intel_ringbuffer.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ring *ring)
  47. {
  48. if (ring->last_retired_head != -1) {
  49. ring->head = ring->last_retired_head;
  50. ring->last_retired_head = -1;
  51. }
  52. ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  53. ring->tail, ring->size);
  54. }
  55. static int
  56. gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  57. {
  58. u32 cmd, *cs;
  59. cmd = MI_FLUSH;
  60. if (mode & EMIT_INVALIDATE)
  61. cmd |= MI_READ_FLUSH;
  62. cs = intel_ring_begin(req, 2);
  63. if (IS_ERR(cs))
  64. return PTR_ERR(cs);
  65. *cs++ = cmd;
  66. *cs++ = MI_NOOP;
  67. intel_ring_advance(req, cs);
  68. return 0;
  69. }
  70. static int
  71. gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  72. {
  73. u32 cmd, *cs;
  74. /*
  75. * read/write caches:
  76. *
  77. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  78. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  79. * also flushed at 2d versus 3d pipeline switches.
  80. *
  81. * read-only caches:
  82. *
  83. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  84. * MI_READ_FLUSH is set, and is always flushed on 965.
  85. *
  86. * I915_GEM_DOMAIN_COMMAND may not exist?
  87. *
  88. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  89. * invalidated when MI_EXE_FLUSH is set.
  90. *
  91. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  92. * invalidated with every MI_FLUSH.
  93. *
  94. * TLBs:
  95. *
  96. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  97. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  98. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  99. * are flushed at any MI_FLUSH.
  100. */
  101. cmd = MI_FLUSH;
  102. if (mode & EMIT_INVALIDATE) {
  103. cmd |= MI_EXE_FLUSH;
  104. if (IS_G4X(req->i915) || IS_GEN5(req->i915))
  105. cmd |= MI_INVALIDATE_ISP;
  106. }
  107. cs = intel_ring_begin(req, 2);
  108. if (IS_ERR(cs))
  109. return PTR_ERR(cs);
  110. *cs++ = cmd;
  111. *cs++ = MI_NOOP;
  112. intel_ring_advance(req, cs);
  113. return 0;
  114. }
  115. /**
  116. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  117. * implementing two workarounds on gen6. From section 1.4.7.1
  118. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  119. *
  120. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  121. * produced by non-pipelined state commands), software needs to first
  122. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  123. * 0.
  124. *
  125. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  126. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  127. *
  128. * And the workaround for these two requires this workaround first:
  129. *
  130. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  131. * BEFORE the pipe-control with a post-sync op and no write-cache
  132. * flushes.
  133. *
  134. * And this last workaround is tricky because of the requirements on
  135. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  136. * volume 2 part 1:
  137. *
  138. * "1 of the following must also be set:
  139. * - Render Target Cache Flush Enable ([12] of DW1)
  140. * - Depth Cache Flush Enable ([0] of DW1)
  141. * - Stall at Pixel Scoreboard ([1] of DW1)
  142. * - Depth Stall ([13] of DW1)
  143. * - Post-Sync Operation ([13] of DW1)
  144. * - Notify Enable ([8] of DW1)"
  145. *
  146. * The cache flushes require the workaround flush that triggered this
  147. * one, so we can't use it. Depth stall would trigger the same.
  148. * Post-sync nonzero is what triggered this second workaround, so we
  149. * can't use that one either. Notify enable is IRQs, which aren't
  150. * really our business. That leaves only stall at scoreboard.
  151. */
  152. static int
  153. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  154. {
  155. u32 scratch_addr =
  156. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  157. u32 *cs;
  158. cs = intel_ring_begin(req, 6);
  159. if (IS_ERR(cs))
  160. return PTR_ERR(cs);
  161. *cs++ = GFX_OP_PIPE_CONTROL(5);
  162. *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
  163. *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
  164. *cs++ = 0; /* low dword */
  165. *cs++ = 0; /* high dword */
  166. *cs++ = MI_NOOP;
  167. intel_ring_advance(req, cs);
  168. cs = intel_ring_begin(req, 6);
  169. if (IS_ERR(cs))
  170. return PTR_ERR(cs);
  171. *cs++ = GFX_OP_PIPE_CONTROL(5);
  172. *cs++ = PIPE_CONTROL_QW_WRITE;
  173. *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
  174. *cs++ = 0;
  175. *cs++ = 0;
  176. *cs++ = MI_NOOP;
  177. intel_ring_advance(req, cs);
  178. return 0;
  179. }
  180. static int
  181. gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  182. {
  183. u32 scratch_addr =
  184. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  185. u32 *cs, flags = 0;
  186. int ret;
  187. /* Force SNB workarounds for PIPE_CONTROL flushes */
  188. ret = intel_emit_post_sync_nonzero_flush(req);
  189. if (ret)
  190. return ret;
  191. /* Just flush everything. Experiments have shown that reducing the
  192. * number of bits based on the write domains has little performance
  193. * impact.
  194. */
  195. if (mode & EMIT_FLUSH) {
  196. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  197. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  198. /*
  199. * Ensure that any following seqno writes only happen
  200. * when the render cache is indeed flushed.
  201. */
  202. flags |= PIPE_CONTROL_CS_STALL;
  203. }
  204. if (mode & EMIT_INVALIDATE) {
  205. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  206. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  207. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  208. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  209. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  210. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  211. /*
  212. * TLB invalidate requires a post-sync write.
  213. */
  214. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  215. }
  216. cs = intel_ring_begin(req, 4);
  217. if (IS_ERR(cs))
  218. return PTR_ERR(cs);
  219. *cs++ = GFX_OP_PIPE_CONTROL(4);
  220. *cs++ = flags;
  221. *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
  222. *cs++ = 0;
  223. intel_ring_advance(req, cs);
  224. return 0;
  225. }
  226. static int
  227. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  228. {
  229. u32 *cs;
  230. cs = intel_ring_begin(req, 4);
  231. if (IS_ERR(cs))
  232. return PTR_ERR(cs);
  233. *cs++ = GFX_OP_PIPE_CONTROL(4);
  234. *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
  235. *cs++ = 0;
  236. *cs++ = 0;
  237. intel_ring_advance(req, cs);
  238. return 0;
  239. }
  240. static int
  241. gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  242. {
  243. u32 scratch_addr =
  244. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  245. u32 *cs, flags = 0;
  246. /*
  247. * Ensure that any following seqno writes only happen when the render
  248. * cache is indeed flushed.
  249. *
  250. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  251. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  252. * don't try to be clever and just set it unconditionally.
  253. */
  254. flags |= PIPE_CONTROL_CS_STALL;
  255. /* Just flush everything. Experiments have shown that reducing the
  256. * number of bits based on the write domains has little performance
  257. * impact.
  258. */
  259. if (mode & EMIT_FLUSH) {
  260. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  261. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  262. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  263. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  264. }
  265. if (mode & EMIT_INVALIDATE) {
  266. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  267. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  268. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  269. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  270. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  271. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  272. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  273. /*
  274. * TLB invalidate requires a post-sync write.
  275. */
  276. flags |= PIPE_CONTROL_QW_WRITE;
  277. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  278. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  279. /* Workaround: we must issue a pipe_control with CS-stall bit
  280. * set before a pipe_control command that has the state cache
  281. * invalidate bit set. */
  282. gen7_render_ring_cs_stall_wa(req);
  283. }
  284. cs = intel_ring_begin(req, 4);
  285. if (IS_ERR(cs))
  286. return PTR_ERR(cs);
  287. *cs++ = GFX_OP_PIPE_CONTROL(4);
  288. *cs++ = flags;
  289. *cs++ = scratch_addr;
  290. *cs++ = 0;
  291. intel_ring_advance(req, cs);
  292. return 0;
  293. }
  294. static int
  295. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  296. u32 flags, u32 scratch_addr)
  297. {
  298. u32 *cs;
  299. cs = intel_ring_begin(req, 6);
  300. if (IS_ERR(cs))
  301. return PTR_ERR(cs);
  302. *cs++ = GFX_OP_PIPE_CONTROL(6);
  303. *cs++ = flags;
  304. *cs++ = scratch_addr;
  305. *cs++ = 0;
  306. *cs++ = 0;
  307. *cs++ = 0;
  308. intel_ring_advance(req, cs);
  309. return 0;
  310. }
  311. static int
  312. gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  313. {
  314. u32 scratch_addr =
  315. i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
  316. u32 flags = 0;
  317. int ret;
  318. flags |= PIPE_CONTROL_CS_STALL;
  319. if (mode & EMIT_FLUSH) {
  320. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  321. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  322. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  323. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  324. }
  325. if (mode & EMIT_INVALIDATE) {
  326. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  327. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  328. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  329. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  330. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  331. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  332. flags |= PIPE_CONTROL_QW_WRITE;
  333. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  334. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  335. ret = gen8_emit_pipe_control(req,
  336. PIPE_CONTROL_CS_STALL |
  337. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  338. 0);
  339. if (ret)
  340. return ret;
  341. }
  342. return gen8_emit_pipe_control(req, flags, scratch_addr);
  343. }
  344. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  345. {
  346. struct drm_i915_private *dev_priv = engine->i915;
  347. u32 addr;
  348. addr = dev_priv->status_page_dmah->busaddr;
  349. if (INTEL_GEN(dev_priv) >= 4)
  350. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  351. I915_WRITE(HWS_PGA, addr);
  352. }
  353. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  354. {
  355. struct drm_i915_private *dev_priv = engine->i915;
  356. i915_reg_t mmio;
  357. /* The ring status page addresses are no longer next to the rest of
  358. * the ring registers as of gen7.
  359. */
  360. if (IS_GEN7(dev_priv)) {
  361. switch (engine->id) {
  362. case RCS:
  363. mmio = RENDER_HWS_PGA_GEN7;
  364. break;
  365. case BCS:
  366. mmio = BLT_HWS_PGA_GEN7;
  367. break;
  368. /*
  369. * VCS2 actually doesn't exist on Gen7. Only shut up
  370. * gcc switch check warning
  371. */
  372. case VCS2:
  373. case VCS:
  374. mmio = BSD_HWS_PGA_GEN7;
  375. break;
  376. case VECS:
  377. mmio = VEBOX_HWS_PGA_GEN7;
  378. break;
  379. }
  380. } else if (IS_GEN6(dev_priv)) {
  381. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  382. } else {
  383. /* XXX: gen8 returns to sanity */
  384. mmio = RING_HWS_PGA(engine->mmio_base);
  385. }
  386. I915_WRITE(mmio, engine->status_page.ggtt_offset);
  387. POSTING_READ(mmio);
  388. /*
  389. * Flush the TLB for this page
  390. *
  391. * FIXME: These two bits have disappeared on gen8, so a question
  392. * arises: do we still need this and if so how should we go about
  393. * invalidating the TLB?
