intel_dpll_mgr.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902
  1. /*
  2. * Copyright © 2006-2016 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. */
  23. #include "intel_drv.h"
  24. struct intel_shared_dpll *
  25. skl_find_link_pll(struct drm_i915_private *dev_priv, int clock)
  26. {
  27. struct intel_shared_dpll *pll = NULL;
  28. struct intel_dpll_hw_state dpll_hw_state;
  29. enum intel_dpll_id i;
  30. bool found = false;
  31. if (!skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  32. return pll;
  33. for (i = DPLL_ID_SKL_DPLL1; i <= DPLL_ID_SKL_DPLL3; i++) {
  34. pll = &dev_priv->shared_dplls[i];
  35. /* Only want to check enabled timings first */
  36. if (pll->config.crtc_mask == 0)
  37. continue;
  38. if (memcmp(&dpll_hw_state, &pll->config.hw_state,
  39. sizeof(pll->config.hw_state)) == 0) {
  40. found = true;
  41. break;
  42. }
  43. }
  44. /* Ok no matching timings, maybe there's a free one? */
  45. for (i = DPLL_ID_SKL_DPLL1;
  46. ((found == false) && (i <= DPLL_ID_SKL_DPLL3)); i++) {
  47. pll = &dev_priv->shared_dplls[i];
  48. if (pll->config.crtc_mask == 0) {
  49. pll->config.hw_state = dpll_hw_state;
  50. break;
  51. }
  52. }
  53. return pll;
  54. }
  55. struct intel_shared_dpll *
  56. intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
  57. enum intel_dpll_id id)
  58. {
  59. return &dev_priv->shared_dplls[id];
  60. }
  61. enum intel_dpll_id
  62. intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
  63. struct intel_shared_dpll *pll)
  64. {
  65. if (WARN_ON(pll < dev_priv->shared_dplls||
  66. pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
  67. return -1;
  68. return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
  69. }
  70. void
  71. intel_shared_dpll_config_get(struct intel_shared_dpll_config *config,
  72. struct intel_shared_dpll *pll,
  73. struct intel_crtc *crtc)
  74. {
  75. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  76. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  77. config[id].crtc_mask |= 1 << crtc->pipe;
  78. }
  79. void
  80. intel_shared_dpll_config_put(struct intel_shared_dpll_config *config,
  81. struct intel_shared_dpll *pll,
  82. struct intel_crtc *crtc)
  83. {
  84. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  85. enum intel_dpll_id id = intel_get_shared_dpll_id(dev_priv, pll);
  86. config[id].crtc_mask &= ~(1 << crtc->pipe);
  87. }
  88. /* For ILK+ */
  89. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  90. struct intel_shared_dpll *pll,
  91. bool state)
  92. {
  93. bool cur_state;
  94. struct intel_dpll_hw_state hw_state;
  95. if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
  96. return;
  97. cur_state = pll->funcs.get_hw_state(dev_priv, pll, &hw_state);
  98. I915_STATE_WARN(cur_state != state,
  99. "%s assertion failure (expected %s, current %s)\n",
  100. pll->name, onoff(state), onoff(cur_state));
  101. }
  102. void intel_prepare_shared_dpll(struct intel_crtc *crtc)
  103. {
  104. struct drm_device *dev = crtc->base.dev;
  105. struct drm_i915_private *dev_priv = to_i915(dev);
  106. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  107. if (WARN_ON(pll == NULL))
  108. return;
  109. mutex_lock(&dev_priv->dpll_lock);
  110. WARN_ON(!pll->config.crtc_mask);
  111. if (!pll->active_mask) {
  112. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  113. WARN_ON(pll->on);
  114. assert_shared_dpll_disabled(dev_priv, pll);
  115. pll->funcs.mode_set(dev_priv, pll);
  116. }
  117. mutex_unlock(&dev_priv->dpll_lock);
  118. }
  119. /**
  120. * intel_enable_shared_dpll - enable PCH PLL
  121. * @dev_priv: i915 private structure
  122. * @pipe: pipe PLL to enable
  123. *
  124. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  125. * drives the transcoder clock.
  126. */
  127. void intel_enable_shared_dpll(struct intel_crtc *crtc)
  128. {
  129. struct drm_device *dev = crtc->base.dev;
  130. struct drm_i915_private *dev_priv = to_i915(dev);
  131. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  132. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  133. unsigned old_mask;
  134. if (WARN_ON(pll == NULL))
  135. return;
  136. mutex_lock(&dev_priv->dpll_lock);
  137. old_mask = pll->active_mask;
  138. if (WARN_ON(!(pll->config.crtc_mask & crtc_mask)) ||
  139. WARN_ON(pll->active_mask & crtc_mask))
  140. goto out;
  141. pll->active_mask |= crtc_mask;
  142. DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
  143. pll->name, pll->active_mask, pll->on,
  144. crtc->base.base.id);
  145. if (old_mask) {
  146. WARN_ON(!pll->on);
  147. assert_shared_dpll_enabled(dev_priv, pll);
  148. goto out;
  149. }
  150. WARN_ON(pll->on);
  151. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  152. pll->funcs.enable(dev_priv, pll);
  153. pll->on = true;
  154. out:
  155. mutex_unlock(&dev_priv->dpll_lock);
  156. }
  157. void intel_disable_shared_dpll(struct intel_crtc *crtc)
  158. {
  159. struct drm_device *dev = crtc->base.dev;
  160. struct drm_i915_private *dev_priv = to_i915(dev);
  161. struct intel_shared_dpll *pll = crtc->config->shared_dpll;
  162. unsigned crtc_mask = 1 << drm_crtc_index(&crtc->base);
  163. /* PCH only available on ILK+ */
  164. if (INTEL_INFO(dev)->gen < 5)
  165. return;
  166. if (pll == NULL)
  167. return;
  168. mutex_lock(&dev_priv->dpll_lock);
  169. if (WARN_ON(!(pll->active_mask & crtc_mask)))
  170. goto out;
  171. DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
  172. pll->name, pll->active_mask, pll->on,
  173. crtc->base.base.id);
  174. assert_shared_dpll_enabled(dev_priv, pll);
  175. WARN_ON(!pll->on);
  176. pll->active_mask &= ~crtc_mask;
  177. if (pll->active_mask)
  178. goto out;
  179. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  180. pll->funcs.disable(dev_priv, pll);
  181. pll->on = false;
  182. out:
  183. mutex_unlock(&dev_priv->dpll_lock);
  184. }
  185. static struct intel_shared_dpll *
  186. intel_find_shared_dpll(struct intel_crtc *crtc,
  187. struct intel_crtc_state *crtc_state,
  188. enum intel_dpll_id range_min,
  189. enum intel_dpll_id range_max)
  190. {
  191. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  192. struct intel_shared_dpll *pll;
  193. struct intel_shared_dpll_config *shared_dpll;
  194. enum intel_dpll_id i;
  195. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  196. for (i = range_min; i <= range_max; i++) {
  197. pll = &dev_priv->shared_dplls[i];
  198. /* Only want to check enabled timings first */
  199. if (shared_dpll[i].crtc_mask == 0)
  200. continue;
  201. if (memcmp(&crtc_state->dpll_hw_state,
  202. &shared_dpll[i].hw_state,
  203. sizeof(crtc_state->dpll_hw_state)) == 0) {
  204. DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
  205. crtc->base.base.id, crtc->base.name, pll->name,
  206. shared_dpll[i].crtc_mask,
  207. pll->active_mask);
  208. return pll;
  209. }
  210. }
  211. /* Ok no matching timings, maybe there's a free one? */
  212. for (i = range_min; i <= range_max; i++) {
  213. pll = &dev_priv->shared_dplls[i];
  214. if (shared_dpll[i].crtc_mask == 0) {
  215. DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
  216. crtc->base.base.id, crtc->base.name, pll->name);
  217. return pll;
  218. }
  219. }
  220. return NULL;
  221. }
  222. static void
  223. intel_reference_shared_dpll(struct intel_shared_dpll *pll,
  224. struct intel_crtc_state *crtc_state)
  225. {
  226. struct intel_shared_dpll_config *shared_dpll;
  227. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  228. enum intel_dpll_id i = pll->id;
  229. shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
  230. if (shared_dpll[i].crtc_mask == 0)
  231. shared_dpll[i].hw_state =
  232. crtc_state->dpll_hw_state;
  233. crtc_state->shared_dpll = pll;
  234. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  235. pipe_name(crtc->pipe));
  236. intel_shared_dpll_config_get(shared_dpll, pll, crtc);
  237. }
  238. void intel_shared_dpll_commit(struct drm_atomic_state *state)
  239. {
  240. struct drm_i915_private *dev_priv = to_i915(state->dev);
