namespace.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/cred.h>
  18. #include <linux/idr.h>
  19. #include <linux/init.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include <linux/bootmem.h>
  26. #include <linux/task_work.h>
  27. #include <linux/sched/task.h>
  28. #include "pnode.h"
  29. #include "internal.h"
  30. /* Maximum number of mounts in a mount namespace */
  31. unsigned int sysctl_mount_max __read_mostly = 100000;
  32. static unsigned int m_hash_mask __read_mostly;
  33. static unsigned int m_hash_shift __read_mostly;
  34. static unsigned int mp_hash_mask __read_mostly;
  35. static unsigned int mp_hash_shift __read_mostly;
  36. static __initdata unsigned long mhash_entries;
  37. static int __init set_mhash_entries(char *str)
  38. {
  39. if (!str)
  40. return 0;
  41. mhash_entries = simple_strtoul(str, &str, 0);
  42. return 1;
  43. }
  44. __setup("mhash_entries=", set_mhash_entries);
  45. static __initdata unsigned long mphash_entries;
  46. static int __init set_mphash_entries(char *str)
  47. {
  48. if (!str)
  49. return 0;
  50. mphash_entries = simple_strtoul(str, &str, 0);
  51. return 1;
  52. }
  53. __setup("mphash_entries=", set_mphash_entries);
  54. static u64 event;
  55. static DEFINE_IDA(mnt_id_ida);
  56. static DEFINE_IDA(mnt_group_ida);
  57. static DEFINE_SPINLOCK(mnt_id_lock);
  58. static int mnt_id_start = 0;
  59. static int mnt_group_start = 1;
  60. static struct hlist_head *mount_hashtable __read_mostly;
  61. static struct hlist_head *mountpoint_hashtable __read_mostly;
  62. static struct kmem_cache *mnt_cache __read_mostly;
  63. static DECLARE_RWSEM(namespace_sem);
  64. /* /sys/fs */
  65. struct kobject *fs_kobj;
  66. EXPORT_SYMBOL_GPL(fs_kobj);
  67. /*
  68. * vfsmount lock may be taken for read to prevent changes to the
  69. * vfsmount hash, ie. during mountpoint lookups or walking back
  70. * up the tree.
  71. *
  72. * It should be taken for write in all cases where the vfsmount
  73. * tree or hash is modified or when a vfsmount structure is modified.
  74. */
  75. __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
  76. static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
  77. {
  78. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  79. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  80. tmp = tmp + (tmp >> m_hash_shift);
  81. return &mount_hashtable[tmp & m_hash_mask];
  82. }
  83. static inline struct hlist_head *mp_hash(struct dentry *dentry)
  84. {
  85. unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
  86. tmp = tmp + (tmp >> mp_hash_shift);
  87. return &mountpoint_hashtable[tmp & mp_hash_mask];
  88. }
  89. static int mnt_alloc_id(struct mount *mnt)
  90. {
  91. int res;
  92. retry:
  93. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  94. spin_lock(&mnt_id_lock);
  95. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  96. if (!res)
  97. mnt_id_start = mnt->mnt_id + 1;
  98. spin_unlock(&mnt_id_lock);
  99. if (res == -EAGAIN)
  100. goto retry;
  101. return res;
  102. }
  103. static void mnt_free_id(struct mount *mnt)
  104. {
  105. int id = mnt->mnt_id;
  106. spin_lock(&mnt_id_lock);
  107. ida_remove(&mnt_id_ida, id);
  108. if (mnt_id_start > id)
  109. mnt_id_start = id;
  110. spin_unlock(&mnt_id_lock);
  111. }
  112. /*
  113. * Allocate a new peer group ID
  114. *
  115. * mnt_group_ida is protected by namespace_sem
  116. */
  117. static int mnt_alloc_group_id(struct mount *mnt)
  118. {
  119. int res;
  120. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  121. return -ENOMEM;
  122. res = ida_get_new_above(&mnt_group_ida,
  123. mnt_group_start,
  124. &mnt->mnt_group_id);
  125. if (!res)
  126. mnt_group_start = mnt->mnt_group_id + 1;
  127. return res;
  128. }
  129. /*
  130. * Release a peer group ID
  131. */
  132. void mnt_release_group_id(struct mount *mnt)
  133. {
  134. int id = mnt->mnt_group_id;
  135. ida_remove(&mnt_group_ida, id);
  136. if (mnt_group_start > id)
  137. mnt_group_start = id;
  138. mnt->mnt_group_id = 0;
  139. }
  140. /*
  141. * vfsmount lock must be held for read
  142. */
  143. static inline void mnt_add_count(struct mount *mnt, int n)
  144. {
  145. #ifdef CONFIG_SMP
  146. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  147. #else
  148. preempt_disable();
  149. mnt->mnt_count += n;
  150. preempt_enable();
  151. #endif
  152. }
  153. /*
  154. * vfsmount lock must be held for write
  155. */
  156. unsigned int mnt_get_count(struct mount *mnt)
  157. {
  158. #ifdef CONFIG_SMP
  159. unsigned int count = 0;
  160. int cpu;
  161. for_each_possible_cpu(cpu) {
  162. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  163. }
  164. return count;
  165. #else
  166. return mnt->mnt_count;
  167. #endif
  168. }
  169. static void drop_mountpoint(struct fs_pin *p)
  170. {
  171. struct mount *m = container_of(p, struct mount, mnt_umount);
  172. dput(m->mnt_ex_mountpoint);
  173. pin_remove(p);
  174. mntput(&m->mnt);
  175. }
  176. static struct mount *alloc_vfsmnt(const char *name)
  177. {
  178. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  179. if (mnt) {
  180. int err;
  181. err = mnt_alloc_id(mnt);
  182. if (err)
  183. goto out_free_cache;
  184. if (name) {
  185. mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
  186. if (!mnt->mnt_devname)
  187. goto out_free_id;
  188. }
  189. #ifdef CONFIG_SMP
  190. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  191. if (!mnt->mnt_pcp)
  192. goto out_free_devname;
  193. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  194. #else
  195. mnt->mnt_count = 1;
  196. mnt->mnt_writers = 0;
  197. #endif
  198. INIT_HLIST_NODE(&mnt->mnt_hash);
  199. INIT_LIST_HEAD(&mnt->mnt_child);
  200. INIT_LIST_HEAD(&mnt->mnt_mounts);
  201. INIT_LIST_HEAD(&mnt->mnt_list);
  202. INIT_LIST_HEAD(&mnt->mnt_expire);
  203. INIT_LIST_HEAD(&mnt->mnt_share);
  204. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  205. INIT_LIST_HEAD(&mnt->mnt_slave);
  206. INIT_HLIST_NODE(&mnt->mnt_mp_list);
  207. INIT_LIST_HEAD(&mnt->mnt_umounting);
  208. init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
  209. }
  210. return mnt;
  211. #ifdef CONFIG_SMP
  212. out_free_devname:
  213. kfree_const(mnt->mnt_devname);
  214. #endif
  215. out_free_id:
  216. mnt_free_id(mnt);
  217. out_free_cache:
  218. kmem_cache_free(mnt_cache, mnt);
  219. return NULL;
  220. }
  221. /*
  222. * Most r/o checks on a fs are for operations that take
  223. * discrete amounts of time, like a write() or unlink().
  224. * We must keep track of when those operations start
  225. * (for permission checks) and when they end, so that
  226. * we can determine when writes are able to occur to
  227. * a filesystem.
  228. */
  229. /*
  230. * __mnt_is_readonly: check whether a mount is read-only
  231. * @mnt: the mount to check for its write status
  232. *
  233. * This shouldn't be used directly ouside of the VFS.
  234. * It does not guarantee that the filesystem will stay
  235. * r/w, just that it is right *now*. This can not and
  236. * should not be used in place of IS_RDONLY(inode).
  237. * mnt_want/drop_write() will _keep_ the filesystem
  238. * r/w.
  239. */
  240. int __mnt_is_readonly(struct vfsmount *mnt)
  241. {
  242. if (mnt->mnt_flags & MNT_READONLY)
  243. return 1;
  244. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  245. return 1;
  246. return 0;
  247. }
  248. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  249. static inline void mnt_inc_writers(struct mount *mnt)
  250. {
  251. #ifdef CONFIG_SMP
  252. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  253. #else
  254. mnt->mnt_writers++;
  255. #endif
  256. }
  257. static inline void mnt_dec_writers(struct mount *mnt)
  258. {
  259. #ifdef CONFIG_SMP
  260. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  261. #else
  262. mnt->mnt_writers--;
  263. #endif
  264. }
  265. static unsigned int mnt_get_writers(struct mount *mnt)
  266. {
  267. #ifdef CONFIG_SMP
  268. unsigned int count = 0;
  269. int cpu;
  270. for_each_possible_cpu(cpu) {
  271. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  272. }
  273. return count;
  274. #else
  275. return mnt->mnt_writers;
  276. #endif
  277. }
  278. static int mnt_is_readonly(struct vfsmount *mnt)
  279. {
  280. if (mnt->mnt_sb->s_readonly_remount)
  281. return 1;
  282. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  283. smp_rmb();
  284. return __mnt_is_readonly(mnt);
  285. }
  286. /*
  287. * Most r/o & frozen checks on a fs are for operations that take discrete
  288. * amounts of time, like a write() or unlink(). We must keep track of when
  289. * those operations start (for permission checks) and when they end, so that we
  290. * can determine when writes are able to occur to a filesystem.
  291. */
  292. /**
  293. * __mnt_want_write - get write access to a mount without freeze protection
  294. * @m: the mount on which to take a write
  295. *
  296. * This tells the low-level filesystem that a write is about to be performed to
  297. * it, and makes sure that writes are allowed (mnt it read-write) before
  298. * returning success. This operation does not protect against filesystem being
  299. * frozen. When the write operation is finished, __mnt_drop_write() must be
  300. * called. This is effectively a refcount.
  301. */
  302. int __mnt_want_write(struct vfsmount *m)
  303. {
  304. struct mount *mnt = real_mount(m);
  305. int ret = 0;
  306. preempt_disable();
  307. mnt_inc_writers(mnt);
  308. /*
  309. * The store to mnt_inc_writers must be visible before we pass
  310. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  311. * incremented count after it has set MNT_WRITE_HOLD.
  312. */
  313. smp_mb();
  314. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  315. cpu_relax();
  316. /*
  317. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  318. * be set to match its requirements. So we must not load that until
  319. * MNT_WRITE_HOLD is cleared.
  320. */
  321. smp_rmb();
  322. if (mnt_is_readonly(m)) {
  323. mnt_dec_writers(mnt);
  324. ret = -EROFS;
  325. }
  326. preempt_enable();
  327. return ret;
  328. }
  329. /**
  330. * mnt_want_write - get write access to a mount
  331. * @m: the mount on which to take a write
  332. *
  333. * This tells the low-level filesystem that a write is about to be performed to
  334. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  335. * is not frozen) before returning success. When the write operation is
  336. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  337. */
  338. int mnt_want_write(struct vfsmount *m)
  339. {
  340. int ret;
  341. sb_start_write(m->mnt_sb);
  342. ret = __mnt_want_write(m);
  343. if (ret)
  344. sb_end_write(m->mnt_sb);
  345. return ret;
  346. }
  347. EXPORT_SYMBOL_GPL(mnt_want_write);
  348. /**
  349. * mnt_clone_write - get write access to a mount
  350. * @mnt: the mount on which to take a write
  351. *
  352. * This is effectively like mnt_want_write, except
  353. * it must only be used to take an extra write reference
  354. * on a mountpoint that we already know has a write reference
  355. * on it. This allows some optimisation.
  356. *
  357. * After finished, mnt_drop_write must be called as usual to
  358. * drop the reference.
  359. */
  360. int mnt_clone_write(struct vfsmount *mnt)
  361. {
  362. /* superblock may be r/o */
  363. if (__mnt_is_readonly(mnt))
  364. return -EROFS;
  365. preempt_disable();
  366. mnt_inc_writers(real_mount(mnt));
  367. preempt_enable();
  368. return 0;
  369. }
  370. EXPORT_SYMBOL_GPL(mnt_clone_write);
  371. /**
  372. * __mnt_want_write_file - get write access to a file's mount
  373. * @file: the file who's mount on which to take a write
  374. *
  375. * This is like __mnt_want_write, but it takes a file and can
  376. * do some optimisations if the file is open for write already
  377. */
  378. int __mnt_want_write_file(struct file *file)
  379. {
  380. if (!(file->f_mode & FMODE_WRITER))
  381. return __mnt_want_write(file->f_path.mnt);
  382. else
  383. return mnt_clone_write(file->f_path.mnt);
  384. }
  385. /**
  386. * mnt_want_write_file - get write access to a file's mount
  387. * @file: the file who's mount on which to take a write
  388. *
  389. * This is like mnt_want_write, but it takes a file and can
  390. * do some optimisations if the file is open for write already
  391. */
  392. int mnt_want_write_file(struct file *file)
  393. {
  394. int ret;
  395. sb_start_write(file->f_path.mnt->mnt_sb);
  396. ret = __mnt_want_write_file(file);
  397. if (ret)
  398. sb_end_write(file->f_path.mnt->mnt_sb);
  399. return ret;
  400. }
  401. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  402. /**
  403. * __mnt_drop_write - give up write access to a mount
  404. * @mnt: the mount on which to give up write access
  405. *
  406. * Tells the low-level filesystem that we are done
  407. * performing writes to it. Must be matched with
  408. * __mnt_want_write() call above.
