tree.c 133 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate_wait.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/sched/debug.h>
  39. #include <linux/nmi.h>
  40. #include <linux/atomic.h>
  41. #include <linux/bitops.h>
  42. #include <linux/export.h>
  43. #include <linux/completion.h>
  44. #include <linux/moduleparam.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <uapi/linux/sched/types.h>
  54. #include <linux/prefetch.h>
  55. #include <linux/delay.h>
  56. #include <linux/stop_machine.h>
  57. #include <linux/random.h>
  58. #include <linux/trace_events.h>
  59. #include <linux/suspend.h>
  60. #include <linux/ftrace.h>
  61. #include "tree.h"
  62. #include "rcu.h"
  63. #ifdef MODULE_PARAM_PREFIX
  64. #undef MODULE_PARAM_PREFIX
  65. #endif
  66. #define MODULE_PARAM_PREFIX "rcutree."
  67. /* Data structures. */
  68. /*
  69. * In order to export the rcu_state name to the tracing tools, it
  70. * needs to be added in the __tracepoint_string section.
  71. * This requires defining a separate variable tp_<sname>_varname
  72. * that points to the string being used, and this will allow
  73. * the tracing userspace tools to be able to decipher the string
  74. * address to the matching string.
  75. */
  76. #ifdef CONFIG_TRACING
  77. # define DEFINE_RCU_TPS(sname) \
  78. static char sname##_varname[] = #sname; \
  79. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  80. # define RCU_STATE_NAME(sname) sname##_varname
  81. #else
  82. # define DEFINE_RCU_TPS(sname)
  83. # define RCU_STATE_NAME(sname) __stringify(sname)
  84. #endif
  85. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  86. DEFINE_RCU_TPS(sname) \
  87. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  88. struct rcu_state sname##_state = { \
  89. .level = { &sname##_state.node[0] }, \
  90. .rda = &sname##_data, \
  91. .call = cr, \
  92. .gp_state = RCU_GP_IDLE, \
  93. .gpnum = 0UL - 300UL, \
  94. .completed = 0UL - 300UL, \
  95. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  96. .name = RCU_STATE_NAME(sname), \
  97. .abbr = sabbr, \
  98. .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
  99. .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
  100. }
  101. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  102. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  103. static struct rcu_state *const rcu_state_p;
  104. LIST_HEAD(rcu_struct_flavors);
  105. /* Dump rcu_node combining tree at boot to verify correct setup. */
  106. static bool dump_tree;
  107. module_param(dump_tree, bool, 0444);
  108. /* Control rcu_node-tree auto-balancing at boot time. */
  109. static bool rcu_fanout_exact;
  110. module_param(rcu_fanout_exact, bool, 0444);
  111. /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
  112. static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
  113. module_param(rcu_fanout_leaf, int, 0444);
  114. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  115. /* Number of rcu_nodes at specified level. */
  116. int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
  117. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  118. /* panic() on RCU Stall sysctl. */
  119. int sysctl_panic_on_rcu_stall __read_mostly;
  120. /*
  121. * The rcu_scheduler_active variable is initialized to the value
  122. * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
  123. * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
  124. * RCU can assume that there is but one task, allowing RCU to (for example)
  125. * optimize synchronize_rcu() to a simple barrier(). When this variable
  126. * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
  127. * to detect real grace periods. This variable is also used to suppress
  128. * boot-time false positives from lockdep-RCU error checking. Finally, it
  129. * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
  130. * is fully initialized, including all of its kthreads having been spawned.
  131. */
  132. int rcu_scheduler_active __read_mostly;
  133. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  134. /*
  135. * The rcu_scheduler_fully_active variable transitions from zero to one
  136. * during the early_initcall() processing, which is after the scheduler
  137. * is capable of creating new tasks. So RCU processing (for example,
  138. * creating tasks for RCU priority boosting) must be delayed until after
  139. * rcu_scheduler_fully_active transitions from zero to one. We also
  140. * currently delay invocation of any RCU callbacks until after this point.
  141. *
  142. * It might later prove better for people registering RCU callbacks during
  143. * early boot to take responsibility for these callbacks, but one step at
  144. * a time.
  145. */
  146. static int rcu_scheduler_fully_active __read_mostly;
  147. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
  148. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
  149. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  150. static void invoke_rcu_core(void);
  151. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  152. static void rcu_report_exp_rdp(struct rcu_state *rsp,
  153. struct rcu_data *rdp, bool wake);
  154. static void sync_sched_exp_online_cleanup(int cpu);
  155. /* rcuc/rcub kthread realtime priority */
  156. static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
  157. module_param(kthread_prio, int, 0644);
  158. /* Delay in jiffies for grace-period initialization delays, debug only. */
  159. static int gp_preinit_delay;
  160. module_param(gp_preinit_delay, int, 0444);
  161. static int gp_init_delay;
  162. module_param(gp_init_delay, int, 0444);
  163. static int gp_cleanup_delay;
  164. module_param(gp_cleanup_delay, int, 0444);
  165. /*
  166. * Number of grace periods between delays, normalized by the duration of
  167. * the delay. The longer the delay, the more the grace periods between
  168. * each delay. The reason for this normalization is that it means that,
  169. * for non-zero delays, the overall slowdown of grace periods is constant
  170. * regardless of the duration of the delay. This arrangement balances
  171. * the need for long delays to increase some race probabilities with the
  172. * need for fast grace periods to increase other race probabilities.
  173. */
  174. #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
  175. /*
  176. * Track the rcutorture test sequence number and the update version
  177. * number within a given test. The rcutorture_testseq is incremented
  178. * on every rcutorture module load and unload, so has an odd value
  179. * when a test is running. The rcutorture_vernum is set to zero
  180. * when rcutorture starts and is incremented on each rcutorture update.
  181. * These variables enable correlating rcutorture output with the
  182. * RCU tracing information.
  183. */
  184. unsigned long rcutorture_testseq;
  185. unsigned long rcutorture_vernum;
  186. /*
  187. * Compute the mask of online CPUs for the specified rcu_node structure.
  188. * This will not be stable unless the rcu_node structure's ->lock is
  189. * held, but the bit corresponding to the current CPU will be stable
  190. * in most contexts.
  191. */
  192. unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
  193. {
  194. return READ_ONCE(rnp->qsmaskinitnext);
  195. }
  196. /*
  197. * Return true if an RCU grace period is in progress. The READ_ONCE()s
  198. * permit this function to be invoked without holding the root rcu_node
  199. * structure's ->lock, but of course results can be subject to change.
  200. */
  201. static int rcu_gp_in_progress(struct rcu_state *rsp)
  202. {
  203. return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
  204. }
  205. /*
  206. * Note a quiescent state. Because we do not need to know
  207. * how many quiescent states passed, just if there was at least
  208. * one since the start of the grace period, this just sets a flag.
  209. * The caller must have disabled preemption.