  241. struct intel_shared_dpll_config *shared_dpll;
  242. struct intel_shared_dpll *pll;
  243. enum intel_dpll_id i;
  244. if (!to_intel_atomic_state(state)->dpll_set)
  245. return;
  246. shared_dpll = to_intel_atomic_state(state)->shared_dpll;
  247. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  248. pll = &dev_priv->shared_dplls[i];
  249. pll->config = shared_dpll[i];
  250. }
  251. }
  252. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  253. struct intel_shared_dpll *pll,
  254. struct intel_dpll_hw_state *hw_state)
  255. {
  256. uint32_t val;
  257. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  258. return false;
  259. val = I915_READ(PCH_DPLL(pll->id));
  260. hw_state->dpll = val;
  261. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  262. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  263. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  264. return val & DPLL_VCO_ENABLE;
  265. }
  266. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  267. struct intel_shared_dpll *pll)
  268. {
  269. I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
  270. I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
  271. }
  272. static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  273. {
  274. u32 val;
  275. bool enabled;
  276. I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
  277. val = I915_READ(PCH_DREF_CONTROL);
  278. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  279. DREF_SUPERSPREAD_SOURCE_MASK));
  280. I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  281. }
  282. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  283. struct intel_shared_dpll *pll)
  284. {
  285. /* PCH refclock must be enabled first */
  286. ibx_assert_pch_refclk_enabled(dev_priv);
  287. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  288. /* Wait for the clocks to stabilize. */
  289. POSTING_READ(PCH_DPLL(pll->id));
  290. udelay(150);
  291. /* The pixel multiplier can only be updated once the
  292. * DPLL is enabled and the clocks are stable.
  293. *
  294. * So write it again.
  295. */
  296. I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
  297. POSTING_READ(PCH_DPLL(pll->id));
  298. udelay(200);
  299. }
  300. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  301. struct intel_shared_dpll *pll)
  302. {
  303. struct drm_device *dev = &dev_priv->drm;
  304. struct intel_crtc *crtc;
  305. /* Make sure no transcoder isn't still depending on us. */
  306. for_each_intel_crtc(dev, crtc) {
  307. if (crtc->config->shared_dpll == pll)
  308. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  309. }
  310. I915_WRITE(PCH_DPLL(pll->id), 0);
  311. POSTING_READ(PCH_DPLL(pll->id));
  312. udelay(200);
  313. }
  314. static struct intel_shared_dpll *
  315. ibx_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  316. struct intel_encoder *encoder)
  317. {
  318. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  319. struct intel_shared_dpll *pll;
  320. enum intel_dpll_id i;
  321. if (HAS_PCH_IBX(dev_priv)) {
  322. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  323. i = (enum intel_dpll_id) crtc->pipe;
  324. pll = &dev_priv->shared_dplls[i];
  325. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  326. crtc->base.base.id, crtc->base.name, pll->name);
  327. } else {
  328. pll = intel_find_shared_dpll(crtc, crtc_state,
  329. DPLL_ID_PCH_PLL_A,
  330. DPLL_ID_PCH_PLL_B);
  331. }
  332. if (!pll)
  333. return NULL;
  334. /* reference the pll */
  335. intel_reference_shared_dpll(pll, crtc_state);
  336. return pll;
  337. }
  338. static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
  339. .mode_set = ibx_pch_dpll_mode_set,
  340. .enable = ibx_pch_dpll_enable,
  341. .disable = ibx_pch_dpll_disable,
  342. .get_hw_state = ibx_pch_dpll_get_hw_state,
  343. };
  344. static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
  345. struct intel_shared_dpll *pll)
  346. {
  347. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  348. POSTING_READ(WRPLL_CTL(pll->id));
  349. udelay(20);
  350. }
  351. static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
  352. struct intel_shared_dpll *pll)
  353. {
  354. I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
  355. POSTING_READ(SPLL_CTL);
  356. udelay(20);
  357. }
  358. static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
  359. struct intel_shared_dpll *pll)
  360. {
  361. uint32_t val;
  362. val = I915_READ(WRPLL_CTL(pll->id));
  363. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  364. POSTING_READ(WRPLL_CTL(pll->id));
  365. }
  366. static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
  367. struct intel_shared_dpll *pll)
  368. {
  369. uint32_t val;
  370. val = I915_READ(SPLL_CTL);
  371. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  372. POSTING_READ(SPLL_CTL);
  373. }
  374. static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
  375. struct intel_shared_dpll *pll,
  376. struct intel_dpll_hw_state *hw_state)
  377. {
  378. uint32_t val;
  379. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  380. return false;
  381. val = I915_READ(WRPLL_CTL(pll->id));
  382. hw_state->wrpll = val;
  383. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  384. return val & WRPLL_PLL_ENABLE;
  385. }
  386. static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
  387. struct intel_shared_dpll *pll,
  388. struct intel_dpll_hw_state *hw_state)
  389. {
  390. uint32_t val;
  391. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  392. return false;
  393. val = I915_READ(SPLL_CTL);
  394. hw_state->spll = val;
  395. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  396. return val & SPLL_PLL_ENABLE;
  397. }
  398. #define LC_FREQ 2700
  399. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  400. #define P_MIN 2
  401. #define P_MAX 64
  402. #define P_INC 2
  403. /* Constraints for PLL good behavior */
  404. #define REF_MIN 48
  405. #define REF_MAX 400
  406. #define VCO_MIN 2400
  407. #define VCO_MAX 4800
  408. struct hsw_wrpll_rnp {
  409. unsigned p, n2, r2;
  410. };
  411. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  412. {
  413. unsigned budget;
  414. switch (clock) {
  415. case 25175000:
  416. case 25200000:
  417. case 27000000:
  418. case 27027000:
  419. case 37762500:
  420. case 37800000:
  421. case 40500000:
  422. case 40541000:
  423. case 54000000:
  424. case 54054000:
  425. case 59341000:
  426. case 59400000:
  427. case 72000000:
  428. case 74176000:
  429. case 74250000:
  430. case 81000000:
  431. case 81081000:
  432. case 89012000:
  433. case 89100000:
  434. case 108000000:
  435. case 108108000:
  436. case 111264000:
  437. case 111375000:
  438. case 148352000:
  439. case 148500000:
  440. case 162000000:
  441. case 162162000:
  442. case 222525000:
  443. case 222750000:
  444. case 296703000:
  445. case 297000000:
  446. budget = 0;
  447. break;
  448. case 233500000:
  449. case 245250000:
  450. case 247750000:
  451. case 253250000:
  452. case 298000000:
  453. budget = 1500;
  454. break;
  455. case 169128000:
  456. case 169500000:
  457. case 179500000:
  458. case 202000000:
  459. budget = 2000;
  460. break;
  461. case 256250000:
  462. case 262500000:
  463. case 270000000:
  464. case 272500000:
  465. case 273750000:
  466. case 280750000:
  467. case 281250000:
  468. case 286000000:
  469. case 291750000:
  470. budget = 4000;
  471. break;
  472. case 267250000:
  473. case 268500000:
  474. budget = 5000;
  475. break;
  476. default:
  477. budget = 1000;
  478. break;
  479. }
  480. return budget;
  481. }
  482. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  483. unsigned r2, unsigned n2, unsigned p,
  484. struct hsw_wrpll_rnp *best)
  485. {
  486. uint64_t a, b, c, d, diff, diff_best;
  487. /* No best (r,n,p) yet */
  488. if (best->p == 0) {
  489. best->p = p;
  490. best->n2 = n2;
  491. best->r2 = r2;
  492. return;
  493. }
  494. /*
  495. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  496. * freq2k.
