intel_ringbuffer.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #include "i915_gem_request.h"
  6. #include "i915_gem_timeline.h"
  7. #include "i915_selftest.h"
  8. struct drm_printer;
  9. #define I915_CMD_HASH_ORDER 9
  10. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  11. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  12. * to give some inclination as to some of the magic values used in the various
  13. * workarounds!
  14. */
  15. #define CACHELINE_BYTES 64
  16. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  17. struct intel_hw_status_page {
  18. struct i915_vma *vma;
  19. u32 *page_addr;
  20. u32 ggtt_offset;
  21. };
  22. #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  23. #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  24. #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  25. #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  26. #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
  27. #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  28. #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  29. #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  30. #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  31. #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  32. #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  33. #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  34. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  35. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  36. */
  37. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  38. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  39. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  40. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  41. (dev_priv->semaphore->node.start + \
  42. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  43. #define GEN8_WAIT_OFFSET(__ring, from) \
  44. (dev_priv->semaphore->node.start + \
  45. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  46. enum intel_engine_hangcheck_action {
  47. ENGINE_IDLE = 0,
  48. ENGINE_WAIT,
  49. ENGINE_ACTIVE_SEQNO,
  50. ENGINE_ACTIVE_HEAD,
  51. ENGINE_ACTIVE_SUBUNITS,
  52. ENGINE_WAIT_KICK,
  53. ENGINE_DEAD,
  54. };
  55. static inline const char *
  56. hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
  57. {
  58. switch (a) {
  59. case ENGINE_IDLE:
  60. return "idle";
  61. case ENGINE_WAIT:
  62. return "wait";
  63. case ENGINE_ACTIVE_SEQNO:
  64. return "active seqno";
  65. case ENGINE_ACTIVE_HEAD:
  66. return "active head";
  67. case ENGINE_ACTIVE_SUBUNITS:
  68. return "active subunits";
  69. case ENGINE_WAIT_KICK:
  70. return "wait kick";
  71. case ENGINE_DEAD:
  72. return "dead";
  73. }
  74. return "unknown";
  75. }
  76. #define I915_MAX_SLICES 3
  77. #define I915_MAX_SUBSLICES 3
  78. #define instdone_slice_mask(dev_priv__) \
  79. (INTEL_GEN(dev_priv__) == 7 ? \
  80. 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  81. #define instdone_subslice_mask(dev_priv__) \
  82. (INTEL_GEN(dev_priv__) == 7 ? \
  83. 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
  84. #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
  85. for ((slice__) = 0, (subslice__) = 0; \
  86. (slice__) < I915_MAX_SLICES; \
  87. (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
  88. (slice__) += ((subslice__) == 0)) \
  89. for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
  90. (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
  91. struct intel_instdone {
  92. u32 instdone;
  93. /* The following exist only in the RCS engine */
  94. u32 slice_common;
  95. u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  96. u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  97. };
  98. struct intel_engine_hangcheck {
  99. u64 acthd;
  100. u32 seqno;
  101. enum intel_engine_hangcheck_action action;
  102. unsigned long action_timestamp;
  103. int deadlock;
  104. struct intel_instdone instdone;
  105. struct drm_i915_gem_request *active_request;
  106. bool stalled;
  107. };
  108. struct intel_ring {
  109. struct i915_vma *vma;
  110. void *vaddr;
  111. struct list_head request_list;
  112. u32 head;
  113. u32 tail;
  114. u32 emit;
  115. u32 space;
  116. u32 size;
  117. u32 effective_size;
  118. };
  119. struct i915_gem_context;
  120. struct drm_i915_reg_table;
  121. /*
  122. * we use a single page to load ctx workarounds so all of these
  123. * values are referred in terms of dwords
  124. *
  125. * struct i915_wa_ctx_bb:
  126. * offset: specifies batch starting position, also helpful in case
  127. * if we want to have multiple batches at different offsets based on
  128. * some criteria. It is not a requirement at the moment but provides
  129. * an option for future use.