  394. */
  395. if (IS_GEN(dev_priv, 6, 7)) {
  396. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  397. /* ring should be idle before issuing a sync flush*/
  398. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  399. I915_WRITE(reg,
  400. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  401. INSTPM_SYNC_FLUSH));
  402. if (intel_wait_for_register(dev_priv,
  403. reg, INSTPM_SYNC_FLUSH, 0,
  404. 1000))
  405. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  406. engine->name);
  407. }
  408. }
  409. static bool stop_ring(struct intel_engine_cs *engine)
  410. {
  411. struct drm_i915_private *dev_priv = engine->i915;
  412. if (INTEL_GEN(dev_priv) > 2) {
  413. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  414. if (intel_wait_for_register(dev_priv,
  415. RING_MI_MODE(engine->mmio_base),
  416. MODE_IDLE,
  417. MODE_IDLE,
  418. 1000)) {
  419. DRM_ERROR("%s : timed out trying to stop ring\n",
  420. engine->name);
  421. /* Sometimes we observe that the idle flag is not
  422. * set even though the ring is empty. So double
  423. * check before giving up.
  424. */
  425. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  426. return false;
  427. }
  428. }
  429. I915_WRITE_CTL(engine, 0);
  430. I915_WRITE_HEAD(engine, 0);
  431. I915_WRITE_TAIL(engine, 0);
  432. if (INTEL_GEN(dev_priv) > 2) {
  433. (void)I915_READ_CTL(engine);
  434. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  435. }
  436. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  437. }
  438. static int init_ring_common(struct intel_engine_cs *engine)
  439. {
  440. struct drm_i915_private *dev_priv = engine->i915;
  441. struct intel_ring *ring = engine->buffer;
  442. int ret = 0;
  443. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  444. if (!stop_ring(engine)) {
  445. /* G45 ring initialization often fails to reset head to zero */
  446. DRM_DEBUG_KMS("%s head not reset to zero "
  447. "ctl %08x head %08x tail %08x start %08x\n",
  448. engine->name,
  449. I915_READ_CTL(engine),
  450. I915_READ_HEAD(engine),
  451. I915_READ_TAIL(engine),
  452. I915_READ_START(engine));
  453. if (!stop_ring(engine)) {
  454. DRM_ERROR("failed to set %s head to zero "
  455. "ctl %08x head %08x tail %08x start %08x\n",
  456. engine->name,
  457. I915_READ_CTL(engine),
  458. I915_READ_HEAD(engine),
  459. I915_READ_TAIL(engine),
  460. I915_READ_START(engine));
  461. ret = -EIO;
  462. goto out;
  463. }
  464. }
  465. if (HWS_NEEDS_PHYSICAL(dev_priv))
  466. ring_setup_phys_status_page(engine);
  467. else
  468. intel_ring_setup_status_page(engine);
  469. intel_engine_reset_breadcrumbs(engine);
  470. /* Enforce ordering by reading HEAD register back */
  471. I915_READ_HEAD(engine);
  472. /* Initialize the ring. This must happen _after_ we've cleared the ring
  473. * registers with the above sequence (the readback of the HEAD registers
  474. * also enforces ordering), otherwise the hw might lose the new ring
  475. * register values. */
  476. I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
  477. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  478. if (I915_READ_HEAD(engine))
  479. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  480. engine->name, I915_READ_HEAD(engine));
  481. intel_ring_update_space(ring);
  482. I915_WRITE_HEAD(engine, ring->head);
  483. I915_WRITE_TAIL(engine, ring->tail);
  484. (void)I915_READ_TAIL(engine);
  485. I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
  486. /* If the head is still not zero, the ring is dead */
  487. if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
  488. RING_VALID, RING_VALID,
  489. 50)) {
  490. DRM_ERROR("%s initialization failed "
  491. "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
  492. engine->name,
  493. I915_READ_CTL(engine),
  494. I915_READ_CTL(engine) & RING_VALID,
  495. I915_READ_HEAD(engine), ring->head,
  496. I915_READ_TAIL(engine), ring->tail,
  497. I915_READ_START(engine),
  498. i915_ggtt_offset(ring->vma));
  499. ret = -EIO;
  500. goto out;
  501. }
  502. intel_engine_init_hangcheck(engine);
  503. out:
  504. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  505. return ret;
  506. }
  507. static void reset_ring_common(struct intel_engine_cs *engine,
  508. struct drm_i915_gem_request *request)
  509. {
  510. /* Try to restore the logical GPU state to match the continuation
  511. * of the request queue. If we skip the context/PD restore, then
  512. * the next request may try to execute assuming that its context
  513. * is valid and loaded on the GPU and so may try to access invalid
  514. * memory, prompting repeated GPU hangs.
  515. *
  516. * If the request was guilty, we still restore the logical state
  517. * in case the next request requires it (e.g. the aliasing ppgtt),
  518. * but skip over the hung batch.
  519. *
  520. * If the request was innocent, we try to replay the request with
  521. * the restored context.
  522. */
  523. if (request) {
  524. struct drm_i915_private *dev_priv = request->i915;
  525. struct intel_context *ce = &request->ctx->engine[engine->id];
  526. struct i915_hw_ppgtt *ppgtt;
  527. /* FIXME consider gen8 reset */
  528. if (ce->state) {
  529. I915_WRITE(CCID,
  530. i915_ggtt_offset(ce->state) |
  531. BIT(8) /* must be set! */ |
  532. CCID_EXTENDED_STATE_SAVE |
  533. CCID_EXTENDED_STATE_RESTORE |
  534. CCID_EN);
  535. }
  536. ppgtt = request->ctx->ppgtt ?: engine->i915->mm.aliasing_ppgtt;
  537. if (ppgtt) {
  538. u32 pd_offset = ppgtt->pd.base.ggtt_offset << 10;
  539. I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
  540. I915_WRITE(RING_PP_DIR_BASE(engine), pd_offset);
  541. /* Wait for the PD reload to complete */
  542. if (intel_wait_for_register(dev_priv,
  543. RING_PP_DIR_BASE(engine),
  544. BIT(0), 0,
  545. 10))
  546. DRM_ERROR("Wait for reload of ppgtt page-directory timed out\n");
  547. ppgtt->pd_dirty_rings &= ~intel_engine_flag(engine);
  548. }
  549. /* If the rq hung, jump to its breadcrumb and skip the batch */
  550. if (request->fence.error == -EIO) {
  551. struct intel_ring *ring = request->ring;
  552. ring->head = request->postfix;
  553. ring->last_retired_head = -1;
  554. }
  555. } else {
  556. engine->legacy_active_context = NULL;
  557. }
  558. }
  559. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  560. {
  561. struct i915_workarounds *w = &req->i915->workarounds;
  562. u32 *cs;
  563. int ret, i;
  564. if (w->count == 0)
  565. return 0;
  566. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  567. if (ret)
  568. return ret;
  569. cs = intel_ring_begin(req, (w->count * 2 + 2));
  570. if (IS_ERR(cs))
  571. return PTR_ERR(cs);
  572. *cs++ = MI_LOAD_REGISTER_IMM(w->count);
  573. for (i = 0; i < w->count; i++) {
  574. *cs++ = i915_mmio_reg_offset(w->reg[i].addr);
  575. *cs++ = w->reg[i].value;
  576. }
  577. *cs++ = MI_NOOP;
  578. intel_ring_advance(req, cs);
  579. ret = req->engine->emit_flush(req, EMIT_BARRIER);
  580. if (ret)
  581. return ret;
  582. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  583. return 0;
  584. }
  585. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  586. {
  587. int ret;
  588. ret = intel_ring_workarounds_emit(req);
  589. if (ret != 0)
  590. return ret;
  591. ret = i915_gem_render_state_emit(req);
  592. if (ret)
  593. return ret;
  594. return 0;
  595. }
  596. static int wa_add(struct drm_i915_private *dev_priv,
  597. i915_reg_t addr,
  598. const u32 mask, const u32 val)
  599. {
  600. const u32 idx = dev_priv->workarounds.count;
  601. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  602. return -ENOSPC;
  603. dev_priv->workarounds.reg[idx].addr = addr;
  604. dev_priv->workarounds.reg[idx].value = val;
  605. dev_priv->workarounds.reg[idx].mask = mask;
  606. dev_priv->workarounds.count++;
  607. return 0;
  608. }
  609. #define WA_REG(addr, mask, val) do { \
  610. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  611. if (r) \
  612. return r; \
  613. } while (0)
  614. #define WA_SET_BIT_MASKED(addr, mask) \
  615. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  616. #define WA_CLR_BIT_MASKED(addr, mask) \
  617. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  618. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  619. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  620. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  621. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  622. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  623. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  624. i915_reg_t reg)
  625. {
  626. struct drm_i915_private *dev_priv = engine->i915;
  627. struct i915_workarounds *wa = &dev_priv->workarounds;
  628. const uint32_t index = wa->hw_whitelist_count[engine->id];
  629. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  630. return -EINVAL;
  631. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  632. i915_mmio_reg_offset(reg));
  633. wa->hw_whitelist_count[engine->id]++;
  634. return 0;
  635. }
  636. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  637. {
  638. struct drm_i915_private *dev_priv = engine->i915;
  639. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  640. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  641. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  642. /* WaDisablePartialInstShootdown:bdw,chv */
  643. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  644. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  645. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  646. * workaround for for a possible hang in the unlikely event a TLB
  647. * invalidation occurs during a PSD flush.