  497. *
  498. * delta = 1e6 *
  499. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  500. * freq2k;
  501. *
  502. * and we would like delta <= budget.
  503. *
  504. * If the discrepancy is above the PPM-based budget, always prefer to
  505. * improve upon the previous solution. However, if you're within the
  506. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  507. */
  508. a = freq2k * budget * p * r2;
  509. b = freq2k * budget * best->p * best->r2;
  510. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  511. diff_best = abs_diff(freq2k * best->p * best->r2,
  512. LC_FREQ_2K * best->n2);
  513. c = 1000000 * diff;
  514. d = 1000000 * diff_best;
  515. if (a < c && b < d) {
  516. /* If both are above the budget, pick the closer */
  517. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  518. best->p = p;
  519. best->n2 = n2;
  520. best->r2 = r2;
  521. }
  522. } else if (a >= c && b < d) {
  523. /* If A is below the threshold but B is above it? Update. */
  524. best->p = p;
  525. best->n2 = n2;
  526. best->r2 = r2;
  527. } else if (a >= c && b >= d) {
  528. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  529. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  530. best->p = p;
  531. best->n2 = n2;
  532. best->r2 = r2;
  533. }
  534. }
  535. /* Otherwise a < c && b >= d, do nothing */
  536. }
  537. static void
  538. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  539. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  540. {
  541. uint64_t freq2k;
  542. unsigned p, n2, r2;
  543. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  544. unsigned budget;
  545. freq2k = clock / 100;
  546. budget = hsw_wrpll_get_budget_for_freq(clock);
  547. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  548. * and directly pass the LC PLL to it. */
  549. if (freq2k == 5400000) {
  550. *n2_out = 2;
  551. *p_out = 1;
  552. *r2_out = 2;
  553. return;
  554. }
  555. /*
  556. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  557. * the WR PLL.
  558. *
  559. * We want R so that REF_MIN <= Ref <= REF_MAX.
  560. * Injecting R2 = 2 * R gives:
  561. * REF_MAX * r2 > LC_FREQ * 2 and
  562. * REF_MIN * r2 < LC_FREQ * 2
  563. *
  564. * Which means the desired boundaries for r2 are:
  565. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  566. *
  567. */
  568. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  569. r2 <= LC_FREQ * 2 / REF_MIN;
  570. r2++) {
  571. /*
  572. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  573. *
  574. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  575. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  576. * VCO_MAX * r2 > n2 * LC_FREQ and
  577. * VCO_MIN * r2 < n2 * LC_FREQ)
  578. *
  579. * Which means the desired boundaries for n2 are:
  580. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  581. */
  582. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  583. n2 <= VCO_MAX * r2 / LC_FREQ;
  584. n2++) {
  585. for (p = P_MIN; p <= P_MAX; p += P_INC)
  586. hsw_wrpll_update_rnp(freq2k, budget,
  587. r2, n2, p, &best);
  588. }
  589. }
  590. *n2_out = best.n2;
  591. *p_out = best.p;
  592. *r2_out = best.r2;
  593. }
  594. static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(int clock,
  595. struct intel_crtc *crtc,
  596. struct intel_crtc_state *crtc_state)
  597. {
  598. struct intel_shared_dpll *pll;
  599. uint32_t val;
  600. unsigned int p, n2, r2;
  601. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  602. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  603. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  604. WRPLL_DIVIDER_POST(p);
  605. crtc_state->dpll_hw_state.wrpll = val;
  606. pll = intel_find_shared_dpll(crtc, crtc_state,
  607. DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
  608. if (!pll)
  609. return NULL;
  610. return pll;
  611. }
  612. struct intel_shared_dpll *hsw_ddi_dp_get_dpll(struct intel_encoder *encoder,
  613. int clock)
  614. {
  615. struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
  616. struct intel_shared_dpll *pll;
  617. enum intel_dpll_id pll_id;
  618. switch (clock / 2) {
  619. case 81000:
  620. pll_id = DPLL_ID_LCPLL_810;
  621. break;
  622. case 135000:
  623. pll_id = DPLL_ID_LCPLL_1350;
  624. break;
  625. case 270000:
  626. pll_id = DPLL_ID_LCPLL_2700;
  627. break;
  628. default:
  629. DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
  630. return NULL;
  631. }
  632. pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
  633. if (!pll)
  634. return NULL;
  635. return pll;
  636. }
  637. static struct intel_shared_dpll *
  638. hsw_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  639. struct intel_encoder *encoder)
  640. {
  641. struct intel_shared_dpll *pll;
  642. int clock = crtc_state->port_clock;
  643. memset(&crtc_state->dpll_hw_state, 0,
  644. sizeof(crtc_state->dpll_hw_state));
  645. if (encoder->type == INTEL_OUTPUT_HDMI) {
  646. pll = hsw_ddi_hdmi_get_dpll(clock, crtc, crtc_state);
  647. } else if (encoder->type == INTEL_OUTPUT_DP ||
  648. encoder->type == INTEL_OUTPUT_DP_MST ||
  649. encoder->type == INTEL_OUTPUT_EDP) {
  650. pll = hsw_ddi_dp_get_dpll(encoder, clock);
  651. } else if (encoder->type == INTEL_OUTPUT_ANALOG) {
  652. if (WARN_ON(crtc_state->port_clock / 2 != 135000))
  653. return NULL;
  654. crtc_state->dpll_hw_state.spll =
  655. SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  656. pll = intel_find_shared_dpll(crtc, crtc_state,
  657. DPLL_ID_SPLL, DPLL_ID_SPLL);
  658. } else {
  659. return NULL;
  660. }
  661. if (!pll)
  662. return NULL;
  663. intel_reference_shared_dpll(pll, crtc_state);
  664. return pll;
  665. }
  666. static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
  667. .enable = hsw_ddi_wrpll_enable,
  668. .disable = hsw_ddi_wrpll_disable,
  669. .get_hw_state = hsw_ddi_wrpll_get_hw_state,
  670. };
  671. static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
  672. .enable = hsw_ddi_spll_enable,
  673. .disable = hsw_ddi_spll_disable,
  674. .get_hw_state = hsw_ddi_spll_get_hw_state,
  675. };
  676. static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
  677. struct intel_shared_dpll *pll)
  678. {
  679. }
  680. static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
  681. struct intel_shared_dpll *pll)