  130. * size: size of the batch in DWORDS
  131. */
  132. struct i915_ctx_workarounds {
  133. struct i915_wa_ctx_bb {
  134. u32 offset;
  135. u32 size;
  136. } indirect_ctx, per_ctx;
  137. struct i915_vma *vma;
  138. };
  139. struct drm_i915_gem_request;
  140. struct intel_render_state;
  141. /*
  142. * Engine IDs definitions.
  143. * Keep instances of the same type engine together.
  144. */
  145. enum intel_engine_id {
  146. RCS = 0,
  147. BCS,
  148. VCS,
  149. VCS2,
  150. #define _VCS(n) (VCS + (n))
  151. VECS
  152. };
  153. struct i915_priolist {
  154. struct rb_node node;
  155. struct list_head requests;
  156. int priority;
  157. };
  158. /**
  159. * struct intel_engine_execlists - execlist submission queue and port state
  160. *
  161. * The struct intel_engine_execlists represents the combined logical state of
  162. * driver and the hardware state for execlist mode of submission.
  163. */
  164. struct intel_engine_execlists {
  165. /**
  166. * @irq_tasklet: softirq tasklet for bottom handler
  167. */
  168. struct tasklet_struct irq_tasklet;
  169. /**
  170. * @default_priolist: priority list for I915_PRIORITY_NORMAL
  171. */
  172. struct i915_priolist default_priolist;
  173. /**
  174. * @no_priolist: priority lists disabled
  175. */
  176. bool no_priolist;
  177. /**
  178. * @port: execlist port states
  179. *
  180. * For each hardware ELSP (ExecList Submission Port) we keep
  181. * track of the last request and the number of times we submitted
  182. * that port to hw. We then count the number of times the hw reports
  183. * a context completion or preemption. As only one context can
  184. * be active on hw, we limit resubmission of context to port[0]. This
  185. * is called Lite Restore, of the context.
  186. */
  187. struct execlist_port {
  188. /**
  189. * @request_count: combined request and submission count
  190. */
  191. struct drm_i915_gem_request *request_count;
  192. #define EXECLIST_COUNT_BITS 2
  193. #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
  194. #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
  195. #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
  196. #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
  197. #define port_set(p, packed) ((p)->request_count = (packed))
  198. #define port_isset(p) ((p)->request_count)
  199. #define port_index(p, execlists) ((p) - (execlists)->port)
  200. /**
  201. * @context_id: context ID for port
  202. */
  203. GEM_DEBUG_DECL(u32 context_id);
  204. #define EXECLIST_MAX_PORTS 2
  205. } port[EXECLIST_MAX_PORTS];
  206. /**
  207. * @active: is the HW active? We consider the HW as active after
  208. * submitting any context for execution and until we have seen the
  209. * last context completion event. After that, we do not expect any
  210. * more events until we submit, and so can park the HW.
  211. *
  212. * As we have a small number of different sources from which we feed
  213. * the HW, we track the state of each inside a single bitfield.
