFS: log replay required "
  2421. "on RO media\n");
  2422. err = -EIO;
  2423. goto fail_qgroup;
  2424. }
  2425. blocksize =
  2426. btrfs_level_size(tree_root,
  2427. btrfs_super_log_root_level(disk_super));
  2428. log_tree_root = btrfs_alloc_root(fs_info);
  2429. if (!log_tree_root) {
  2430. err = -ENOMEM;
  2431. goto fail_qgroup;
  2432. }
  2433. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2434. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2435. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2436. blocksize,
  2437. generation + 1);
  2438. if (!log_tree_root->node ||
  2439. !extent_buffer_uptodate(log_tree_root->node)) {
  2440. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2441. free_extent_buffer(log_tree_root->node);
  2442. kfree(log_tree_root);
  2443. goto fail_trans_kthread;
  2444. }
  2445. /* returns with log_tree_root freed on success */
  2446. ret = btrfs_recover_log_trees(log_tree_root);
  2447. if (ret) {
  2448. btrfs_error(tree_root->fs_info, ret,
  2449. "Failed to recover log tree");
  2450. free_extent_buffer(log_tree_root->node);
  2451. kfree(log_tree_root);
  2452. goto fail_trans_kthread;
  2453. }
  2454. if (sb->s_flags & MS_RDONLY) {
  2455. ret = btrfs_commit_super(tree_root);
  2456. if (ret)
  2457. goto fail_trans_kthread;
  2458. }
  2459. }
  2460. ret = btrfs_find_orphan_roots(tree_root);
  2461. if (ret)
  2462. goto fail_trans_kthread;
  2463. if (!(sb->s_flags & MS_RDONLY)) {
  2464. ret = btrfs_cleanup_fs_roots(fs_info);
  2465. if (ret)
  2466. goto fail_trans_kthread;
  2467. ret = btrfs_recover_relocation(tree_root);
  2468. if (ret < 0) {
  2469. printk(KERN_WARNING
  2470. "BTRFS: failed to recover relocation\n");
  2471. err = -EINVAL;
  2472. goto fail_qgroup;
  2473. }
  2474. }
  2475. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2476. location.type = BTRFS_ROOT_ITEM_KEY;
  2477. location.offset = 0;
  2478. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2479. if (IS_ERR(fs_info->fs_root)) {
  2480. err = PTR_ERR(fs_info->fs_root);
  2481. goto fail_qgroup;
  2482. }
  2483. if (sb->s_flags & MS_RDONLY)
  2484. return 0;
  2485. down_read(&fs_info->cleanup_work_sem);
  2486. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2487. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2488. up_read(&fs_info->cleanup_work_sem);
  2489. close_ctree(tree_root);
  2490. return ret;
  2491. }
  2492. up_read(&fs_info->cleanup_work_sem);
  2493. ret = btrfs_resume_balance_async(fs_info);
  2494. if (ret) {
  2495. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2496. close_ctree(tree_root);
  2497. return ret;
  2498. }
  2499. ret = btrfs_resume_dev_replace_async(fs_info);
  2500. if (ret) {
  2501. pr_warn("BTRFS: failed to resume dev_replace\n");
  2502. close_ctree(tree_root);
  2503. return ret;
  2504. }
  2505. btrfs_qgroup_rescan_resume(fs_info);
  2506. if (create_uuid_tree) {
  2507. pr_info("BTRFS: creating UUID tree\n");
  2508. ret = btrfs_create_uuid_tree(fs_info);
  2509. if (ret) {
  2510. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2511. ret);
  2512. close_ctree(tree_root);
  2513. return ret;
  2514. }
  2515. } else if (check_uuid_tree ||
  2516. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2517. pr_info("BTRFS: checking UUID tree\n");
  2518. ret = btrfs_check_uuid_tree(fs_info);
  2519. if (ret) {
  2520. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2521. ret);
  2522. close_ctree(tree_root);
  2523. return ret;
  2524. }
  2525. } else {
  2526. fs_info->update_uuid_tree_gen = 1;
  2527. }
  2528. return 0;
  2529. fail_qgroup:
  2530. btrfs_free_qgroup_config(fs_info);
  2531. fail_trans_kthread:
  2532. kthread_stop(fs_info->transaction_kthread);
  2533. btrfs_cleanup_transaction(fs_info->tree_root);
  2534. del_fs_roots(fs_info);
  2535. fail_cleaner:
  2536. kthread_stop(fs_info->cleaner_kthread);
  2537. /*
  2538. * make sure we're done with the btree inode before we stop our
  2539. * kthreads
  2540. */
  2541. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2542. fail_sysfs:
  2543. btrfs_sysfs_remove_one(fs_info);
  2544. fail_block_groups:
  2545. btrfs_put_block_group_cache(fs_info);
  2546. btrfs_free_block_groups(fs_info);
  2547. fail_tree_roots:
  2548. free_root_pointers(fs_info, 1);
  2549. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2550. fail_sb_buffer:
  2551. btrfs_stop_all_workers(fs_info);
  2552. fail_alloc:
  2553. fail_iput:
  2554. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2555. iput(fs_info->btree_inode);
  2556. fail_bio_counter:
  2557. percpu_counter_destroy(&fs_info->bio_counter);
  2558. fail_delalloc_bytes:
  2559. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2560. fail_dirty_metadata_bytes:
  2561. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2562. fail_bdi:
  2563. bdi_destroy(&fs_info->bdi);
  2564. fail_srcu:
  2565. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2566. fail:
  2567. btrfs_free_stripe_hash_table(fs_info);
  2568. btrfs_close_devices(fs_info->fs_devices);
  2569. return err;
  2570. recovery_tree_root:
  2571. if (!btrfs_test_opt(tree_root, RECOVERY))
  2572. goto fail_tree_roots;
  2573. free_root_pointers(fs_info, 0);
  2574. /* don't use the log in recovery mode, it won't be valid */
  2575. btrfs_set_super_log_root(disk_super, 0);
  2576. /* we can't trust the free space cache either */
  2577. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2578. ret = next_root_backup(fs_info, fs_info->super_copy,
  2579. &num_backups_tried, &backup_index);
  2580. if (ret == -1)
  2581. goto fail_block_groups;
  2582. goto retry_root_backup;
  2583. }
  2584. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2585. {
  2586. if (uptodate) {
  2587. set_buffer_uptodate(bh);
  2588. } else {
  2589. struct btrfs_device *device = (struct btrfs_device *)
  2590. bh->b_private;
  2591. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2592. "I/O error on %s\n",
  2593. rcu_str_deref(device->name));
  2594. /* note, we dont' set_buffer_write_io_error because we have
  2595. * our own ways of dealing with the IO errors
  2596. */
  2597. clear_buffer_uptodate(bh);
  2598. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2599. }
  2600. unlock_buffer(bh);
  2601. put_bh(bh);
  2602. }
  2603. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2604. {
  2605. struct buffer_head *bh;
  2606. struct buffer_head *latest = NULL;
  2607. struct btrfs_super_block *super;
  2608. int i;
  2609. u64 transid = 0;
  2610. u64 bytenr;
  2611. /* we would like to check all the supers, but that would make
  2612. * a btrfs mount succeed after a mkfs from a different FS.
  2613. * So, we need to add a special mount option to scan for
  2614. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2615. */
  2616. for (i = 0; i < 1; i++) {
  2617. bytenr = btrfs_sb_offset(i);
  2618. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2619. i_size_read(bdev->bd_inode))
  2620. break;
  2621. bh = __bread(bdev, bytenr / 4096,
  2622. BTRFS_SUPER_INFO_SIZE);
  2623. if (!bh)
  2624. continue;
  2625. super = (struct btrfs_super_block *)bh->b_data;
  2626. if (btrfs_super_bytenr(super) != bytenr ||
  2627. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2628. brelse(bh);
  2629. continue;
  2630. }
  2631. if (!latest || btrfs_super_generation(super) > transid) {
  2632. brelse(latest);
  2633. latest = bh;
  2634. transid = btrfs_super_generation(super);
  2635. } else {
  2636. brelse(bh);
  2637. }
  2638. }
  2639. return latest;
  2640. }
  2641. /*
  2642. * this should be called twice, once with wait == 0 and
  2643. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2644. * we write are pinned.
  2645. *
  2646. * They are released when wait == 1 is done.
  2647. * max_mirrors must be the same for both runs, and it indicates how
  2648. * many supers on this one device should be written.
  2649. *
  2650. * max_mirrors == 0 means to write them all.
  2651. */
  2652. static int write_dev_supers(struct btrfs_device *device,
  2653. struct btrfs_super_block *sb,
  2654. int do_barriers, int wait, int max_mirrors)
  2655. {
  2656. struct buffer_head *bh;
  2657. int i;
  2658. int ret;
  2659. int errors = 0;
  2660. u32 crc;
  2661. u64 bytenr;
  2662. if (max_mirrors == 0)
  2663. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2664. for (i = 0; i < max_mirrors; i++) {
  2665. bytenr = btrfs_sb_offset(i);
  2666. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2667. break;
  2668. if (wait) {
  2669. bh = __find_get_block(device->bdev, bytenr / 4096,
  2670. BTRFS_SUPER_INFO_SIZE);
  2671. if (!bh) {
  2672. errors++;
  2673. continue;
  2674. }
  2675. wait_on_buffer(bh);
  2676. if (!buffer_uptodate(bh))
  2677. errors++;
  2678. /* drop our reference */
  2679. brelse(bh);
  2680. /* drop the reference from the wait == 0 run */
  2681. brelse(bh);
  2682. continue;
  2683. } else {
  2684. btrfs_set_super_bytenr(sb, bytenr);
  2685. crc = ~(u32)0;
  2686. crc = btrfs_csum_data((char *)sb +
  2687. BTRFS_CSUM_SIZE, crc,
  2688. BTRFS_SUPER_INFO_SIZE -
  2689. BTRFS_CSUM_SIZE);
  2690. btrfs_csum_final(crc, sb->csum);
  2691. /*
  2692. * one reference for us, and we leave it for the
  2693. * caller
  2694. */
  2695. bh = __getblk(device->bdev, bytenr / 4096,
  2696. BTRFS_SUPER_INFO_SIZE);
  2697. if (!bh) {
  2698. printk(KERN_ERR "BTRFS: couldn't get super "
  2699. "buffer head for bytenr %Lu\n", bytenr);
  2700. errors++;
  2701. continue;
  2702. }
  2703. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2704. /* one reference for submit_bh */
  2705. get_bh(bh);
  2706. set_buffer_uptodate(bh);
  2707. lock_buffer(bh);
  2708. bh->b_end_io = btrfs_end_buffer_write_sync;
  2709. bh->b_private = device;
  2710. }
  2711. /*
  2712. * we fua the first super. The others we allow
  2713. * to go down lazy.