  409. */
  410. void __mnt_drop_write(struct vfsmount *mnt)
  411. {
  412. preempt_disable();
  413. mnt_dec_writers(real_mount(mnt));
  414. preempt_enable();
  415. }
  416. /**
  417. * mnt_drop_write - give up write access to a mount
  418. * @mnt: the mount on which to give up write access
  419. *
  420. * Tells the low-level filesystem that we are done performing writes to it and
  421. * also allows filesystem to be frozen again. Must be matched with
  422. * mnt_want_write() call above.
  423. */
  424. void mnt_drop_write(struct vfsmount *mnt)
  425. {
  426. __mnt_drop_write(mnt);
  427. sb_end_write(mnt->mnt_sb);
  428. }
  429. EXPORT_SYMBOL_GPL(mnt_drop_write);
  430. void __mnt_drop_write_file(struct file *file)
  431. {
  432. __mnt_drop_write(file->f_path.mnt);
  433. }
  434. void mnt_drop_write_file(struct file *file)
  435. {
  436. mnt_drop_write(file->f_path.mnt);
  437. }
  438. EXPORT_SYMBOL(mnt_drop_write_file);
  439. static int mnt_make_readonly(struct mount *mnt)
  440. {
  441. int ret = 0;
  442. lock_mount_hash();
  443. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  444. /*
  445. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  446. * should be visible before we do.
  447. */
  448. smp_mb();
  449. /*
  450. * With writers on hold, if this value is zero, then there are
  451. * definitely no active writers (although held writers may subsequently
  452. * increment the count, they'll have to wait, and decrement it after
  453. * seeing MNT_READONLY).
  454. *
  455. * It is OK to have counter incremented on one CPU and decremented on
  456. * another: the sum will add up correctly. The danger would be when we
  457. * sum up each counter, if we read a counter before it is incremented,
  458. * but then read another CPU's count which it has been subsequently
  459. * decremented from -- we would see more decrements than we should.
  460. * MNT_WRITE_HOLD protects against this scenario, because
  461. * mnt_want_write first increments count, then smp_mb, then spins on
  462. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  463. * we're counting up here.
  464. */
  465. if (mnt_get_writers(mnt) > 0)
  466. ret = -EBUSY;
  467. else
  468. mnt->mnt.mnt_flags |= MNT_READONLY;
  469. /*
  470. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  471. * that become unheld will see MNT_READONLY.
  472. */
  473. smp_wmb();
  474. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  475. unlock_mount_hash();
  476. return ret;
  477. }
  478. static void __mnt_unmake_readonly(struct mount *mnt)
  479. {
  480. lock_mount_hash();
  481. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  482. unlock_mount_hash();
  483. }
  484. int sb_prepare_remount_readonly(struct super_block *sb)
  485. {
  486. struct mount *mnt;
  487. int err = 0;
  488. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  489. if (atomic_long_read(&sb->s_remove_count))
  490. return -EBUSY;
  491. lock_mount_hash();
  492. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  493. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  494. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  495. smp_mb();
  496. if (mnt_get_writers(mnt) > 0) {
  497. err = -EBUSY;
  498. break;
  499. }
  500. }
  501. }
  502. if (!err && atomic_long_read(&sb->s_remove_count))
  503. err = -EBUSY;
  504. if (!err) {
  505. sb->s_readonly_remount = 1;
  506. smp_wmb();
  507. }
  508. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  509. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  510. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  511. }
  512. unlock_mount_hash();
  513. return err;
  514. }
  515. static void free_vfsmnt(struct mount *mnt)
  516. {
  517. kfree_const(mnt->mnt_devname);
  518. #ifdef CONFIG_SMP
  519. free_percpu(mnt->mnt_pcp);
  520. #endif
  521. kmem_cache_free(mnt_cache, mnt);
  522. }
  523. static void delayed_free_vfsmnt(struct rcu_head *head)
  524. {
  525. free_vfsmnt(container_of(head, struct mount, mnt_rcu));
  526. }
  527. /* call under rcu_read_lock */
  528. int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  529. {
  530. struct mount *mnt;
  531. if (read_seqretry(&mount_lock, seq))
  532. return 1;
  533. if (bastard == NULL)
  534. return 0;
  535. mnt = real_mount(bastard);
  536. mnt_add_count(mnt, 1);
  537. if (likely(!read_seqretry(&mount_lock, seq)))
  538. return 0;
  539. if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
  540. mnt_add_count(mnt, -1);
  541. return 1;
  542. }
  543. return -1;
  544. }
  545. /* call under rcu_read_lock */
  546. bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
  547. {
  548. int res = __legitimize_mnt(bastard, seq);
  549. if (likely(!res))
  550. return true;
  551. if (unlikely(res < 0)) {
  552. rcu_read_unlock();
  553. mntput(bastard);
  554. rcu_read_lock();
  555. }
  556. return false;
  557. }
  558. /*
  559. * find the first mount at @dentry on vfsmount @mnt.
  560. * call under rcu_read_lock()
  561. */
  562. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  563. {
  564. struct hlist_head *head = m_hash(mnt, dentry);
  565. struct mount *p;
  566. hlist_for_each_entry_rcu(p, head, mnt_hash)
  567. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
  568. return p;
  569. return NULL;
  570. }
  571. /*
  572. * lookup_mnt - Return the first child mount mounted at path
  573. *
  574. * "First" means first mounted chronologically. If you create the
  575. * following mounts:
  576. *
  577. * mount /dev/sda1 /mnt
  578. * mount /dev/sda2 /mnt
  579. * mount /dev/sda3 /mnt
  580. *
  581. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  582. * return successively the root dentry and vfsmount of /dev/sda1, then
  583. * /dev/sda2, then /dev/sda3, then NULL.
  584. *
  585. * lookup_mnt takes a reference to the found vfsmount.
  586. */
  587. struct vfsmount *lookup_mnt(const struct path *path)
  588. {
  589. struct mount *child_mnt;
  590. struct vfsmount *m;
  591. unsigned seq;
  592. rcu_read_lock();
  593. do {
  594. seq = read_seqbegin(&mount_lock);
  595. child_mnt = __lookup_mnt(path->mnt, path->dentry);
  596. m = child_mnt ? &child_mnt->mnt : NULL;
  597. } while (!legitimize_mnt(m, seq));
  598. rcu_read_unlock();
  599. return m;
  600. }
  601. /*
  602. * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
  603. * current mount namespace.
  604. *
  605. * The common case is dentries are not mountpoints at all and that
  606. * test is handled inline. For the slow case when we are actually
  607. * dealing with a mountpoint of some kind, walk through all of the
  608. * mounts in the current mount namespace and test to see if the dentry
  609. * is a mountpoint.
  610. *
  611. * The mount_hashtable is not usable in the context because we
  612. * need to identify all mounts that may be in the current mount
  613. * namespace not just a mount that happens to have some specified
  614. * parent mount.
  615. */
  616. bool __is_local_mountpoint(struct dentry *dentry)
  617. {
  618. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  619. struct mount *mnt;
  620. bool is_covered = false;
  621. if (!d_mountpoint(dentry))
  622. goto out;
  623. down_read(&namespace_sem);
  624. list_for_each_entry(mnt, &ns->list, mnt_list) {
  625. is_covered = (mnt->mnt_mountpoint == dentry);
  626. if (is_covered)
  627. break;
  628. }
  629. up_read(&namespace_sem);
  630. out:
  631. return is_covered;
  632. }
  633. static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
  634. {
  635. struct hlist_head *chain = mp_hash(dentry);
  636. struct mountpoint *mp;
  637. hlist_for_each_entry(mp, chain, m_hash) {
  638. if (mp->m_dentry == dentry) {
  639. /* might be worth a WARN_ON() */
  640. if (d_unlinked(dentry))
  641. return ERR_PTR(-ENOENT);
  642. mp->m_count++;
  643. return mp;
  644. }
  645. }
  646. return NULL;
  647. }
  648. static struct mountpoint *get_mountpoint(struct dentry *dentry)
  649. {
  650. struct mountpoint *mp, *new = NULL;
  651. int ret;
  652. if (d_mountpoint(dentry)) {
  653. mountpoint:
  654. read_seqlock_excl(&mount_lock);
  655. mp = lookup_mountpoint(dentry);
  656. read_sequnlock_excl(&mount_lock);
  657. if (mp)
  658. goto done;
  659. }
  660. if (!new)
  661. new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  662. if (!new)
  663. return ERR_PTR(-ENOMEM);
  664. /* Exactly one processes may set d_mounted */
  665. ret = d_set_mounted(dentry);
  666. /* Someone else set d_mounted? */
  667. if (ret == -EBUSY)
  668. goto mountpoint;
  669. /* The dentry is not available as a mountpoint? */
  670. mp = ERR_PTR(ret);
  671. if (ret)
  672. goto done;
  673. /* Add the new mountpoint to the hash table */
  674. read_seqlock_excl(&mount_lock);
  675. new->m_dentry = dentry;
  676. new->m_count = 1;
  677. hlist_add_head(&new->m_hash, mp_hash(dentry));
  678. INIT_HLIST_HEAD(&new->m_list);
  679. read_sequnlock_excl(&mount_lock);
  680. mp = new;
  681. new = NULL;
  682. done:
  683. kfree(new);
  684. return mp;
  685. }
  686. static void put_mountpoint(struct mountpoint *mp)
  687. {
  688. if (!--mp->m_count) {
  689. struct dentry *dentry = mp->m_dentry;
  690. BUG_ON(!hlist_empty(&mp->m_list));
  691. spin_lock(&dentry->d_lock);
  692. dentry->d_flags &= ~DCACHE_MOUNTED;
  693. spin_unlock(&dentry->d_lock);
  694. hlist_del(&mp->m_hash);
  695. kfree(mp);
  696. }
  697. }
  698. static inline int check_mnt(struct mount *mnt)
  699. {
  700. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  701. }
  702. /*
  703. * vfsmount lock must be held for write
  704. */
  705. static void touch_mnt_namespace(struct mnt_namespace *ns)
  706. {
  707. if (ns) {
  708. ns->event = ++event;
  709. wake_up_interruptible(&ns->poll);
  710. }
  711. }
  712. /*
  713. * vfsmount lock must be held for write
  714. */
  715. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  716. {
  717. if (ns && ns->event != event) {
  718. ns->event = event;
  719. wake_up_interruptible(&ns->poll);
  720. }
  721. }
  722. /*
  723. * vfsmount lock must be held for write
  724. */
  725. static void unhash_mnt(struct mount *mnt)
  726. {
  727. mnt->mnt_parent = mnt;
  728. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  729. list_del_init(&mnt->mnt_child);
  730. hlist_del_init_rcu(&mnt->mnt_hash);
  731. hlist_del_init(&mnt->mnt_mp_list);
  732. put_mountpoint(mnt->mnt_mp);
  733. mnt->mnt_mp = NULL;
  734. }
  735. /*
  736. * vfsmount lock must be held for write
  737. */
  738. static void detach_mnt(struct mount *mnt, struct path *old_path)
  739. {
  740. old_path->dentry = mnt->mnt_mountpoint;
  741. old_path->mnt = &mnt->mnt_parent->mnt;
  742. unhash_mnt(mnt);
  743. }
  744. /*
  745. * vfsmount lock must be held for write
  746. */
  747. static void umount_mnt(struct mount *mnt)
  748. {
  749. /* old mountpoint will be dropped when we can do that */
  750. mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
  751. unhash_mnt(mnt);
  752. }
  753. /*
  754. * vfsmount lock must be held for write
  755. */
  756. void mnt_set_mountpoint(struct mount *mnt,
  757. struct mountpoint *mp,
  758. struct mount *child_mnt)
  759. {
  760. mp->m_count++;
  761. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  762. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  763. child_mnt->mnt_parent = mnt;
  764. child_mnt->mnt_mp = mp;
  765. hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
  766. }
  767. static void __attach_mnt(struct mount *mnt, struct mount *parent)
  768. {
  769. hlist_add_head_rcu(&mnt->mnt_hash,
  770. m_hash(&parent->mnt, mnt->mnt_mountpoint));
  771. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  772. }
  773. /*
  774. * vfsmount lock must be held for write
  775. */
  776. static void attach_mnt(struct mount *mnt,
  777. struct mount *parent,
  778. struct mountpoint *mp)
  779. {
  780. mnt_set_mountpoint(parent, mp, mnt);
  781. __attach_mnt(mnt, parent);
  782. }
  783. void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
  784. {
  785. struct mountpoint *old_mp = mnt->mnt_mp;
  786. struct dentry *old_mountpoint = mnt->mnt_mountpoint;
  787. struct mount *old_parent = mnt->mnt_parent;
  788. list_del_init(&mnt->mnt_child);
  789. hlist_del_init(&mnt->mnt_mp_list);
  790. hlist_del_init_rcu(&mnt->mnt_hash);
  791. attach_mnt(mnt, parent, mp);
  792. put_mountpoint(old_mp);
  793. /*
  794. * Safely avoid even the suggestion this code might sleep or
  795. * lock the mount hash by taking advantage of the knowledge that
  796. * mnt_change_mountpoint will not release the final reference
  797. * to a mountpoint.
  798. *
  799. * During mounting, the mount passed in as the parent mount will
  800. * continue to use the old mountpoint and during unmounting, the
  801. * old mountpoint will continue to exist until namespace_unlock,
  802. * which happens well after mnt_change_mountpoint.