  214. */
  215. unsigned int active;
  216. #define EXECLISTS_ACTIVE_USER 0
  217. #define EXECLISTS_ACTIVE_PREEMPT 1
  218. /**
  219. * @port_mask: number of execlist ports - 1
  220. */
  221. unsigned int port_mask;
  222. /**
  223. * @queue: queue of requests, in priority lists
  224. */
  225. struct rb_root queue;
  226. /**
  227. * @first: leftmost level in priority @queue
  228. */
  229. struct rb_node *first;
  230. /**
  231. * @fw_domains: forcewake domains for irq tasklet
  232. */
  233. unsigned int fw_domains;
  234. /**
  235. * @csb_head: context status buffer head
  236. */
  237. unsigned int csb_head;
  238. /**
  239. * @csb_use_mmio: access csb through mmio, instead of hwsp
  240. */
  241. bool csb_use_mmio;
  242. };
  243. #define INTEL_ENGINE_CS_MAX_NAME 8
  244. struct intel_engine_cs {
  245. struct drm_i915_private *i915;
  246. char name[INTEL_ENGINE_CS_MAX_NAME];
  247. enum intel_engine_id id;
  248. unsigned int uabi_id;
  249. unsigned int hw_id;
  250. unsigned int guc_id;
  251. u8 class;
  252. u8 instance;
  253. u32 context_size;
  254. u32 mmio_base;
  255. unsigned int irq_shift;
  256. struct intel_ring *buffer;
  257. struct intel_timeline *timeline;
  258. struct intel_render_state *render_state;
  259. atomic_t irq_count;
  260. unsigned long irq_posted;
  261. #define ENGINE_IRQ_BREADCRUMB 0
  262. #define ENGINE_IRQ_EXECLIST 1
  263. /* Rather than have every client wait upon all user interrupts,
  264. * with the herd waking after every interrupt and each doing the
  265. * heavyweight seqno dance, we delegate the task (of being the
  266. * bottom-half of the user interrupt) to the first client. After
  267. * every interrupt, we wake up one client, who does the heavyweight
  268. * coherent seqno read and either goes back to sleep (if incomplete),
  269. * or wakes up all the completed clients in parallel, before then
  270. * transferring the bottom-half status to the next client in the queue.
  271. *
  272. * Compared to walking the entire list of waiters in a single dedicated
  273. * bottom-half, we reduce the latency of the first waiter by avoiding
  274. * a context switch, but incur additional coherent seqno reads when
  275. * following the chain of request breadcrumbs. Since it is most likely
  276. * that we have a single client waiting on each seqno, then reducing
  277. * the overhead of waking that client is much preferred.
  278. */
  279. struct intel_breadcrumbs {
  280. spinlock_t irq_lock; /* protects irq_*; irqsafe */
  281. struct intel_wait *irq_wait; /* oldest waiter by retirement */
  282. spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
  283. struct rb_root waiters; /* sorted by retirement, priority */
  284. struct rb_root signals; /* sorted by retirement */
  285. struct task_struct *signaler; /* used for fence signalling */
  286. struct drm_i915_gem_request __rcu *first_signal;
  287. struct timer_list fake_irq; /* used after a missed interrupt */
  288. struct timer_list hangcheck; /* detect missed interrupts */
  289. unsigned int hangcheck_interrupts;
  290. bool irq_armed : 1;
  291. bool irq_enabled : 1;
  292. I915_SELFTEST_DECLARE(bool mock : 1);
  293. } breadcrumbs;
  294. /*
  295. * A pool of objects to use as shadow copies of client batch buffers
  296. * when the command parser is enabled. Prevents the client from
  297. * modifying the batch contents after software parsing.
  298. */
  299. struct i915_gem_batch_pool batch_pool;
  300. struct intel_hw_status_page status_page;
  301. struct i915_ctx_workarounds wa_ctx;
  302. struct i915_vma *scratch;
  303. u32 irq_keep_mask; /* always keep these interrupts */
  304. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  305. void (*irq_enable)(struct intel_engine_cs *engine);
  306. void (*irq_disable)(struct intel_engine_cs *engine);
  307. int (*init_hw)(struct intel_engine_cs *engine);
  308. void (*reset_hw)(struct intel_engine_cs *engine,
  309. struct drm_i915_gem_request *req);
  310. void (*set_default_submission)(struct intel_engine_cs *engine);
  311. struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
  312. struct i915_gem_context *ctx);
  313. void (*context_unpin)(struct intel_engine_cs *engine,
  314. struct i915_gem_context *ctx);
  315. int (*request_alloc)(struct drm_i915_gem_request *req);
  316. int (*init_context)(struct drm_i915_gem_request *req);
  317. int (*emit_flush)(struct drm_i915_gem_request *request,
  318. u32 mode);
  319. #define EMIT_INVALIDATE BIT(0)
  320. #define EMIT_FLUSH BIT(1)
  321. #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
  322. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  323. u64 offset, u32 length,
  324. unsigned int dispatch_flags);
  325. #define I915_DISPATCH_SECURE BIT(0)
  326. #define I915_DISPATCH_PINNED BIT(1)
  327. #define I915_DISPATCH_RS BIT(2)
  328. void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
  329. u32 *cs);
  330. int emit_breadcrumb_sz;
  331. /* Pass the request to the hardware queue (e.g. directly into
  332. * the legacy ringbuffer or to the end of an execlist).