  210. */
  211. void rcu_sched_qs(void)
  212. {
  213. RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
  214. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
  215. return;
  216. trace_rcu_grace_period(TPS("rcu_sched"),
  217. __this_cpu_read(rcu_sched_data.gpnum),
  218. TPS("cpuqs"));
  219. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
  220. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
  221. return;
  222. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
  223. rcu_report_exp_rdp(&rcu_sched_state,
  224. this_cpu_ptr(&rcu_sched_data), true);
  225. }
  226. void rcu_bh_qs(void)
  227. {
  228. RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
  229. if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
  230. trace_rcu_grace_period(TPS("rcu_bh"),
  231. __this_cpu_read(rcu_bh_data.gpnum),
  232. TPS("cpuqs"));
  233. __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
  234. }
  235. }
  236. /*
  237. * Steal a bit from the bottom of ->dynticks for idle entry/exit
  238. * control. Initially this is for TLB flushing.
  239. */
  240. #define RCU_DYNTICK_CTRL_MASK 0x1
  241. #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
  242. #ifndef rcu_eqs_special_exit
  243. #define rcu_eqs_special_exit() do { } while (0)
  244. #endif
  245. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  246. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  247. .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
  248. };
  249. /*
  250. * There's a few places, currently just in the tracing infrastructure,
  251. * that uses rcu_irq_enter() to make sure RCU is watching. But there's
  252. * a small location where that will not even work. In those cases
  253. * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
  254. * can be called.
  255. */
  256. static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
  257. bool rcu_irq_enter_disabled(void)
  258. {
  259. return this_cpu_read(disable_rcu_irq_enter);
  260. }
  261. /*
  262. * Record entry into an extended quiescent state. This is only to be
  263. * called when not already in an extended quiescent state.
  264. */
  265. static void rcu_dynticks_eqs_enter(void)
  266. {
  267. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  268. int seq;
  269. /*
  270. * CPUs seeing atomic_add_return() must see prior RCU read-side
  271. * critical sections, and we also must force ordering with the
  272. * next idle sojourn.
  273. */
  274. seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
  275. /* Better be in an extended quiescent state! */
  276. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  277. (seq & RCU_DYNTICK_CTRL_CTR));
  278. /* Better not have special action (TLB flush) pending! */
  279. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  280. (seq & RCU_DYNTICK_CTRL_MASK));
  281. }
  282. /*
  283. * Record exit from an extended quiescent state. This is only to be
  284. * called from an extended quiescent state.
  285. */
  286. static void rcu_dynticks_eqs_exit(void)
  287. {
  288. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  289. int seq;
  290. /*
  291. * CPUs seeing atomic_add_return() must see prior idle sojourns,
  292. * and we also must force ordering with the next RCU read-side
  293. * critical section.
  294. */
  295. seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
  296. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  297. !(seq & RCU_DYNTICK_CTRL_CTR));
  298. if (seq & RCU_DYNTICK_CTRL_MASK) {
  299. atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
  300. smp_mb__after_atomic(); /* _exit after clearing mask. */
  301. /* Prefer duplicate flushes to losing a flush. */
  302. rcu_eqs_special_exit();
  303. }
  304. }
  305. /*
  306. * Reset the current CPU's ->dynticks counter to indicate that the
  307. * newly onlined CPU is no longer in an extended quiescent state.
  308. * This will either leave the counter unchanged, or increment it
  309. * to the next non-quiescent value.
  310. *
  311. * The non-atomic test/increment sequence works because the upper bits
  312. * of the ->dynticks counter are manipulated only by the corresponding CPU,
  313. * or when the corresponding CPU is offline.
  314. */
  315. static void rcu_dynticks_eqs_online(void)
  316. {
  317. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  318. if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
  319. return;
  320. atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
  321. }
  322. /*
  323. * Is the current CPU in an extended quiescent state?
  324. *
  325. * No ordering, as we are sampling CPU-local information.
  326. */
  327. bool rcu_dynticks_curr_cpu_in_eqs(void)
  328. {
  329. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  330. return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
  331. }
  332. /*
  333. * Snapshot the ->dynticks counter with full ordering so as to allow
  334. * stable comparison of this counter with past and future snapshots.
  335. */
  336. int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
  337. {
  338. int snap = atomic_add_return(0, &rdtp->dynticks);
  339. return snap & ~RCU_DYNTICK_CTRL_MASK;
  340. }
  341. /*
  342. * Return true if the snapshot returned from rcu_dynticks_snap()
  343. * indicates that RCU is in an extended quiescent state.
  344. */
  345. static bool rcu_dynticks_in_eqs(int snap)
  346. {
  347. return !(snap & RCU_DYNTICK_CTRL_CTR);
  348. }
  349. /*
  350. * Return true if the CPU corresponding to the specified rcu_dynticks
  351. * structure has spent some time in an extended quiescent state since
  352. * rcu_dynticks_snap() returned the specified snapshot.
  353. */
  354. static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
  355. {
  356. return snap != rcu_dynticks_snap(rdtp);
  357. }
  358. /*
  359. * Do a double-increment of the ->dynticks counter to emulate a
  360. * momentary idle-CPU quiescent state.
  361. */
  362. static void rcu_dynticks_momentary_idle(void)
  363. {
  364. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  365. int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
  366. &rdtp->dynticks);
  367. /* It is illegal to call this from idle state. */
  368. WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
  369. }
  370. /*
  371. * Set the special (bottom) bit of the specified CPU so that it
  372. * will take special action (such as flushing its TLB) on the
  373. * next exit from an extended quiescent state. Returns true if
  374. * the bit was successfully set, or false if the CPU was not in
  375. * an extended quiescent state.
  376. */
  377. bool rcu_eqs_special_set(int cpu)
  378. {
  379. int old;
  380. int new;
  381. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  382. do {
  383. old = atomic_read(&rdtp->dynticks);
  384. if (old & RCU_DYNTICK_CTRL_CTR)
  385. return false;
  386. new = old | RCU_DYNTICK_CTRL_MASK;
  387. } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
  388. return true;
  389. }
  390. /*
  391. * Let the RCU core know that this CPU has gone through the scheduler,
  392. * which is a quiescent state. This is called when the need for a
  393. * quiescent state is urgent, so we burn an atomic operation and full
  394. * memory barriers to let the RCU core know about it, regardless of what
  395. * this CPU might (or might not) do in the near future.
  396. *
  397. * We inform the RCU core by emulating a zero-duration dyntick-idle period.
  398. *
  399. * The caller must have disabled interrupts.
  400. */
  401. static void rcu_momentary_dyntick_idle(void)
  402. {
  403. raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
  404. rcu_dynticks_momentary_idle();
  405. }
  406. /*
  407. * Note a context switch. This is a quiescent state for RCU-sched,
  408. * and requires special handling for preemptible RCU.
  409. * The caller must have disabled interrupts.
  410. */
  411. void rcu_note_context_switch(bool preempt)
  412. {
  413. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  414. trace_rcu_utilization(TPS("Start context switch"));
  415. rcu_sched_qs();
  416. rcu_preempt_note_context_switch(preempt);
  417. /* Load rcu_urgent_qs before other flags. */
  418. if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
  419. goto out;
  420. this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
  421. if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
  422. rcu_momentary_dyntick_idle();
  423. this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
  424. if (!preempt)
  425. rcu_note_voluntary_context_switch_lite(current);
  426. out:
  427. trace_rcu_utilization(TPS("End context switch"));
  428. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  429. }
  430. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  431. /*
  432. * Register a quiescent state for all RCU flavors. If there is an
  433. * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
  434. * dyntick-idle quiescent state visible to other CPUs (but only for those
  435. * RCU flavors in desperate need of a quiescent state, which will normally
  436. * be none of them). Either way, do a lightweight quiescent state for
  437. * all RCU flavors.