  803. */
  804. spin_lock(&old_mountpoint->d_lock);
  805. old_mountpoint->d_lockref.count--;
  806. spin_unlock(&old_mountpoint->d_lock);
  807. mnt_add_count(old_parent, -1);
  808. }
  809. /*
  810. * vfsmount lock must be held for write
  811. */
  812. static void commit_tree(struct mount *mnt)
  813. {
  814. struct mount *parent = mnt->mnt_parent;
  815. struct mount *m;
  816. LIST_HEAD(head);
  817. struct mnt_namespace *n = parent->mnt_ns;
  818. BUG_ON(parent == mnt);
  819. list_add_tail(&head, &mnt->mnt_list);
  820. list_for_each_entry(m, &head, mnt_list)
  821. m->mnt_ns = n;
  822. list_splice(&head, n->list.prev);
  823. n->mounts += n->pending_mounts;
  824. n->pending_mounts = 0;
  825. __attach_mnt(mnt, parent);
  826. touch_mnt_namespace(n);
  827. }
  828. static struct mount *next_mnt(struct mount *p, struct mount *root)
  829. {
  830. struct list_head *next = p->mnt_mounts.next;
  831. if (next == &p->mnt_mounts) {
  832. while (1) {
  833. if (p == root)
  834. return NULL;
  835. next = p->mnt_child.next;
  836. if (next != &p->mnt_parent->mnt_mounts)
  837. break;
  838. p = p->mnt_parent;
  839. }
  840. }
  841. return list_entry(next, struct mount, mnt_child);
  842. }
  843. static struct mount *skip_mnt_tree(struct mount *p)
  844. {
  845. struct list_head *prev = p->mnt_mounts.prev;
  846. while (prev != &p->mnt_mounts) {
  847. p = list_entry(prev, struct mount, mnt_child);
  848. prev = p->mnt_mounts.prev;
  849. }
  850. return p;
  851. }
  852. struct vfsmount *
  853. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  854. {
  855. struct mount *mnt;
  856. struct dentry *root;
  857. if (!type)
  858. return ERR_PTR(-ENODEV);
  859. mnt = alloc_vfsmnt(name);
  860. if (!mnt)
  861. return ERR_PTR(-ENOMEM);
  862. if (flags & MS_KERNMOUNT)
  863. mnt->mnt.mnt_flags = MNT_INTERNAL;
  864. root = mount_fs(type, flags, name, data);
  865. if (IS_ERR(root)) {
  866. mnt_free_id(mnt);
  867. free_vfsmnt(mnt);
  868. return ERR_CAST(root);
  869. }
  870. mnt->mnt.mnt_root = root;
  871. mnt->mnt.mnt_sb = root->d_sb;
  872. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  873. mnt->mnt_parent = mnt;
  874. lock_mount_hash();
  875. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  876. unlock_mount_hash();
  877. return &mnt->mnt;
  878. }
  879. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  880. struct vfsmount *
  881. vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
  882. const char *name, void *data)
  883. {
  884. /* Until it is worked out how to pass the user namespace
  885. * through from the parent mount to the submount don't support
  886. * unprivileged mounts with submounts.
  887. */
  888. if (mountpoint->d_sb->s_user_ns != &init_user_ns)
  889. return ERR_PTR(-EPERM);
  890. return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
  891. }
  892. EXPORT_SYMBOL_GPL(vfs_submount);
  893. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  894. int flag)
  895. {
  896. struct super_block *sb = old->mnt.mnt_sb;
  897. struct mount *mnt;
  898. int err;
  899. mnt = alloc_vfsmnt(old->mnt_devname);
  900. if (!mnt)
  901. return ERR_PTR(-ENOMEM);
  902. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  903. mnt->mnt_group_id = 0; /* not a peer of original */
  904. else
  905. mnt->mnt_group_id = old->mnt_group_id;
  906. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  907. err = mnt_alloc_group_id(mnt);
  908. if (err)
  909. goto out_free;
  910. }
  911. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
  912. /* Don't allow unprivileged users to change mount flags */
  913. if (flag & CL_UNPRIVILEGED) {
  914. mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
  915. if (mnt->mnt.mnt_flags & MNT_READONLY)
  916. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  917. if (mnt->mnt.mnt_flags & MNT_NODEV)
  918. mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
  919. if (mnt->mnt.mnt_flags & MNT_NOSUID)
  920. mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
  921. if (mnt->mnt.mnt_flags & MNT_NOEXEC)
  922. mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
  923. }
  924. /* Don't allow unprivileged users to reveal what is under a mount */
  925. if ((flag & CL_UNPRIVILEGED) &&
  926. (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
  927. mnt->mnt.mnt_flags |= MNT_LOCKED;
  928. atomic_inc(&sb->s_active);
  929. mnt->mnt.mnt_sb = sb;
  930. mnt->mnt.mnt_root = dget(root);
  931. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  932. mnt->mnt_parent = mnt;
  933. lock_mount_hash();
  934. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  935. unlock_mount_hash();
  936. if ((flag & CL_SLAVE) ||
  937. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  938. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  939. mnt->mnt_master = old;
  940. CLEAR_MNT_SHARED(mnt);
  941. } else if (!(flag & CL_PRIVATE)) {
  942. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  943. list_add(&mnt->mnt_share, &old->mnt_share);
  944. if (IS_MNT_SLAVE(old))
  945. list_add(&mnt->mnt_slave, &old->mnt_slave);
  946. mnt->mnt_master = old->mnt_master;
  947. } else {
  948. CLEAR_MNT_SHARED(mnt);
  949. }
  950. if (flag & CL_MAKE_SHARED)
  951. set_mnt_shared(mnt);
  952. /* stick the duplicate mount on the same expiry list
  953. * as the original if that was on one */
  954. if (flag & CL_EXPIRE) {
  955. if (!list_empty(&old->mnt_expire))
  956. list_add(&mnt->mnt_expire, &old->mnt_expire);
  957. }
  958. return mnt;
  959. out_free:
  960. mnt_free_id(mnt);
  961. free_vfsmnt(mnt);
  962. return ERR_PTR(err);
  963. }
  964. static void cleanup_mnt(struct mount *mnt)
  965. {
  966. /*
  967. * This probably indicates that somebody messed
  968. * up a mnt_want/drop_write() pair. If this
  969. * happens, the filesystem was probably unable
  970. * to make r/w->r/o transitions.
  971. */
  972. /*
  973. * The locking used to deal with mnt_count decrement provides barriers,
  974. * so mnt_get_writers() below is safe.
  975. */
  976. WARN_ON(mnt_get_writers(mnt));
  977. if (unlikely(mnt->mnt_pins.first))
  978. mnt_pin_kill(mnt);
  979. fsnotify_vfsmount_delete(&mnt->mnt);
  980. dput(mnt->mnt.mnt_root);
  981. deactivate_super(mnt->mnt.mnt_sb);
  982. mnt_free_id(mnt);
  983. call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
  984. }
  985. static void __cleanup_mnt(struct rcu_head *head)
  986. {
  987. cleanup_mnt(container_of(head, struct mount, mnt_rcu));
  988. }
  989. static LLIST_HEAD(delayed_mntput_list);
  990. static void delayed_mntput(struct work_struct *unused)
  991. {
  992. struct llist_node *node = llist_del_all(&delayed_mntput_list);
  993. struct llist_node *next;
  994. for (; node; node = next) {
  995. next = llist_next(node);
  996. cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
  997. }
  998. }
  999. static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
  1000. static void mntput_no_expire(struct mount *mnt)
  1001. {
  1002. rcu_read_lock();
  1003. mnt_add_count(mnt, -1);
  1004. if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
  1005. rcu_read_unlock();
  1006. return;
  1007. }
  1008. lock_mount_hash();
  1009. if (mnt_get_count(mnt)) {
  1010. rcu_read_unlock();
  1011. unlock_mount_hash();
  1012. return;
  1013. }
  1014. if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
  1015. rcu_read_unlock();
  1016. unlock_mount_hash();
  1017. return;
  1018. }
  1019. mnt->mnt.mnt_flags |= MNT_DOOMED;
  1020. rcu_read_unlock();
  1021. list_del(&mnt->mnt_instance);
  1022. if (unlikely(!list_empty(&mnt->mnt_mounts))) {
  1023. struct mount *p, *tmp;
  1024. list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
  1025. umount_mnt(p);
  1026. }
  1027. }
  1028. unlock_mount_hash();
  1029. if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
  1030. struct task_struct *task = current;
  1031. if (likely(!(task->flags & PF_KTHREAD))) {
  1032. init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
  1033. if (!task_work_add(task, &mnt->mnt_rcu, true))
  1034. return;
  1035. }
  1036. if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
  1037. schedule_delayed_work(&delayed_mntput_work, 1);
  1038. return;
  1039. }
  1040. cleanup_mnt(mnt);
  1041. }
  1042. void mntput(struct vfsmount *mnt)
  1043. {
  1044. if (mnt) {
  1045. struct mount *m = real_mount(mnt);
  1046. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  1047. if (unlikely(m->mnt_expiry_mark))
  1048. m->mnt_expiry_mark = 0;
  1049. mntput_no_expire(m);
  1050. }
  1051. }
  1052. EXPORT_SYMBOL(mntput);
  1053. struct vfsmount *mntget(struct vfsmount *mnt)
  1054. {
  1055. if (mnt)
  1056. mnt_add_count(real_mount(mnt), 1);
  1057. return mnt;
  1058. }
  1059. EXPORT_SYMBOL(mntget);
  1060. /* path_is_mountpoint() - Check if path is a mount in the current
  1061. * namespace.
  1062. *
  1063. * d_mountpoint() can only be used reliably to establish if a dentry is
  1064. * not mounted in any namespace and that common case is handled inline.
  1065. * d_mountpoint() isn't aware of the possibility there may be multiple
  1066. * mounts using a given dentry in a different namespace. This function
  1067. * checks if the passed in path is a mountpoint rather than the dentry
  1068. * alone.
  1069. */
  1070. bool path_is_mountpoint(const struct path *path)
  1071. {
  1072. unsigned seq;
  1073. bool res;
  1074. if (!d_mountpoint(path->dentry))
  1075. return false;
  1076. rcu_read_lock();
  1077. do {
  1078. seq = read_seqbegin(&mount_lock);
  1079. res = __path_is_mountpoint(path);
  1080. } while (read_seqretry(&mount_lock, seq));
  1081. rcu_read_unlock();
  1082. return res;
  1083. }
  1084. EXPORT_SYMBOL(path_is_mountpoint);
  1085. struct vfsmount *mnt_clone_internal(const struct path *path)
  1086. {
  1087. struct mount *p;
  1088. p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
  1089. if (IS_ERR(p))
  1090. return ERR_CAST(p);
  1091. p->mnt.mnt_flags |= MNT_INTERNAL;
  1092. return &p->mnt;
  1093. }
  1094. static inline void mangle(struct seq_file *m, const char *s)
  1095. {
  1096. seq_escape(m, s, " \t\n\\");
  1097. }
  1098. /*
  1099. * Simple .show_options callback for filesystems which don't want to
  1100. * implement more complex mount option showing.
  1101. *
  1102. * See also save_mount_options().
  1103. */
  1104. int generic_show_options(struct seq_file *m, struct dentry *root)
  1105. {
  1106. const char *options;
  1107. rcu_read_lock();
  1108. options = rcu_dereference(root->d_sb->s_options);
  1109. if (options != NULL && options[0]) {
  1110. seq_putc(m, ',');
  1111. mangle(m, options);
  1112. }
  1113. rcu_read_unlock();
  1114. return 0;
  1115. }
  1116. EXPORT_SYMBOL(generic_show_options);
  1117. /*
  1118. * If filesystem uses generic_show_options(), this function should be
  1119. * called from the fill_super() callback.
  1120. *
  1121. * The .remount_fs callback usually needs to be handled in a special
  1122. * way, to make sure, that previous options are not overwritten if the
  1123. * remount fails.
  1124. *
  1125. * Also note, that if the filesystem's .remount_fs function doesn't
  1126. * reset all options to their default value, but changes only newly
  1127. * given options, then the displayed options will not reflect reality
  1128. * any more.