  333. *
  334. * This is called from an atomic context with irqs disabled; must
  335. * be irq safe.
  336. */
  337. void (*submit_request)(struct drm_i915_gem_request *req);
  338. /* Call when the priority on a request has changed and it and its
  339. * dependencies may need rescheduling. Note the request itself may
  340. * not be ready to run!
  341. *
  342. * Called under the struct_mutex.
  343. */
  344. void (*schedule)(struct drm_i915_gem_request *request,
  345. int priority);
  346. /*
  347. * Cancel all requests on the hardware, or queued for execution.
  348. * This should only cancel the ready requests that have been
  349. * submitted to the engine (via the engine->submit_request callback).
  350. * This is called when marking the device as wedged.
  351. */
  352. void (*cancel_requests)(struct intel_engine_cs *engine);
  353. /* Some chipsets are not quite as coherent as advertised and need
  354. * an expensive kick to force a true read of the up-to-date seqno.
  355. * However, the up-to-date seqno is not always required and the last
  356. * seen value is good enough. Note that the seqno will always be
  357. * monotonic, even if not coherent.
  358. */
  359. void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
  360. void (*cleanup)(struct intel_engine_cs *engine);
  361. /* GEN8 signal/wait table - never trust comments!
  362. * signal to signal to signal to signal to signal to
  363. * RCS VCS BCS VECS VCS2
  364. * --------------------------------------------------------------------
  365. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  366. * |-------------------------------------------------------------------
  367. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  368. * |-------------------------------------------------------------------
  369. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  370. * |-------------------------------------------------------------------
  371. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  372. * |-------------------------------------------------------------------
  373. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  374. * |-------------------------------------------------------------------
  375. *
  376. * Generalization:
  377. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  378. * ie. transpose of g(x, y)
  379. *
  380. * sync from sync from sync from sync from sync from
  381. * RCS VCS BCS VECS VCS2
  382. * --------------------------------------------------------------------
  383. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  384. * |-------------------------------------------------------------------
  385. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  386. * |-------------------------------------------------------------------
  387. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  388. * |-------------------------------------------------------------------
  389. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  390. * |-------------------------------------------------------------------
  391. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  392. * |-------------------------------------------------------------------
  393. *
  394. * Generalization:
  395. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  396. * ie. transpose of f(x, y)
  397. */
  398. struct {
  399. union {
  400. #define GEN6_SEMAPHORE_LAST VECS_HW
  401. #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
  402. #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
  403. struct {
  404. /* our mbox written by others */
  405. u32 wait[GEN6_NUM_SEMAPHORES];
  406. /* mboxes this ring signals to */
  407. i915_reg_t signal[GEN6_NUM_SEMAPHORES];
  408. } mbox;
  409. u64 signal_ggtt[I915_NUM_ENGINES];
  410. };
  411. /* AKA wait() */
  412. int (*sync_to)(struct drm_i915_gem_request *req,
  413. struct drm_i915_gem_request *signal);
  414. u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
  415. } semaphore;
  416. struct intel_engine_execlists execlists;
  417. /* Contexts are pinned whilst they are active on the GPU. The last
  418. * context executed remains active whilst the GPU is idle - the
  419. * switch away and write to the context object only occurs on the
  420. * next execution. Contexts are only unpinned on retirement of the
  421. * following request ensuring that we can always write to the object
  422. * on the context switch even after idling. Across suspend, we switch
  423. * to the kernel context and trash it as the save may not happen
  424. * before the hardware is powered down.