  438. *
  439. * The barrier() calls are redundant in the common case when this is
  440. * called externally, but just in case this is called from within this
  441. * file.
  442. *
  443. */
  444. void rcu_all_qs(void)
  445. {
  446. unsigned long flags;
  447. if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
  448. return;
  449. preempt_disable();
  450. /* Load rcu_urgent_qs before other flags. */
  451. if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
  452. preempt_enable();
  453. return;
  454. }
  455. this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
  456. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  457. if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
  458. local_irq_save(flags);
  459. rcu_momentary_dyntick_idle();
  460. local_irq_restore(flags);
  461. }
  462. if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
  463. rcu_sched_qs();
  464. this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
  465. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  466. preempt_enable();
  467. }
  468. EXPORT_SYMBOL_GPL(rcu_all_qs);
  469. #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
  470. static long blimit = DEFAULT_RCU_BLIMIT;
  471. #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
  472. static long qhimark = DEFAULT_RCU_QHIMARK;
  473. #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
  474. static long qlowmark = DEFAULT_RCU_QLOMARK;
  475. module_param(blimit, long, 0444);
  476. module_param(qhimark, long, 0444);
  477. module_param(qlowmark, long, 0444);
  478. static ulong jiffies_till_first_fqs = ULONG_MAX;
  479. static ulong jiffies_till_next_fqs = ULONG_MAX;
  480. static bool rcu_kick_kthreads;
  481. module_param(jiffies_till_first_fqs, ulong, 0644);
  482. module_param(jiffies_till_next_fqs, ulong, 0644);
  483. module_param(rcu_kick_kthreads, bool, 0644);
  484. /*
  485. * How long the grace period must be before we start recruiting
  486. * quiescent-state help from rcu_note_context_switch().
  487. */
  488. static ulong jiffies_till_sched_qs = HZ / 10;
  489. module_param(jiffies_till_sched_qs, ulong, 0444);
  490. static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  491. struct rcu_data *rdp);
  492. static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
  493. static void force_quiescent_state(struct rcu_state *rsp);
  494. static int rcu_pending(void);
  495. /*
  496. * Return the number of RCU batches started thus far for debug & stats.
  497. */
  498. unsigned long rcu_batches_started(void)
  499. {
  500. return rcu_state_p->gpnum;
  501. }
  502. EXPORT_SYMBOL_GPL(rcu_batches_started);
  503. /*
  504. * Return the number of RCU-sched batches started thus far for debug & stats.
  505. */
  506. unsigned long rcu_batches_started_sched(void)
  507. {
  508. return rcu_sched_state.gpnum;
  509. }
  510. EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
  511. /*
  512. * Return the number of RCU BH batches started thus far for debug & stats.
  513. */
  514. unsigned long rcu_batches_started_bh(void)
  515. {
  516. return rcu_bh_state.gpnum;
  517. }
  518. EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
  519. /*
  520. * Return the number of RCU batches completed thus far for debug & stats.
  521. */
  522. unsigned long rcu_batches_completed(void)
  523. {
  524. return rcu_state_p->completed;
  525. }
  526. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  527. /*
  528. * Return the number of RCU-sched batches completed thus far for debug & stats.
  529. */
  530. unsigned long rcu_batches_completed_sched(void)
  531. {
  532. return rcu_sched_state.completed;
  533. }
  534. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  535. /*
  536. * Return the number of RCU BH batches completed thus far for debug & stats.
  537. */
  538. unsigned long rcu_batches_completed_bh(void)
  539. {
  540. return rcu_bh_state.completed;
  541. }
  542. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  543. /*
  544. * Return the number of RCU expedited batches completed thus far for
  545. * debug & stats. Odd numbers mean that a batch is in progress, even
  546. * numbers mean idle. The value returned will thus be roughly double
  547. * the cumulative batches since boot.
  548. */
  549. unsigned long rcu_exp_batches_completed(void)
  550. {
  551. return rcu_state_p->expedited_sequence;
  552. }
  553. EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
  554. /*
  555. * Return the number of RCU-sched expedited batches completed thus far
  556. * for debug & stats. Similar to rcu_exp_batches_completed().
  557. */
  558. unsigned long rcu_exp_batches_completed_sched(void)
  559. {
  560. return rcu_sched_state.expedited_sequence;
  561. }
  562. EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
  563. /*
  564. * Force a quiescent state.
  565. */
  566. void rcu_force_quiescent_state(void)
  567. {
  568. force_quiescent_state(rcu_state_p);
  569. }
  570. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  571. /*
  572. * Force a quiescent state for RCU BH.
  573. */
  574. void rcu_bh_force_quiescent_state(void)
  575. {
  576. force_quiescent_state(&rcu_bh_state);
  577. }
  578. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  579. /*
  580. * Force a quiescent state for RCU-sched.
  581. */
  582. void rcu_sched_force_quiescent_state(void)
  583. {
  584. force_quiescent_state(&rcu_sched_state);
  585. }
  586. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  587. /*
  588. * Show the state of the grace-period kthreads.
  589. */
  590. void show_rcu_gp_kthreads(void)
  591. {
  592. struct rcu_state *rsp;
  593. for_each_rcu_flavor(rsp) {
  594. pr_info("%s: wait state: %d ->state: %#lx\n",
  595. rsp->name, rsp->gp_state, rsp->gp_kthread->state);
  596. /* sched_show_task(rsp->gp_kthread); */
  597. }
  598. }
  599. EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
  600. /*
  601. * Record the number of times rcutorture tests have been initiated and
  602. * terminated. This information allows the debugfs tracing stats to be
  603. * correlated to the rcutorture messages, even when the rcutorture module
  604. * is being repeatedly loaded and unloaded. In other words, we cannot
  605. * store this state in rcutorture itself.
  606. */
  607. void rcutorture_record_test_transition(void)
  608. {
  609. rcutorture_testseq++;
  610. rcutorture_vernum = 0;
  611. }
  612. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  613. /*
  614. * Send along grace-period-related data for rcutorture diagnostics.
  615. */
  616. void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  617. unsigned long *gpnum, unsigned long *completed)
  618. {
  619. struct rcu_state *rsp = NULL;
  620. switch (test_type) {
  621. case RCU_FLAVOR:
  622. rsp = rcu_state_p;
  623. break;
  624. case RCU_BH_FLAVOR:
  625. rsp = &rcu_bh_state;
  626. break;
  627. case RCU_SCHED_FLAVOR:
  628. rsp = &rcu_sched_state;
  629. break;
  630. default:
  631. break;
  632. }
  633. if (rsp == NULL)
  634. return;
  635. *flags = READ_ONCE(rsp->gp_flags);
  636. *gpnum = READ_ONCE(rsp->gpnum);
  637. *completed = READ_ONCE(rsp->completed);
  638. }
  639. EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
  640. /*
  641. * Record the number of writer passes through the current rcutorture test.
  642. * This is also used to correlate debugfs tracing stats with the rcutorture
  643. * messages.