  1129. */
  1130. void save_mount_options(struct super_block *sb, char *options)
  1131. {
  1132. BUG_ON(sb->s_options);
  1133. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  1134. }
  1135. EXPORT_SYMBOL(save_mount_options);
  1136. void replace_mount_options(struct super_block *sb, char *options)
  1137. {
  1138. char *old = sb->s_options;
  1139. rcu_assign_pointer(sb->s_options, options);
  1140. if (old) {
  1141. synchronize_rcu();
  1142. kfree(old);
  1143. }
  1144. }
  1145. EXPORT_SYMBOL(replace_mount_options);
  1146. #ifdef CONFIG_PROC_FS
  1147. /* iterator; we want it to have access to namespace_sem, thus here... */
  1148. static void *m_start(struct seq_file *m, loff_t *pos)
  1149. {
  1150. struct proc_mounts *p = m->private;
  1151. down_read(&namespace_sem);
  1152. if (p->cached_event == p->ns->event) {
  1153. void *v = p->cached_mount;
  1154. if (*pos == p->cached_index)
  1155. return v;
  1156. if (*pos == p->cached_index + 1) {
  1157. v = seq_list_next(v, &p->ns->list, &p->cached_index);
  1158. return p->cached_mount = v;
  1159. }
  1160. }
  1161. p->cached_event = p->ns->event;
  1162. p->cached_mount = seq_list_start(&p->ns->list, *pos);
  1163. p->cached_index = *pos;
  1164. return p->cached_mount;
  1165. }
  1166. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  1167. {
  1168. struct proc_mounts *p = m->private;
  1169. p->cached_mount = seq_list_next(v, &p->ns->list, pos);
  1170. p->cached_index = *pos;
  1171. return p->cached_mount;
  1172. }
  1173. static void m_stop(struct seq_file *m, void *v)
  1174. {
  1175. up_read(&namespace_sem);
  1176. }
  1177. static int m_show(struct seq_file *m, void *v)
  1178. {
  1179. struct proc_mounts *p = m->private;
  1180. struct mount *r = list_entry(v, struct mount, mnt_list);
  1181. return p->show(m, &r->mnt);
  1182. }
  1183. const struct seq_operations mounts_op = {
  1184. .start = m_start,
  1185. .next = m_next,
  1186. .stop = m_stop,
  1187. .show = m_show,
  1188. };
  1189. #endif /* CONFIG_PROC_FS */
  1190. /**
  1191. * may_umount_tree - check if a mount tree is busy
  1192. * @mnt: root of mount tree
  1193. *
  1194. * This is called to check if a tree of mounts has any
  1195. * open files, pwds, chroots or sub mounts that are
  1196. * busy.
  1197. */
  1198. int may_umount_tree(struct vfsmount *m)
  1199. {
  1200. struct mount *mnt = real_mount(m);
  1201. int actual_refs = 0;
  1202. int minimum_refs = 0;
  1203. struct mount *p;
  1204. BUG_ON(!m);
  1205. /* write lock needed for mnt_get_count */
  1206. lock_mount_hash();
  1207. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1208. actual_refs += mnt_get_count(p);
  1209. minimum_refs += 2;
  1210. }
  1211. unlock_mount_hash();
  1212. if (actual_refs > minimum_refs)
  1213. return 0;
  1214. return 1;
  1215. }
  1216. EXPORT_SYMBOL(may_umount_tree);
  1217. /**
  1218. * may_umount - check if a mount point is busy
  1219. * @mnt: root of mount
  1220. *
  1221. * This is called to check if a mount point has any
  1222. * open files, pwds, chroots or sub mounts. If the
  1223. * mount has sub mounts this will return busy
  1224. * regardless of whether the sub mounts are busy.
  1225. *
  1226. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1227. * give false negatives. The main reason why it's here is that we need
  1228. * a non-destructive way to look for easily umountable filesystems.
  1229. */
  1230. int may_umount(struct vfsmount *mnt)
  1231. {
  1232. int ret = 1;
  1233. down_read(&namespace_sem);
  1234. lock_mount_hash();
  1235. if (propagate_mount_busy(real_mount(mnt), 2))
  1236. ret = 0;
  1237. unlock_mount_hash();
  1238. up_read(&namespace_sem);
  1239. return ret;
  1240. }
  1241. EXPORT_SYMBOL(may_umount);
  1242. static HLIST_HEAD(unmounted); /* protected by namespace_sem */
  1243. static void namespace_unlock(void)
  1244. {
  1245. struct hlist_head head;
  1246. hlist_move_list(&unmounted, &head);
  1247. up_write(&namespace_sem);
  1248. if (likely(hlist_empty(&head)))
  1249. return;
  1250. synchronize_rcu();
  1251. group_pin_kill(&head);
  1252. }
  1253. static inline void namespace_lock(void)
  1254. {
  1255. down_write(&namespace_sem);
  1256. }
  1257. enum umount_tree_flags {
  1258. UMOUNT_SYNC = 1,
  1259. UMOUNT_PROPAGATE = 2,
  1260. UMOUNT_CONNECTED = 4,
  1261. };
  1262. static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
  1263. {
  1264. /* Leaving mounts connected is only valid for lazy umounts */
  1265. if (how & UMOUNT_SYNC)
  1266. return true;
  1267. /* A mount without a parent has nothing to be connected to */
  1268. if (!mnt_has_parent(mnt))
  1269. return true;
  1270. /* Because the reference counting rules change when mounts are
  1271. * unmounted and connected, umounted mounts may not be
  1272. * connected to mounted mounts.
  1273. */
  1274. if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
  1275. return true;
  1276. /* Has it been requested that the mount remain connected? */
  1277. if (how & UMOUNT_CONNECTED)
  1278. return false;
  1279. /* Is the mount locked such that it needs to remain connected? */
  1280. if (IS_MNT_LOCKED(mnt))
  1281. return false;
  1282. /* By default disconnect the mount */
  1283. return true;
  1284. }
  1285. /*
  1286. * mount_lock must be held
  1287. * namespace_sem must be held for write
  1288. */
  1289. static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
  1290. {
  1291. LIST_HEAD(tmp_list);
  1292. struct mount *p;
  1293. if (how & UMOUNT_PROPAGATE)
  1294. propagate_mount_unlock(mnt);
  1295. /* Gather the mounts to umount */
  1296. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1297. p->mnt.mnt_flags |= MNT_UMOUNT;
  1298. list_move(&p->mnt_list, &tmp_list);
  1299. }
  1300. /* Hide the mounts from mnt_mounts */
  1301. list_for_each_entry(p, &tmp_list, mnt_list) {
  1302. list_del_init(&p->mnt_child);
  1303. }
  1304. /* Add propogated mounts to the tmp_list */
  1305. if (how & UMOUNT_PROPAGATE)
  1306. propagate_umount(&tmp_list);
  1307. while (!list_empty(&tmp_list)) {
  1308. struct mnt_namespace *ns;
  1309. bool disconnect;
  1310. p = list_first_entry(&tmp_list, struct mount, mnt_list);
  1311. list_del_init(&p->mnt_expire);
  1312. list_del_init(&p->mnt_list);
  1313. ns = p->mnt_ns;
  1314. if (ns) {
  1315. ns->mounts--;
  1316. __touch_mnt_namespace(ns);
  1317. }
  1318. p->mnt_ns = NULL;
  1319. if (how & UMOUNT_SYNC)
  1320. p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
  1321. disconnect = disconnect_mount(p, how);
  1322. pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
  1323. disconnect ? &unmounted : NULL);
  1324. if (mnt_has_parent(p)) {
  1325. mnt_add_count(p->mnt_parent, -1);
  1326. if (!disconnect) {
  1327. /* Don't forget about p */
  1328. list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
  1329. } else {
  1330. umount_mnt(p);
  1331. }
  1332. }
  1333. change_mnt_propagation(p, MS_PRIVATE);
  1334. }
  1335. }
  1336. static void shrink_submounts(struct mount *mnt);
  1337. static int do_umount(struct mount *mnt, int flags)
  1338. {
  1339. struct super_block *sb = mnt->mnt.mnt_sb;
  1340. int retval;
  1341. retval = security_sb_umount(&mnt->mnt, flags);
  1342. if (retval)
  1343. return retval;
  1344. /*
  1345. * Allow userspace to request a mountpoint be expired rather than
  1346. * unmounting unconditionally. Unmount only happens if:
  1347. * (1) the mark is already set (the mark is cleared by mntput())
  1348. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1349. */
  1350. if (flags & MNT_EXPIRE) {
  1351. if (&mnt->mnt == current->fs->root.mnt ||
  1352. flags & (MNT_FORCE | MNT_DETACH))
  1353. return -EINVAL;
  1354. /*
  1355. * probably don't strictly need the lock here if we examined
  1356. * all race cases, but it's a slowpath.
  1357. */
  1358. lock_mount_hash();
  1359. if (mnt_get_count(mnt) != 2) {
  1360. unlock_mount_hash();
  1361. return -EBUSY;
  1362. }
  1363. unlock_mount_hash();
  1364. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1365. return -EAGAIN;
  1366. }
  1367. /*
  1368. * If we may have to abort operations to get out of this
  1369. * mount, and they will themselves hold resources we must
  1370. * allow the fs to do things. In the Unix tradition of
  1371. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1372. * might fail to complete on the first run through as other tasks
  1373. * must return, and the like. Thats for the mount program to worry
  1374. * about for the moment.
  1375. */
  1376. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1377. sb->s_op->umount_begin(sb);
  1378. }
  1379. /*
  1380. * No sense to grab the lock for this test, but test itself looks
  1381. * somewhat bogus. Suggestions for better replacement?
  1382. * Ho-hum... In principle, we might treat that as umount + switch
  1383. * to rootfs. GC would eventually take care of the old vfsmount.
  1384. * Actually it makes sense, especially if rootfs would contain a
  1385. * /reboot - static binary that would close all descriptors and
  1386. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1387. */
  1388. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1389. /*
  1390. * Special case for "unmounting" root ...
  1391. * we just try to remount it readonly.
  1392. */
  1393. if (!capable(CAP_SYS_ADMIN))
  1394. return -EPERM;
  1395. down_write(&sb->s_umount);
  1396. if (!(sb->s_flags & MS_RDONLY))
  1397. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1398. up_write(&sb->s_umount);
  1399. return retval;
  1400. }
  1401. namespace_lock();
  1402. lock_mount_hash();
  1403. event++;
  1404. if (flags & MNT_DETACH) {
  1405. if (!list_empty(&mnt->mnt_list))
  1406. umount_tree(mnt, UMOUNT_PROPAGATE);
  1407. retval = 0;
  1408. } else {
  1409. shrink_submounts(mnt);
  1410. retval = -EBUSY;
  1411. if (!propagate_mount_busy(mnt, 2)) {
  1412. if (!list_empty(&mnt->mnt_list))
  1413. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  1414. retval = 0;
  1415. }
  1416. }
  1417. unlock_mount_hash();
  1418. namespace_unlock();
  1419. return retval;
  1420. }
  1421. /*
  1422. * __detach_mounts - lazily unmount all mounts on the specified dentry
  1423. *
  1424. * During unlink, rmdir, and d_drop it is possible to loose the path
  1425. * to an existing mountpoint, and wind up leaking the mount.
  1426. * detach_mounts allows lazily unmounting those mounts instead of
  1427. * leaking them.
  1428. *
  1429. * The caller may hold dentry->d_inode->i_mutex.
  1430. */
  1431. void __detach_mounts(struct dentry *dentry)
  1432. {
  1433. struct mountpoint *mp;
  1434. struct mount *mnt;
  1435. namespace_lock();
  1436. lock_mount_hash();
  1437. mp = lookup_mountpoint(dentry);
  1438. if (IS_ERR_OR_NULL(mp))
  1439. goto out_unlock;
  1440. event++;
  1441. while (!hlist_empty(&mp->m_list)) {
  1442. mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
  1443. if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
  1444. hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
  1445. umount_mnt(mnt);
  1446. }
  1447. else umount_tree(mnt, UMOUNT_CONNECTED);
  1448. }
  1449. put_mountpoint(mp);
  1450. out_unlock:
  1451. unlock_mount_hash();
  1452. namespace_unlock();
  1453. }
  1454. /*
  1455. * Is the caller allowed to modify his namespace?
  1456. */
  1457. static inline bool may_mount(void)
  1458. {
  1459. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1460. }
  1461. static inline bool may_mandlock(void)
  1462. {
  1463. #ifndef CONFIG_MANDATORY_FILE_LOCKING
  1464. return false;
  1465. #endif
  1466. return capable(CAP_SYS_ADMIN);
  1467. }
  1468. /*
  1469. * Now umount can handle mount points as well as block devices.
  1470. * This is important for filesystems which use unnamed block devices.
  1471. *
  1472. * We now support a flag for forced unmount like the other 'big iron'
  1473. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1474. */
  1475. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1476. {
  1477. struct path path;
  1478. struct mount *mnt;
  1479. int retval;
  1480. int lookup_flags = 0;
  1481. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1482. return -EINVAL;
  1483. if (!may_mount())
  1484. return -EPERM;
  1485. if (!(flags & UMOUNT_NOFOLLOW))
  1486. lookup_flags |= LOOKUP_FOLLOW;
  1487. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1488. if (retval)
  1489. goto out;
  1490. mnt = real_mount(path.mnt);
  1491. retval = -EINVAL;
  1492. if (path.dentry != path.mnt->mnt_root)
  1493. goto dput_and_out;
  1494. if (!check_mnt(mnt))
  1495. goto dput_and_out;
  1496. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1497. goto dput_and_out;
  1498. retval = -EPERM;
  1499. if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
  1500. goto dput_and_out;
  1501. retval = do_umount(mnt, flags);
  1502. dput_and_out:
  1503. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1504. dput(path.dentry);
  1505. mntput_no_expire(mnt);
  1506. out:
  1507. return retval;
  1508. }
  1509. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1510. /*
  1511. * The 2.0 compatible umount. No flags.
  1512. */
  1513. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1514. {
  1515. return sys_umount(name, 0);
  1516. }
  1517. #endif
  1518. static bool is_mnt_ns_file(struct dentry *dentry)
  1519. {
  1520. /* Is this a proxy for a mount namespace? */
  1521. return dentry->d_op == &ns_dentry_operations &&
  1522. dentry->d_fsdata == &mntns_operations;
  1523. }
  1524. struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
  1525. {
  1526. return container_of(ns, struct mnt_namespace, ns);
  1527. }
  1528. static bool mnt_ns_loop(struct dentry *dentry)
  1529. {
  1530. /* Could bind mounting the mount namespace inode cause a
  1531. * mount namespace loop?