  2714. */
  2715. if (i == 0)
  2716. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2717. else
  2718. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2719. if (ret)
  2720. errors++;
  2721. }
  2722. return errors < i ? 0 : -1;
  2723. }
  2724. /*
  2725. * endio for the write_dev_flush, this will wake anyone waiting
  2726. * for the barrier when it is done
  2727. */
  2728. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2729. {
  2730. if (err) {
  2731. if (err == -EOPNOTSUPP)
  2732. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2733. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2734. }
  2735. if (bio->bi_private)
  2736. complete(bio->bi_private);
  2737. bio_put(bio);
  2738. }
  2739. /*
  2740. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2741. * sent down. With wait == 1, it waits for the previous flush.
  2742. *
  2743. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2744. * capable
  2745. */
  2746. static int write_dev_flush(struct btrfs_device *device, int wait)
  2747. {
  2748. struct bio *bio;
  2749. int ret = 0;
  2750. if (device->nobarriers)
  2751. return 0;
  2752. if (wait) {
  2753. bio = device->flush_bio;
  2754. if (!bio)
  2755. return 0;
  2756. wait_for_completion(&device->flush_wait);
  2757. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2758. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2759. rcu_str_deref(device->name));
  2760. device->nobarriers = 1;
  2761. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2762. ret = -EIO;
  2763. btrfs_dev_stat_inc_and_print(device,
  2764. BTRFS_DEV_STAT_FLUSH_ERRS);
  2765. }
  2766. /* drop the reference from the wait == 0 run */
  2767. bio_put(bio);
  2768. device->flush_bio = NULL;
  2769. return ret;
  2770. }
  2771. /*
  2772. * one reference for us, and we leave it for the
  2773. * caller
  2774. */
  2775. device->flush_bio = NULL;
  2776. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2777. if (!bio)
  2778. return -ENOMEM;
  2779. bio->bi_end_io = btrfs_end_empty_barrier;
  2780. bio->bi_bdev = device->bdev;
  2781. init_completion(&device->flush_wait);
  2782. bio->bi_private = &device->flush_wait;
  2783. device->flush_bio = bio;
  2784. bio_get(bio);
  2785. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2786. return 0;
  2787. }
  2788. /*
  2789. * send an empty flush down to each device in parallel,
  2790. * then wait for them
  2791. */
  2792. static int barrier_all_devices(struct btrfs_fs_info *info)
  2793. {
  2794. struct list_head *head;
  2795. struct btrfs_device *dev;
  2796. int errors_send = 0;
  2797. int errors_wait = 0;
  2798. int ret;
  2799. /* send down all the barriers */
  2800. head = &info->fs_devices->devices;
  2801. list_for_each_entry_rcu(dev, head, dev_list) {
  2802. if (dev->missing)
  2803. continue;
  2804. if (!dev->bdev) {
  2805. errors_send++;
  2806. continue;
  2807. }
  2808. if (!dev->in_fs_metadata || !dev->writeable)
  2809. continue;
  2810. ret = write_dev_flush(dev, 0);
  2811. if (ret)
  2812. errors_send++;
  2813. }
  2814. /* wait for all the barriers */
  2815. list_for_each_entry_rcu(dev, head, dev_list) {
  2816. if (dev->missing)
  2817. continue;
  2818. if (!dev->bdev) {
  2819. errors_wait++;
  2820. continue;
  2821. }
  2822. if (!dev->in_fs_metadata || !dev->writeable)
  2823. continue;
  2824. ret = write_dev_flush(dev, 1);
  2825. if (ret)
  2826. errors_wait++;
  2827. }
  2828. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2829. errors_wait > info->num_tolerated_disk_barrier_failures)
  2830. return -EIO;
  2831. return 0;
  2832. }
  2833. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2834. struct btrfs_fs_info *fs_info)
  2835. {
  2836. struct btrfs_ioctl_space_info space;
  2837. struct btrfs_space_info *sinfo;
  2838. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2839. BTRFS_BLOCK_GROUP_SYSTEM,
  2840. BTRFS_BLOCK_GROUP_METADATA,
  2841. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2842. int num_types = 4;
  2843. int i;
  2844. int c;
  2845. int num_tolerated_disk_barrier_failures =
  2846. (int)fs_info->fs_devices->num_devices;
  2847. for (i = 0; i < num_types; i++) {
  2848. struct btrfs_space_info *tmp;
  2849. sinfo = NULL;
  2850. rcu_read_lock();
  2851. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2852. if (tmp->flags == types[i]) {
  2853. sinfo = tmp;
  2854. break;
  2855. }
  2856. }
  2857. rcu_read_unlock();
  2858. if (!sinfo)
  2859. continue;
  2860. down_read(&sinfo->groups_sem);
  2861. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2862. if (!list_empty(&sinfo->block_groups[c])) {
  2863. u64 flags;
  2864. btrfs_get_block_group_info(
  2865. &sinfo->block_groups[c], &space);
  2866. if (space.total_bytes == 0 ||
  2867. space.used_bytes == 0)
  2868. continue;
  2869. flags = space.flags;
  2870. /*
  2871. * return
  2872. * 0: if dup, single or RAID0 is configured for
  2873. * any of metadata, system or data, else
  2874. * 1: if RAID5 is configured, or if RAID1 or
  2875. * RAID10 is configured and only two mirrors
  2876. * are used, else
  2877. * 2: if RAID6 is configured, else
  2878. * num_mirrors - 1: if RAID1 or RAID10 is
  2879. * configured and more than
  2880. * 2 mirrors are used.