  682. {
  683. }
  684. static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
  685. struct intel_shared_dpll *pll,
  686. struct intel_dpll_hw_state *hw_state)
  687. {
  688. return true;
  689. }
  690. static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
  691. .enable = hsw_ddi_lcpll_enable,
  692. .disable = hsw_ddi_lcpll_disable,
  693. .get_hw_state = hsw_ddi_lcpll_get_hw_state,
  694. };
  695. struct skl_dpll_regs {
  696. i915_reg_t ctl, cfgcr1, cfgcr2;
  697. };
  698. /* this array is indexed by the *shared* pll id */
  699. static const struct skl_dpll_regs skl_dpll_regs[4] = {
  700. {
  701. /* DPLL 0 */
  702. .ctl = LCPLL1_CTL,
  703. /* DPLL 0 doesn't support HDMI mode */
  704. },
  705. {
  706. /* DPLL 1 */
  707. .ctl = LCPLL2_CTL,
  708. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
  709. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
  710. },
  711. {
  712. /* DPLL 2 */
  713. .ctl = WRPLL_CTL(0),
  714. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
  715. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
  716. },
  717. {
  718. /* DPLL 3 */
  719. .ctl = WRPLL_CTL(1),
  720. .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
  721. .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
  722. },
  723. };
  724. static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
  725. struct intel_shared_dpll *pll)
  726. {
  727. uint32_t val;
  728. val = I915_READ(DPLL_CTRL1);
  729. val &= ~(DPLL_CTRL1_HDMI_MODE(pll->id) | DPLL_CTRL1_SSC(pll->id) |
  730. DPLL_CTRL1_LINK_RATE_MASK(pll->id));
  731. val |= pll->config.hw_state.ctrl1 << (pll->id * 6);
  732. I915_WRITE(DPLL_CTRL1, val);
  733. POSTING_READ(DPLL_CTRL1);
  734. }
  735. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  736. struct intel_shared_dpll *pll)
  737. {
  738. const struct skl_dpll_regs *regs = skl_dpll_regs;
  739. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  740. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  741. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  742. POSTING_READ(regs[pll->id].cfgcr1);
  743. POSTING_READ(regs[pll->id].cfgcr2);
  744. /* the enable bit is always bit 31 */
  745. I915_WRITE(regs[pll->id].ctl,
  746. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  747. if (intel_wait_for_register(dev_priv,
  748. DPLL_STATUS,
  749. DPLL_LOCK(pll->id),
  750. DPLL_LOCK(pll->id),
  751. 5))
  752. DRM_ERROR("DPLL %d not locked\n", pll->id);
  753. }
  754. static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
  755. struct intel_shared_dpll *pll)
  756. {
  757. skl_ddi_pll_write_ctrl1(dev_priv, pll);
  758. }
  759. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  760. struct intel_shared_dpll *pll)
  761. {
  762. const struct skl_dpll_regs *regs = skl_dpll_regs;
  763. /* the enable bit is always bit 31 */
  764. I915_WRITE(regs[pll->id].ctl,
  765. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  766. POSTING_READ(regs[pll->id].ctl);
  767. }
  768. static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
  769. struct intel_shared_dpll *pll)
  770. {
  771. }
  772. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  773. struct intel_shared_dpll *pll,
  774. struct intel_dpll_hw_state *hw_state)
  775. {
  776. uint32_t val;
  777. const struct skl_dpll_regs *regs = skl_dpll_regs;
  778. bool ret;
  779. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  780. return false;
  781. ret = false;
  782. val = I915_READ(regs[pll->id].ctl);
  783. if (!(val & LCPLL_PLL_ENABLE))
  784. goto out;
  785. val = I915_READ(DPLL_CTRL1);
  786. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  787. /* avoid reading back stale values if HDMI mode is not enabled */
  788. if (val & DPLL_CTRL1_HDMI_MODE(pll->id)) {
  789. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  790. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  791. }
  792. ret = true;
  793. out:
  794. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  795. return ret;
  796. }
  797. static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
  798. struct intel_shared_dpll *pll,
  799. struct intel_dpll_hw_state *hw_state)
  800. {
  801. uint32_t val;
  802. const struct skl_dpll_regs *regs = skl_dpll_regs;
  803. bool ret;
  804. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  805. return false;
  806. ret = false;
  807. /* DPLL0 is always enabled since it drives CDCLK */
  808. val = I915_READ(regs[pll->id].ctl);
  809. if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
  810. goto out;
  811. val = I915_READ(DPLL_CTRL1);
  812. hw_state->ctrl1 = (val >> (pll->id * 6)) & 0x3f;
  813. ret = true;
  814. out:
  815. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  816. return ret;
  817. }
  818. struct skl_wrpll_context {
  819. uint64_t min_deviation; /* current minimal deviation */
  820. uint64_t central_freq; /* chosen central freq */
  821. uint64_t dco_freq; /* chosen dco freq */
  822. unsigned int p; /* chosen divider */
  823. };
  824. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  825. {
  826. memset(ctx, 0, sizeof(*ctx));
  827. ctx->min_deviation = U64_MAX;
  828. }
  829. /* DCO freq must be within +1%/-6% of the DCO central freq */
  830. #define SKL_DCO_MAX_PDEVIATION 100
  831. #define SKL_DCO_MAX_NDEVIATION 600
  832. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  833. uint64_t central_freq,
  834. uint64_t dco_freq,
  835. unsigned int divider)
  836. {
  837. uint64_t deviation;
  838. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  839. central_freq);
  840. /* positive deviation */
  841. if (dco_freq >= central_freq) {
  842. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  843. deviation < ctx->min_deviation) {
  844. ctx->min_deviation = deviation;
  845. ctx->central_freq = central_freq;
  846. ctx->dco_freq = dco_freq;
  847. ctx->p = divider;
  848. }
  849. /* negative deviation */
  850. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  851. deviation < ctx->min_deviation) {
  852. ctx->min_deviation = deviation;
  853. ctx->central_freq = central_freq;
  854. ctx->dco_freq = dco_freq;
  855. ctx->p = divider;
  856. }
  857. }
  858. static void skl_wrpll_get_multipliers(unsigned int p,
  859. unsigned int *p0 /* out */,
  860. unsigned int *p1 /* out */,
  861. unsigned int *p2 /* out */)