  648. */
  649. /* WaForceEnableNonCoherent:bdw,chv */
  650. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  651. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  652. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  653. HDC_FORCE_NON_COHERENT);
  654. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  655. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  656. * polygons in the same 8x4 pixel/sample area to be processed without
  657. * stalling waiting for the earlier ones to write to Hierarchical Z
  658. * buffer."
  659. *
  660. * This optimization is off by default for BDW and CHV; turn it on.
  661. */
  662. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  663. /* Wa4x4STCOptimizationDisable:bdw,chv */
  664. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  665. /*
  666. * BSpec recommends 8x4 when MSAA is used,
  667. * however in practice 16x4 seems fastest.
  668. *
  669. * Note that PS/WM thread counts depend on the WIZ hashing
  670. * disable bit, which we don't touch here, but it's good
  671. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  672. */
  673. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  674. GEN6_WIZ_HASHING_MASK,
  675. GEN6_WIZ_HASHING_16x4);
  676. return 0;
  677. }
  678. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  679. {
  680. struct drm_i915_private *dev_priv = engine->i915;
  681. int ret;
  682. ret = gen8_init_workarounds(engine);
  683. if (ret)
  684. return ret;
  685. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  686. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  687. /* WaDisableDopClockGating:bdw
  688. *
  689. * Also see the related UCGTCL1 write in broadwell_init_clock_gating()
  690. * to disable EUTC clock gating.
  691. */
  692. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  693. DOP_CLOCK_GATING_DISABLE);
  694. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  695. GEN8_SAMPLER_POWER_BYPASS_DIS);
  696. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  697. /* WaForceContextSaveRestoreNonCoherent:bdw */
  698. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  699. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  700. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  701. return 0;
  702. }
  703. static int chv_init_workarounds(struct intel_engine_cs *engine)
  704. {
  705. struct drm_i915_private *dev_priv = engine->i915;
  706. int ret;
  707. ret = gen8_init_workarounds(engine);
  708. if (ret)
  709. return ret;
  710. /* WaDisableThreadStallDopClockGating:chv */
  711. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  712. /* Improve HiZ throughput on CHV. */
  713. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  714. return 0;
  715. }
  716. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  717. {
  718. struct drm_i915_private *dev_priv = engine->i915;
  719. int ret;
  720. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk */
  721. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  722. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk */
  723. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  724. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  725. /* WaDisableKillLogic:bxt,skl,kbl */
  726. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  727. ECOCHK_DIS_TLB);
  728. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk */
  729. /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk */
  730. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  731. FLOW_CONTROL_ENABLE |
  732. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  733. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  734. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  735. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  736. /* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
  737. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  738. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  739. GEN9_DG_MIRROR_FIX_ENABLE);
  740. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
  741. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  742. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  743. GEN9_RHWO_OPTIMIZATION_DISABLE);
  744. /*
  745. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  746. * but we do that in per ctx batchbuffer as there is an issue
  747. * with this register not getting restored on ctx restore
  748. */
  749. }
  750. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  751. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  752. GEN9_ENABLE_GPGPU_PREEMPTION);
  753. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk */
  754. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  755. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  756. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  757. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk */
  758. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  759. GEN9_CCS_TLB_PREFETCH_ENABLE);
  760. /* WaDisableMaskBasedCammingInRCC:bxt */
  761. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  762. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  763. PIXEL_MASK_CAMMING_DISABLE);
  764. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  765. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  766. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  767. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  768. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  769. * both tied to WaForceContextSaveRestoreNonCoherent
  770. * in some hsds for skl. We keep the tie for all gen9. The
  771. * documentation is a bit hazy and so we want to get common behaviour,
  772. * even though there is no clear evidence we would need both on kbl/bxt.
  773. * This area has been source of system hangs so we play it safe
  774. * and mimic the skl regardless of what bspec says.
  775. *
  776. * Use Force Non-Coherent whenever executing a 3D context. This
  777. * is a workaround for a possible hang in the unlikely event
  778. * a TLB invalidation occurs during a PSD flush.
  779. */
  780. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  781. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  782. HDC_FORCE_NON_COHERENT);
  783. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  784. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  785. BDW_DISABLE_HDC_INVALIDATION);
  786. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  787. if (IS_SKYLAKE(dev_priv) ||
  788. IS_KABYLAKE(dev_priv) ||
  789. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  790. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  791. GEN8_SAMPLER_POWER_BYPASS_DIS);
  792. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk */
  793. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  794. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  795. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  796. GEN8_LQSC_FLUSH_COHERENT_LINES));
  797. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk */
  798. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  799. if (ret)
  800. return ret;
  801. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  802. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  803. if (ret)
  804. return ret;
  805. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk */
  806. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  807. if (ret)
  808. return ret;
  809. return 0;
  810. }
  811. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  812. {
  813. struct drm_i915_private *dev_priv = engine->i915;
  814. u8 vals[3] = { 0, 0, 0 };
  815. unsigned int i;
  816. for (i = 0; i < 3; i++) {
  817. u8 ss;
  818. /*
  819. * Only consider slices where one, and only one, subslice has 7
  820. * EUs
  821. */
  822. if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
  823. continue;
  824. /*
  825. * subslice_7eu[i] != 0 (because of the check above) and
  826. * ss_max == 4 (maximum number of subslices possible per slice)
  827. *
  828. * -> 0 <= ss <= 3;
  829. */
  830. ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
  831. vals[i] = 3 - ss;
  832. }
  833. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  834. return 0;
  835. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  836. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  837. GEN9_IZ_HASHING_MASK(2) |
  838. GEN9_IZ_HASHING_MASK(1) |
  839. GEN9_IZ_HASHING_MASK(0),
  840. GEN9_IZ_HASHING(2, vals[2]) |
  841. GEN9_IZ_HASHING(1, vals[1]) |
  842. GEN9_IZ_HASHING(0, vals[0]));
  843. return 0;
  844. }
  845. static int skl_init_workarounds(struct intel_engine_cs *engine)
  846. {
  847. struct drm_i915_private *dev_priv = engine->i915;
  848. int ret;
  849. ret = gen9_init_workarounds(engine);
  850. if (ret)
  851. return ret;
  852. /*
  853. * Actual WA is to disable percontext preemption granularity control
  854. * until D0 which is the default case so this is equivalent to
  855. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  856. */
  857. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  858. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  859. /* WaEnableGapsTsvCreditFix:skl */
  860. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  861. GEN9_GAPS_TSV_CREDIT_DISABLE));
  862. /* WaDisableGafsUnitClkGating:skl */
  863. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  864. /* WaInPlaceDecompressionHang:skl */
  865. if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
  866. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  867. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  868. /* WaDisableLSQCROPERFforOCL:skl */
  869. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  870. if (ret)
  871. return ret;
  872. return skl_tune_iz_hashing(engine);
  873. }
  874. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  875. {
  876. struct drm_i915_private *dev_priv = engine->i915;
  877. int ret;
  878. ret = gen9_init_workarounds(engine);
  879. if (ret)
  880. return ret;
  881. /* WaStoreMultiplePTEenable:bxt */
  882. /* This is a requirement according to Hardware specification */
  883. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  884. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  885. /* WaSetClckGatingDisableMedia:bxt */
  886. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  887. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  888. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  889. }
  890. /* WaDisableThreadStallDopClockGating:bxt */
  891. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  892. STALL_DOP_GATING_DISABLE);
  893. /* WaDisablePooledEuLoadBalancingFix:bxt */
  894. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
  895. WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
  896. GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
  897. }
  898. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  899. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  900. WA_SET_BIT_MASKED(
  901. GEN7_HALF_SLICE_CHICKEN1,
  902. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  903. }
  904. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  905. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  906. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  907. /* WaDisableLSQCROPERFforOCL:bxt */
  908. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  909. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  910. if (ret)
  911. return ret;
  912. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  913. if (ret)
  914. return ret;
  915. }
  916. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  917. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  918. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  919. L3_HIGH_PRIO_CREDITS(2));
  920. /* WaToEnableHwFixForPushConstHWBug:bxt */
  921. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  922. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  923. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  924. /* WaInPlaceDecompressionHang:bxt */
  925. if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
  926. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  927. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  928. return 0;
  929. }
  930. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  931. {
  932. struct drm_i915_private *dev_priv = engine->i915;
  933. int ret;
  934. ret = gen9_init_workarounds(engine);
  935. if (ret)
  936. return ret;
  937. /* WaEnableGapsTsvCreditFix:kbl */
  938. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  939. GEN9_GAPS_TSV_CREDIT_DISABLE));
  940. /* WaDisableDynamicCreditSharing:kbl */
  941. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  942. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  943. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  944. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  945. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  946. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  947. HDC_FENCE_DEST_SLM_DISABLE);
  948. /* WaToEnableHwFixForPushConstHWBug:kbl */
  949. if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
  950. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  951. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  952. /* WaDisableGafsUnitClkGating:kbl */
  953. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  954. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  955. WA_SET_BIT_MASKED(
  956. GEN7_HALF_SLICE_CHICKEN1,
  957. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  958. /* WaInPlaceDecompressionHang:kbl */
  959. WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
  960. GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
  961. /* WaDisableLSQCROPERFforOCL:kbl */
  962. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  963. if (ret)
  964. return ret;
  965. return 0;
  966. }
  967. static int glk_init_workarounds(struct intel_engine_cs *engine)
  968. {
  969. struct drm_i915_private *dev_priv = engine->i915;
  970. int ret;
  971. ret = gen9_init_workarounds(engine);
  972. if (ret)
  973. return ret;
  974. /* WaToEnableHwFixForPushConstHWBug:glk */
  975. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  976. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  977. return 0;
  978. }
  979. int init_workarounds_ring(struct intel_engine_cs *engine)
  980. {
  981. struct drm_i915_private *dev_priv = engine->i915;
  982. WARN_ON(engine->id != RCS);
  983. dev_priv->workarounds.count = 0;
  984. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  985. if (IS_BROADWELL(dev_priv))
  986. return bdw_init_workarounds(engine);
  987. if (IS_CHERRYVIEW(dev_priv))
  988. return chv_init_workarounds(engine);
  989. if (IS_SKYLAKE(dev_priv))
  990. return skl_init_workarounds(engine);
  991. if (IS_BROXTON(dev_priv))
  992. return bxt_init_workarounds(engine);
  993. if (IS_KABYLAKE(dev_priv))
  994. return kbl_init_workarounds(engine);
  995. if (IS_GEMINILAKE(dev_priv))
  996. return glk_init_workarounds(engine);
  997. return 0;
  998. }
  999. static int init_render_ring(struct intel_engine_cs *engine)
  1000. {
  1001. struct drm_i915_private *dev_priv = engine->i915;
  1002. int ret = init_ring_common(engine);
  1003. if (ret)
  1004. return ret;
  1005. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1006. if (IS_GEN(dev_priv, 4, 6))
  1007. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1008. /* We need to disable the AsyncFlip performance optimisations in order
  1009. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1010. * programmed to '1' on all products.