  2881. */
  2882. if (num_tolerated_disk_barrier_failures > 0 &&
  2883. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2884. BTRFS_BLOCK_GROUP_RAID0)) ||
  2885. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2886. == 0)))
  2887. num_tolerated_disk_barrier_failures = 0;
  2888. else if (num_tolerated_disk_barrier_failures > 1) {
  2889. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2890. BTRFS_BLOCK_GROUP_RAID5 |
  2891. BTRFS_BLOCK_GROUP_RAID10)) {
  2892. num_tolerated_disk_barrier_failures = 1;
  2893. } else if (flags &
  2894. BTRFS_BLOCK_GROUP_RAID6) {
  2895. num_tolerated_disk_barrier_failures = 2;
  2896. }
  2897. }
  2898. }
  2899. }
  2900. up_read(&sinfo->groups_sem);
  2901. }
  2902. return num_tolerated_disk_barrier_failures;
  2903. }
  2904. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2905. {
  2906. struct list_head *head;
  2907. struct btrfs_device *dev;
  2908. struct btrfs_super_block *sb;
  2909. struct btrfs_dev_item *dev_item;
  2910. int ret;
  2911. int do_barriers;
  2912. int max_errors;
  2913. int total_errors = 0;
  2914. u64 flags;
  2915. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2916. backup_super_roots(root->fs_info);
  2917. sb = root->fs_info->super_for_commit;
  2918. dev_item = &sb->dev_item;
  2919. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2920. head = &root->fs_info->fs_devices->devices;
  2921. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2922. if (do_barriers) {
  2923. ret = barrier_all_devices(root->fs_info);
  2924. if (ret) {
  2925. mutex_unlock(
  2926. &root->fs_info->fs_devices->device_list_mutex);
  2927. btrfs_error(root->fs_info, ret,
  2928. "errors while submitting device barriers.");
  2929. return ret;
  2930. }
  2931. }
  2932. list_for_each_entry_rcu(dev, head, dev_list) {
  2933. if (!dev->bdev) {
  2934. total_errors++;
  2935. continue;
  2936. }
  2937. if (!dev->in_fs_metadata || !dev->writeable)
  2938. continue;
  2939. btrfs_set_stack_device_generation(dev_item, 0);
  2940. btrfs_set_stack_device_type(dev_item, dev->type);
  2941. btrfs_set_stack_device_id(dev_item, dev->devid);
  2942. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2943. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2944. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2945. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2946. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2947. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2948. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2949. flags = btrfs_super_flags(sb);
  2950. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2951. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2952. if (ret)
  2953. total_errors++;
  2954. }
  2955. if (total_errors > max_errors) {
  2956. btrfs_err(root->fs_info, "%d errors while writing supers",
  2957. total_errors);
  2958. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2959. /* FUA is masked off if unsupported and can't be the reason */
  2960. btrfs_error(root->fs_info, -EIO,
  2961. "%d errors while writing supers", total_errors);
  2962. return -EIO;
  2963. }
  2964. total_errors = 0;
  2965. list_for_each_entry_rcu(dev, head, dev_list) {
  2966. if (!dev->bdev)
  2967. continue;
  2968. if (!dev->in_fs_metadata || !dev->writeable)
  2969. continue;
  2970. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2971. if (ret)
  2972. total_errors++;
  2973. }
  2974. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2975. if (total_errors > max_errors) {
  2976. btrfs_error(root->fs_info, -EIO,
  2977. "%d errors while writing supers", total_errors);
  2978. return -EIO;
  2979. }
  2980. return 0;
  2981. }
  2982. int write_ctree_super(struct btrfs_trans_handle *trans,
  2983. struct btrfs_root *root, int max_mirrors)
  2984. {
  2985. return write_all_supers(root, max_mirrors);
  2986. }
  2987. /* Drop a fs root from the radix tree and free it. */
  2988. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  2989. struct btrfs_root *root)
  2990. {
  2991. spin_lock(&fs_info->fs_roots_radix_lock);
  2992. radix_tree_delete(&fs_info->fs_roots_radix,
  2993. (unsigned long)root->root_key.objectid);
  2994. spin_unlock(&fs_info->fs_roots_radix_lock);
  2995. if (btrfs_root_refs(&root->root_item) == 0)
  2996. synchronize_srcu(&fs_info->subvol_srcu);
  2997. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  2998. btrfs_free_log(NULL, root);
  2999. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3000. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3001. free_fs_root(root);
  3002. }
  3003. static void free_fs_root(struct btrfs_root *root)
  3004. {
  3005. iput(root->cache_inode);
  3006. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3007. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3008. root->orphan_block_rsv = NULL;
  3009. if (root->anon_dev)
  3010. free_anon_bdev(root->anon_dev);
  3011. free_extent_buffer(root->node);
  3012. free_extent_buffer(root->commit_root);