  862. {
  863. /* even dividers */
  864. if (p % 2 == 0) {
  865. unsigned int half = p / 2;
  866. if (half == 1 || half == 2 || half == 3 || half == 5) {
  867. *p0 = 2;
  868. *p1 = 1;
  869. *p2 = half;
  870. } else if (half % 2 == 0) {
  871. *p0 = 2;
  872. *p1 = half / 2;
  873. *p2 = 2;
  874. } else if (half % 3 == 0) {
  875. *p0 = 3;
  876. *p1 = half / 3;
  877. *p2 = 2;
  878. } else if (half % 7 == 0) {
  879. *p0 = 7;
  880. *p1 = half / 7;
  881. *p2 = 2;
  882. }
  883. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  884. *p0 = 3;
  885. *p1 = 1;
  886. *p2 = p / 3;
  887. } else if (p == 5 || p == 7) {
  888. *p0 = p;
  889. *p1 = 1;
  890. *p2 = 1;
  891. } else if (p == 15) {
  892. *p0 = 3;
  893. *p1 = 1;
  894. *p2 = 5;
  895. } else if (p == 21) {
  896. *p0 = 7;
  897. *p1 = 1;
  898. *p2 = 3;
  899. } else if (p == 35) {
  900. *p0 = 7;
  901. *p1 = 1;
  902. *p2 = 5;
  903. }
  904. }
  905. struct skl_wrpll_params {
  906. uint32_t dco_fraction;
  907. uint32_t dco_integer;
  908. uint32_t qdiv_ratio;
  909. uint32_t qdiv_mode;
  910. uint32_t kdiv;
  911. uint32_t pdiv;
  912. uint32_t central_freq;
  913. };
  914. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  915. uint64_t afe_clock,
  916. uint64_t central_freq,
  917. uint32_t p0, uint32_t p1, uint32_t p2)
  918. {
  919. uint64_t dco_freq;
  920. switch (central_freq) {
  921. case 9600000000ULL:
  922. params->central_freq = 0;
  923. break;
  924. case 9000000000ULL:
  925. params->central_freq = 1;
  926. break;
  927. case 8400000000ULL:
  928. params->central_freq = 3;
  929. }
  930. switch (p0) {
  931. case 1:
  932. params->pdiv = 0;
  933. break;
  934. case 2:
  935. params->pdiv = 1;
  936. break;
  937. case 3:
  938. params->pdiv = 2;
  939. break;
  940. case 7:
  941. params->pdiv = 4;
  942. break;
  943. default:
  944. WARN(1, "Incorrect PDiv\n");
  945. }
  946. switch (p2) {
  947. case 5:
  948. params->kdiv = 0;
  949. break;
  950. case 2:
  951. params->kdiv = 1;
  952. break;
  953. case 3:
  954. params->kdiv = 2;
  955. break;
  956. case 1:
  957. params->kdiv = 3;
  958. break;
  959. default:
  960. WARN(1, "Incorrect KDiv\n");
  961. }
  962. params->qdiv_ratio = p1;
  963. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  964. dco_freq = p0 * p1 * p2 * afe_clock;
  965. /*
  966. * Intermediate values are in Hz.
  967. * Divide by MHz to match bsepc
  968. */
  969. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  970. params->dco_fraction =
  971. div_u64((div_u64(dco_freq, 24) -
  972. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  973. }
  974. static bool
  975. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  976. struct skl_wrpll_params *wrpll_params)
  977. {
  978. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  979. uint64_t dco_central_freq[3] = {8400000000ULL,
  980. 9000000000ULL,
  981. 9600000000ULL};
  982. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  983. 24, 28, 30, 32, 36, 40, 42, 44,
  984. 48, 52, 54, 56, 60, 64, 66, 68,
  985. 70, 72, 76, 78, 80, 84, 88, 90,
  986. 92, 96, 98 };
  987. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  988. static const struct {
  989. const int *list;
  990. int n_dividers;
  991. } dividers[] = {
  992. { even_dividers, ARRAY_SIZE(even_dividers) },
  993. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  994. };
  995. struct skl_wrpll_context ctx;
  996. unsigned int dco, d, i;
  997. unsigned int p0, p1, p2;
  998. skl_wrpll_context_init(&ctx);
  999. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  1000. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  1001. for (i = 0; i < dividers[d].n_dividers; i++) {
  1002. unsigned int p = dividers[d].list[i];
  1003. uint64_t dco_freq = p * afe_clock;
  1004. skl_wrpll_try_divider(&ctx,
  1005. dco_central_freq[dco],
  1006. dco_freq,
  1007. p);
  1008. /*
  1009. * Skip the remaining dividers if we're sure to
  1010. * have found the definitive divider, we can't
  1011. * improve a 0 deviation.
  1012. */
  1013. if (ctx.min_deviation == 0)
  1014. goto skip_remaining_dividers;
  1015. }
  1016. }
  1017. skip_remaining_dividers:
  1018. /*
  1019. * If a solution is found with an even divider, prefer
  1020. * this one.
  1021. */
  1022. if (d == 0 && ctx.p)
  1023. break;
  1024. }
  1025. if (!ctx.p) {
  1026. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  1027. return false;
  1028. }
  1029. /*
  1030. * gcc incorrectly analyses that these can be used without being
  1031. * initialized. To be fair, it's hard to guess.
  1032. */
  1033. p0 = p1 = p2 = 0;
  1034. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1035. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1036. p0, p1, p2);
  1037. return true;
  1038. }
  1039. static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc *crtc,
  1040. struct intel_crtc_state *crtc_state,
  1041. int clock)
  1042. {
  1043. uint32_t ctrl1, cfgcr1, cfgcr2;
  1044. struct skl_wrpll_params wrpll_params = { 0, };
  1045. /*
  1046. * See comment in intel_dpll_hw_state to understand why we always use 0
  1047. * as the DPLL id in this function.
  1048. */
  1049. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1050. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1051. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1052. return false;
  1053. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1054. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1055. wrpll_params.dco_integer;
  1056. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1057. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1058. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1059. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1060. wrpll_params.central_freq;
  1061. memset(&crtc_state->dpll_hw_state, 0,
  1062. sizeof(crtc_state->dpll_hw_state));
  1063. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1064. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1065. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1066. return true;
  1067. }
  1068. bool skl_ddi_dp_set_dpll_hw_state(int clock,
  1069. struct intel_dpll_hw_state *dpll_hw_state)
  1070. {
  1071. uint32_t ctrl1;
  1072. /*
  1073. * See comment in intel_dpll_hw_state to understand why we always use 0
  1074. * as the DPLL id in this function.