  1532. */
  1533. struct mnt_namespace *mnt_ns;
  1534. if (!is_mnt_ns_file(dentry))
  1535. return false;
  1536. mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
  1537. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1538. }
  1539. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1540. int flag)
  1541. {
  1542. struct mount *res, *p, *q, *r, *parent;
  1543. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1544. return ERR_PTR(-EINVAL);
  1545. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1546. return ERR_PTR(-EINVAL);
  1547. res = q = clone_mnt(mnt, dentry, flag);
  1548. if (IS_ERR(q))
  1549. return q;
  1550. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1551. p = mnt;
  1552. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1553. struct mount *s;
  1554. if (!is_subdir(r->mnt_mountpoint, dentry))
  1555. continue;
  1556. for (s = r; s; s = next_mnt(s, r)) {
  1557. if (!(flag & CL_COPY_UNBINDABLE) &&
  1558. IS_MNT_UNBINDABLE(s)) {
  1559. s = skip_mnt_tree(s);
  1560. continue;
  1561. }
  1562. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1563. is_mnt_ns_file(s->mnt.mnt_root)) {
  1564. s = skip_mnt_tree(s);
  1565. continue;
  1566. }
  1567. while (p != s->mnt_parent) {
  1568. p = p->mnt_parent;
  1569. q = q->mnt_parent;
  1570. }
  1571. p = s;
  1572. parent = q;
  1573. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1574. if (IS_ERR(q))
  1575. goto out;
  1576. lock_mount_hash();
  1577. list_add_tail(&q->mnt_list, &res->mnt_list);
  1578. attach_mnt(q, parent, p->mnt_mp);
  1579. unlock_mount_hash();
  1580. }
  1581. }
  1582. return res;
  1583. out:
  1584. if (res) {
  1585. lock_mount_hash();
  1586. umount_tree(res, UMOUNT_SYNC);
  1587. unlock_mount_hash();
  1588. }
  1589. return q;
  1590. }
  1591. /* Caller should check returned pointer for errors */
  1592. struct vfsmount *collect_mounts(const struct path *path)
  1593. {
  1594. struct mount *tree;
  1595. namespace_lock();
  1596. if (!check_mnt(real_mount(path->mnt)))
  1597. tree = ERR_PTR(-EINVAL);
  1598. else
  1599. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1600. CL_COPY_ALL | CL_PRIVATE);
  1601. namespace_unlock();
  1602. if (IS_ERR(tree))
  1603. return ERR_CAST(tree);
  1604. return &tree->mnt;
  1605. }
  1606. void drop_collected_mounts(struct vfsmount *mnt)
  1607. {
  1608. namespace_lock();
  1609. lock_mount_hash();
  1610. umount_tree(real_mount(mnt), UMOUNT_SYNC);
  1611. unlock_mount_hash();
  1612. namespace_unlock();
  1613. }
  1614. /**
  1615. * clone_private_mount - create a private clone of a path
  1616. *
  1617. * This creates a new vfsmount, which will be the clone of @path. The new will
  1618. * not be attached anywhere in the namespace and will be private (i.e. changes
  1619. * to the originating mount won't be propagated into this).
  1620. *
  1621. * Release with mntput().
  1622. */
  1623. struct vfsmount *clone_private_mount(const struct path *path)
  1624. {
  1625. struct mount *old_mnt = real_mount(path->mnt);
  1626. struct mount *new_mnt;
  1627. if (IS_MNT_UNBINDABLE(old_mnt))
  1628. return ERR_PTR(-EINVAL);
  1629. new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
  1630. if (IS_ERR(new_mnt))
  1631. return ERR_CAST(new_mnt);
  1632. return &new_mnt->mnt;
  1633. }
  1634. EXPORT_SYMBOL_GPL(clone_private_mount);
  1635. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1636. struct vfsmount *root)
  1637. {
  1638. struct mount *mnt;
  1639. int res = f(root, arg);
  1640. if (res)
  1641. return res;
  1642. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1643. res = f(&mnt->mnt, arg);
  1644. if (res)
  1645. return res;
  1646. }
  1647. return 0;
  1648. }
  1649. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1650. {
  1651. struct mount *p;
  1652. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1653. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1654. mnt_release_group_id(p);
  1655. }
  1656. }
  1657. static int invent_group_ids(struct mount *mnt, bool recurse)
  1658. {
  1659. struct mount *p;
  1660. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1661. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1662. int err = mnt_alloc_group_id(p);
  1663. if (err) {
  1664. cleanup_group_ids(mnt, p);
  1665. return err;
  1666. }
  1667. }
  1668. }
  1669. return 0;
  1670. }
  1671. int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
  1672. {
  1673. unsigned int max = READ_ONCE(sysctl_mount_max);
  1674. unsigned int mounts = 0, old, pending, sum;
  1675. struct mount *p;
  1676. for (p = mnt; p; p = next_mnt(p, mnt))
  1677. mounts++;
  1678. old = ns->mounts;
  1679. pending = ns->pending_mounts;
  1680. sum = old + pending;
  1681. if ((old > sum) ||
  1682. (pending > sum) ||
  1683. (max < sum) ||
  1684. (mounts > (max - sum)))
  1685. return -ENOSPC;
  1686. ns->pending_mounts = pending + mounts;
  1687. return 0;
  1688. }
  1689. /*
  1690. * @source_mnt : mount tree to be attached
  1691. * @nd : place the mount tree @source_mnt is attached
  1692. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1693. * store the parent mount and mountpoint dentry.
  1694. * (done when source_mnt is moved)
  1695. *
  1696. * NOTE: in the table below explains the semantics when a source mount
  1697. * of a given type is attached to a destination mount of a given type.
  1698. * ---------------------------------------------------------------------------
  1699. * | BIND MOUNT OPERATION |
  1700. * |**************************************************************************
  1701. * | source-->| shared | private | slave | unbindable |
  1702. * | dest | | | | |
  1703. * | | | | | | |
  1704. * | v | | | | |
  1705. * |**************************************************************************
  1706. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1707. * | | | | | |
  1708. * |non-shared| shared (+) | private | slave (*) | invalid |
  1709. * ***************************************************************************
  1710. * A bind operation clones the source mount and mounts the clone on the
  1711. * destination mount.
  1712. *
  1713. * (++) the cloned mount is propagated to all the mounts in the propagation
  1714. * tree of the destination mount and the cloned mount is added to
  1715. * the peer group of the source mount.
  1716. * (+) the cloned mount is created under the destination mount and is marked
  1717. * as shared. The cloned mount is added to the peer group of the source
  1718. * mount.
  1719. * (+++) the mount is propagated to all the mounts in the propagation tree
  1720. * of the destination mount and the cloned mount is made slave
  1721. * of the same master as that of the source mount. The cloned mount
  1722. * is marked as 'shared and slave'.
  1723. * (*) the cloned mount is made a slave of the same master as that of the
  1724. * source mount.
  1725. *
  1726. * ---------------------------------------------------------------------------
  1727. * | MOVE MOUNT OPERATION |
  1728. * |**************************************************************************
  1729. * | source-->| shared | private | slave | unbindable |
  1730. * | dest | | | | |
  1731. * | | | | | | |
  1732. * | v | | | | |
  1733. * |**************************************************************************
  1734. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1735. * | | | | | |
  1736. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1737. * ***************************************************************************
  1738. *
  1739. * (+) the mount is moved to the destination. And is then propagated to
  1740. * all the mounts in the propagation tree of the destination mount.
  1741. * (+*) the mount is moved to the destination.
  1742. * (+++) the mount is moved to the destination and is then propagated to
  1743. * all the mounts belonging to the destination mount's propagation tree.
  1744. * the mount is marked as 'shared and slave'.
  1745. * (*) the mount continues to be a slave at the new location.
  1746. *
  1747. * if the source mount is a tree, the operations explained above is
  1748. * applied to each mount in the tree.
  1749. * Must be called without spinlocks held, since this function can sleep
  1750. * in allocations.
  1751. */
  1752. static int attach_recursive_mnt(struct mount *source_mnt,
  1753. struct mount *dest_mnt,
  1754. struct mountpoint *dest_mp,
  1755. struct path *parent_path)
  1756. {
  1757. HLIST_HEAD(tree_list);
  1758. struct mnt_namespace *ns = dest_mnt->mnt_ns;
  1759. struct mountpoint *smp;
  1760. struct mount *child, *p;
  1761. struct hlist_node *n;
  1762. int err;
  1763. /* Preallocate a mountpoint in case the new mounts need
  1764. * to be tucked under other mounts.
  1765. */
  1766. smp = get_mountpoint(source_mnt->mnt.mnt_root);
  1767. if (IS_ERR(smp))
  1768. return PTR_ERR(smp);
  1769. /* Is there space to add these mounts to the mount namespace? */
  1770. if (!parent_path) {
  1771. err = count_mounts(ns, source_mnt);
  1772. if (err)
  1773. goto out;
  1774. }
  1775. if (IS_MNT_SHARED(dest_mnt)) {
  1776. err = invent_group_ids(source_mnt, true);
  1777. if (err)
  1778. goto out;
  1779. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1780. lock_mount_hash();
  1781. if (err)
  1782. goto out_cleanup_ids;
  1783. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1784. set_mnt_shared(p);
  1785. } else {
  1786. lock_mount_hash();
  1787. }
  1788. if (parent_path) {
  1789. detach_mnt(source_mnt, parent_path);
  1790. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1791. touch_mnt_namespace(source_mnt->mnt_ns);
  1792. } else {
  1793. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1794. commit_tree(source_mnt);
  1795. }
  1796. hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
  1797. struct mount *q;
  1798. hlist_del_init(&child->mnt_hash);
  1799. q = __lookup_mnt(&child->mnt_parent->mnt,
  1800. child->mnt_mountpoint);
  1801. if (q)
  1802. mnt_change_mountpoint(child, smp, q);
  1803. commit_tree(child);
  1804. }
  1805. put_mountpoint(smp);
  1806. unlock_mount_hash();
  1807. return 0;
  1808. out_cleanup_ids:
  1809. while (!hlist_empty(&tree_list)) {
  1810. child = hlist_entry(tree_list.first, struct mount, mnt_hash);
  1811. child->mnt_parent->mnt_ns->pending_mounts = 0;
  1812. umount_tree(child, UMOUNT_SYNC);
  1813. }
  1814. unlock_mount_hash();
  1815. cleanup_group_ids(source_mnt, NULL);
  1816. out:
  1817. ns->pending_mounts = 0;
  1818. read_seqlock_excl(&mount_lock);
  1819. put_mountpoint(smp);
  1820. read_sequnlock_excl(&mount_lock);
  1821. return err;
  1822. }
  1823. static struct mountpoint *lock_mount(struct path *path)
  1824. {
  1825. struct vfsmount *mnt;
  1826. struct dentry *dentry = path->dentry;
  1827. retry:
  1828. inode_lock(dentry->d_inode);
  1829. if (unlikely(cant_mount(dentry))) {
  1830. inode_unlock(dentry->d_inode);
  1831. return ERR_PTR(-ENOENT);
  1832. }
  1833. namespace_lock();
  1834. mnt = lookup_mnt(path);
  1835. if (likely(!mnt)) {
  1836. struct mountpoint *mp = get_mountpoint(dentry);
  1837. if (IS_ERR(mp)) {
  1838. namespace_unlock();
  1839. inode_unlock(dentry->d_inode);
  1840. return mp;
  1841. }
  1842. return mp;
  1843. }
  1844. namespace_unlock();
  1845. inode_unlock(path->dentry->d_inode);
  1846. path_put(path);
  1847. path->mnt = mnt;
  1848. dentry = path->dentry = dget(mnt->mnt_root);
  1849. goto retry;
  1850. }
  1851. static void unlock_mount(struct mountpoint *where)
  1852. {
  1853. struct dentry *dentry = where->m_dentry;
  1854. read_seqlock_excl(&mount_lock);
  1855. put_mountpoint(where);
  1856. read_sequnlock_excl(&mount_lock);
  1857. namespace_unlock();
  1858. inode_unlock(dentry->d_inode);
  1859. }
  1860. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1861. {
  1862. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1863. return -EINVAL;
  1864. if (d_is_dir(mp->m_dentry) !=
  1865. d_is_dir(mnt->mnt.mnt_root))
  1866. return -ENOTDIR;
  1867. return attach_recursive_mnt(mnt, p, mp, NULL);
  1868. }
  1869. /*
  1870. * Sanity check the flags to change_mnt_propagation.
  1871. */
  1872. static int flags_to_propagation_type(int flags)
  1873. {
  1874. int type = flags & ~(MS_REC | MS_SILENT);
  1875. /* Fail if any non-propagation flags are set */
  1876. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1877. return 0;
  1878. /* Only one propagation flag should be set */
  1879. if (!is_power_of_2(type))
  1880. return 0;
  1881. return type;
  1882. }
  1883. /*
  1884. * recursively change the type of the mountpoint.