  1011. *
  1012. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1013. */
  1014. if (IS_GEN(dev_priv, 6, 7))
  1015. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1016. /* Required for the hardware to program scanline values for waiting */
  1017. /* WaEnableFlushTlbInvalidationMode:snb */
  1018. if (IS_GEN6(dev_priv))
  1019. I915_WRITE(GFX_MODE,
  1020. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1021. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1022. if (IS_GEN7(dev_priv))
  1023. I915_WRITE(GFX_MODE_GEN7,
  1024. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1025. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1026. if (IS_GEN6(dev_priv)) {
  1027. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1028. * "If this bit is set, STCunit will have LRA as replacement
  1029. * policy. [...] This bit must be reset. LRA replacement
  1030. * policy is not supported."
  1031. */
  1032. I915_WRITE(CACHE_MODE_0,
  1033. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1034. }
  1035. if (IS_GEN(dev_priv, 6, 7))
  1036. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1037. if (INTEL_INFO(dev_priv)->gen >= 6)
  1038. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1039. return init_workarounds_ring(engine);
  1040. }
  1041. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1042. {
  1043. struct drm_i915_private *dev_priv = engine->i915;
  1044. i915_vma_unpin_and_release(&dev_priv->semaphore);
  1045. }
  1046. static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *cs)
  1047. {
  1048. struct drm_i915_private *dev_priv = req->i915;
  1049. struct intel_engine_cs *waiter;
  1050. enum intel_engine_id id;
  1051. for_each_engine(waiter, dev_priv, id) {
  1052. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1053. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1054. continue;
  1055. *cs++ = GFX_OP_PIPE_CONTROL(6);
  1056. *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_QW_WRITE |
  1057. PIPE_CONTROL_CS_STALL;
  1058. *cs++ = lower_32_bits(gtt_offset);
  1059. *cs++ = upper_32_bits(gtt_offset);
  1060. *cs++ = req->global_seqno;
  1061. *cs++ = 0;
  1062. *cs++ = MI_SEMAPHORE_SIGNAL |
  1063. MI_SEMAPHORE_TARGET(waiter->hw_id);
  1064. *cs++ = 0;
  1065. }
  1066. return cs;
  1067. }
  1068. static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *cs)
  1069. {
  1070. struct drm_i915_private *dev_priv = req->i915;
  1071. struct intel_engine_cs *waiter;
  1072. enum intel_engine_id id;
  1073. for_each_engine(waiter, dev_priv, id) {
  1074. u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
  1075. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1076. continue;
  1077. *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
  1078. *cs++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
  1079. *cs++ = upper_32_bits(gtt_offset);
  1080. *cs++ = req->global_seqno;
  1081. *cs++ = MI_SEMAPHORE_SIGNAL |
  1082. MI_SEMAPHORE_TARGET(waiter->hw_id);
  1083. *cs++ = 0;
  1084. }
  1085. return cs;
  1086. }
  1087. static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *cs)
  1088. {
  1089. struct drm_i915_private *dev_priv = req->i915;
  1090. struct intel_engine_cs *engine;
  1091. enum intel_engine_id id;
  1092. int num_rings = 0;
  1093. for_each_engine(engine, dev_priv, id) {
  1094. i915_reg_t mbox_reg;
  1095. if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
  1096. continue;
  1097. mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
  1098. if (i915_mmio_reg_valid(mbox_reg)) {
  1099. *cs++ = MI_LOAD_REGISTER_IMM(1);
  1100. *cs++ = i915_mmio_reg_offset(mbox_reg);
  1101. *cs++ = req->global_seqno;
  1102. num_rings++;
  1103. }
  1104. }
  1105. if (num_rings & 1)
  1106. *cs++ = MI_NOOP;
  1107. return cs;
  1108. }
  1109. static void i9xx_submit_request(struct drm_i915_gem_request *request)
  1110. {
  1111. struct drm_i915_private *dev_priv = request->i915;
  1112. i915_gem_request_submit(request);
  1113. I915_WRITE_TAIL(request->engine, request->tail);
  1114. }
  1115. static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
  1116. {
  1117. *cs++ = MI_STORE_DWORD_INDEX;
  1118. *cs++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
  1119. *cs++ = req->global_seqno;
  1120. *cs++ = MI_USER_INTERRUPT;
  1121. req->tail = intel_ring_offset(req, cs);
  1122. }
  1123. static const int i9xx_emit_breadcrumb_sz = 4;
  1124. /**
  1125. * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
  1126. *
  1127. * @request - request to write to the ring
  1128. *
  1129. * Update the mailbox registers in the *other* rings with the current seqno.
  1130. * This acts like a signal in the canonical semaphore.
  1131. */
  1132. static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req, u32 *cs)
  1133. {
  1134. return i9xx_emit_breadcrumb(req,
  1135. req->engine->semaphore.signal(req, cs));
  1136. }
  1137. static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
  1138. u32 *cs)
  1139. {
  1140. struct intel_engine_cs *engine = req->engine;
  1141. if (engine->semaphore.signal)
  1142. cs = engine->semaphore.signal(req, cs);
  1143. *cs++ = GFX_OP_PIPE_CONTROL(6);
  1144. *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
  1145. PIPE_CONTROL_QW_WRITE;
  1146. *cs++ = intel_hws_seqno_address(engine);
  1147. *cs++ = 0;
  1148. *cs++ = req->global_seqno;
  1149. /* We're thrashing one dword of HWS. */
  1150. *cs++ = 0;
  1151. *cs++ = MI_USER_INTERRUPT;
  1152. *cs++ = MI_NOOP;
  1153. req->tail = intel_ring_offset(req, cs);
  1154. }
  1155. static const int gen8_render_emit_breadcrumb_sz = 8;
  1156. /**
  1157. * intel_ring_sync - sync the waiter to the signaller on seqno
  1158. *
  1159. * @waiter - ring that is waiting
  1160. * @signaller - ring which has, or will signal
  1161. * @seqno - seqno which the waiter will block on
  1162. */
  1163. static int
  1164. gen8_ring_sync_to(struct drm_i915_gem_request *req,
  1165. struct drm_i915_gem_request *signal)
  1166. {
  1167. struct drm_i915_private *dev_priv = req->i915;
  1168. u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
  1169. struct i915_hw_ppgtt *ppgtt;
  1170. u32 *cs;
  1171. cs = intel_ring_begin(req, 4);
  1172. if (IS_ERR(cs))
  1173. return PTR_ERR(cs);
  1174. *cs++ = MI_SEMAPHORE_WAIT | MI_SEMAPHORE_GLOBAL_GTT |
  1175. MI_SEMAPHORE_SAD_GTE_SDD;
  1176. *cs++ = signal->global_seqno;
  1177. *cs++ = lower_32_bits(offset);
  1178. *cs++ = upper_32_bits(offset);
  1179. intel_ring_advance(req, cs);
  1180. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1181. * pagetables and we must reload them before executing the batch.
  1182. * We do this on the i915_switch_context() following the wait and
  1183. * before the dispatch.
  1184. */
  1185. ppgtt = req->ctx->ppgtt;
  1186. if (ppgtt && req->engine->id != RCS)
  1187. ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
  1188. return 0;
  1189. }
  1190. static int
  1191. gen6_ring_sync_to(struct drm_i915_gem_request *req,
  1192. struct drm_i915_gem_request *signal)
  1193. {
  1194. u32 dw1 = MI_SEMAPHORE_MBOX |
  1195. MI_SEMAPHORE_COMPARE |
  1196. MI_SEMAPHORE_REGISTER;
  1197. u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
  1198. u32 *cs;
  1199. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1200. cs = intel_ring_begin(req, 4);
  1201. if (IS_ERR(cs))
  1202. return PTR_ERR(cs);
  1203. *cs++ = dw1 | wait_mbox;
  1204. /* Throughout all of the GEM code, seqno passed implies our current
  1205. * seqno is >= the last seqno executed. However for hardware the
  1206. * comparison is strictly greater than.
  1207. */
  1208. *cs++ = signal->global_seqno - 1;
  1209. *cs++ = 0;
  1210. *cs++ = MI_NOOP;
  1211. intel_ring_advance(req, cs);
  1212. return 0;
  1213. }
  1214. static void
  1215. gen5_seqno_barrier(struct intel_engine_cs *engine)
  1216. {
  1217. /* MI_STORE are internally buffered by the GPU and not flushed
  1218. * either by MI_FLUSH or SyncFlush or any other combination of
  1219. * MI commands.
  1220. *
  1221. * "Only the submission of the store operation is guaranteed.
  1222. * The write result will be complete (coherent) some time later
  1223. * (this is practically a finite period but there is no guaranteed
  1224. * latency)."
  1225. *
  1226. * Empirically, we observe that we need a delay of at least 75us to
  1227. * be sure that the seqno write is visible by the CPU.
  1228. */
  1229. usleep_range(125, 250);
  1230. }
  1231. static void
  1232. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1233. {
  1234. struct drm_i915_private *dev_priv = engine->i915;
  1235. /* Workaround to force correct ordering between irq and seqno writes on
  1236. * ivb (and maybe also on snb) by reading from a CS register (like
  1237. * ACTHD) before reading the status page.
  1238. *
  1239. * Note that this effectively stalls the read by the time it takes to
  1240. * do a memory transaction, which more or less ensures that the write
  1241. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1242. * Alternatively we could delay the interrupt from the CS ring to give
  1243. * the write time to land, but that would incur a delay after every
  1244. * batch i.e. much more frequent than a delay when waiting for the
  1245. * interrupt (with the same net latency).