  425. */
  426. struct i915_gem_context *last_retired_context;
  427. /* We track the current MI_SET_CONTEXT in order to eliminate
  428. * redudant context switches. This presumes that requests are not
  429. * reordered! Or when they are the tracking is updated along with
  430. * the emission of individual requests into the legacy command
  431. * stream (ring).
  432. */
  433. struct i915_gem_context *legacy_active_context;
  434. /* status_notifier: list of callbacks for context-switch changes */
  435. struct atomic_notifier_head context_status_notifier;
  436. struct intel_engine_hangcheck hangcheck;
  437. bool needs_cmd_parser;
  438. /*
  439. * Table of commands the command parser needs to know about
  440. * for this engine.
  441. */
  442. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  443. /*
  444. * Table of registers allowed in commands that read/write registers.
  445. */
  446. const struct drm_i915_reg_table *reg_tables;
  447. int reg_table_count;
  448. /*
  449. * Returns the bitmask for the length field of the specified command.
  450. * Return 0 for an unrecognized/invalid command.
  451. *
  452. * If the command parser finds an entry for a command in the engine's
  453. * cmd_tables, it gets the command's length based on the table entry.
  454. * If not, it calls this function to determine the per-engine length
  455. * field encoding for the command (i.e. different opcode ranges use
  456. * certain bits to encode the command length in the header).
  457. */
  458. u32 (*get_cmd_length_mask)(u32 cmd_header);
  459. };
  460. static inline void
  461. execlists_set_active(struct intel_engine_execlists *execlists,
  462. unsigned int bit)
  463. {
  464. __set_bit(bit, (unsigned long *)&execlists->active);
  465. }
  466. static inline void
  467. execlists_clear_active(struct intel_engine_execlists *execlists,
  468. unsigned int bit)
  469. {
  470. __clear_bit(bit, (unsigned long *)&execlists->active);
  471. }
  472. static inline bool
  473. execlists_is_active(const struct intel_engine_execlists *execlists,
  474. unsigned int bit)
  475. {
  476. return test_bit(bit, (unsigned long *)&execlists->active);
  477. }
  478. static inline unsigned int
  479. execlists_num_ports(const struct intel_engine_execlists * const execlists)
  480. {
  481. return execlists->port_mask + 1;
  482. }
  483. static inline void
  484. execlists_port_complete(struct intel_engine_execlists * const execlists,
  485. struct execlist_port * const port)
  486. {
  487. const unsigned int m = execlists->port_mask;
  488. GEM_BUG_ON(port_index(port, execlists) != 0);
  489. GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
  490. memmove(port, port + 1, m * sizeof(struct execlist_port));
  491. memset(port + m, 0, sizeof(struct execlist_port));
  492. }
  493. static inline unsigned int
  494. intel_engine_flag(const struct intel_engine_cs *engine)
  495. {
  496. return BIT(engine->id);
  497. }
  498. static inline u32
  499. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  500. {
  501. /* Ensure that the compiler doesn't optimize away the load. */
  502. return READ_ONCE(engine->status_page.page_addr[reg]);
  503. }
  504. static inline void
  505. intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
  506. {
  507. /* Writing into the status page should be done sparingly. Since
  508. * we do when we are uncertain of the device state, we take a bit
  509. * of extra paranoia to try and ensure that the HWS takes the value
  510. * we give and that it doesn't end up trapped inside the CPU!
  511. */
  512. if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
  513. mb();
  514. clflush(&engine->status_page.page_addr[reg]);
  515. engine->status_page.page_addr[reg] = value;
  516. clflush(&engine->status_page.page_addr[reg]);
  517. mb();
  518. } else {
  519. WRITE_ONCE(engine->status_page.page_addr[reg], value);
  520. }
  521. }
  522. /*
  523. * Reads a dword out of the status page, which is written to from the command
  524. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  525. * MI_STORE_DATA_IMM.