  1885. */
  1886. static int do_change_type(struct path *path, int flag)
  1887. {
  1888. struct mount *m;
  1889. struct mount *mnt = real_mount(path->mnt);
  1890. int recurse = flag & MS_REC;
  1891. int type;
  1892. int err = 0;
  1893. if (path->dentry != path->mnt->mnt_root)
  1894. return -EINVAL;
  1895. type = flags_to_propagation_type(flag);
  1896. if (!type)
  1897. return -EINVAL;
  1898. namespace_lock();
  1899. if (type == MS_SHARED) {
  1900. err = invent_group_ids(mnt, recurse);
  1901. if (err)
  1902. goto out_unlock;
  1903. }
  1904. lock_mount_hash();
  1905. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1906. change_mnt_propagation(m, type);
  1907. unlock_mount_hash();
  1908. out_unlock:
  1909. namespace_unlock();
  1910. return err;
  1911. }
  1912. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1913. {
  1914. struct mount *child;
  1915. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1916. if (!is_subdir(child->mnt_mountpoint, dentry))
  1917. continue;
  1918. if (child->mnt.mnt_flags & MNT_LOCKED)
  1919. return true;
  1920. }
  1921. return false;
  1922. }
  1923. /*
  1924. * do loopback mount.
  1925. */
  1926. static int do_loopback(struct path *path, const char *old_name,
  1927. int recurse)
  1928. {
  1929. struct path old_path;
  1930. struct mount *mnt = NULL, *old, *parent;
  1931. struct mountpoint *mp;
  1932. int err;
  1933. if (!old_name || !*old_name)
  1934. return -EINVAL;
  1935. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1936. if (err)
  1937. return err;
  1938. err = -EINVAL;
  1939. if (mnt_ns_loop(old_path.dentry))
  1940. goto out;
  1941. mp = lock_mount(path);
  1942. err = PTR_ERR(mp);
  1943. if (IS_ERR(mp))
  1944. goto out;
  1945. old = real_mount(old_path.mnt);
  1946. parent = real_mount(path->mnt);
  1947. err = -EINVAL;
  1948. if (IS_MNT_UNBINDABLE(old))
  1949. goto out2;
  1950. if (!check_mnt(parent))
  1951. goto out2;
  1952. if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
  1953. goto out2;
  1954. if (!recurse && has_locked_children(old, old_path.dentry))
  1955. goto out2;
  1956. if (recurse)
  1957. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1958. else
  1959. mnt = clone_mnt(old, old_path.dentry, 0);
  1960. if (IS_ERR(mnt)) {
  1961. err = PTR_ERR(mnt);
  1962. goto out2;
  1963. }
  1964. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1965. err = graft_tree(mnt, parent, mp);
  1966. if (err) {
  1967. lock_mount_hash();
  1968. umount_tree(mnt, UMOUNT_SYNC);
  1969. unlock_mount_hash();
  1970. }
  1971. out2:
  1972. unlock_mount(mp);
  1973. out:
  1974. path_put(&old_path);
  1975. return err;
  1976. }
  1977. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1978. {
  1979. int error = 0;
  1980. int readonly_request = 0;
  1981. if (ms_flags & MS_RDONLY)
  1982. readonly_request = 1;
  1983. if (readonly_request == __mnt_is_readonly(mnt))
  1984. return 0;
  1985. if (readonly_request)
  1986. error = mnt_make_readonly(real_mount(mnt));
  1987. else
  1988. __mnt_unmake_readonly(real_mount(mnt));
  1989. return error;
  1990. }
  1991. /*
  1992. * change filesystem flags. dir should be a physical root of filesystem.
  1993. * If you've mounted a non-root directory somewhere and want to do remount
  1994. * on it - tough luck.
  1995. */
  1996. static int do_remount(struct path *path, int flags, int mnt_flags,
  1997. void *data)
  1998. {
  1999. int err;
  2000. struct super_block *sb = path->mnt->mnt_sb;
  2001. struct mount *mnt = real_mount(path->mnt);
  2002. if (!check_mnt(mnt))
  2003. return -EINVAL;
  2004. if (path->dentry != path->mnt->mnt_root)
  2005. return -EINVAL;
  2006. /* Don't allow changing of locked mnt flags.
  2007. *
  2008. * No locks need to be held here while testing the various
  2009. * MNT_LOCK flags because those flags can never be cleared
  2010. * once they are set.
  2011. */
  2012. if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
  2013. !(mnt_flags & MNT_READONLY)) {
  2014. return -EPERM;
  2015. }
  2016. if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
  2017. !(mnt_flags & MNT_NODEV)) {
  2018. return -EPERM;
  2019. }
  2020. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
  2021. !(mnt_flags & MNT_NOSUID)) {
  2022. return -EPERM;
  2023. }
  2024. if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
  2025. !(mnt_flags & MNT_NOEXEC)) {
  2026. return -EPERM;
  2027. }
  2028. if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
  2029. ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
  2030. return -EPERM;
  2031. }
  2032. err = security_sb_remount(sb, data);
  2033. if (err)
  2034. return err;
  2035. down_write(&sb->s_umount);
  2036. if (flags & MS_BIND)
  2037. err = change_mount_flags(path->mnt, flags);
  2038. else if (!capable(CAP_SYS_ADMIN))
  2039. err = -EPERM;
  2040. else
  2041. err = do_remount_sb(sb, flags, data, 0);
  2042. if (!err) {
  2043. lock_mount_hash();
  2044. mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
  2045. mnt->mnt.mnt_flags = mnt_flags;
  2046. touch_mnt_namespace(mnt->mnt_ns);
  2047. unlock_mount_hash();
  2048. }
  2049. up_write(&sb->s_umount);
  2050. return err;
  2051. }
  2052. static inline int tree_contains_unbindable(struct mount *mnt)
  2053. {
  2054. struct mount *p;
  2055. for (p = mnt; p; p = next_mnt(p, mnt)) {
  2056. if (IS_MNT_UNBINDABLE(p))
  2057. return 1;
  2058. }
  2059. return 0;
  2060. }
  2061. static int do_move_mount(struct path *path, const char *old_name)
  2062. {
  2063. struct path old_path, parent_path;
  2064. struct mount *p;
  2065. struct mount *old;
  2066. struct mountpoint *mp;
  2067. int err;
  2068. if (!old_name || !*old_name)
  2069. return -EINVAL;
  2070. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  2071. if (err)
  2072. return err;
  2073. mp = lock_mount(path);
  2074. err = PTR_ERR(mp);
  2075. if (IS_ERR(mp))
  2076. goto out;
  2077. old = real_mount(old_path.mnt);
  2078. p = real_mount(path->mnt);
  2079. err = -EINVAL;
  2080. if (!check_mnt(p) || !check_mnt(old))
  2081. goto out1;
  2082. if (old->mnt.mnt_flags & MNT_LOCKED)
  2083. goto out1;
  2084. err = -EINVAL;
  2085. if (old_path.dentry != old_path.mnt->mnt_root)
  2086. goto out1;
  2087. if (!mnt_has_parent(old))
  2088. goto out1;
  2089. if (d_is_dir(path->dentry) !=
  2090. d_is_dir(old_path.dentry))
  2091. goto out1;
  2092. /*
  2093. * Don't move a mount residing in a shared parent.
  2094. */
  2095. if (IS_MNT_SHARED(old->mnt_parent))
  2096. goto out1;
  2097. /*
  2098. * Don't move a mount tree containing unbindable mounts to a destination
  2099. * mount which is shared.
  2100. */
  2101. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  2102. goto out1;
  2103. err = -ELOOP;
  2104. for (; mnt_has_parent(p); p = p->mnt_parent)
  2105. if (p == old)
  2106. goto out1;
  2107. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  2108. if (err)
  2109. goto out1;
  2110. /* if the mount is moved, it should no longer be expire
  2111. * automatically */
  2112. list_del_init(&old->mnt_expire);
  2113. out1:
  2114. unlock_mount(mp);
  2115. out:
  2116. if (!err)
  2117. path_put(&parent_path);
  2118. path_put(&old_path);
  2119. return err;
  2120. }
  2121. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  2122. {
  2123. int err;
  2124. const char *subtype = strchr(fstype, '.');
  2125. if (subtype) {
  2126. subtype++;
  2127. err = -EINVAL;
  2128. if (!subtype[0])
  2129. goto err;
  2130. } else
  2131. subtype = "";
  2132. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  2133. err = -ENOMEM;
  2134. if (!mnt->mnt_sb->s_subtype)
  2135. goto err;
  2136. return mnt;
  2137. err:
  2138. mntput(mnt);
  2139. return ERR_PTR(err);
  2140. }
  2141. /*
  2142. * add a mount into a namespace's mount tree
  2143. */
  2144. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  2145. {
  2146. struct mountpoint *mp;
  2147. struct mount *parent;
  2148. int err;
  2149. mnt_flags &= ~MNT_INTERNAL_FLAGS;
  2150. mp = lock_mount(path);
  2151. if (IS_ERR(mp))
  2152. return PTR_ERR(mp);
  2153. parent = real_mount(path->mnt);
  2154. err = -EINVAL;
  2155. if (unlikely(!check_mnt(parent))) {
  2156. /* that's acceptable only for automounts done in private ns */
  2157. if (!(mnt_flags & MNT_SHRINKABLE))
  2158. goto unlock;
  2159. /* ... and for those we'd better have mountpoint still alive */
  2160. if (!parent->mnt_ns)
  2161. goto unlock;
  2162. }
  2163. /* Refuse the same filesystem on the same mount point */
  2164. err = -EBUSY;
  2165. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  2166. path->mnt->mnt_root == path->dentry)
  2167. goto unlock;
  2168. err = -EINVAL;
  2169. if (d_is_symlink(newmnt->mnt.mnt_root))
  2170. goto unlock;
  2171. newmnt->mnt.mnt_flags = mnt_flags;
  2172. err = graft_tree(newmnt, parent, mp);
  2173. unlock:
  2174. unlock_mount(mp);
  2175. return err;
  2176. }
  2177. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
  2178. /*
  2179. * create a new mount for userspace and request it to be added into the
  2180. * namespace's tree
  2181. */
  2182. static int do_new_mount(struct path *path, const char *fstype, int flags,
  2183. int mnt_flags, const char *name, void *data)
  2184. {
  2185. struct file_system_type *type;
  2186. struct vfsmount *mnt;
  2187. int err;
  2188. if (!fstype)
  2189. return -EINVAL;
  2190. type = get_fs_type(fstype);
  2191. if (!type)
  2192. return -ENODEV;
  2193. mnt = vfs_kern_mount(type, flags, name, data);
  2194. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  2195. !mnt->mnt_sb->s_subtype)
  2196. mnt = fs_set_subtype(mnt, fstype);
  2197. put_filesystem(type);
  2198. if (IS_ERR(mnt))
  2199. return PTR_ERR(mnt);
  2200. if (mount_too_revealing(mnt, &mnt_flags)) {
  2201. mntput(mnt);
  2202. return -EPERM;
  2203. }
  2204. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  2205. if (err)
  2206. mntput(mnt);
  2207. return err;
  2208. }
  2209. int finish_automount(struct vfsmount *m, struct path *path)
  2210. {
  2211. struct mount *mnt = real_mount(m);
  2212. int err;
  2213. /* The new mount record should have at least 2 refs to prevent it being
  2214. * expired before we get a chance to add it
  2215. */
  2216. BUG_ON(mnt_get_count(mnt) < 2);
  2217. if (m->mnt_sb == path->mnt->mnt_sb &&
  2218. m->mnt_root == path->dentry) {
  2219. err = -ELOOP;
  2220. goto fail;
  2221. }
  2222. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  2223. if (!err)
  2224. return 0;
  2225. fail:
  2226. /* remove m from any expiration list it may be on */
  2227. if (!list_empty(&mnt->mnt_expire)) {
  2228. namespace_lock();
  2229. list_del_init(&mnt->mnt_expire);
  2230. namespace_unlock();
  2231. }
  2232. mntput(m);
  2233. mntput(m);
  2234. return err;
  2235. }
  2236. /**
  2237. * mnt_set_expiry - Put a mount on an expiration list
  2238. * @mnt: The mount to list.
  2239. * @expiry_list: The list to add the mount to.
  2240. */
  2241. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  2242. {
  2243. namespace_lock();
  2244. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  2245. namespace_unlock();
  2246. }
  2247. EXPORT_SYMBOL(mnt_set_expiry);
  2248. /*
  2249. * process a list of expirable mountpoints with the intent of discarding any
  2250. * mountpoints that aren't in use and haven't been touched since last we came
  2251. * here
  2252. */
  2253. void mark_mounts_for_expiry(struct list_head *mounts)
  2254. {
  2255. struct mount *mnt, *next;
  2256. LIST_HEAD(graveyard);
  2257. if (list_empty(mounts))
  2258. return;
  2259. namespace_lock();
  2260. lock_mount_hash();
  2261. /* extract from the expiration list every vfsmount that matches the
  2262. * following criteria:
  2263. * - only referenced by its parent vfsmount
  2264. * - still marked for expiry (marked on the last call here; marks are
  2265. * cleared by mntput())
  2266. */
  2267. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  2268. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  2269. propagate_mount_busy(mnt, 1))
  2270. continue;
  2271. list_move(&mnt->mnt_expire, &graveyard);
  2272. }
  2273. while (!list_empty(&graveyard)) {
  2274. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  2275. touch_mnt_namespace(mnt->mnt_ns);
  2276. umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2277. }
  2278. unlock_mount_hash();
  2279. namespace_unlock();
  2280. }
  2281. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  2282. /*
  2283. * Ripoff of 'select_parent()'
  2284. *
  2285. * search the list of submounts for a given mountpoint, and move any
  2286. * shrinkable submounts to the 'graveyard' list.