  3013. kfree(root->free_ino_ctl);
  3014. kfree(root->free_ino_pinned);
  3015. kfree(root->name);
  3016. btrfs_put_fs_root(root);
  3017. }
  3018. void btrfs_free_fs_root(struct btrfs_root *root)
  3019. {
  3020. free_fs_root(root);
  3021. }
  3022. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3023. {
  3024. u64 root_objectid = 0;
  3025. struct btrfs_root *gang[8];
  3026. int i;
  3027. int ret;
  3028. while (1) {
  3029. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3030. (void **)gang, root_objectid,
  3031. ARRAY_SIZE(gang));
  3032. if (!ret)
  3033. break;
  3034. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3035. for (i = 0; i < ret; i++) {
  3036. int err;
  3037. root_objectid = gang[i]->root_key.objectid;
  3038. err = btrfs_orphan_cleanup(gang[i]);
  3039. if (err)
  3040. return err;
  3041. }
  3042. root_objectid++;
  3043. }
  3044. return 0;
  3045. }
  3046. int btrfs_commit_super(struct btrfs_root *root)
  3047. {
  3048. struct btrfs_trans_handle *trans;
  3049. mutex_lock(&root->fs_info->cleaner_mutex);
  3050. btrfs_run_delayed_iputs(root);
  3051. mutex_unlock(&root->fs_info->cleaner_mutex);
  3052. wake_up_process(root->fs_info->cleaner_kthread);
  3053. /* wait until ongoing cleanup work done */
  3054. down_write(&root->fs_info->cleanup_work_sem);
  3055. up_write(&root->fs_info->cleanup_work_sem);
  3056. trans = btrfs_join_transaction(root);
  3057. if (IS_ERR(trans))
  3058. return PTR_ERR(trans);
  3059. return btrfs_commit_transaction(trans, root);
  3060. }
  3061. int close_ctree(struct btrfs_root *root)
  3062. {
  3063. struct btrfs_fs_info *fs_info = root->fs_info;
  3064. int ret;
  3065. fs_info->closing = 1;
  3066. smp_mb();
  3067. /* wait for the uuid_scan task to finish */
  3068. down(&fs_info->uuid_tree_rescan_sem);
  3069. /* avoid complains from lockdep et al., set sem back to initial state */
  3070. up(&fs_info->uuid_tree_rescan_sem);
  3071. /* pause restriper - we want to resume on mount */
  3072. btrfs_pause_balance(fs_info);
  3073. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3074. btrfs_scrub_cancel(fs_info);
  3075. /* wait for any defraggers to finish */
  3076. wait_event(fs_info->transaction_wait,
  3077. (atomic_read(&fs_info->defrag_running) == 0));
  3078. /* clear out the rbtree of defraggable inodes */
  3079. btrfs_cleanup_defrag_inodes(fs_info);
  3080. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3081. ret = btrfs_commit_super(root);
  3082. if (ret)
  3083. btrfs_err(root->fs_info, "commit super ret %d", ret);
  3084. }
  3085. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3086. btrfs_error_commit_super(root);
  3087. kthread_stop(fs_info->transaction_kthread);
  3088. kthread_stop(fs_info->cleaner_kthread);
  3089. fs_info->closing = 2;
  3090. smp_mb();
  3091. btrfs_free_qgroup_config(root->fs_info);
  3092. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3093. btrfs_info(root->fs_info, "at unmount delalloc count %lld",
  3094. percpu_counter_sum(&fs_info->delalloc_bytes));
  3095. }
  3096. btrfs_sysfs_remove_one(fs_info);
  3097. del_fs_roots(fs_info);
  3098. btrfs_put_block_group_cache(fs_info);
  3099. btrfs_free_block_groups(fs_info);
  3100. btrfs_stop_all_workers(fs_info);
  3101. free_root_pointers(fs_info, 1);
  3102. iput(fs_info->btree_inode);
  3103. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3104. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3105. btrfsic_unmount(root, fs_info->fs_devices);
  3106. #endif
  3107. btrfs_close_devices(fs_info->fs_devices);
  3108. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3109. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3110. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3111. percpu_counter_destroy(&fs_info->bio_counter);
  3112. bdi_destroy(&fs_info->bdi);
  3113. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3114. btrfs_free_stripe_hash_table(fs_info);
  3115. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3116. root->orphan_block_rsv = NULL;
  3117. return 0;
  3118. }
  3119. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3120. int atomic)
  3121. {
  3122. int ret;
  3123. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3124. ret = extent_buffer_uptodate(buf);
  3125. if (!ret)
  3126. return ret;
  3127. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3128. parent_transid, atomic);
  3129. if (ret == -EAGAIN)
  3130. return ret;
  3131. return !ret;
  3132. }
  3133. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3134. {
  3135. return set_extent_buffer_uptodate(buf);
  3136. }
  3137. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3138. {
  3139. struct btrfs_root *root;
  3140. u64 transid = btrfs_header_generation(buf);
  3141. int was_dirty;
  3142. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3143. /*
  3144. * This is a fast path so only do this check if we have sanity tests
  3145. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3146. * outside of the sanity tests.