  644. */
  645. void rcutorture_record_progress(unsigned long vernum)
  646. {
  647. rcutorture_vernum++;
  648. }
  649. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  650. /*
  651. * Return the root node of the specified rcu_state structure.
  652. */
  653. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  654. {
  655. return &rsp->node[0];
  656. }
  657. /*
  658. * Is there any need for future grace periods?
  659. * Interrupts must be disabled. If the caller does not hold the root
  660. * rnp_node structure's ->lock, the results are advisory only.
  661. */
  662. static int rcu_future_needs_gp(struct rcu_state *rsp)
  663. {
  664. struct rcu_node *rnp = rcu_get_root(rsp);
  665. int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
  666. int *fp = &rnp->need_future_gp[idx];
  667. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
  668. return READ_ONCE(*fp);
  669. }
  670. /*
  671. * Does the current CPU require a not-yet-started grace period?
  672. * The caller must have disabled interrupts to prevent races with
  673. * normal callback registry.
  674. */
  675. static bool
  676. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  677. {
  678. RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
  679. if (rcu_gp_in_progress(rsp))
  680. return false; /* No, a grace period is already in progress. */
  681. if (rcu_future_needs_gp(rsp))
  682. return true; /* Yes, a no-CBs CPU needs one. */
  683. if (!rcu_segcblist_is_enabled(&rdp->cblist))
  684. return false; /* No, this is a no-CBs (or offline) CPU. */
  685. if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
  686. return true; /* Yes, CPU has newly registered callbacks. */
  687. if (rcu_segcblist_future_gp_needed(&rdp->cblist,
  688. READ_ONCE(rsp->completed)))
  689. return true; /* Yes, CBs for future grace period. */
  690. return false; /* No grace period needed. */
  691. }
  692. /*
  693. * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
  694. *
  695. * Enter idle, doing appropriate accounting. The caller must have
  696. * disabled interrupts.
  697. */
  698. static void rcu_eqs_enter_common(bool user)
  699. {
  700. struct rcu_state *rsp;
  701. struct rcu_data *rdp;
  702. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  703. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
  704. trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
  705. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  706. !user && !is_idle_task(current)) {
  707. struct task_struct *idle __maybe_unused =
  708. idle_task(smp_processor_id());
  709. trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
  710. rcu_ftrace_dump(DUMP_ORIG);
  711. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  712. current->pid, current->comm,
  713. idle->pid, idle->comm); /* must be idle task! */
  714. }
  715. for_each_rcu_flavor(rsp) {
  716. rdp = this_cpu_ptr(rsp->rda);
  717. do_nocb_deferred_wakeup(rdp);
  718. }
  719. rcu_prepare_for_idle();
  720. __this_cpu_inc(disable_rcu_irq_enter);
  721. rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
  722. rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
  723. __this_cpu_dec(disable_rcu_irq_enter);
  724. rcu_dynticks_task_enter();
  725. /*
  726. * It is illegal to enter an extended quiescent state while
  727. * in an RCU read-side critical section.
  728. */
  729. RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
  730. "Illegal idle entry in RCU read-side critical section.");
  731. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
  732. "Illegal idle entry in RCU-bh read-side critical section.");
  733. RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
  734. "Illegal idle entry in RCU-sched read-side critical section.");
  735. }
  736. /*
  737. * Enter an RCU extended quiescent state, which can be either the
  738. * idle loop or adaptive-tickless usermode execution.
  739. */
  740. static void rcu_eqs_enter(bool user)
  741. {
  742. struct rcu_dynticks *rdtp;
  743. rdtp = this_cpu_ptr(&rcu_dynticks);
  744. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  745. (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
  746. if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
  747. rcu_eqs_enter_common(user);
  748. else
  749. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  750. }
  751. /**
  752. * rcu_idle_enter - inform RCU that current CPU is entering idle
  753. *
  754. * Enter idle mode, in other words, -leave- the mode in which RCU
  755. * read-side critical sections can occur. (Though RCU read-side
  756. * critical sections can occur in irq handlers in idle, a possibility
  757. * handled by irq_enter() and irq_exit().)
  758. *
  759. * We crowbar the ->dynticks_nesting field to zero to allow for
  760. * the possibility of usermode upcalls having messed up our count
  761. * of interrupt nesting level during the prior busy period.
  762. */
  763. void rcu_idle_enter(void)
  764. {
  765. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_idle_enter() invoked with irqs enabled!!!");
  766. rcu_eqs_enter(false);
  767. }
  768. #ifdef CONFIG_NO_HZ_FULL
  769. /**
  770. * rcu_user_enter - inform RCU that we are resuming userspace.
  771. *
  772. * Enter RCU idle mode right before resuming userspace. No use of RCU
  773. * is permitted between this call and rcu_user_exit(). This way the
  774. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  775. * when the CPU runs in userspace.
  776. */
  777. void rcu_user_enter(void)
  778. {
  779. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_user_enter() invoked with irqs enabled!!!");
  780. rcu_eqs_enter(true);
  781. }
  782. #endif /* CONFIG_NO_HZ_FULL */
  783. /**
  784. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  785. *
  786. * Exit from an interrupt handler, which might possibly result in entering
  787. * idle mode, in other words, leaving the mode in which read-side critical
  788. * sections can occur. The caller must have disabled interrupts.
  789. *
  790. * This code assumes that the idle loop never does anything that might
  791. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  792. * architecture violates this assumption, RCU will give you what you
  793. * deserve, good and hard. But very infrequently and irreproducibly.
  794. *
  795. * Use things like work queues to work around this limitation.
  796. *
  797. * You have been warned.
  798. */
  799. void rcu_irq_exit(void)
  800. {
  801. struct rcu_dynticks *rdtp;
  802. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
  803. rdtp = this_cpu_ptr(&rcu_dynticks);
  804. /* Page faults can happen in NMI handlers, so check... */
  805. if (rdtp->dynticks_nmi_nesting)
  806. return;
  807. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  808. rdtp->dynticks_nesting < 1);
  809. if (rdtp->dynticks_nesting <= 1) {
  810. rcu_eqs_enter_common(true);
  811. } else {
  812. trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
  813. rdtp->dynticks_nesting--;
  814. }
  815. }
  816. /*
  817. * Wrapper for rcu_irq_exit() where interrupts are enabled.
  818. */
  819. void rcu_irq_exit_irqson(void)
  820. {
  821. unsigned long flags;
  822. local_irq_save(flags);
  823. rcu_irq_exit();
  824. local_irq_restore(flags);
  825. }
  826. /*
  827. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  828. *
  829. * If the new value of the ->dynticks_nesting counter was previously zero,
  830. * we really have exited idle, and must do the appropriate accounting.
  831. * The caller must have disabled interrupts.
  832. */
  833. static void rcu_eqs_exit_common(long long oldval, int user)
  834. {
  835. RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
  836. rcu_dynticks_task_exit();
  837. rcu_dynticks_eqs_exit();
  838. rcu_cleanup_after_idle();
  839. trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
  840. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  841. !user && !is_idle_task(current)) {
  842. struct task_struct *idle __maybe_unused =
  843. idle_task(smp_processor_id());
  844. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  845. oldval, rdtp->dynticks_nesting);
  846. rcu_ftrace_dump(DUMP_ORIG);
  847. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  848. current->pid, current->comm,
  849. idle->pid, idle->comm); /* must be idle task! */
  850. }
  851. }
  852. /*
  853. * Exit an RCU extended quiescent state, which can be either the
  854. * idle loop or adaptive-tickless usermode execution.