  2287. */
  2288. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  2289. {
  2290. struct mount *this_parent = parent;
  2291. struct list_head *next;
  2292. int found = 0;
  2293. repeat:
  2294. next = this_parent->mnt_mounts.next;
  2295. resume:
  2296. while (next != &this_parent->mnt_mounts) {
  2297. struct list_head *tmp = next;
  2298. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  2299. next = tmp->next;
  2300. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  2301. continue;
  2302. /*
  2303. * Descend a level if the d_mounts list is non-empty.
  2304. */
  2305. if (!list_empty(&mnt->mnt_mounts)) {
  2306. this_parent = mnt;
  2307. goto repeat;
  2308. }
  2309. if (!propagate_mount_busy(mnt, 1)) {
  2310. list_move_tail(&mnt->mnt_expire, graveyard);
  2311. found++;
  2312. }
  2313. }
  2314. /*
  2315. * All done at this level ... ascend and resume the search
  2316. */
  2317. if (this_parent != parent) {
  2318. next = this_parent->mnt_child.next;
  2319. this_parent = this_parent->mnt_parent;
  2320. goto resume;
  2321. }
  2322. return found;
  2323. }
  2324. /*
  2325. * process a list of expirable mountpoints with the intent of discarding any
  2326. * submounts of a specific parent mountpoint
  2327. *
  2328. * mount_lock must be held for write
  2329. */
  2330. static void shrink_submounts(struct mount *mnt)
  2331. {
  2332. LIST_HEAD(graveyard);
  2333. struct mount *m;
  2334. /* extract submounts of 'mountpoint' from the expiration list */
  2335. while (select_submounts(mnt, &graveyard)) {
  2336. while (!list_empty(&graveyard)) {
  2337. m = list_first_entry(&graveyard, struct mount,
  2338. mnt_expire);
  2339. touch_mnt_namespace(m->mnt_ns);
  2340. umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
  2341. }
  2342. }
  2343. }
  2344. /*
  2345. * Some copy_from_user() implementations do not return the exact number of
  2346. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  2347. * Note that this function differs from copy_from_user() in that it will oops
  2348. * on bad values of `to', rather than returning a short copy.
  2349. */
  2350. static long exact_copy_from_user(void *to, const void __user * from,
  2351. unsigned long n)
  2352. {
  2353. char *t = to;
  2354. const char __user *f = from;
  2355. char c;
  2356. if (!access_ok(VERIFY_READ, from, n))
  2357. return n;
  2358. while (n) {
  2359. if (__get_user(c, f)) {
  2360. memset(t, 0, n);
  2361. break;
  2362. }
  2363. *t++ = c;
  2364. f++;
  2365. n--;
  2366. }
  2367. return n;
  2368. }
  2369. void *copy_mount_options(const void __user * data)
  2370. {
  2371. int i;
  2372. unsigned long size;
  2373. char *copy;
  2374. if (!data)
  2375. return NULL;
  2376. copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2377. if (!copy)
  2378. return ERR_PTR(-ENOMEM);
  2379. /* We only care that *some* data at the address the user
  2380. * gave us is valid. Just in case, we'll zero
  2381. * the remainder of the page.
  2382. */
  2383. /* copy_from_user cannot cross TASK_SIZE ! */
  2384. size = TASK_SIZE - (unsigned long)data;
  2385. if (size > PAGE_SIZE)
  2386. size = PAGE_SIZE;
  2387. i = size - exact_copy_from_user(copy, data, size);
  2388. if (!i) {
  2389. kfree(copy);
  2390. return ERR_PTR(-EFAULT);
  2391. }
  2392. if (i != PAGE_SIZE)
  2393. memset(copy + i, 0, PAGE_SIZE - i);
  2394. return copy;
  2395. }
  2396. char *copy_mount_string(const void __user *data)
  2397. {
  2398. return data ? strndup_user(data, PAGE_SIZE) : NULL;
  2399. }
  2400. /*
  2401. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2402. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2403. *
  2404. * data is a (void *) that can point to any structure up to
  2405. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2406. * information (or be NULL).
  2407. *
  2408. * Pre-0.97 versions of mount() didn't have a flags word.
  2409. * When the flags word was introduced its top half was required
  2410. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2411. * Therefore, if this magic number is present, it carries no information
  2412. * and must be discarded.
  2413. */
  2414. long do_mount(const char *dev_name, const char __user *dir_name,
  2415. const char *type_page, unsigned long flags, void *data_page)
  2416. {
  2417. struct path path;
  2418. int retval = 0;
  2419. int mnt_flags = 0;
  2420. /* Discard magic */
  2421. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2422. flags &= ~MS_MGC_MSK;
  2423. /* Basic sanity checks */
  2424. if (data_page)
  2425. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2426. /* ... and get the mountpoint */
  2427. retval = user_path(dir_name, &path);
  2428. if (retval)
  2429. return retval;
  2430. retval = security_sb_mount(dev_name, &path,
  2431. type_page, flags, data_page);
  2432. if (!retval && !may_mount())
  2433. retval = -EPERM;
  2434. if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
  2435. retval = -EPERM;
  2436. if (retval)
  2437. goto dput_out;
  2438. /* Default to relatime unless overriden */
  2439. if (!(flags & MS_NOATIME))
  2440. mnt_flags |= MNT_RELATIME;
  2441. /* Separate the per-mountpoint flags */
  2442. if (flags & MS_NOSUID)
  2443. mnt_flags |= MNT_NOSUID;
  2444. if (flags & MS_NODEV)
  2445. mnt_flags |= MNT_NODEV;
  2446. if (flags & MS_NOEXEC)
  2447. mnt_flags |= MNT_NOEXEC;
  2448. if (flags & MS_NOATIME)
  2449. mnt_flags |= MNT_NOATIME;
  2450. if (flags & MS_NODIRATIME)
  2451. mnt_flags |= MNT_NODIRATIME;
  2452. if (flags & MS_STRICTATIME)
  2453. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2454. if (flags & MS_RDONLY)
  2455. mnt_flags |= MNT_READONLY;
  2456. /* The default atime for remount is preservation */
  2457. if ((flags & MS_REMOUNT) &&
  2458. ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
  2459. MS_STRICTATIME)) == 0)) {
  2460. mnt_flags &= ~MNT_ATIME_MASK;
  2461. mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
  2462. }
  2463. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2464. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2465. MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
  2466. if (flags & MS_REMOUNT)
  2467. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2468. data_page);
  2469. else if (flags & MS_BIND)
  2470. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2471. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2472. retval = do_change_type(&path, flags);
  2473. else if (flags & MS_MOVE)
  2474. retval = do_move_mount(&path, dev_name);
  2475. else
  2476. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2477. dev_name, data_page);
  2478. dput_out:
  2479. path_put(&path);
  2480. return retval;
  2481. }
  2482. static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
  2483. {
  2484. return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
  2485. }
  2486. static void dec_mnt_namespaces(struct ucounts *ucounts)
  2487. {
  2488. dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
  2489. }
  2490. static void free_mnt_ns(struct mnt_namespace *ns)
  2491. {
  2492. ns_free_inum(&ns->ns);
  2493. dec_mnt_namespaces(ns->ucounts);
  2494. put_user_ns(ns->user_ns);
  2495. kfree(ns);
  2496. }
  2497. /*
  2498. * Assign a sequence number so we can detect when we attempt to bind
  2499. * mount a reference to an older mount namespace into the current
  2500. * mount namespace, preventing reference counting loops. A 64bit
  2501. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2502. * is effectively never, so we can ignore the possibility.
  2503. */
  2504. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2505. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2506. {
  2507. struct mnt_namespace *new_ns;
  2508. struct ucounts *ucounts;
  2509. int ret;
  2510. ucounts = inc_mnt_namespaces(user_ns);
  2511. if (!ucounts)
  2512. return ERR_PTR(-ENOSPC);
  2513. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2514. if (!new_ns) {
  2515. dec_mnt_namespaces(ucounts);
  2516. return ERR_PTR(-ENOMEM);
  2517. }
  2518. ret = ns_alloc_inum(&new_ns->ns);
  2519. if (ret) {
  2520. kfree(new_ns);
  2521. dec_mnt_namespaces(ucounts);
  2522. return ERR_PTR(ret);
  2523. }
  2524. new_ns->ns.ops = &mntns_operations;
  2525. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2526. atomic_set(&new_ns->count, 1);
  2527. new_ns->root = NULL;
  2528. INIT_LIST_HEAD(&new_ns->list);
  2529. init_waitqueue_head(&new_ns->poll);
  2530. new_ns->event = 0;
  2531. new_ns->user_ns = get_user_ns(user_ns);
  2532. new_ns->ucounts = ucounts;
  2533. new_ns->mounts = 0;
  2534. new_ns->pending_mounts = 0;
  2535. return new_ns;
  2536. }
  2537. __latent_entropy
  2538. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2539. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2540. {
  2541. struct mnt_namespace *new_ns;
  2542. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2543. struct mount *p, *q;
  2544. struct mount *old;
  2545. struct mount *new;
  2546. int copy_flags;
  2547. BUG_ON(!ns);
  2548. if (likely(!(flags & CLONE_NEWNS))) {
  2549. get_mnt_ns(ns);
  2550. return ns;
  2551. }
  2552. old = ns->root;
  2553. new_ns = alloc_mnt_ns(user_ns);
  2554. if (IS_ERR(new_ns))
  2555. return new_ns;
  2556. namespace_lock();
  2557. /* First pass: copy the tree topology */
  2558. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2559. if (user_ns != ns->user_ns)
  2560. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2561. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2562. if (IS_ERR(new)) {
  2563. namespace_unlock();
  2564. free_mnt_ns(new_ns);
  2565. return ERR_CAST(new);
  2566. }
  2567. new_ns->root = new;
  2568. list_add_tail(&new_ns->list, &new->mnt_list);
  2569. /*
  2570. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2571. * as belonging to new namespace. We have already acquired a private
  2572. * fs_struct, so tsk->fs->lock is not needed.
  2573. */
  2574. p = old;
  2575. q = new;
  2576. while (p) {
  2577. q->mnt_ns = new_ns;
  2578. new_ns->mounts++;
  2579. if (new_fs) {
  2580. if (&p->mnt == new_fs->root.mnt) {
  2581. new_fs->root.mnt = mntget(&q->mnt);
  2582. rootmnt = &p->mnt;
  2583. }
  2584. if (&p->mnt == new_fs->pwd.mnt) {
  2585. new_fs->pwd.mnt = mntget(&q->mnt);
  2586. pwdmnt = &p->mnt;
  2587. }
  2588. }
  2589. p = next_mnt(p, old);
  2590. q = next_mnt(q, new);
  2591. if (!q)
  2592. break;
  2593. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2594. p = next_mnt(p, old);
  2595. }
  2596. namespace_unlock();
  2597. if (rootmnt)
  2598. mntput(rootmnt);
  2599. if (pwdmnt)
  2600. mntput(pwdmnt);
  2601. return new_ns;
  2602. }
  2603. /**
  2604. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2605. * @mnt: pointer to the new root filesystem mountpoint
  2606. */
  2607. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2608. {
  2609. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2610. if (!IS_ERR(new_ns)) {
  2611. struct mount *mnt = real_mount(m);
  2612. mnt->mnt_ns = new_ns;
  2613. new_ns->root = mnt;
  2614. new_ns->mounts++;
  2615. list_add(&mnt->mnt_list, &new_ns->list);
  2616. } else {
  2617. mntput(m);
  2618. }
  2619. return new_ns;
  2620. }
  2621. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2622. {
  2623. struct mnt_namespace *ns;
  2624. struct super_block *s;
  2625. struct path path;
  2626. int err;
  2627. ns = create_mnt_ns(mnt);
  2628. if (IS_ERR(ns))
  2629. return ERR_CAST(ns);
  2630. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2631. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2632. put_mnt_ns(ns);
  2633. if (err)
  2634. return ERR_PTR(err);
  2635. /* trade a vfsmount reference for active sb one */
  2636. s = path.mnt->mnt_sb;
  2637. atomic_inc(&s->s_active);
  2638. mntput(path.mnt);
  2639. /* lock the sucker */
  2640. down_write(&s->s_umount);
  2641. /* ... and return the root of (sub)tree on it */
  2642. return path.dentry;
  2643. }
  2644. EXPORT_SYMBOL(mount_subtree);
  2645. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2646. char __user *, type, unsigned long, flags, void __user *, data)
  2647. {
  2648. int ret;
  2649. char *kernel_type;
  2650. char *kernel_dev;
  2651. void *options;
  2652. kernel_type = copy_mount_string(type);
  2653. ret = PTR_ERR(kernel_type);
  2654. if (IS_ERR(kernel_type))
  2655. goto out_type;
  2656. kernel_dev = copy_mount_string(dev_name);
  2657. ret = PTR_ERR(kernel_dev);
  2658. if (IS_ERR(kernel_dev))
  2659. goto out_dev;
  2660. options = copy_mount_options(data);
  2661. ret = PTR_ERR(options);
  2662. if (IS_ERR(options))
  2663. goto out_data;
  2664. ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
  2665. kfree(options);
  2666. out_data:
  2667. kfree(kernel_dev);
  2668. out_dev:
  2669. kfree(kernel_type);
  2670. out_type:
  2671. return ret;
  2672. }
  2673. /*
  2674. * Return true if path is reachable from root
  2675. *
  2676. * namespace_sem or mount_lock is held
  2677. */
  2678. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2679. const struct path *root)
  2680. {
  2681. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2682. dentry = mnt->mnt_mountpoint;
  2683. mnt = mnt->mnt_parent;
  2684. }
  2685. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2686. }
  2687. bool path_is_under(const struct path *path1, const struct path *path2)
  2688. {
  2689. bool res;
  2690. read_seqlock_excl(&mount_lock);
  2691. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2692. read_sequnlock_excl(&mount_lock);
  2693. return res;
  2694. }
  2695. EXPORT_SYMBOL(path_is_under);
  2696. /*
  2697. * pivot_root Semantics:
  2698. * Moves the root file system of the current process to the directory put_old,
  2699. * makes new_root as the new root file system of the current process, and sets
  2700. * root/cwd of all processes which had them on the current root to new_root.