  526. *
  527. * The following dwords have a reserved meaning:
  528. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  529. * 0x04: ring 0 head pointer
  530. * 0x05: ring 1 head pointer (915-class)
  531. * 0x06: ring 2 head pointer (915-class)
  532. * 0x10-0x1b: Context status DWords (GM45)
  533. * 0x1f: Last written status offset. (GM45)
  534. * 0x20-0x2f: Reserved (Gen6+)
  535. *
  536. * The area from dword 0x30 to 0x3ff is available for driver usage.
  537. */
  538. #define I915_GEM_HWS_INDEX 0x30
  539. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  540. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  541. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  542. #define I915_HWS_CSB_BUF0_INDEX 0x10
  543. #define I915_HWS_CSB_WRITE_INDEX 0x1f
  544. #define CNL_HWS_CSB_WRITE_INDEX 0x2f
  545. struct intel_ring *
  546. intel_engine_create_ring(struct intel_engine_cs *engine, int size);
  547. int intel_ring_pin(struct intel_ring *ring,
  548. struct drm_i915_private *i915,
  549. unsigned int offset_bias);
  550. void intel_ring_reset(struct intel_ring *ring, u32 tail);
  551. unsigned int intel_ring_update_space(struct intel_ring *ring);
  552. void intel_ring_unpin(struct intel_ring *ring);
  553. void intel_ring_free(struct intel_ring *ring);
  554. void intel_engine_stop(struct intel_engine_cs *engine);
  555. void intel_engine_cleanup(struct intel_engine_cs *engine);
  556. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
  557. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  558. u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
  559. unsigned int n);
  560. static inline void
  561. intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
  562. {
  563. /* Dummy function.
  564. *
  565. * This serves as a placeholder in the code so that the reader
  566. * can compare against the preceding intel_ring_begin() and
  567. * check that the number of dwords emitted matches the space
  568. * reserved for the command packet (i.e. the value passed to
  569. * intel_ring_begin()).
  570. */
  571. GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
  572. }
  573. static inline u32
  574. intel_ring_wrap(const struct intel_ring *ring, u32 pos)
  575. {
  576. return pos & (ring->size - 1);
  577. }
  578. static inline u32
  579. intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
  580. {
  581. /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
  582. u32 offset = addr - req->ring->vaddr;
  583. GEM_BUG_ON(offset > req->ring->size);
  584. return intel_ring_wrap(req->ring, offset);
  585. }
  586. static inline void
  587. assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
  588. {
  589. /* We could combine these into a single tail operation, but keeping
  590. * them as seperate tests will help identify the cause should one
  591. * ever fire.
  592. */
  593. GEM_BUG_ON(!IS_ALIGNED(tail, 8));
  594. GEM_BUG_ON(tail >= ring->size);
  595. /*
  596. * "Ring Buffer Use"
  597. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
  598. * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
  599. * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
  600. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
  601. * same cacheline, the Head Pointer must not be greater than the Tail
  602. * Pointer."
  603. *
  604. * We use ring->head as the last known location of the actual RING_HEAD,
  605. * it may have advanced but in the worst case it is equally the same
  606. * as ring->head and so we should never program RING_TAIL to advance
  607. * into the same cacheline as ring->head.
  608. */
  609. #define cacheline(a) round_down(a, CACHELINE_BYTES)
  610. GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
  611. tail < ring->head);
  612. #undef cacheline
  613. }
  614. static inline unsigned int
  615. intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
  616. {
  617. /* Whilst writes to the tail are strictly order, there is no
  618. * serialisation between readers and the writers. The tail may be
  619. * read by i915_gem_request_retire() just as it is being updated
  620. * by execlists, as although the breadcrumb is complete, the context
  621. * switch hasn't been seen.