  855. */
  856. static void rcu_eqs_exit(bool user)
  857. {
  858. struct rcu_dynticks *rdtp;
  859. long long oldval;
  860. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
  861. rdtp = this_cpu_ptr(&rcu_dynticks);
  862. oldval = rdtp->dynticks_nesting;
  863. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
  864. if (oldval & DYNTICK_TASK_NEST_MASK) {
  865. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  866. } else {
  867. __this_cpu_inc(disable_rcu_irq_enter);
  868. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  869. rcu_eqs_exit_common(oldval, user);
  870. __this_cpu_dec(disable_rcu_irq_enter);
  871. }
  872. }
  873. /**
  874. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  875. *
  876. * Exit idle mode, in other words, -enter- the mode in which RCU
  877. * read-side critical sections can occur.
  878. *
  879. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  880. * allow for the possibility of usermode upcalls messing up our count
  881. * of interrupt nesting level during the busy period that is just
  882. * now starting.
  883. */
  884. void rcu_idle_exit(void)
  885. {
  886. unsigned long flags;
  887. local_irq_save(flags);
  888. rcu_eqs_exit(false);
  889. local_irq_restore(flags);
  890. }
  891. #ifdef CONFIG_NO_HZ_FULL
  892. /**
  893. * rcu_user_exit - inform RCU that we are exiting userspace.
  894. *
  895. * Exit RCU idle mode while entering the kernel because it can
  896. * run a RCU read side critical section anytime.
  897. */
  898. void rcu_user_exit(void)
  899. {
  900. rcu_eqs_exit(1);
  901. }
  902. #endif /* CONFIG_NO_HZ_FULL */
  903. /**
  904. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  905. *
  906. * Enter an interrupt handler, which might possibly result in exiting
  907. * idle mode, in other words, entering the mode in which read-side critical
  908. * sections can occur. The caller must have disabled interrupts.
  909. *
  910. * Note that the Linux kernel is fully capable of entering an interrupt
  911. * handler that it never exits, for example when doing upcalls to
  912. * user mode! This code assumes that the idle loop never does upcalls to
  913. * user mode. If your architecture does do upcalls from the idle loop (or
  914. * does anything else that results in unbalanced calls to the irq_enter()
  915. * and irq_exit() functions), RCU will give you what you deserve, good
  916. * and hard. But very infrequently and irreproducibly.
  917. *
  918. * Use things like work queues to work around this limitation.
  919. *
  920. * You have been warned.
  921. */
  922. void rcu_irq_enter(void)
  923. {
  924. struct rcu_dynticks *rdtp;
  925. long long oldval;
  926. RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
  927. rdtp = this_cpu_ptr(&rcu_dynticks);
  928. /* Page faults can happen in NMI handlers, so check... */
  929. if (rdtp->dynticks_nmi_nesting)
  930. return;
  931. oldval = rdtp->dynticks_nesting;
  932. rdtp->dynticks_nesting++;
  933. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  934. rdtp->dynticks_nesting == 0);
  935. if (oldval)
  936. trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
  937. else
  938. rcu_eqs_exit_common(oldval, true);
  939. }
  940. /*
  941. * Wrapper for rcu_irq_enter() where interrupts are enabled.
  942. */
  943. void rcu_irq_enter_irqson(void)
  944. {
  945. unsigned long flags;
  946. local_irq_save(flags);
  947. rcu_irq_enter();
  948. local_irq_restore(flags);
  949. }
  950. /**
  951. * rcu_nmi_enter - inform RCU of entry to NMI context
  952. *
  953. * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
  954. * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
  955. * that the CPU is active. This implementation permits nested NMIs, as
  956. * long as the nesting level does not overflow an int. (You will probably
  957. * run out of stack space first.)
  958. */
  959. void rcu_nmi_enter(void)
  960. {
  961. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  962. int incby = 2;
  963. /* Complain about underflow. */
  964. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
  965. /*
  966. * If idle from RCU viewpoint, atomically increment ->dynticks
  967. * to mark non-idle and increment ->dynticks_nmi_nesting by one.
  968. * Otherwise, increment ->dynticks_nmi_nesting by two. This means
  969. * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
  970. * to be in the outermost NMI handler that interrupted an RCU-idle
  971. * period (observation due to Andy Lutomirski).
  972. */
  973. if (rcu_dynticks_curr_cpu_in_eqs()) {
  974. rcu_dynticks_eqs_exit();
  975. incby = 1;
  976. }
  977. rdtp->dynticks_nmi_nesting += incby;
  978. barrier();
  979. }
  980. /**
  981. * rcu_nmi_exit - inform RCU of exit from NMI context
  982. *
  983. * If we are returning from the outermost NMI handler that interrupted an
  984. * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
  985. * to let the RCU grace-period handling know that the CPU is back to
  986. * being RCU-idle.
  987. */
  988. void rcu_nmi_exit(void)
  989. {
  990. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  991. /*
  992. * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
  993. * (We are exiting an NMI handler, so RCU better be paying attention
  994. * to us!)
  995. */
  996. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
  997. WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
  998. /*
  999. * If the nesting level is not 1, the CPU wasn't RCU-idle, so
  1000. * leave it in non-RCU-idle state.
  1001. */
  1002. if (rdtp->dynticks_nmi_nesting != 1) {
  1003. rdtp->dynticks_nmi_nesting -= 2;
  1004. return;
  1005. }
  1006. /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
  1007. rdtp->dynticks_nmi_nesting = 0;
  1008. rcu_dynticks_eqs_enter();
  1009. }
  1010. /**
  1011. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  1012. *
  1013. * Return true if RCU is watching the running CPU, which means that this
  1014. * CPU can safely enter RCU read-side critical sections. In other words,
  1015. * if the current CPU is in its idle loop and is neither in an interrupt
  1016. * or NMI handler, return true.
  1017. */
  1018. bool notrace rcu_is_watching(void)
  1019. {
  1020. bool ret;
  1021. preempt_disable_notrace();
  1022. ret = !rcu_dynticks_curr_cpu_in_eqs();
  1023. preempt_enable_notrace();
  1024. return ret;
  1025. }
  1026. EXPORT_SYMBOL_GPL(rcu_is_watching);
  1027. /*
  1028. * If a holdout task is actually running, request an urgent quiescent
  1029. * state from its CPU. This is unsynchronized, so migrations can cause
  1030. * the request to go to the wrong CPU. Which is OK, all that will happen
  1031. * is that the CPU's next context switch will be a bit slower and next
  1032. * time around this task will generate another request.
  1033. */
  1034. void rcu_request_urgent_qs_task(struct task_struct *t)
  1035. {
  1036. int cpu;
  1037. barrier();
  1038. cpu = task_cpu(t);
  1039. if (!task_curr(t))
  1040. return; /* This task is not running on that CPU. */
  1041. smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
  1042. }
  1043. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  1044. /*
  1045. * Is the current CPU online? Disable preemption to avoid false positives
  1046. * that could otherwise happen due to the current CPU number being sampled,
  1047. * this task being preempted, its old CPU being taken offline, resuming
  1048. * on some other CPU, then determining that its old CPU is now offline.