  1075. */
  1076. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1077. switch (clock / 2) {
  1078. case 81000:
  1079. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1080. break;
  1081. case 135000:
  1082. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1083. break;
  1084. case 270000:
  1085. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1086. break;
  1087. /* eDP 1.4 rates */
  1088. case 162000:
  1089. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
  1090. break;
  1091. case 108000:
  1092. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
  1093. break;
  1094. case 216000:
  1095. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
  1096. break;
  1097. }
  1098. dpll_hw_state->ctrl1 = ctrl1;
  1099. return true;
  1100. }
  1101. static struct intel_shared_dpll *
  1102. skl_get_dpll(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state,
  1103. struct intel_encoder *encoder)
  1104. {
  1105. struct intel_shared_dpll *pll;
  1106. int clock = crtc_state->port_clock;
  1107. bool bret;
  1108. struct intel_dpll_hw_state dpll_hw_state;
  1109. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  1110. if (encoder->type == INTEL_OUTPUT_HDMI) {
  1111. bret = skl_ddi_hdmi_pll_dividers(crtc, crtc_state, clock);
  1112. if (!bret) {
  1113. DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
  1114. return NULL;
  1115. }
  1116. } else if (encoder->type == INTEL_OUTPUT_DP ||
  1117. encoder->type == INTEL_OUTPUT_DP_MST ||
  1118. encoder->type == INTEL_OUTPUT_EDP) {
  1119. bret = skl_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state);
  1120. if (!bret) {
  1121. DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
  1122. return NULL;
  1123. }
  1124. crtc_state->dpll_hw_state = dpll_hw_state;
  1125. } else {
  1126. return NULL;
  1127. }
  1128. if (encoder->type == INTEL_OUTPUT_EDP)
  1129. pll = intel_find_shared_dpll(crtc, crtc_state,
  1130. DPLL_ID_SKL_DPLL0,
  1131. DPLL_ID_SKL_DPLL0);
  1132. else
  1133. pll = intel_find_shared_dpll(crtc, crtc_state,
  1134. DPLL_ID_SKL_DPLL1,
  1135. DPLL_ID_SKL_DPLL3);
  1136. if (!pll)
  1137. return NULL;
  1138. intel_reference_shared_dpll(pll, crtc_state);
  1139. return pll;
  1140. }
  1141. static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
  1142. .enable = skl_ddi_pll_enable,
  1143. .disable = skl_ddi_pll_disable,
  1144. .get_hw_state = skl_ddi_pll_get_hw_state,
  1145. };
  1146. static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
  1147. .enable = skl_ddi_dpll0_enable,
  1148. .disable = skl_ddi_dpll0_disable,
  1149. .get_hw_state = skl_ddi_dpll0_get_hw_state,
  1150. };
  1151. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  1152. struct intel_shared_dpll *pll)
  1153. {
  1154. uint32_t temp;
  1155. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1156. /* Non-SSC reference */
  1157. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1158. temp |= PORT_PLL_REF_SEL;
  1159. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1160. /* Disable 10 bit clock */
  1161. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1162. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1163. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1164. /* Write P1 & P2 */
  1165. temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
  1166. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  1167. temp |= pll->config.hw_state.ebb0;
  1168. I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
  1169. /* Write M2 integer */
  1170. temp = I915_READ(BXT_PORT_PLL(port, 0));
  1171. temp &= ~PORT_PLL_M2_MASK;
  1172. temp |= pll->config.hw_state.pll0;
  1173. I915_WRITE(BXT_PORT_PLL(port, 0), temp);
  1174. /* Write N */
  1175. temp = I915_READ(BXT_PORT_PLL(port, 1));
  1176. temp &= ~PORT_PLL_N_MASK;
  1177. temp |= pll->config.hw_state.pll1;
  1178. I915_WRITE(BXT_PORT_PLL(port, 1), temp);
  1179. /* Write M2 fraction */
  1180. temp = I915_READ(BXT_PORT_PLL(port, 2));
  1181. temp &= ~PORT_PLL_M2_FRAC_MASK;
  1182. temp |= pll->config.hw_state.pll2;
  1183. I915_WRITE(BXT_PORT_PLL(port, 2), temp);
  1184. /* Write M2 fraction enable */
  1185. temp = I915_READ(BXT_PORT_PLL(port, 3));
  1186. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  1187. temp |= pll->config.hw_state.pll3;
  1188. I915_WRITE(BXT_PORT_PLL(port, 3), temp);
  1189. /* Write coeff */
  1190. temp = I915_READ(BXT_PORT_PLL(port, 6));
  1191. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  1192. temp &= ~PORT_PLL_INT_COEFF_MASK;
  1193. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  1194. temp |= pll->config.hw_state.pll6;
  1195. I915_WRITE(BXT_PORT_PLL(port, 6), temp);
  1196. /* Write calibration val */
  1197. temp = I915_READ(BXT_PORT_PLL(port, 8));
  1198. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  1199. temp |= pll->config.hw_state.pll8;
  1200. I915_WRITE(BXT_PORT_PLL(port, 8), temp);
  1201. temp = I915_READ(BXT_PORT_PLL(port, 9));
  1202. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  1203. temp |= pll->config.hw_state.pll9;
  1204. I915_WRITE(BXT_PORT_PLL(port, 9), temp);
  1205. temp = I915_READ(BXT_PORT_PLL(port, 10));
  1206. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  1207. temp &= ~PORT_PLL_DCO_AMP_MASK;
  1208. temp |= pll->config.hw_state.pll10;
  1209. I915_WRITE(BXT_PORT_PLL(port, 10), temp);
  1210. /* Recalibrate with new settings */
  1211. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1212. temp |= PORT_PLL_RECALIBRATE;
  1213. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1214. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  1215. temp |= pll->config.hw_state.ebb4;
  1216. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  1217. /* Enable PLL */
  1218. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1219. temp |= PORT_PLL_ENABLE;
  1220. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1221. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1222. if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
  1223. 200))
  1224. DRM_ERROR("PLL %d not locked\n", port);
  1225. /*
  1226. * While we write to the group register to program all lanes at once we
  1227. * can read only lane registers and we pick lanes 0/1 for that.