  3147. */
  3148. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3149. return;
  3150. #endif
  3151. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3152. btrfs_assert_tree_locked(buf);
  3153. if (transid != root->fs_info->generation)
  3154. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3155. "found %llu running %llu\n",
  3156. buf->start, transid, root->fs_info->generation);
  3157. was_dirty = set_extent_buffer_dirty(buf);
  3158. if (!was_dirty)
  3159. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3160. buf->len,
  3161. root->fs_info->dirty_metadata_batch);
  3162. }
  3163. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3164. int flush_delayed)
  3165. {
  3166. /*
  3167. * looks as though older kernels can get into trouble with
  3168. * this code, they end up stuck in balance_dirty_pages forever
  3169. */
  3170. int ret;
  3171. if (current->flags & PF_MEMALLOC)
  3172. return;
  3173. if (flush_delayed)
  3174. btrfs_balance_delayed_items(root);
  3175. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3176. BTRFS_DIRTY_METADATA_THRESH);
  3177. if (ret > 0) {
  3178. balance_dirty_pages_ratelimited(
  3179. root->fs_info->btree_inode->i_mapping);
  3180. }
  3181. return;
  3182. }
  3183. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3184. {
  3185. __btrfs_btree_balance_dirty(root, 1);
  3186. }
  3187. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3188. {
  3189. __btrfs_btree_balance_dirty(root, 0);
  3190. }
  3191. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3192. {
  3193. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3194. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3195. }
  3196. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3197. int read_only)
  3198. {
  3199. /*
  3200. * Placeholder for checks
  3201. */
  3202. return 0;
  3203. }
  3204. static void btrfs_error_commit_super(struct btrfs_root *root)
  3205. {
  3206. mutex_lock(&root->fs_info->cleaner_mutex);
  3207. btrfs_run_delayed_iputs(root);
  3208. mutex_unlock(&root->fs_info->cleaner_mutex);
  3209. down_write(&root->fs_info->cleanup_work_sem);
  3210. up_write(&root->fs_info->cleanup_work_sem);
  3211. /* cleanup FS via transaction */
  3212. btrfs_cleanup_transaction(root);
  3213. }
  3214. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3215. struct btrfs_root *root)
  3216. {
  3217. struct btrfs_inode *btrfs_inode;
  3218. struct list_head splice;
  3219. INIT_LIST_HEAD(&splice);
  3220. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3221. spin_lock(&root->fs_info->ordered_root_lock);
  3222. list_splice_init(&t->ordered_operations, &splice);
  3223. while (!list_empty(&splice)) {
  3224. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3225. ordered_operations);
  3226. list_del_init(&btrfs_inode->ordered_operations);
  3227. spin_unlock(&root->fs_info->ordered_root_lock);
  3228. btrfs_invalidate_inodes(btrfs_inode->root);
  3229. spin_lock(&root->fs_info->ordered_root_lock);
  3230. }
  3231. spin_unlock(&root->fs_info->ordered_root_lock);
  3232. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3233. }
  3234. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3235. {
  3236. struct btrfs_ordered_extent *ordered;
  3237. spin_lock(&root->ordered_extent_lock);
  3238. /*
  3239. * This will just short circuit the ordered completion stuff which will
  3240. * make sure the ordered extent gets properly cleaned up.