  622. */
  623. assert_ring_tail_valid(ring, tail);
  624. ring->tail = tail;
  625. return tail;
  626. }
  627. void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
  628. void intel_engine_setup_common(struct intel_engine_cs *engine);
  629. int intel_engine_init_common(struct intel_engine_cs *engine);
  630. int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
  631. void intel_engine_cleanup_common(struct intel_engine_cs *engine);
  632. int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
  633. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
  634. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
  635. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
  636. u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
  637. u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
  638. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  639. {
  640. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  641. }
  642. static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
  643. {
  644. /* We are only peeking at the tail of the submit queue (and not the
  645. * queue itself) in order to gain a hint as to the current active
  646. * state of the engine. Callers are not expected to be taking
  647. * engine->timeline->lock, nor are they expected to be concerned
  648. * wtih serialising this hint with anything, so document it as
  649. * a hint and nothing more.
  650. */
  651. return READ_ONCE(engine->timeline->seqno);
  652. }
  653. int init_workarounds_ring(struct intel_engine_cs *engine);
  654. int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
  655. void intel_engine_get_instdone(struct intel_engine_cs *engine,
  656. struct intel_instdone *instdone);
  657. /*
  658. * Arbitrary size for largest possible 'add request' sequence. The code paths
  659. * are complex and variable. Empirical measurement shows that the worst case
  660. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  661. * we need to allocate double the largest single packet within that emission
  662. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  663. */
  664. #define MIN_SPACE_FOR_ADD_REQUEST 336
  665. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  666. {
  667. return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
  668. }
  669. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  670. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  671. static inline void intel_wait_init(struct intel_wait *wait,
  672. struct drm_i915_gem_request *rq)
  673. {
  674. wait->tsk = current;
  675. wait->request = rq;
  676. }
  677. static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
  678. {
  679. wait->tsk = current;
  680. wait->seqno = seqno;
  681. }
  682. static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
  683. {
  684. return wait->seqno;
  685. }
  686. static inline bool
  687. intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
  688. {
  689. wait->seqno = seqno;
  690. return intel_wait_has_seqno(wait);
  691. }
  692. static inline bool
  693. intel_wait_update_request(struct intel_wait *wait,
  694. const struct drm_i915_gem_request *rq)
  695. {
  696. return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
  697. }
  698. static inline bool
  699. intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
  700. {
  701. return wait->seqno == seqno;
  702. }
  703. static inline bool
  704. intel_wait_check_request(const struct intel_wait *wait,
  705. const struct drm_i915_gem_request *rq)
  706. {
  707. return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
  708. }
  709. static inline bool intel_wait_complete(const struct intel_wait *wait)
  710. {
  711. return RB_EMPTY_NODE(&wait->node);
  712. }
  713. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  714. struct intel_wait *wait);
  715. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  716. struct intel_wait *wait);
  717. void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
  718. bool wakeup);
  719. void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
  720. static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
  721. {
  722. return READ_ONCE(engine->breadcrumbs.irq_wait);
  723. }
  724. unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
  725. #define ENGINE_WAKEUP_WAITER BIT(0)
  726. #define ENGINE_WAKEUP_ASLEEP BIT(1)
  727. void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
  728. void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
  729. void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
  730. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  731. bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
  732. static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
  733. {
  734. memset(batch, 0, 6 * sizeof(u32));
  735. batch[0] = GFX_OP_PIPE_CONTROL(6);
  736. batch[1] = flags;
  737. batch[2] = offset;
  738. return batch + 6;
  739. }
  740. bool intel_engine_is_idle(struct intel_engine_cs *engine);
  741. bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
  742. void intel_engines_mark_idle(struct drm_i915_private *i915);
  743. void intel_engines_reset_default_submission(struct drm_i915_private *i915);
  744. bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
  745. void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *p);
  746. #endif /* _INTEL_RINGBUFFER_H_ */