  1049. * It is OK to use RCU on an offline processor during initial boot, hence
  1050. * the check for rcu_scheduler_fully_active. Note also that it is OK
  1051. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  1052. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  1053. * offline to continue to use RCU for one jiffy after marking itself
  1054. * offline in the cpu_online_mask. This leniency is necessary given the
  1055. * non-atomic nature of the online and offline processing, for example,
  1056. * the fact that a CPU enters the scheduler after completing the teardown
  1057. * of the CPU.
  1058. *
  1059. * This is also why RCU internally marks CPUs online during in the
  1060. * preparation phase and offline after the CPU has been taken down.
  1061. *
  1062. * Disable checking if in an NMI handler because we cannot safely report
  1063. * errors from NMI handlers anyway.
  1064. */
  1065. bool rcu_lockdep_current_cpu_online(void)
  1066. {
  1067. struct rcu_data *rdp;
  1068. struct rcu_node *rnp;
  1069. bool ret;
  1070. if (in_nmi())
  1071. return true;
  1072. preempt_disable();
  1073. rdp = this_cpu_ptr(&rcu_sched_data);
  1074. rnp = rdp->mynode;
  1075. ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
  1076. !rcu_scheduler_fully_active;
  1077. preempt_enable();
  1078. return ret;
  1079. }
  1080. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  1081. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  1082. /**
  1083. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  1084. *
  1085. * If the current CPU is idle or running at a first-level (not nested)
  1086. * interrupt from idle, return true. The caller must have at least
  1087. * disabled preemption.
  1088. */
  1089. static int rcu_is_cpu_rrupt_from_idle(void)
  1090. {
  1091. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
  1092. }
  1093. /*
  1094. * We are reporting a quiescent state on behalf of some other CPU, so
  1095. * it is our responsibility to check for and handle potential overflow
  1096. * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
  1097. * After all, the CPU might be in deep idle state, and thus executing no
  1098. * code whatsoever.
  1099. */
  1100. static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
  1101. {
  1102. lockdep_assert_held(&rnp->lock);
  1103. if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
  1104. WRITE_ONCE(rdp->gpwrap, true);
  1105. if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
  1106. rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
  1107. }
  1108. /*
  1109. * Snapshot the specified CPU's dynticks counter so that we can later
  1110. * credit them with an implicit quiescent state. Return 1 if this CPU
  1111. * is in dynticks idle mode, which is an extended quiescent state.
  1112. */
  1113. static int dyntick_save_progress_counter(struct rcu_data *rdp)
  1114. {
  1115. rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
  1116. if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
  1117. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  1118. rcu_gpnum_ovf(rdp->mynode, rdp);
  1119. return 1;
  1120. }
  1121. return 0;
  1122. }
  1123. /*
  1124. * Handler for the irq_work request posted when a grace period has
  1125. * gone on for too long, but not yet long enough for an RCU CPU
  1126. * stall warning. Set state appropriately, but just complain if
  1127. * there is unexpected state on entry.
  1128. */
  1129. static void rcu_iw_handler(struct irq_work *iwp)
  1130. {
  1131. struct rcu_data *rdp;
  1132. struct rcu_node *rnp;
  1133. rdp = container_of(iwp, struct rcu_data, rcu_iw);
  1134. rnp = rdp->mynode;
  1135. raw_spin_lock_rcu_node(rnp);
  1136. if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
  1137. rdp->rcu_iw_gpnum = rnp->gpnum;
  1138. rdp->rcu_iw_pending = false;
  1139. }
  1140. raw_spin_unlock_rcu_node(rnp);
  1141. }
  1142. /*
  1143. * Return true if the specified CPU has passed through a quiescent
  1144. * state by virtue of being in or having passed through an dynticks
  1145. * idle state since the last call to dyntick_save_progress_counter()
  1146. * for this same CPU, or by virtue of having been offline.
  1147. */
  1148. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
  1149. {
  1150. unsigned long jtsq;
  1151. bool *rnhqp;
  1152. bool *ruqp;
  1153. struct rcu_node *rnp = rdp->mynode;
  1154. /*
  1155. * If the CPU passed through or entered a dynticks idle phase with
  1156. * no active irq/NMI handlers, then we can safely pretend that the CPU
  1157. * already acknowledged the request to pass through a quiescent
  1158. * state. Either way, that CPU cannot possibly be in an RCU
  1159. * read-side critical section that started before the beginning
  1160. * of the current RCU grace period.
  1161. */
  1162. if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
  1163. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  1164. rdp->dynticks_fqs++;
  1165. rcu_gpnum_ovf(rnp, rdp);
  1166. return 1;
  1167. }
  1168. /*
  1169. * Has this CPU encountered a cond_resched_rcu_qs() since the
  1170. * beginning of the grace period? For this to be the case,
  1171. * the CPU has to have noticed the current grace period. This
  1172. * might not be the case for nohz_full CPUs looping in the kernel.
  1173. */
  1174. jtsq = jiffies_till_sched_qs;
  1175. ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
  1176. if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
  1177. READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
  1178. READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
  1179. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
  1180. rcu_gpnum_ovf(rnp, rdp);
  1181. return 1;
  1182. } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
  1183. /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
  1184. smp_store_release(ruqp, true);
  1185. }
  1186. /* Check for the CPU being offline. */
  1187. if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
  1188. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  1189. rdp->offline_fqs++;
  1190. rcu_gpnum_ovf(rnp, rdp);
  1191. return 1;
  1192. }
  1193. /*
  1194. * A CPU running for an extended time within the kernel can
  1195. * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
  1196. * even context-switching back and forth between a pair of
  1197. * in-kernel CPU-bound tasks cannot advance grace periods.
  1198. * So if the grace period is old enough, make the CPU pay attention.
  1199. * Note that the unsynchronized assignments to the per-CPU
  1200. * rcu_need_heavy_qs variable are safe. Yes, setting of
  1201. * bits can be lost, but they will be set again on the next
  1202. * force-quiescent-state pass. So lost bit sets do not result
  1203. * in incorrect behavior, merely in a grace period lasting
  1204. * a few jiffies longer than it might otherwise. Because
  1205. * there are at most four threads involved, and because the
  1206. * updates are only once every few jiffies, the probability of
  1207. * lossage (and thus of slight grace-period extension) is
  1208. * quite low.
  1209. */
  1210. rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
  1211. if (!READ_ONCE(*rnhqp) &&
  1212. (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
  1213. time_after(jiffies, rdp->rsp->jiffies_resched))) {
  1214. WRITE_ONCE(*rnhqp, true);
  1215. /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
  1216. smp_store_release(ruqp, true);
  1217. rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
  1218. }
  1219. /*
  1220. * If more than halfway to RCU CPU stall-warning time, do a
  1221. * resched_cpu() to try to loosen things up a bit. Also check to
  1222. * see if the CPU is getting hammered with interrupts, but only
  1223. * once per grace period, just to keep the IPIs down to a dull roar.