  3241. */
  3242. list_for_each_entry(ordered, &root->ordered_extents,
  3243. root_extent_list)
  3244. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3245. spin_unlock(&root->ordered_extent_lock);
  3246. }
  3247. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3248. {
  3249. struct btrfs_root *root;
  3250. struct list_head splice;
  3251. INIT_LIST_HEAD(&splice);
  3252. spin_lock(&fs_info->ordered_root_lock);
  3253. list_splice_init(&fs_info->ordered_roots, &splice);
  3254. while (!list_empty(&splice)) {
  3255. root = list_first_entry(&splice, struct btrfs_root,
  3256. ordered_root);
  3257. list_move_tail(&root->ordered_root,
  3258. &fs_info->ordered_roots);
  3259. spin_unlock(&fs_info->ordered_root_lock);
  3260. btrfs_destroy_ordered_extents(root);
  3261. cond_resched();
  3262. spin_lock(&fs_info->ordered_root_lock);
  3263. }
  3264. spin_unlock(&fs_info->ordered_root_lock);
  3265. }
  3266. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3267. struct btrfs_root *root)
  3268. {
  3269. struct rb_node *node;
  3270. struct btrfs_delayed_ref_root *delayed_refs;
  3271. struct btrfs_delayed_ref_node *ref;
  3272. int ret = 0;
  3273. delayed_refs = &trans->delayed_refs;
  3274. spin_lock(&delayed_refs->lock);
  3275. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3276. spin_unlock(&delayed_refs->lock);
  3277. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3278. return ret;
  3279. }
  3280. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3281. struct btrfs_delayed_ref_head *head;
  3282. bool pin_bytes = false;
  3283. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3284. href_node);
  3285. if (!mutex_trylock(&head->mutex)) {
  3286. atomic_inc(&head->node.refs);
  3287. spin_unlock(&delayed_refs->lock);
  3288. mutex_lock(&head->mutex);
  3289. mutex_unlock(&head->mutex);
  3290. btrfs_put_delayed_ref(&head->node);
  3291. spin_lock(&delayed_refs->lock);
  3292. continue;
  3293. }
  3294. spin_lock(&head->lock);
  3295. while ((node = rb_first(&head->ref_root)) != NULL) {
  3296. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  3297. rb_node);
  3298. ref->in_tree = 0;
  3299. rb_erase(&ref->rb_node, &head->ref_root);
  3300. atomic_dec(&delayed_refs->num_entries);
  3301. btrfs_put_delayed_ref(ref);
  3302. }
  3303. if (head->must_insert_reserved)
  3304. pin_bytes = true;
  3305. btrfs_free_delayed_extent_op(head->extent_op);
  3306. delayed_refs->num_heads--;
  3307. if (head->processing == 0)
  3308. delayed_refs->num_heads_ready--;
  3309. atomic_dec(&delayed_refs->num_entries);
  3310. head->node.in_tree = 0;
  3311. rb_erase(&head->href_node, &delayed_refs->href_root);
  3312. spin_unlock(&head->lock);
  3313. spin_unlock(&delayed_refs->lock);
  3314. mutex_unlock(&head->mutex);
  3315. if (pin_bytes)
  3316. btrfs_pin_extent(root, head->node.bytenr,
  3317. head->node.num_bytes, 1);
  3318. btrfs_put_delayed_ref(&head->node);
  3319. cond_resched();
  3320. spin_lock(&delayed_refs->lock);
  3321. }
  3322. spin_unlock(&delayed_refs->lock);
  3323. return ret;
  3324. }
  3325. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3326. {
  3327. struct btrfs_inode *btrfs_inode;
  3328. struct list_head splice;
  3329. INIT_LIST_HEAD(&splice);
  3330. spin_lock(&root->delalloc_lock);
  3331. list_splice_init(&root->delalloc_inodes, &splice);
  3332. while (!list_empty(&splice)) {
  3333. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3334. delalloc_inodes);
  3335. list_del_init(&btrfs_inode->delalloc_inodes);
  3336. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3337. &btrfs_inode->runtime_flags);
  3338. spin_unlock(&root->delalloc_lock);
  3339. btrfs_invalidate_inodes(btrfs_inode->root);
  3340. spin_lock(&root->delalloc_lock);
  3341. }
  3342. spin_unlock(&root->delalloc_lock);
  3343. }
  3344. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3345. {
  3346. struct btrfs_root *root;
  3347. struct list_head splice;
  3348. INIT_LIST_HEAD(&splice);
  3349. spin_lock(&fs_info->delalloc_root_lock);
  3350. list_splice_init(&fs_info->delalloc_roots, &splice);
  3351. while (!list_empty(&splice)) {
  3352. root = list_first_entry(&splice, struct btrfs_root,
  3353. delalloc_root);
  3354. list_del_init(&root->delalloc_root);
  3355. root = btrfs_grab_fs_root(root);
  3356. BUG_ON(!root);
  3357. spin_unlock(&fs_info->delalloc_root_lock);
  3358. btrfs_destroy_delalloc_inodes(root);
  3359. btrfs_put_fs_root(root);
  3360. spin_lock(&fs_info->delalloc_root_lock);
  3361. }
  3362. spin_unlock(&fs_info->delalloc_root_lock);
  3363. }
  3364. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3365. struct extent_io_tree *dirty_pages,
  3366. int mark)
  3367. {
  3368. int ret;
  3369. struct extent_buffer *eb;
  3370. u64 start = 0;
  3371. u64 end;