  1228. */
  1229. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  1230. temp &= ~LANE_STAGGER_MASK;
  1231. temp &= ~LANESTAGGER_STRAP_OVRD;
  1232. temp |= pll->config.hw_state.pcsdw12;
  1233. I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
  1234. }
  1235. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  1236. struct intel_shared_dpll *pll)
  1237. {
  1238. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1239. uint32_t temp;
  1240. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1241. temp &= ~PORT_PLL_ENABLE;
  1242. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  1243. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  1244. }
  1245. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  1246. struct intel_shared_dpll *pll,
  1247. struct intel_dpll_hw_state *hw_state)
  1248. {
  1249. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  1250. uint32_t val;
  1251. bool ret;
  1252. if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
  1253. return false;
  1254. ret = false;
  1255. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  1256. if (!(val & PORT_PLL_ENABLE))
  1257. goto out;
  1258. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
  1259. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  1260. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
  1261. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  1262. hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
  1263. hw_state->pll0 &= PORT_PLL_M2_MASK;
  1264. hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
  1265. hw_state->pll1 &= PORT_PLL_N_MASK;
  1266. hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
  1267. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  1268. hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
  1269. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  1270. hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
  1271. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  1272. PORT_PLL_INT_COEFF_MASK |
  1273. PORT_PLL_GAIN_CTL_MASK;
  1274. hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
  1275. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  1276. hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
  1277. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  1278. hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
  1279. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  1280. PORT_PLL_DCO_AMP_MASK;
  1281. /*
  1282. * While we write to the group register to program all lanes at once we
  1283. * can read only lane registers. We configure all lanes the same way, so
  1284. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  1285. */
  1286. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  1287. if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
  1288. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  1289. hw_state->pcsdw12,
  1290. I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
  1291. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  1292. ret = true;
  1293. out:
  1294. intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
  1295. return ret;
  1296. }
  1297. /* bxt clock parameters */
  1298. struct bxt_clk_div {
  1299. int clock;
  1300. uint32_t p1;
  1301. uint32_t p2;
  1302. uint32_t m2_int;
  1303. uint32_t m2_frac;
  1304. bool m2_frac_en;
  1305. uint32_t n;
  1306. int vco;
  1307. };
  1308. /* pre-calculated values for DP linkrates */
  1309. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1310. {162000, 4, 2, 32, 1677722, 1, 1},
  1311. {270000, 4, 1, 27, 0, 0, 1},
  1312. {540000, 2, 1, 27, 0, 0, 1},
  1313. {216000, 3, 2, 32, 1677722, 1, 1},
  1314. {243000, 4, 1, 24, 1258291, 1, 1},
  1315. {324000, 4, 1, 32, 1677722, 1, 1},
  1316. {432000, 3, 1, 32, 1677722, 1, 1}
  1317. };
  1318. static bool
  1319. bxt_ddi_hdmi_pll_dividers(struct intel_crtc *intel_crtc,
  1320. struct intel_crtc_state *crtc_state, int clock,
  1321. struct bxt_clk_div *clk_div)
  1322. {
  1323. struct dpll best_clock;
  1324. /* Calculate HDMI div */
  1325. /*
  1326. * FIXME: tie the following calculation into
  1327. * i9xx_crtc_compute_clock
  1328. */
  1329. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1330. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1331. clock, pipe_name(intel_crtc->pipe));
  1332. return false;
  1333. }
  1334. clk_div->p1 = best_clock.p1;
  1335. clk_div->p2 = best_clock.p2;
  1336. WARN_ON(best_clock.m1 != 2);
  1337. clk_div->n = best_clock.n;
  1338. clk_div->m2_int = best_clock.m2 >> 22;
  1339. clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1340. clk_div->m2_frac_en = clk_div->m2_frac != 0;
  1341. clk_div->vco = best_clock.vco;
  1342. return true;
  1343. }
  1344. static void bxt_ddi_dp_pll_dividers(int clock, struct bxt_clk_div *clk_div)
  1345. {
  1346. int i;
  1347. *clk_div = bxt_dp_clk_val[0];
  1348. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1349. if (bxt_dp_clk_val[i].clock == clock) {
  1350. *clk_div = bxt_dp_clk_val[i];
  1351. break;
  1352. }
  1353. }
  1354. clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
  1355. }
  1356. static bool bxt_ddi_set_dpll_hw_state(int clock,
  1357. struct bxt_clk_div *clk_div,
  1358. struct intel_dpll_hw_state *dpll_hw_state)
  1359. {
  1360. int vco = clk_div->vco;
  1361. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1362. uint32_t lanestagger;
  1363. if (vco >= 6200000 && vco <= 6700000) {
  1364. prop_coef = 4;
  1365. int_coef = 9;
  1366. gain_ctl = 3;
  1367. targ_cnt = 8;
  1368. } else if ((vco > 5400000 && vco < 6200000) ||
  1369. (vco >= 4800000 && vco < 5400000)) {
  1370. prop_coef = 5;
  1371. int_coef = 11;
  1372. gain_ctl = 3;
  1373. targ_cnt = 9;
  1374. } else if (vco == 5400000) {
  1375. prop_coef = 3;
  1376. int_coef = 8;
  1377. gain_ctl = 1;
  1378. targ_cnt = 9;
  1379. } else {
  1380. DRM_ERROR("Invalid VCO\n");
  1381. return false;
  1382. }
  1383. if (clock > 270000)
  1384. lanestagger = 0x18;
  1385. else if (clock > 135000)
  1386. lanestagger = 0x0d;
  1387. else if (clock > 67000)
  1388. lanestagger = 0x07;
  1389. else if (clock > 33000)
  1390. lanestagger = 0x04;
  1391. else
  1392. lanestagger = 0x02;
  1393. dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
  1394. dpll_hw_state->pll0 = clk_div->m2_int;
  1395. dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
  1396. dpll_hw_state->pll2 = clk_div->m2_frac;
  1397. if (clk_div->m2_frac_en)
  1398. dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
  1399. dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1400. dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
  1401. dpll_hw_state->pll8 = targ_cnt;
  1402. dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1403. dpll_hw_state->pll10 =
  1404. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1405. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1406. dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1407. dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
  1408. return true;
  1409. }
  1410. bool bxt_ddi_dp_set_dpll_hw_state(int clock,
  1411. struct intel_dpll_hw_state *dpll_hw_state)
  1412. {
  1413. struct bxt_clk_div clk_div = {0};
  1414. bxt_ddi_dp_pll_dividers(clock, &clk_div);
  1415. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1416. }
  1417. static bool
  1418. bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc *intel_crtc,
  1419. struct intel_crtc_state *crtc_state, int clock,
  1420. struct intel_dpll_hw_state *dpll_hw_state)
  1421. {
  1422. struct bxt_clk_div clk_div = { };
  1423. bxt_ddi_hdmi_pll_dividers(intel_crtc, crtc_state, clock, &clk_div);
  1424. return bxt_ddi_set_dpll_hw_state(clock, &clk_div, dpll_hw_state);
  1425. }
  1426. static struct intel_shared_dpll *
  1427. bxt_get_dpll(struct intel_crtc *crtc,
  1428. struct intel_crtc_state *crtc_state,
  1429. struct intel_encoder *encoder)
  1430. {
  1431. struct intel_dpll_hw_state dpll_hw_state = { };
  1432. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1433. struct intel_digital_port *intel_dig_port;
  1434. struct intel_shared_dpll *pll;
  1435. int i, clock = crtc_state->port_clock;
  1436. if (encoder->type == INTEL_OUTPUT_HDMI &&
  1437. !bxt_ddi_hdmi_set_dpll_hw_state(crtc, crtc_state, clock,
  1438. &dpll_hw_state))
  1439. return NULL;
  1440. if ((encoder->type == INTEL_OUTPUT_DP ||
  1441. encoder->type == INTEL_OUTPUT_EDP) &&
  1442. !bxt_ddi_dp_set_dpll_hw_state(clock, &dpll_hw_state))
  1443. return NULL;
  1444. memset(&crtc_state->dpll_hw_state, 0,
  1445. sizeof(crtc_state->dpll_hw_state));
  1446. crtc_state->dpll_hw_state = dpll_hw_state;
  1447. if (encoder->type == INTEL_OUTPUT_DP_MST) {
  1448. struct intel_dp_mst_encoder *intel_mst = enc_to_mst(&encoder->base);
  1449. intel_dig_port = intel_mst->primary;
  1450. } else
  1451. intel_dig_port = enc_to_dig_port(&encoder->base);
  1452. /* 1:1 mapping between ports and PLLs */
  1453. i = (enum intel_dpll_id) intel_dig_port->port;
  1454. pll = intel_get_shared_dpll_by_id(dev_priv, i);
  1455. DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
  1456. crtc->base.base.id, crtc->base.name, pll->name);
  1457. intel_reference_shared_dpll(pll, crtc_state);
  1458. return pll;
  1459. }
  1460. static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
  1461. .enable = bxt_ddi_pll_enable,
  1462. .disable = bxt_ddi_pll_disable,
  1463. .get_hw_state = bxt_ddi_pll_get_hw_state,
  1464. };
  1465. static void intel_ddi_pll_init(struct drm_device *dev)
  1466. {
  1467. struct drm_i915_private *dev_priv = to_i915(dev);
  1468. if (INTEL_GEN(dev_priv) < 9) {
  1469. uint32_t val = I915_READ(LCPLL_CTL);
  1470. /*
  1471. * The LCPLL register should be turned on by the BIOS. For now
  1472. * let's just check its state and print errors in case
  1473. * something is wrong. Don't even try to turn it on.