  1246. *
  1247. * Also note that to prevent whole machine hangs on gen7, we have to
  1248. * take the spinlock to guard against concurrent cacheline access.
  1249. */
  1250. spin_lock_irq(&dev_priv->uncore.lock);
  1251. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1252. spin_unlock_irq(&dev_priv->uncore.lock);
  1253. }
  1254. static void
  1255. gen5_irq_enable(struct intel_engine_cs *engine)
  1256. {
  1257. gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
  1258. }
  1259. static void
  1260. gen5_irq_disable(struct intel_engine_cs *engine)
  1261. {
  1262. gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
  1263. }
  1264. static void
  1265. i9xx_irq_enable(struct intel_engine_cs *engine)
  1266. {
  1267. struct drm_i915_private *dev_priv = engine->i915;
  1268. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1269. I915_WRITE(IMR, dev_priv->irq_mask);
  1270. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1271. }
  1272. static void
  1273. i9xx_irq_disable(struct intel_engine_cs *engine)
  1274. {
  1275. struct drm_i915_private *dev_priv = engine->i915;
  1276. dev_priv->irq_mask |= engine->irq_enable_mask;
  1277. I915_WRITE(IMR, dev_priv->irq_mask);
  1278. }
  1279. static void
  1280. i8xx_irq_enable(struct intel_engine_cs *engine)
  1281. {
  1282. struct drm_i915_private *dev_priv = engine->i915;
  1283. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1284. I915_WRITE16(IMR, dev_priv->irq_mask);
  1285. POSTING_READ16(RING_IMR(engine->mmio_base));
  1286. }
  1287. static void
  1288. i8xx_irq_disable(struct intel_engine_cs *engine)
  1289. {
  1290. struct drm_i915_private *dev_priv = engine->i915;
  1291. dev_priv->irq_mask |= engine->irq_enable_mask;
  1292. I915_WRITE16(IMR, dev_priv->irq_mask);
  1293. }
  1294. static int
  1295. bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1296. {
  1297. u32 *cs;
  1298. cs = intel_ring_begin(req, 2);
  1299. if (IS_ERR(cs))
  1300. return PTR_ERR(cs);
  1301. *cs++ = MI_FLUSH;
  1302. *cs++ = MI_NOOP;
  1303. intel_ring_advance(req, cs);
  1304. return 0;
  1305. }
  1306. static void
  1307. gen6_irq_enable(struct intel_engine_cs *engine)
  1308. {
  1309. struct drm_i915_private *dev_priv = engine->i915;
  1310. I915_WRITE_IMR(engine,
  1311. ~(engine->irq_enable_mask |
  1312. engine->irq_keep_mask));
  1313. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1314. }
  1315. static void
  1316. gen6_irq_disable(struct intel_engine_cs *engine)
  1317. {
  1318. struct drm_i915_private *dev_priv = engine->i915;
  1319. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1320. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1321. }
  1322. static void
  1323. hsw_vebox_irq_enable(struct intel_engine_cs *engine)
  1324. {
  1325. struct drm_i915_private *dev_priv = engine->i915;
  1326. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1327. gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
  1328. }
  1329. static void
  1330. hsw_vebox_irq_disable(struct intel_engine_cs *engine)
  1331. {
  1332. struct drm_i915_private *dev_priv = engine->i915;
  1333. I915_WRITE_IMR(engine, ~0);
  1334. gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
  1335. }
  1336. static void
  1337. gen8_irq_enable(struct intel_engine_cs *engine)
  1338. {
  1339. struct drm_i915_private *dev_priv = engine->i915;
  1340. I915_WRITE_IMR(engine,
  1341. ~(engine->irq_enable_mask |
  1342. engine->irq_keep_mask));
  1343. POSTING_READ_FW(RING_IMR(engine->mmio_base));
  1344. }
  1345. static void
  1346. gen8_irq_disable(struct intel_engine_cs *engine)
  1347. {
  1348. struct drm_i915_private *dev_priv = engine->i915;
  1349. I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
  1350. }
  1351. static int
  1352. i965_emit_bb_start(struct drm_i915_gem_request *req,
  1353. u64 offset, u32 length,
  1354. unsigned int dispatch_flags)
  1355. {
  1356. u32 *cs;
  1357. cs = intel_ring_begin(req, 2);
  1358. if (IS_ERR(cs))
  1359. return PTR_ERR(cs);
  1360. *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
  1361. I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
  1362. *cs++ = offset;
  1363. intel_ring_advance(req, cs);
  1364. return 0;
  1365. }
  1366. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1367. #define I830_BATCH_LIMIT (256*1024)
  1368. #define I830_TLB_ENTRIES (2)
  1369. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1370. static int
  1371. i830_emit_bb_start(struct drm_i915_gem_request *req,
  1372. u64 offset, u32 len,
  1373. unsigned int dispatch_flags)
  1374. {
  1375. u32 *cs, cs_offset = i915_ggtt_offset(req->engine->scratch);
  1376. cs = intel_ring_begin(req, 6);
  1377. if (IS_ERR(cs))
  1378. return PTR_ERR(cs);
  1379. /* Evict the invalid PTE TLBs */
  1380. *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
  1381. *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
  1382. *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
  1383. *cs++ = cs_offset;
  1384. *cs++ = 0xdeadbeef;
  1385. *cs++ = MI_NOOP;
  1386. intel_ring_advance(req, cs);
  1387. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1388. if (len > I830_BATCH_LIMIT)
  1389. return -ENOSPC;
  1390. cs = intel_ring_begin(req, 6 + 2);
  1391. if (IS_ERR(cs))
  1392. return PTR_ERR(cs);
  1393. /* Blit the batch (which has now all relocs applied) to the
  1394. * stable batch scratch bo area (so that the CS never
  1395. * stumbles over its tlb invalidation bug) ...
  1396. */
  1397. *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA;
  1398. *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
  1399. *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
  1400. *cs++ = cs_offset;
  1401. *cs++ = 4096;
  1402. *cs++ = offset;
  1403. *cs++ = MI_FLUSH;
  1404. *cs++ = MI_NOOP;
  1405. intel_ring_advance(req, cs);
  1406. /* ... and execute it. */
  1407. offset = cs_offset;
  1408. }
  1409. cs = intel_ring_begin(req, 2);
  1410. if (IS_ERR(cs))
  1411. return PTR_ERR(cs);
  1412. *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
  1413. *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
  1414. MI_BATCH_NON_SECURE);
  1415. intel_ring_advance(req, cs);
  1416. return 0;
  1417. }
  1418. static int
  1419. i915_emit_bb_start(struct drm_i915_gem_request *req,
  1420. u64 offset, u32 len,
  1421. unsigned int dispatch_flags)
  1422. {
  1423. u32 *cs;
  1424. cs = intel_ring_begin(req, 2);
  1425. if (IS_ERR(cs))
  1426. return PTR_ERR(cs);
  1427. *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
  1428. *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
  1429. MI_BATCH_NON_SECURE);
  1430. intel_ring_advance(req, cs);
  1431. return 0;
  1432. }
  1433. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1434. {
  1435. struct drm_i915_private *dev_priv = engine->i915;
  1436. if (!dev_priv->status_page_dmah)
  1437. return;
  1438. drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
  1439. engine->status_page.page_addr = NULL;
  1440. }
  1441. static void cleanup_status_page(struct intel_engine_cs *engine)
  1442. {
  1443. struct i915_vma *vma;
  1444. struct drm_i915_gem_object *obj;
  1445. vma = fetch_and_zero(&engine->status_page.vma);
  1446. if (!vma)
  1447. return;
  1448. obj = vma->obj;
  1449. i915_vma_unpin(vma);
  1450. i915_vma_close(vma);
  1451. i915_gem_object_unpin_map(obj);
  1452. __i915_gem_object_release_unless_active(obj);
  1453. }
  1454. static int init_status_page(struct intel_engine_cs *engine)
  1455. {
  1456. struct drm_i915_gem_object *obj;
  1457. struct i915_vma *vma;
  1458. unsigned int flags;
  1459. void *vaddr;
  1460. int ret;
  1461. obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
  1462. if (IS_ERR(obj)) {
  1463. DRM_ERROR("Failed to allocate status page\n");
  1464. return PTR_ERR(obj);
  1465. }
  1466. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1467. if (ret)
  1468. goto err;
  1469. vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
  1470. if (IS_ERR(vma)) {
  1471. ret = PTR_ERR(vma);
  1472. goto err;
  1473. }
  1474. flags = PIN_GLOBAL;
  1475. if (!HAS_LLC(engine->i915))
  1476. /* On g33, we cannot place HWS above 256MiB, so
  1477. * restrict its pinning to the low mappable arena.
  1478. * Though this restriction is not documented for
  1479. * gen4, gen5, or byt, they also behave similarly
  1480. * and hang if the HWS is placed at the top of the
  1481. * GTT. To generalise, it appears that all !llc
  1482. * platforms have issues with us placing the HWS
  1483. * above the mappable region (even though we never
  1484. * actualy map it).