  3372. while (1) {
  3373. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3374. mark, NULL);
  3375. if (ret)
  3376. break;
  3377. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3378. while (start <= end) {
  3379. eb = btrfs_find_tree_block(root, start,
  3380. root->leafsize);
  3381. start += root->leafsize;
  3382. if (!eb)
  3383. continue;
  3384. wait_on_extent_buffer_writeback(eb);
  3385. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3386. &eb->bflags))
  3387. clear_extent_buffer_dirty(eb);
  3388. free_extent_buffer_stale(eb);
  3389. }
  3390. }
  3391. return ret;
  3392. }
  3393. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3394. struct extent_io_tree *pinned_extents)
  3395. {
  3396. struct extent_io_tree *unpin;
  3397. u64 start;
  3398. u64 end;
  3399. int ret;
  3400. bool loop = true;
  3401. unpin = pinned_extents;
  3402. again:
  3403. while (1) {
  3404. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3405. EXTENT_DIRTY, NULL);
  3406. if (ret)
  3407. break;
  3408. /* opt_discard */
  3409. if (btrfs_test_opt(root, DISCARD))
  3410. ret = btrfs_error_discard_extent(root, start,
  3411. end + 1 - start,
  3412. NULL);
  3413. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3414. btrfs_error_unpin_extent_range(root, start, end);
  3415. cond_resched();
  3416. }
  3417. if (loop) {
  3418. if (unpin == &root->fs_info->freed_extents[0])
  3419. unpin = &root->fs_info->freed_extents[1];
  3420. else
  3421. unpin = &root->fs_info->freed_extents[0];
  3422. loop = false;
  3423. goto again;
  3424. }
  3425. return 0;
  3426. }
  3427. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3428. struct btrfs_root *root)
  3429. {
  3430. btrfs_destroy_ordered_operations(cur_trans, root);
  3431. btrfs_destroy_delayed_refs(cur_trans, root);
  3432. cur_trans->state = TRANS_STATE_COMMIT_START;
  3433. wake_up(&root->fs_info->transaction_blocked_wait);
  3434. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3435. wake_up(&root->fs_info->transaction_wait);
  3436. btrfs_destroy_delayed_inodes(root);
  3437. btrfs_assert_delayed_root_empty(root);
  3438. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3439. EXTENT_DIRTY);
  3440. btrfs_destroy_pinned_extent(root,
  3441. root->fs_info->pinned_extents);
  3442. cur_trans->state =TRANS_STATE_COMPLETED;
  3443. wake_up(&cur_trans->commit_wait);
  3444. /*
  3445. memset(cur_trans, 0, sizeof(*cur_trans));
  3446. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3447. */
  3448. }
  3449. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3450. {
  3451. struct btrfs_transaction *t;
  3452. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3453. spin_lock(&root->fs_info->trans_lock);
  3454. while (!list_empty(&root->fs_info->trans_list)) {
  3455. t = list_first_entry(&root->fs_info->trans_list,
  3456. struct btrfs_transaction, list);
  3457. if (t->state >= TRANS_STATE_COMMIT_START) {
  3458. atomic_inc(&t->use_count);
  3459. spin_unlock(&root->fs_info->trans_lock);
  3460. btrfs_wait_for_commit(root, t->transid);
  3461. btrfs_put_transaction(t);
  3462. spin_lock(&root->fs_info->trans_lock);
  3463. continue;
  3464. }
  3465. if (t == root->fs_info->running_transaction) {
  3466. t->state = TRANS_STATE_COMMIT_DOING;
  3467. spin_unlock(&root->fs_info->trans_lock);
  3468. /*
  3469. * We wait for 0 num_writers since we don't hold a trans
  3470. * handle open currently for this transaction.
  3471. */
  3472. wait_event(t->writer_wait,
  3473. atomic_read(&t->num_writers) == 0);
  3474. } else {
  3475. spin_unlock(&root->fs_info->trans_lock);
  3476. }
  3477. btrfs_cleanup_one_transaction(t, root);
  3478. spin_lock(&root->fs_info->trans_lock);
  3479. if (t == root->fs_info->running_transaction)
  3480. root->fs_info->running_transaction = NULL;
  3481. list_del_init(&t->list);
  3482. spin_unlock(&root->fs_info->trans_lock);
  3483. btrfs_put_transaction(t);
  3484. trace_btrfs_transaction_commit(root);
  3485. spin_lock(&root->fs_info->trans_lock);
  3486. }
  3487. spin_unlock(&root->fs_info->trans_lock);
  3488. btrfs_destroy_all_ordered_extents(root->fs_info);
  3489. btrfs_destroy_delayed_inodes(root);
  3490. btrfs_assert_delayed_root_empty(root);
  3491. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3492. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3493. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3494. return 0;
  3495. }
  3496. static struct extent_io_ops btree_extent_io_ops = {
  3497. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3498. .readpage_io_failed_hook = btree_io_failed_hook,
  3499. .submit_bio_hook = btree_submit_bio_hook,
  3500. /* note we're sharing with inode.c for the merge bio hook */
  3501. .merge_bio_hook = btrfs_merge_bio_hook,
  3502. };