  1474. */
  1475. if (val & LCPLL_CD_SOURCE_FCLK)
  1476. DRM_ERROR("CDCLK source is not LCPLL\n");
  1477. if (val & LCPLL_PLL_DISABLE)
  1478. DRM_ERROR("LCPLL is disabled\n");
  1479. }
  1480. }
  1481. struct dpll_info {
  1482. const char *name;
  1483. const int id;
  1484. const struct intel_shared_dpll_funcs *funcs;
  1485. uint32_t flags;
  1486. };
  1487. struct intel_dpll_mgr {
  1488. const struct dpll_info *dpll_info;
  1489. struct intel_shared_dpll *(*get_dpll)(struct intel_crtc *crtc,
  1490. struct intel_crtc_state *crtc_state,
  1491. struct intel_encoder *encoder);
  1492. };
  1493. static const struct dpll_info pch_plls[] = {
  1494. { "PCH DPLL A", DPLL_ID_PCH_PLL_A, &ibx_pch_dpll_funcs, 0 },
  1495. { "PCH DPLL B", DPLL_ID_PCH_PLL_B, &ibx_pch_dpll_funcs, 0 },
  1496. { NULL, -1, NULL, 0 },
  1497. };
  1498. static const struct intel_dpll_mgr pch_pll_mgr = {
  1499. .dpll_info = pch_plls,
  1500. .get_dpll = ibx_get_dpll,
  1501. };
  1502. static const struct dpll_info hsw_plls[] = {
  1503. { "WRPLL 1", DPLL_ID_WRPLL1, &hsw_ddi_wrpll_funcs, 0 },
  1504. { "WRPLL 2", DPLL_ID_WRPLL2, &hsw_ddi_wrpll_funcs, 0 },
  1505. { "SPLL", DPLL_ID_SPLL, &hsw_ddi_spll_funcs, 0 },
  1506. { "LCPLL 810", DPLL_ID_LCPLL_810, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1507. { "LCPLL 1350", DPLL_ID_LCPLL_1350, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1508. { "LCPLL 2700", DPLL_ID_LCPLL_2700, &hsw_ddi_lcpll_funcs, INTEL_DPLL_ALWAYS_ON },
  1509. { NULL, -1, NULL, },
  1510. };
  1511. static const struct intel_dpll_mgr hsw_pll_mgr = {
  1512. .dpll_info = hsw_plls,
  1513. .get_dpll = hsw_get_dpll,
  1514. };
  1515. static const struct dpll_info skl_plls[] = {
  1516. { "DPLL 0", DPLL_ID_SKL_DPLL0, &skl_ddi_dpll0_funcs, INTEL_DPLL_ALWAYS_ON },
  1517. { "DPLL 1", DPLL_ID_SKL_DPLL1, &skl_ddi_pll_funcs, 0 },
  1518. { "DPLL 2", DPLL_ID_SKL_DPLL2, &skl_ddi_pll_funcs, 0 },
  1519. { "DPLL 3", DPLL_ID_SKL_DPLL3, &skl_ddi_pll_funcs, 0 },
  1520. { NULL, -1, NULL, },
  1521. };
  1522. static const struct intel_dpll_mgr skl_pll_mgr = {
  1523. .dpll_info = skl_plls,
  1524. .get_dpll = skl_get_dpll,
  1525. };
  1526. static const struct dpll_info bxt_plls[] = {
  1527. { "PORT PLL A", DPLL_ID_SKL_DPLL0, &bxt_ddi_pll_funcs, 0 },
  1528. { "PORT PLL B", DPLL_ID_SKL_DPLL1, &bxt_ddi_pll_funcs, 0 },
  1529. { "PORT PLL C", DPLL_ID_SKL_DPLL2, &bxt_ddi_pll_funcs, 0 },
  1530. { NULL, -1, NULL, },
  1531. };
  1532. static const struct intel_dpll_mgr bxt_pll_mgr = {
  1533. .dpll_info = bxt_plls,
  1534. .get_dpll = bxt_get_dpll,
  1535. };
  1536. void intel_shared_dpll_init(struct drm_device *dev)
  1537. {
  1538. struct drm_i915_private *dev_priv = to_i915(dev);
  1539. const struct intel_dpll_mgr *dpll_mgr = NULL;
  1540. const struct dpll_info *dpll_info;
  1541. int i;
  1542. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  1543. dpll_mgr = &skl_pll_mgr;
  1544. else if (IS_BROXTON(dev))
  1545. dpll_mgr = &bxt_pll_mgr;
  1546. else if (HAS_DDI(dev))
  1547. dpll_mgr = &hsw_pll_mgr;
  1548. else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  1549. dpll_mgr = &pch_pll_mgr;
  1550. if (!dpll_mgr) {
  1551. dev_priv->num_shared_dpll = 0;
  1552. return;
  1553. }
  1554. dpll_info = dpll_mgr->dpll_info;
  1555. for (i = 0; dpll_info[i].id >= 0; i++) {
  1556. WARN_ON(i != dpll_info[i].id);
  1557. dev_priv->shared_dplls[i].id = dpll_info[i].id;
  1558. dev_priv->shared_dplls[i].name = dpll_info[i].name;
  1559. dev_priv->shared_dplls[i].funcs = *dpll_info[i].funcs;
  1560. dev_priv->shared_dplls[i].flags = dpll_info[i].flags;
  1561. }
  1562. dev_priv->dpll_mgr = dpll_mgr;
  1563. dev_priv->num_shared_dpll = i;
  1564. mutex_init(&dev_priv->dpll_lock);
  1565. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  1566. /* FIXME: Move this to a more suitable place */
  1567. if (HAS_DDI(dev))
  1568. intel_ddi_pll_init(dev);
  1569. }
  1570. struct intel_shared_dpll *
  1571. intel_get_shared_dpll(struct intel_crtc *crtc,
  1572. struct intel_crtc_state *crtc_state,
  1573. struct intel_encoder *encoder)
  1574. {
  1575. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1576. const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
  1577. if (WARN_ON(!dpll_mgr))
  1578. return NULL;
  1579. return dpll_mgr->get_dpll(crtc, crtc_state, encoder);
  1580. }