  1224. */
  1225. if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
  1226. resched_cpu(rdp->cpu);
  1227. if (IS_ENABLED(CONFIG_IRQ_WORK) &&
  1228. !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
  1229. (rnp->ffmask & rdp->grpmask)) {
  1230. init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
  1231. rdp->rcu_iw_pending = true;
  1232. rdp->rcu_iw_gpnum = rnp->gpnum;
  1233. irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
  1234. }
  1235. }
  1236. return 0;
  1237. }
  1238. static void record_gp_stall_check_time(struct rcu_state *rsp)
  1239. {
  1240. unsigned long j = jiffies;
  1241. unsigned long j1;
  1242. rsp->gp_start = j;
  1243. smp_wmb(); /* Record start time before stall time. */
  1244. j1 = rcu_jiffies_till_stall_check();
  1245. WRITE_ONCE(rsp->jiffies_stall, j + j1);
  1246. rsp->jiffies_resched = j + j1 / 2;
  1247. rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
  1248. }
  1249. /*
  1250. * Convert a ->gp_state value to a character string.
  1251. */
  1252. static const char *gp_state_getname(short gs)
  1253. {
  1254. if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
  1255. return "???";
  1256. return gp_state_names[gs];
  1257. }
  1258. /*
  1259. * Complain about starvation of grace-period kthread.
  1260. */
  1261. static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
  1262. {
  1263. unsigned long gpa;
  1264. unsigned long j;
  1265. j = jiffies;
  1266. gpa = READ_ONCE(rsp->gp_activity);
  1267. if (j - gpa > 2 * HZ) {
  1268. pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
  1269. rsp->name, j - gpa,
  1270. rsp->gpnum, rsp->completed,
  1271. rsp->gp_flags,
  1272. gp_state_getname(rsp->gp_state), rsp->gp_state,
  1273. rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
  1274. rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
  1275. if (rsp->gp_kthread) {
  1276. sched_show_task(rsp->gp_kthread);
  1277. wake_up_process(rsp->gp_kthread);
  1278. }
  1279. }
  1280. }
  1281. /*
  1282. * Dump stacks of all tasks running on stalled CPUs. First try using
  1283. * NMIs, but fall back to manual remote stack tracing on architectures
  1284. * that don't support NMI-based stack dumps. The NMI-triggered stack
  1285. * traces are more accurate because they are printed by the target CPU.
  1286. */
  1287. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  1288. {
  1289. int cpu;
  1290. unsigned long flags;
  1291. struct rcu_node *rnp;
  1292. rcu_for_each_leaf_node(rsp, rnp) {
  1293. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1294. for_each_leaf_node_possible_cpu(rnp, cpu)
  1295. if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
  1296. if (!trigger_single_cpu_backtrace(cpu))
  1297. dump_cpu_task(cpu);
  1298. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1299. }
  1300. }
  1301. /*
  1302. * If too much time has passed in the current grace period, and if
  1303. * so configured, go kick the relevant kthreads.
  1304. */
  1305. static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
  1306. {
  1307. unsigned long j;
  1308. if (!rcu_kick_kthreads)
  1309. return;
  1310. j = READ_ONCE(rsp->jiffies_kick_kthreads);
  1311. if (time_after(jiffies, j) && rsp->gp_kthread &&
  1312. (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
  1313. WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
  1314. rcu_ftrace_dump(DUMP_ALL);
  1315. wake_up_process(rsp->gp_kthread);
  1316. WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
  1317. }
  1318. }
  1319. static inline void panic_on_rcu_stall(void)
  1320. {
  1321. if (sysctl_panic_on_rcu_stall)
  1322. panic("RCU Stall\n");
  1323. }
  1324. static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
  1325. {
  1326. int cpu;
  1327. long delta;
  1328. unsigned long flags;
  1329. unsigned long gpa;
  1330. unsigned long j;
  1331. int ndetected = 0;
  1332. struct rcu_node *rnp = rcu_get_root(rsp);
  1333. long totqlen = 0;
  1334. /* Kick and suppress, if so configured. */
  1335. rcu_stall_kick_kthreads(rsp);
  1336. if (rcu_cpu_stall_suppress)
  1337. return;
  1338. /* Only let one CPU complain about others per time interval. */
  1339. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1340. delta = jiffies - READ_ONCE(rsp->jiffies_stall);
  1341. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  1342. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1343. return;
  1344. }
  1345. WRITE_ONCE(rsp->jiffies_stall,
  1346. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1347. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1348. /*
  1349. * OK, time to rat on our buddy...
  1350. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1351. * RCU CPU stall warnings.
  1352. */
  1353. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  1354. rsp->name);
  1355. print_cpu_stall_info_begin();
  1356. rcu_for_each_leaf_node(rsp, rnp) {
  1357. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1358. ndetected += rcu_print_task_stall(rnp);
  1359. if (rnp->qsmask != 0) {
  1360. for_each_leaf_node_possible_cpu(rnp, cpu)
  1361. if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
  1362. print_cpu_stall_info(rsp, cpu);
  1363. ndetected++;
  1364. }
  1365. }
  1366. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1367. }
  1368. print_cpu_stall_info_end();
  1369. for_each_possible_cpu(cpu)
  1370. totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
  1371. cpu)->cblist);
  1372. pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
  1373. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  1374. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1375. if (ndetected) {
  1376. rcu_dump_cpu_stacks(rsp);
  1377. /* Complain about tasks blocking the grace period. */
  1378. rcu_print_detail_task_stall(rsp);
  1379. } else {
  1380. if (READ_ONCE(rsp->gpnum) != gpnum ||
  1381. READ_ONCE(rsp->completed) == gpnum) {
  1382. pr_err("INFO: Stall ended before state dump start\n");
  1383. } else {
  1384. j = jiffies;
  1385. gpa = READ_ONCE(rsp->gp_activity);
  1386. pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
  1387. rsp->name, j - gpa, j, gpa,
  1388. jiffies_till_next_fqs,
  1389. rcu_get_root(rsp)->qsmask);
  1390. /* In this case, the current CPU might be at fault. */
  1391. sched_show_task(current);
  1392. }
  1393. }
  1394. rcu_check_gp_kthread_starvation(rsp);
  1395. panic_on_rcu_stall();
  1396. force_quiescent_state(rsp); /* Kick them all. */
  1397. }
  1398. static void print_cpu_stall(struct rcu_state *rsp)
  1399. {
  1400. int cpu;
  1401. unsigned long flags;
  1402. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1403. struct rcu_node *rnp = rcu_get_root(rsp);
  1404. long totqlen = 0;
  1405. /* Kick and suppress, if so configured. */
  1406. rcu_stall_kick_kthreads(rsp);
  1407. if (rcu_cpu_stall_suppress)
  1408. return;
  1409. /*
  1410. * OK, time to rat on ourselves...
  1411. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1412. * RCU CPU stall warnings.
  1413. */
  1414. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  1415. print_cpu_stall_info_begin();
  1416. raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
  1417. print_cpu_stall_info(rsp, smp_processor_id());
  1418. raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
  1419. print_cpu_stall_info_end();
  1420. for_each_possible_cpu(cpu)
  1421. totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
  1422. cpu)->cblist);
  1423. pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
  1424. jiffies - rsp->gp_start,
  1425. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1426. rcu_check_gp_kthread_starvation(rsp);
  1427. rcu_dump_cpu_stacks(rsp);
  1428. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1429. if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
  1430. WRITE_ONCE(rsp->jiffies_stall,
  1431. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1432. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1433. panic_on_rcu_stall();
  1434. /*
  1435. * Attempt to revive the RCU machinery by forcing a context switch.