  1485. */
  1486. flags |= PIN_MAPPABLE;
  1487. ret = i915_vma_pin(vma, 0, 4096, flags);
  1488. if (ret)
  1489. goto err;
  1490. vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
  1491. if (IS_ERR(vaddr)) {
  1492. ret = PTR_ERR(vaddr);
  1493. goto err_unpin;
  1494. }
  1495. engine->status_page.vma = vma;
  1496. engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
  1497. engine->status_page.page_addr = memset(vaddr, 0, PAGE_SIZE);
  1498. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1499. engine->name, i915_ggtt_offset(vma));
  1500. return 0;
  1501. err_unpin:
  1502. i915_vma_unpin(vma);
  1503. err:
  1504. i915_gem_object_put(obj);
  1505. return ret;
  1506. }
  1507. static int init_phys_status_page(struct intel_engine_cs *engine)
  1508. {
  1509. struct drm_i915_private *dev_priv = engine->i915;
  1510. dev_priv->status_page_dmah =
  1511. drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
  1512. if (!dev_priv->status_page_dmah)
  1513. return -ENOMEM;
  1514. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1515. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1516. return 0;
  1517. }
  1518. int intel_ring_pin(struct intel_ring *ring, unsigned int offset_bias)
  1519. {
  1520. unsigned int flags;
  1521. enum i915_map_type map;
  1522. struct i915_vma *vma = ring->vma;
  1523. void *addr;
  1524. int ret;
  1525. GEM_BUG_ON(ring->vaddr);
  1526. map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
  1527. flags = PIN_GLOBAL;
  1528. if (offset_bias)
  1529. flags |= PIN_OFFSET_BIAS | offset_bias;
  1530. if (vma->obj->stolen)
  1531. flags |= PIN_MAPPABLE;
  1532. if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
  1533. if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
  1534. ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
  1535. else
  1536. ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
  1537. if (unlikely(ret))
  1538. return ret;
  1539. }
  1540. ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
  1541. if (unlikely(ret))
  1542. return ret;
  1543. if (i915_vma_is_map_and_fenceable(vma))
  1544. addr = (void __force *)i915_vma_pin_iomap(vma);
  1545. else
  1546. addr = i915_gem_object_pin_map(vma->obj, map);
  1547. if (IS_ERR(addr))
  1548. goto err;
  1549. ring->vaddr = addr;
  1550. return 0;
  1551. err:
  1552. i915_vma_unpin(vma);
  1553. return PTR_ERR(addr);
  1554. }
  1555. void intel_ring_unpin(struct intel_ring *ring)
  1556. {
  1557. GEM_BUG_ON(!ring->vma);
  1558. GEM_BUG_ON(!ring->vaddr);
  1559. if (i915_vma_is_map_and_fenceable(ring->vma))
  1560. i915_vma_unpin_iomap(ring->vma);
  1561. else
  1562. i915_gem_object_unpin_map(ring->vma->obj);
  1563. ring->vaddr = NULL;
  1564. i915_vma_unpin(ring->vma);
  1565. }
  1566. static struct i915_vma *
  1567. intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
  1568. {
  1569. struct drm_i915_gem_object *obj;
  1570. struct i915_vma *vma;
  1571. obj = i915_gem_object_create_stolen(dev_priv, size);
  1572. if (!obj)
  1573. obj = i915_gem_object_create(dev_priv, size);
  1574. if (IS_ERR(obj))
  1575. return ERR_CAST(obj);
  1576. /* mark ring buffers as read-only from GPU side by default */
  1577. obj->gt_ro = 1;
  1578. vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
  1579. if (IS_ERR(vma))
  1580. goto err;
  1581. return vma;
  1582. err:
  1583. i915_gem_object_put(obj);
  1584. return vma;
  1585. }
  1586. struct intel_ring *
  1587. intel_engine_create_ring(struct intel_engine_cs *engine, int size)
  1588. {
  1589. struct intel_ring *ring;
  1590. struct i915_vma *vma;
  1591. GEM_BUG_ON(!is_power_of_2(size));
  1592. GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
  1593. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1594. if (!ring)
  1595. return ERR_PTR(-ENOMEM);
  1596. ring->engine = engine;
  1597. INIT_LIST_HEAD(&ring->request_list);
  1598. ring->size = size;
  1599. /* Workaround an erratum on the i830 which causes a hang if
  1600. * the TAIL pointer points to within the last 2 cachelines
  1601. * of the buffer.
  1602. */
  1603. ring->effective_size = size;
  1604. if (IS_I830(engine->i915) || IS_I845G(engine->i915))
  1605. ring->effective_size -= 2 * CACHELINE_BYTES;
  1606. ring->last_retired_head = -1;
  1607. intel_ring_update_space(ring);
  1608. vma = intel_ring_create_vma(engine->i915, size);
  1609. if (IS_ERR(vma)) {
  1610. kfree(ring);
  1611. return ERR_CAST(vma);
  1612. }
  1613. ring->vma = vma;
  1614. return ring;
  1615. }
  1616. void
  1617. intel_ring_free(struct intel_ring *ring)
  1618. {
  1619. struct drm_i915_gem_object *obj = ring->vma->obj;
  1620. i915_vma_close(ring->vma);
  1621. __i915_gem_object_release_unless_active(obj);
  1622. kfree(ring);
  1623. }
  1624. static int context_pin(struct i915_gem_context *ctx)
  1625. {
  1626. struct i915_vma *vma = ctx->engine[RCS].state;
  1627. int ret;
  1628. /* Clear this page out of any CPU caches for coherent swap-in/out.
  1629. * We only want to do this on the first bind so that we do not stall
  1630. * on an active context (which by nature is already on the GPU).
  1631. */
  1632. if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
  1633. ret = i915_gem_object_set_to_gtt_domain(vma->obj, false);
  1634. if (ret)
  1635. return ret;
  1636. }
  1637. return i915_vma_pin(vma, 0, ctx->ggtt_alignment, PIN_GLOBAL | PIN_HIGH);
  1638. }
  1639. static int intel_ring_context_pin(struct intel_engine_cs *engine,
  1640. struct i915_gem_context *ctx)
  1641. {
  1642. struct intel_context *ce = &ctx->engine[engine->id];
  1643. int ret;
  1644. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1645. if (ce->pin_count++)
  1646. return 0;
  1647. if (ce->state) {
  1648. ret = context_pin(ctx);
  1649. if (ret)
  1650. goto error;
  1651. }
  1652. /* The kernel context is only used as a placeholder for flushing the
  1653. * active context. It is never used for submitting user rendering and
  1654. * as such never requires the golden render context, and so we can skip
  1655. * emitting it when we switch to the kernel context. This is required
  1656. * as during eviction we cannot allocate and pin the renderstate in
  1657. * order to initialise the context.
  1658. */
  1659. if (i915_gem_context_is_kernel(ctx))
  1660. ce->initialised = true;
  1661. i915_gem_context_get(ctx);
  1662. return 0;
  1663. error:
  1664. ce->pin_count = 0;
  1665. return ret;
  1666. }
  1667. static void intel_ring_context_unpin(struct intel_engine_cs *engine,
  1668. struct i915_gem_context *ctx)
  1669. {
  1670. struct intel_context *ce = &ctx->engine[engine->id];
  1671. lockdep_assert_held(&ctx->i915->drm.struct_mutex);
  1672. GEM_BUG_ON(ce->pin_count == 0);
  1673. if (--ce->pin_count)
  1674. return;
  1675. if (ce->state)
  1676. i915_vma_unpin(ce->state);
  1677. i915_gem_context_put(ctx);
  1678. }
  1679. static int intel_init_ring_buffer(struct intel_engine_cs *engine)
  1680. {
  1681. struct drm_i915_private *dev_priv = engine->i915;
  1682. struct intel_ring *ring;
  1683. int ret;
  1684. WARN_ON(engine->buffer);
  1685. intel_engine_setup_common(engine);
  1686. ret = intel_engine_init_common(engine);
  1687. if (ret)
  1688. goto error;
  1689. ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
  1690. if (IS_ERR(ring)) {
  1691. ret = PTR_ERR(ring);
  1692. goto error;
  1693. }
  1694. if (HWS_NEEDS_PHYSICAL(dev_priv)) {
  1695. WARN_ON(engine->id != RCS);
  1696. ret = init_phys_status_page(engine);
  1697. if (ret)
  1698. goto error;
  1699. } else {
  1700. ret = init_status_page(engine);
  1701. if (ret)
  1702. goto error;
  1703. }
  1704. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1705. ret = intel_ring_pin(ring, I915_GTT_PAGE_SIZE);
  1706. if (ret) {
  1707. intel_ring_free(ring);
  1708. goto error;
  1709. }
  1710. engine->buffer = ring;
  1711. return 0;
  1712. error:
  1713. intel_engine_cleanup(engine);
  1714. return ret;
  1715. }
  1716. void intel_engine_cleanup(struct intel_engine_cs *engine)
  1717. {
  1718. struct drm_i915_private *dev_priv;
  1719. dev_priv = engine->i915;
  1720. if (engine->buffer) {
  1721. WARN_ON(INTEL_GEN(dev_priv) > 2 &&
  1722. (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1723. intel_ring_unpin(engine->buffer);
  1724. intel_ring_free(engine->buffer);
  1725. engine->buffer = NULL;
  1726. }
  1727. if (engine->cleanup)
  1728. engine->cleanup(engine);
  1729. if (HWS_NEEDS_PHYSICAL(dev_priv)) {
  1730. WARN_ON(engine->id != RCS);
  1731. cleanup_phys_status_page(engine);
  1732. } else {
  1733. cleanup_status_page(engine);
  1734. }
  1735. intel_engine_cleanup_common(engine);
  1736. engine->i915 = NULL;
  1737. dev_priv->engine[engine->id] = NULL;
  1738. kfree(engine);
  1739. }
  1740. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
  1741. {
  1742. struct intel_engine_cs *engine;
  1743. enum intel_engine_id id;
  1744. for_each_engine(engine, dev_priv, id) {
  1745. engine->buffer->head = engine->buffer->tail;
  1746. engine->buffer->last_retired_head = -1;
  1747. }
  1748. }
  1749. static int ring_request_alloc(struct drm_i915_gem_request *request)
  1750. {
  1751. u32 *cs;
  1752. GEM_BUG_ON(!request->ctx->engine[request->engine->id].pin_count);
  1753. /* Flush enough space to reduce the likelihood of waiting after
  1754. * we start building the request - in which case we will just
  1755. * have to repeat work.
  1756. */
  1757. request->reserved_space += LEGACY_REQUEST_SIZE;
  1758. GEM_BUG_ON(!request->engine->buffer);
  1759. request->ring = request->engine->buffer;
  1760. cs = intel_ring_begin(request, 0);
  1761. if (IS_ERR(cs))
  1762. return PTR_ERR(cs);
  1763. request->reserved_space -= LEGACY_REQUEST_SIZE;
  1764. return 0;
  1765. }
  1766. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  1767. {
  1768. struct intel_ring *ring = req->ring;
  1769. struct drm_i915_gem_request *target;
  1770. long timeout;
  1771. lockdep_assert_held(&req->i915->drm.struct_mutex);
  1772. intel_ring_update_space(ring);
  1773. if (ring->space >= bytes)
  1774. return 0;
  1775. /*
  1776. * Space is reserved in the ringbuffer for finalising the request,
  1777. * as that cannot be allowed to fail. During request finalisation,
  1778. * reserved_space is set to 0 to stop the overallocation and the
  1779. * assumption is that then we never need to wait (which has the
  1780. * risk of failing with EINTR).