  2701. *
  2702. * Restrictions:
  2703. * The new_root and put_old must be directories, and must not be on the
  2704. * same file system as the current process root. The put_old must be
  2705. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2706. * pointed to by put_old must yield the same directory as new_root. No other
  2707. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2708. *
  2709. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2710. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2711. * in this situation.
  2712. *
  2713. * Notes:
  2714. * - we don't move root/cwd if they are not at the root (reason: if something
  2715. * cared enough to change them, it's probably wrong to force them elsewhere)
  2716. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2717. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2718. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2719. * first.
  2720. */
  2721. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2722. const char __user *, put_old)
  2723. {
  2724. struct path new, old, parent_path, root_parent, root;
  2725. struct mount *new_mnt, *root_mnt, *old_mnt;
  2726. struct mountpoint *old_mp, *root_mp;
  2727. int error;
  2728. if (!may_mount())
  2729. return -EPERM;
  2730. error = user_path_dir(new_root, &new);
  2731. if (error)
  2732. goto out0;
  2733. error = user_path_dir(put_old, &old);
  2734. if (error)
  2735. goto out1;
  2736. error = security_sb_pivotroot(&old, &new);
  2737. if (error)
  2738. goto out2;
  2739. get_fs_root(current->fs, &root);
  2740. old_mp = lock_mount(&old);
  2741. error = PTR_ERR(old_mp);
  2742. if (IS_ERR(old_mp))
  2743. goto out3;
  2744. error = -EINVAL;
  2745. new_mnt = real_mount(new.mnt);
  2746. root_mnt = real_mount(root.mnt);
  2747. old_mnt = real_mount(old.mnt);
  2748. if (IS_MNT_SHARED(old_mnt) ||
  2749. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2750. IS_MNT_SHARED(root_mnt->mnt_parent))
  2751. goto out4;
  2752. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2753. goto out4;
  2754. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2755. goto out4;
  2756. error = -ENOENT;
  2757. if (d_unlinked(new.dentry))
  2758. goto out4;
  2759. error = -EBUSY;
  2760. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2761. goto out4; /* loop, on the same file system */
  2762. error = -EINVAL;
  2763. if (root.mnt->mnt_root != root.dentry)
  2764. goto out4; /* not a mountpoint */
  2765. if (!mnt_has_parent(root_mnt))
  2766. goto out4; /* not attached */
  2767. root_mp = root_mnt->mnt_mp;
  2768. if (new.mnt->mnt_root != new.dentry)
  2769. goto out4; /* not a mountpoint */
  2770. if (!mnt_has_parent(new_mnt))
  2771. goto out4; /* not attached */
  2772. /* make sure we can reach put_old from new_root */
  2773. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2774. goto out4;
  2775. /* make certain new is below the root */
  2776. if (!is_path_reachable(new_mnt, new.dentry, &root))
  2777. goto out4;
  2778. root_mp->m_count++; /* pin it so it won't go away */
  2779. lock_mount_hash();
  2780. detach_mnt(new_mnt, &parent_path);
  2781. detach_mnt(root_mnt, &root_parent);
  2782. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2783. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2784. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2785. }
  2786. /* mount old root on put_old */
  2787. attach_mnt(root_mnt, old_mnt, old_mp);
  2788. /* mount new_root on / */
  2789. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2790. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2791. /* A moved mount should not expire automatically */
  2792. list_del_init(&new_mnt->mnt_expire);
  2793. put_mountpoint(root_mp);
  2794. unlock_mount_hash();
  2795. chroot_fs_refs(&root, &new);
  2796. error = 0;
  2797. out4:
  2798. unlock_mount(old_mp);
  2799. if (!error) {
  2800. path_put(&root_parent);
  2801. path_put(&parent_path);
  2802. }
  2803. out3:
  2804. path_put(&root);
  2805. out2:
  2806. path_put(&old);
  2807. out1:
  2808. path_put(&new);
  2809. out0:
  2810. return error;
  2811. }
  2812. static void __init init_mount_tree(void)
  2813. {
  2814. struct vfsmount *mnt;
  2815. struct mnt_namespace *ns;
  2816. struct path root;
  2817. struct file_system_type *type;
  2818. type = get_fs_type("rootfs");
  2819. if (!type)
  2820. panic("Can't find rootfs type");
  2821. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2822. put_filesystem(type);
  2823. if (IS_ERR(mnt))
  2824. panic("Can't create rootfs");
  2825. ns = create_mnt_ns(mnt);
  2826. if (IS_ERR(ns))
  2827. panic("Can't allocate initial namespace");
  2828. init_task.nsproxy->mnt_ns = ns;
  2829. get_mnt_ns(ns);
  2830. root.mnt = mnt;
  2831. root.dentry = mnt->mnt_root;
  2832. mnt->mnt_flags |= MNT_LOCKED;
  2833. set_fs_pwd(current->fs, &root);
  2834. set_fs_root(current->fs, &root);
  2835. }
  2836. void __init mnt_init(void)
  2837. {
  2838. int err;
  2839. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2840. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2841. mount_hashtable = alloc_large_system_hash("Mount-cache",
  2842. sizeof(struct hlist_head),
  2843. mhash_entries, 19,
  2844. HASH_ZERO,
  2845. &m_hash_shift, &m_hash_mask, 0, 0);
  2846. mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
  2847. sizeof(struct hlist_head),
  2848. mphash_entries, 19,
  2849. HASH_ZERO,
  2850. &mp_hash_shift, &mp_hash_mask, 0, 0);
  2851. if (!mount_hashtable || !mountpoint_hashtable)
  2852. panic("Failed to allocate mount hash table\n");
  2853. kernfs_init();
  2854. err = sysfs_init();
  2855. if (err)
  2856. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2857. __func__, err);
  2858. fs_kobj = kobject_create_and_add("fs", NULL);
  2859. if (!fs_kobj)
  2860. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2861. init_rootfs();
  2862. init_mount_tree();
  2863. }
  2864. void put_mnt_ns(struct mnt_namespace *ns)
  2865. {
  2866. if (!atomic_dec_and_test(&ns->count))
  2867. return;
  2868. drop_collected_mounts(&ns->root->mnt);
  2869. free_mnt_ns(ns);
  2870. }
  2871. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2872. {
  2873. struct vfsmount *mnt;
  2874. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2875. if (!IS_ERR(mnt)) {
  2876. /*
  2877. * it is a longterm mount, don't release mnt until
  2878. * we unmount before file sys is unregistered
  2879. */
  2880. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2881. }
  2882. return mnt;
  2883. }
  2884. EXPORT_SYMBOL_GPL(kern_mount_data);
  2885. void kern_unmount(struct vfsmount *mnt)
  2886. {
  2887. /* release long term mount so mount point can be released */
  2888. if (!IS_ERR_OR_NULL(mnt)) {
  2889. real_mount(mnt)->mnt_ns = NULL;
  2890. synchronize_rcu(); /* yecchhh... */
  2891. mntput(mnt);
  2892. }
  2893. }
  2894. EXPORT_SYMBOL(kern_unmount);
  2895. bool our_mnt(struct vfsmount *mnt)
  2896. {
  2897. return check_mnt(real_mount(mnt));
  2898. }
  2899. bool current_chrooted(void)
  2900. {
  2901. /* Does the current process have a non-standard root */
  2902. struct path ns_root;
  2903. struct path fs_root;
  2904. bool chrooted;
  2905. /* Find the namespace root */
  2906. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2907. ns_root.dentry = ns_root.mnt->mnt_root;
  2908. path_get(&ns_root);
  2909. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2910. ;
  2911. get_fs_root(current->fs, &fs_root);
  2912. chrooted = !path_equal(&fs_root, &ns_root);
  2913. path_put(&fs_root);
  2914. path_put(&ns_root);
  2915. return chrooted;
  2916. }
  2917. static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
  2918. int *new_mnt_flags)
  2919. {
  2920. int new_flags = *new_mnt_flags;
  2921. struct mount *mnt;
  2922. bool visible = false;
  2923. down_read(&namespace_sem);
  2924. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2925. struct mount *child;
  2926. int mnt_flags;
  2927. if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
  2928. continue;
  2929. /* This mount is not fully visible if it's root directory
  2930. * is not the root directory of the filesystem.
  2931. */
  2932. if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
  2933. continue;
  2934. /* A local view of the mount flags */
  2935. mnt_flags = mnt->mnt.mnt_flags;
  2936. /* Don't miss readonly hidden in the superblock flags */
  2937. if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
  2938. mnt_flags |= MNT_LOCK_READONLY;
  2939. /* Verify the mount flags are equal to or more permissive
  2940. * than the proposed new mount.
  2941. */
  2942. if ((mnt_flags & MNT_LOCK_READONLY) &&
  2943. !(new_flags & MNT_READONLY))
  2944. continue;
  2945. if ((mnt_flags & MNT_LOCK_ATIME) &&
  2946. ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
  2947. continue;
  2948. /* This mount is not fully visible if there are any
  2949. * locked child mounts that cover anything except for
  2950. * empty directories.
  2951. */
  2952. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2953. struct inode *inode = child->mnt_mountpoint->d_inode;
  2954. /* Only worry about locked mounts */
  2955. if (!(child->mnt.mnt_flags & MNT_LOCKED))
  2956. continue;
  2957. /* Is the directory permanetly empty? */
  2958. if (!is_empty_dir_inode(inode))
  2959. goto next;
  2960. }
  2961. /* Preserve the locked attributes */
  2962. *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
  2963. MNT_LOCK_ATIME);
  2964. visible = true;
  2965. goto found;
  2966. next: ;
  2967. }
  2968. found:
  2969. up_read(&namespace_sem);
  2970. return visible;
  2971. }
  2972. static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
  2973. {
  2974. const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
  2975. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2976. unsigned long s_iflags;
  2977. if (ns->user_ns == &init_user_ns)
  2978. return false;
  2979. /* Can this filesystem be too revealing? */
  2980. s_iflags = mnt->mnt_sb->s_iflags;
  2981. if (!(s_iflags & SB_I_USERNS_VISIBLE))
  2982. return false;
  2983. if ((s_iflags & required_iflags) != required_iflags) {
  2984. WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
  2985. required_iflags);
  2986. return true;
  2987. }
  2988. return !mnt_already_visible(ns, mnt, new_mnt_flags);
  2989. }
  2990. bool mnt_may_suid(struct vfsmount *mnt)
  2991. {
  2992. /*
  2993. * Foreign mounts (accessed via fchdir or through /proc
  2994. * symlinks) are always treated as if they are nosuid. This
  2995. * prevents namespaces from trusting potentially unsafe
  2996. * suid/sgid bits, file caps, or security labels that originate
  2997. * in other namespaces.
  2998. */
  2999. return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
  3000. current_in_userns(mnt->mnt_sb->s_user_ns);
  3001. }
  3002. static struct ns_common *mntns_get(struct task_struct *task)
  3003. {
  3004. struct ns_common *ns = NULL;
  3005. struct nsproxy *nsproxy;
  3006. task_lock(task);
  3007. nsproxy = task->nsproxy;
  3008. if (nsproxy) {
  3009. ns = &nsproxy->mnt_ns->ns;
  3010. get_mnt_ns(to_mnt_ns(ns));
  3011. }
  3012. task_unlock(task);
  3013. return ns;
  3014. }
  3015. static void mntns_put(struct ns_common *ns)
  3016. {
  3017. put_mnt_ns(to_mnt_ns(ns));
  3018. }
  3019. static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
  3020. {
  3021. struct fs_struct *fs = current->fs;
  3022. struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
  3023. struct path root;
  3024. int err;
  3025. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  3026. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  3027. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  3028. return -EPERM;
  3029. if (fs->users != 1)
  3030. return -EINVAL;
  3031. get_mnt_ns(mnt_ns);
  3032. old_mnt_ns = nsproxy->mnt_ns;
  3033. nsproxy->mnt_ns = mnt_ns;
  3034. /* Find the root */
  3035. err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
  3036. "/", LOOKUP_DOWN, &root);
  3037. if (err) {
  3038. /* revert to old namespace */
  3039. nsproxy->mnt_ns = old_mnt_ns;
  3040. put_mnt_ns(mnt_ns);
  3041. return err;
  3042. }
  3043. put_mnt_ns(old_mnt_ns);
  3044. /* Update the pwd and root */
  3045. set_fs_pwd(fs, &root);
  3046. set_fs_root(fs, &root);
  3047. path_put(&root);
  3048. return 0;
  3049. }
  3050. static struct user_namespace *mntns_owner(struct ns_common *ns)
  3051. {
  3052. return to_mnt_ns(ns)->user_ns;
  3053. }
  3054. const struct proc_ns_operations mntns_operations = {
  3055. .name = "mnt",
  3056. .type = CLONE_NEWNS,
  3057. .get = mntns_get,
  3058. .put = mntns_put,
  3059. .install = mntns_install,
  3060. .owner = mntns_owner,
  3061. };