  1781. *
  1782. * See also i915_gem_request_alloc() and i915_add_request().
  1783. */
  1784. GEM_BUG_ON(!req->reserved_space);
  1785. list_for_each_entry(target, &ring->request_list, ring_link) {
  1786. unsigned space;
  1787. /* Would completion of this request free enough space? */
  1788. space = __intel_ring_space(target->postfix, ring->tail,
  1789. ring->size);
  1790. if (space >= bytes)
  1791. break;
  1792. }
  1793. if (WARN_ON(&target->ring_link == &ring->request_list))
  1794. return -ENOSPC;
  1795. timeout = i915_wait_request(target,
  1796. I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
  1797. MAX_SCHEDULE_TIMEOUT);
  1798. if (timeout < 0)
  1799. return timeout;
  1800. i915_gem_request_retire_upto(target);
  1801. intel_ring_update_space(ring);
  1802. GEM_BUG_ON(ring->space < bytes);
  1803. return 0;
  1804. }
  1805. u32 *intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  1806. {
  1807. struct intel_ring *ring = req->ring;
  1808. int remain_actual = ring->size - ring->tail;
  1809. int remain_usable = ring->effective_size - ring->tail;
  1810. int bytes = num_dwords * sizeof(u32);
  1811. int total_bytes, wait_bytes;
  1812. bool need_wrap = false;
  1813. u32 *cs;
  1814. total_bytes = bytes + req->reserved_space;
  1815. if (unlikely(bytes > remain_usable)) {
  1816. /*
  1817. * Not enough space for the basic request. So need to flush
  1818. * out the remainder and then wait for base + reserved.
  1819. */
  1820. wait_bytes = remain_actual + total_bytes;
  1821. need_wrap = true;
  1822. } else if (unlikely(total_bytes > remain_usable)) {
  1823. /*
  1824. * The base request will fit but the reserved space
  1825. * falls off the end. So we don't need an immediate wrap
  1826. * and only need to effectively wait for the reserved
  1827. * size space from the start of ringbuffer.
  1828. */
  1829. wait_bytes = remain_actual + req->reserved_space;
  1830. } else {
  1831. /* No wrapping required, just waiting. */
  1832. wait_bytes = total_bytes;
  1833. }
  1834. if (wait_bytes > ring->space) {
  1835. int ret = wait_for_space(req, wait_bytes);
  1836. if (unlikely(ret))
  1837. return ERR_PTR(ret);
  1838. }
  1839. if (unlikely(need_wrap)) {
  1840. GEM_BUG_ON(remain_actual > ring->space);
  1841. GEM_BUG_ON(ring->tail + remain_actual > ring->size);
  1842. /* Fill the tail with MI_NOOP */
  1843. memset(ring->vaddr + ring->tail, 0, remain_actual);
  1844. ring->tail = 0;
  1845. ring->space -= remain_actual;
  1846. }
  1847. GEM_BUG_ON(ring->tail > ring->size - bytes);
  1848. cs = ring->vaddr + ring->tail;
  1849. ring->tail += bytes;
  1850. ring->space -= bytes;
  1851. GEM_BUG_ON(ring->space < 0);
  1852. return cs;
  1853. }
  1854. /* Align the ring tail to a cacheline boundary */
  1855. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1856. {
  1857. int num_dwords =
  1858. (req->ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1859. u32 *cs;
  1860. if (num_dwords == 0)
  1861. return 0;
  1862. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1863. cs = intel_ring_begin(req, num_dwords);
  1864. if (IS_ERR(cs))
  1865. return PTR_ERR(cs);
  1866. while (num_dwords--)
  1867. *cs++ = MI_NOOP;
  1868. intel_ring_advance(req, cs);
  1869. return 0;
  1870. }
  1871. static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
  1872. {
  1873. struct drm_i915_private *dev_priv = request->i915;
  1874. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1875. /* Every tail move must follow the sequence below */
  1876. /* Disable notification that the ring is IDLE. The GT
  1877. * will then assume that it is busy and bring it out of rc6.
  1878. */
  1879. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1880. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1881. /* Clear the context id. Here be magic! */
  1882. I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
  1883. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1884. if (intel_wait_for_register_fw(dev_priv,
  1885. GEN6_BSD_SLEEP_PSMI_CONTROL,
  1886. GEN6_BSD_SLEEP_INDICATOR,
  1887. 0,
  1888. 50))
  1889. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1890. /* Now that the ring is fully powered up, update the tail */
  1891. i9xx_submit_request(request);
  1892. /* Let the ring send IDLE messages to the GT again,
  1893. * and so let it sleep to conserve power when idle.
  1894. */
  1895. I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1896. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1897. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1898. }
  1899. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1900. {
  1901. u32 cmd, *cs;
  1902. cs = intel_ring_begin(req, 4);
  1903. if (IS_ERR(cs))
  1904. return PTR_ERR(cs);
  1905. cmd = MI_FLUSH_DW;
  1906. if (INTEL_GEN(req->i915) >= 8)
  1907. cmd += 1;
  1908. /* We always require a command barrier so that subsequent
  1909. * commands, such as breadcrumb interrupts, are strictly ordered
  1910. * wrt the contents of the write cache being flushed to memory
  1911. * (and thus being coherent from the CPU).
  1912. */
  1913. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1914. /*
  1915. * Bspec vol 1c.5 - video engine command streamer:
  1916. * "If ENABLED, all TLBs will be invalidated once the flush
  1917. * operation is complete. This bit is only valid when the
  1918. * Post-Sync Operation field is a value of 1h or 3h."
  1919. */
  1920. if (mode & EMIT_INVALIDATE)
  1921. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  1922. *cs++ = cmd;
  1923. *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
  1924. if (INTEL_GEN(req->i915) >= 8) {
  1925. *cs++ = 0; /* upper addr */
  1926. *cs++ = 0; /* value */
  1927. } else {
  1928. *cs++ = 0;
  1929. *cs++ = MI_NOOP;
  1930. }
  1931. intel_ring_advance(req, cs);
  1932. return 0;
  1933. }
  1934. static int
  1935. gen8_emit_bb_start(struct drm_i915_gem_request *req,
  1936. u64 offset, u32 len,
  1937. unsigned int dispatch_flags)
  1938. {
  1939. bool ppgtt = USES_PPGTT(req->i915) &&
  1940. !(dispatch_flags & I915_DISPATCH_SECURE);
  1941. u32 *cs;
  1942. cs = intel_ring_begin(req, 4);
  1943. if (IS_ERR(cs))
  1944. return PTR_ERR(cs);
  1945. /* FIXME(BDW): Address space and security selectors. */
  1946. *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
  1947. I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
  1948. *cs++ = lower_32_bits(offset);
  1949. *cs++ = upper_32_bits(offset);
  1950. *cs++ = MI_NOOP;
  1951. intel_ring_advance(req, cs);
  1952. return 0;
  1953. }
  1954. static int
  1955. hsw_emit_bb_start(struct drm_i915_gem_request *req,
  1956. u64 offset, u32 len,
  1957. unsigned int dispatch_flags)
  1958. {
  1959. u32 *cs;
  1960. cs = intel_ring_begin(req, 2);
  1961. if (IS_ERR(cs))
  1962. return PTR_ERR(cs);
  1963. *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
  1964. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  1965. (dispatch_flags & I915_DISPATCH_RS ?
  1966. MI_BATCH_RESOURCE_STREAMER : 0);
  1967. /* bit0-7 is the length on GEN6+ */
  1968. *cs++ = offset;
  1969. intel_ring_advance(req, cs);
  1970. return 0;
  1971. }
  1972. static int
  1973. gen6_emit_bb_start(struct drm_i915_gem_request *req,
  1974. u64 offset, u32 len,
  1975. unsigned int dispatch_flags)
  1976. {
  1977. u32 *cs;
  1978. cs = intel_ring_begin(req, 2);
  1979. if (IS_ERR(cs))
  1980. return PTR_ERR(cs);
  1981. *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
  1982. 0 : MI_BATCH_NON_SECURE_I965);
  1983. /* bit0-7 is the length on GEN6+ */
  1984. *cs++ = offset;
  1985. intel_ring_advance(req, cs);
  1986. return 0;
  1987. }
  1988. /* Blitter support (SandyBridge+) */
  1989. static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
  1990. {
  1991. u32 cmd, *cs;
  1992. cs = intel_ring_begin(req, 4);
  1993. if (IS_ERR(cs))
  1994. return PTR_ERR(cs);
  1995. cmd = MI_FLUSH_DW;
  1996. if (INTEL_GEN(req->i915) >= 8)
  1997. cmd += 1;
  1998. /* We always require a command barrier so that subsequent
  1999. * commands, such as breadcrumb interrupts, are strictly ordered
  2000. * wrt the contents of the write cache being flushed to memory
  2001. * (and thus being coherent from the CPU).
  2002. */
  2003. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2004. /*
  2005. * Bspec vol 1c.3 - blitter engine command streamer:
  2006. * "If ENABLED, all TLBs will be invalidated once the flush
  2007. * operation is complete. This bit is only valid when the
  2008. * Post-Sync Operation field is a value of 1h or 3h."
  2009. */
  2010. if (mode & EMIT_INVALIDATE)
  2011. cmd |= MI_INVALIDATE_TLB;
  2012. *cs++ = cmd;
  2013. *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
  2014. if (INTEL_GEN(req->i915) >= 8) {
  2015. *cs++ = 0; /* upper addr */
  2016. *cs++ = 0; /* value */
  2017. } else {
  2018. *cs++ = 0;
  2019. *cs++ = MI_NOOP;
  2020. }
  2021. intel_ring_advance(req, cs);
  2022. return 0;
  2023. }
  2024. static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
  2025. struct intel_engine_cs *engine)
  2026. {
  2027. struct drm_i915_gem_object *obj;
  2028. int ret, i;
  2029. if (!i915.semaphores)
  2030. return;
  2031. if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
  2032. struct i915_vma *vma;
  2033. obj = i915_gem_object_create(dev_priv, PAGE_SIZE);
  2034. if (IS_ERR(obj))
  2035. goto err;
  2036. vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
  2037. if (IS_ERR(vma))
  2038. goto err_obj;
  2039. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  2040. if (ret)
  2041. goto err_obj;
  2042. ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
  2043. if (ret)
  2044. goto err_obj;
  2045. dev_priv->semaphore = vma;
  2046. }
  2047. if (INTEL_GEN(dev_priv) >= 8) {
  2048. u32 offset = i915_ggtt_offset(dev_priv->semaphore);
  2049. engine->semaphore.sync_to = gen8_ring_sync_to;
  2050. engine->semaphore.signal = gen8_xcs_signal;
  2051. for (i = 0; i < I915_NUM_ENGINES; i++) {
  2052. u32 ring_offset;
  2053. if (i != engine->id)
  2054. ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
  2055. else
  2056. ring_offset = MI_SEMAPHORE_SYNC_INVALID;
  2057. engine->semaphore.signal_ggtt[i] = ring_offset;
  2058. }
  2059. } else if (INTEL_GEN(dev_priv) >= 6) {
  2060. engine->semaphore.sync_to = gen6_ring_sync_to;
  2061. engine->semaphore.signal = gen6_signal;
  2062. /*
  2063. * The current semaphore is only applied on pre-gen8
  2064. * platform. And there is no VCS2 ring on the pre-gen8
  2065. * platform. So the semaphore between RCS and VCS2 is
  2066. * initialized as INVALID. Gen8 will initialize the
  2067. * sema between VCS2 and RCS later.
  2068. */
  2069. for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
  2070. static const struct {
  2071. u32 wait_mbox;
  2072. i915_reg_t mbox_reg;
  2073. } sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
  2074. [RCS_HW] = {
  2075. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RV, .mbox_reg = GEN6_VRSYNC },
  2076. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RB, .mbox_reg = GEN6_BRSYNC },
  2077. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
  2078. },
  2079. [VCS_HW] = {
  2080. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VR, .mbox_reg = GEN6_RVSYNC },
  2081. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VB, .mbox_reg = GEN6_BVSYNC },
  2082. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
  2083. },
  2084. [BCS_HW] = {
  2085. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BR, .mbox_reg = GEN6_RBSYNC },
  2086. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BV, .mbox_reg = GEN6_VBSYNC },
  2087. [VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
  2088. },
  2089. [VECS_HW] = {
  2090. [RCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
  2091. [VCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
  2092. [BCS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
  2093. },
  2094. };
  2095. u32 wait_mbox;
  2096. i915_reg_t mbox_reg;
  2097. if (i == engine->hw_id) {
  2098. wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
  2099. mbox_reg = GEN6_NOSYNC;
  2100. } else {
  2101. wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
  2102. mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
  2103. }
  2104. engine->semaphore.mbox.wait[i] = wait_mbox;
  2105. engine->semaphore.mbox.signal[i] = mbox_reg;
  2106. }
  2107. }
  2108. return;
  2109. err_obj:
  2110. i915_gem_object_put(obj);
  2111. err:
  2112. DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
  2113. i915.semaphores = 0;
  2114. }
  2115. static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
  2116. struct intel_engine_cs *engine)
  2117. {
  2118. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
  2119. if (INTEL_GEN(dev_priv) >= 8) {
  2120. engine->irq_enable = gen8_irq_enable;
  2121. engine->irq_disable = gen8_irq_disable;
  2122. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2123. } else if (INTEL_GEN(dev_priv) >= 6) {
  2124. engine->irq_enable = gen6_irq_enable;
  2125. engine->irq_disable = gen6_irq_disable;
  2126. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2127. } else if (INTEL_GEN(dev_priv) >= 5) {
  2128. engine->irq_enable = gen5_irq_enable;
  2129. engine->irq_disable = gen5_irq_disable;
  2130. engine->irq_seqno_barrier = gen5_seqno_barrier;
  2131. } else if (INTEL_GEN(dev_priv) >= 3) {
  2132. engine->irq_enable = i9xx_irq_enable;
  2133. engine->irq_disable = i9xx_irq_disable;
  2134. } else {
  2135. engine->irq_enable = i8xx_irq_enable;
  2136. engine->irq_disable = i8xx_irq_disable;
  2137. }
  2138. }
  2139. static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
  2140. struct intel_engine_cs *engine)
  2141. {
  2142. intel_ring_init_irq(dev_priv, engine);
  2143. intel_ring_init_semaphores(dev_priv, engine);
  2144. engine->init_hw = init_ring_common;
  2145. engine->reset_hw = reset_ring_common;
  2146. engine->context_pin = intel_ring_context_pin;
  2147. engine->context_unpin = intel_ring_context_unpin;
  2148. engine->request_alloc = ring_request_alloc;
  2149. engine->emit_breadcrumb = i9xx_emit_breadcrumb;
  2150. engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
  2151. if (i915.semaphores) {
  2152. int num_rings;
  2153. engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
  2154. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
  2155. if (INTEL_GEN(dev_priv) >= 8) {
  2156. engine->emit_breadcrumb_sz += num_rings * 6;
  2157. } else {
  2158. engine->emit_breadcrumb_sz += num_rings * 3;
  2159. if (num_rings & 1)
  2160. engine->emit_breadcrumb_sz++;
  2161. }
  2162. }
  2163. engine->submit_request = i9xx_submit_request;
  2164. if (INTEL_GEN(dev_priv) >= 8)
  2165. engine->emit_bb_start = gen8_emit_bb_start;
  2166. else if (INTEL_GEN(dev_priv) >= 6)
  2167. engine->emit_bb_start = gen6_emit_bb_start;
  2168. else if (INTEL_GEN(dev_priv) >= 4)
  2169. engine->emit_bb_start = i965_emit_bb_start;
  2170. else if (IS_I830(dev_priv) || IS_I845G(dev_priv))
  2171. engine->emit_bb_start = i830_emit_bb_start;
  2172. else
  2173. engine->emit_bb_start = i915_emit_bb_start;
  2174. }
  2175. int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
  2176. {
  2177. struct drm_i915_private *dev_priv = engine->i915;
  2178. int ret;
  2179. intel_ring_default_vfuncs(dev_priv, engine);
  2180. if (HAS_L3_DPF(dev_priv))
  2181. engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
  2182. if (INTEL_GEN(dev_priv) >= 8) {
  2183. engine->init_context = intel_rcs_ctx_init;
  2184. engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
  2185. engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
  2186. engine->emit_flush = gen8_render_ring_flush;
  2187. if (i915.semaphores) {
  2188. int num_rings;
  2189. engine->semaphore.signal = gen8_rcs_signal;
  2190. num_rings =
  2191. hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
  2192. engine->emit_breadcrumb_sz += num_rings * 6;
  2193. }
  2194. } else if (INTEL_GEN(dev_priv) >= 6) {
  2195. engine->init_context = intel_rcs_ctx_init;
  2196. engine->emit_flush = gen7_render_ring_flush;
  2197. if (IS_GEN6(dev_priv))
  2198. engine->emit_flush = gen6_render_ring_flush;
  2199. } else if (IS_GEN5(dev_priv)) {
  2200. engine->emit_flush = gen4_render_ring_flush;
  2201. } else {
  2202. if (INTEL_GEN(dev_priv) < 4)
  2203. engine->emit_flush = gen2_render_ring_flush;
  2204. else
  2205. engine->emit_flush = gen4_render_ring_flush;
  2206. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2207. }
  2208. if (IS_HASWELL(dev_priv))
  2209. engine->emit_bb_start = hsw_emit_bb_start;
  2210. engine->init_hw = init_render_ring;
  2211. engine->cleanup = render_ring_cleanup;
  2212. ret = intel_init_ring_buffer(engine);
  2213. if (ret)
  2214. return ret;
  2215. if (INTEL_GEN(dev_priv) >= 6) {
  2216. ret = intel_engine_create_scratch(engine, PAGE_SIZE);
  2217. if (ret)
  2218. return ret;
  2219. } else if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2220. ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
  2221. if (ret)
  2222. return ret;
  2223. }
  2224. return 0;
  2225. }
  2226. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
  2227. {
  2228. struct drm_i915_private *dev_priv = engine->i915;
  2229. intel_ring_default_vfuncs(dev_priv, engine);
  2230. if (INTEL_GEN(dev_priv) >= 6) {
  2231. /* gen6 bsd needs a special wa for tail updates */
  2232. if (IS_GEN6(dev_priv))
  2233. engine->submit_request = gen6_bsd_submit_request;
  2234. engine->emit_flush = gen6_bsd_ring_flush;
  2235. if (INTEL_GEN(dev_priv) < 8)
  2236. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2237. } else {
  2238. engine->mmio_base = BSD_RING_BASE;
  2239. engine->emit_flush = bsd_ring_flush;
  2240. if (IS_GEN5(dev_priv))
  2241. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2242. else
  2243. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2244. }
  2245. return intel_init_ring_buffer(engine);
  2246. }
  2247. /**
  2248. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2249. */
  2250. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
  2251. {
  2252. struct drm_i915_private *dev_priv = engine->i915;
  2253. intel_ring_default_vfuncs(dev_priv, engine);
  2254. engine->emit_flush = gen6_bsd_ring_flush;
  2255. return intel_init_ring_buffer(engine);
  2256. }
  2257. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
  2258. {
  2259. struct drm_i915_private *dev_priv = engine->i915;
  2260. intel_ring_default_vfuncs(dev_priv, engine);
  2261. engine->emit_flush = gen6_ring_flush;
  2262. if (INTEL_GEN(dev_priv) < 8)
  2263. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2264. return intel_init_ring_buffer(engine);
  2265. }
  2266. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
  2267. {
  2268. struct drm_i915_private *dev_priv = engine->i915;
  2269. intel_ring_default_vfuncs(dev_priv, engine);
  2270. engine->emit_flush = gen6_ring_flush;
  2271. if (INTEL_GEN(dev_priv) < 8) {
  2272. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2273. engine->irq_enable = hsw_vebox_irq_enable;
  2274. engine->irq_disable = hsw_vebox_irq_disable;
  2275. }
  2276. return intel_init_ring_buffer(engine);
  2277. }