  1436. *
  1437. * A context switch would normally allow the RCU state machine to make
  1438. * progress and it could be we're stuck in kernel space without context
  1439. * switches for an entirely unreasonable amount of time.
  1440. */
  1441. resched_cpu(smp_processor_id());
  1442. }
  1443. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  1444. {
  1445. unsigned long completed;
  1446. unsigned long gpnum;
  1447. unsigned long gps;
  1448. unsigned long j;
  1449. unsigned long js;
  1450. struct rcu_node *rnp;
  1451. if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
  1452. !rcu_gp_in_progress(rsp))
  1453. return;
  1454. rcu_stall_kick_kthreads(rsp);
  1455. j = jiffies;
  1456. /*
  1457. * Lots of memory barriers to reject false positives.
  1458. *
  1459. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  1460. * then rsp->gp_start, and finally rsp->completed. These values
  1461. * are updated in the opposite order with memory barriers (or
  1462. * equivalent) during grace-period initialization and cleanup.
  1463. * Now, a false positive can occur if we get an new value of
  1464. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  1465. * the memory barriers, the only way that this can happen is if one
  1466. * grace period ends and another starts between these two fetches.
  1467. * Detect this by comparing rsp->completed with the previous fetch
  1468. * from rsp->gpnum.
  1469. *
  1470. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  1471. * and rsp->gp_start suffice to forestall false positives.
  1472. */
  1473. gpnum = READ_ONCE(rsp->gpnum);
  1474. smp_rmb(); /* Pick up ->gpnum first... */
  1475. js = READ_ONCE(rsp->jiffies_stall);
  1476. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  1477. gps = READ_ONCE(rsp->gp_start);
  1478. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  1479. completed = READ_ONCE(rsp->completed);
  1480. if (ULONG_CMP_GE(completed, gpnum) ||
  1481. ULONG_CMP_LT(j, js) ||
  1482. ULONG_CMP_GE(gps, js))
  1483. return; /* No stall or GP completed since entering function. */
  1484. rnp = rdp->mynode;
  1485. if (rcu_gp_in_progress(rsp) &&
  1486. (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
  1487. /* We haven't checked in, so go dump stack. */
  1488. print_cpu_stall(rsp);
  1489. } else if (rcu_gp_in_progress(rsp) &&
  1490. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  1491. /* They had a few time units to dump stack, so complain. */
  1492. print_other_cpu_stall(rsp, gpnum);
  1493. }
  1494. }
  1495. /**
  1496. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  1497. *
  1498. * Set the stall-warning timeout way off into the future, thus preventing
  1499. * any RCU CPU stall-warning messages from appearing in the current set of
  1500. * RCU grace periods.
  1501. *
  1502. * The caller must disable hard irqs.
  1503. */
  1504. void rcu_cpu_stall_reset(void)
  1505. {
  1506. struct rcu_state *rsp;
  1507. for_each_rcu_flavor(rsp)
  1508. WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
  1509. }
  1510. /*
  1511. * Determine the value that ->completed will have at the end of the
  1512. * next subsequent grace period. This is used to tag callbacks so that
  1513. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  1514. * been dyntick-idle for an extended period with callbacks under the
  1515. * influence of RCU_FAST_NO_HZ.
  1516. *
  1517. * The caller must hold rnp->lock with interrupts disabled.
  1518. */
  1519. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  1520. struct rcu_node *rnp)
  1521. {
  1522. lockdep_assert_held(&rnp->lock);
  1523. /*
  1524. * If RCU is idle, we just wait for the next grace period.
  1525. * But we can only be sure that RCU is idle if we are looking
  1526. * at the root rcu_node structure -- otherwise, a new grace
  1527. * period might have started, but just not yet gotten around
  1528. * to initializing the current non-root rcu_node structure.
  1529. */
  1530. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  1531. return rnp->completed + 1;
  1532. /*
  1533. * Otherwise, wait for a possible partial grace period and
  1534. * then the subsequent full grace period.
  1535. */
  1536. return rnp->completed + 2;
  1537. }
  1538. /*
  1539. * Trace-event helper function for rcu_start_future_gp() and
  1540. * rcu_nocb_wait_gp().
  1541. */
  1542. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1543. unsigned long c, const char *s)
  1544. {
  1545. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  1546. rnp->completed, c, rnp->level,
  1547. rnp->grplo, rnp->grphi, s);
  1548. }
  1549. /*
  1550. * Start some future grace period, as needed to handle newly arrived
  1551. * callbacks. The required future grace periods are recorded in each
  1552. * rcu_node structure's ->need_future_gp field. Returns true if there
  1553. * is reason to awaken the grace-period kthread.
  1554. *
  1555. * The caller must hold the specified rcu_node structure's ->lock.
  1556. */
  1557. static bool __maybe_unused
  1558. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1559. unsigned long *c_out)
  1560. {
  1561. unsigned long c;
  1562. bool ret = false;
  1563. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  1564. lockdep_assert_held(&rnp->lock);
  1565. /*
  1566. * Pick up grace-period number for new callbacks. If this
  1567. * grace period is already marked as needed, return to the caller.
  1568. */
  1569. c = rcu_cbs_completed(rdp->rsp, rnp);
  1570. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  1571. if (rnp->need_future_gp[c & 0x1]) {
  1572. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  1573. goto out;
  1574. }
  1575. /*
  1576. * If either this rcu_node structure or the root rcu_node structure
  1577. * believe that a grace period is in progress, then we must wait
  1578. * for the one following, which is in "c". Because our request
  1579. * will be noticed at the end of the current grace period, we don't
  1580. * need to explicitly start one. We only do the lockless check
  1581. * of rnp_root's fields if the current rcu_node structure thinks
  1582. * there is no grace period in flight, and because we hold rnp->lock,
  1583. * the only possible change is when rnp_root's two fields are
  1584. * equal, in which case rnp_root->gpnum might be concurrently
  1585. * incremented. But that is OK, as it will just result in our
  1586. * doing some extra useless work.
  1587. */
  1588. if (rnp->gpnum != rnp->completed ||
  1589. READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
  1590. rnp->need_future_gp[c & 0x1]++;
  1591. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1592. goto out;
  1593. }
  1594. /*
  1595. * There might be no grace period in progress. If we don't already
  1596. * hold it, acquire the root rcu_node structure's lock in order to
  1597. * start one (if needed).
  1598. */
  1599. if (rnp != rnp_root)
  1600. raw_spin_lock_rcu_node(rnp_root);
  1601. /*
  1602. * Get a new grace-period number. If there really is no grace
  1603. * period in progress, it will be smaller than the one we obtained
  1604. * earlier. Adjust callbacks as needed.
  1605. */
  1606. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1607. if (!rcu_is_nocb_cpu(rdp->cpu))
  1608. (void)rcu_segcblist_accelerate(&rdp->cblist, c);
  1609. /*
  1610. * If the needed for the required grace period is already
  1611. * recorded, trace and leave.
  1612. */
  1613. if (rnp_root->need_future_gp[c & 0x1]) {
  1614. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1615. goto unlock_out;
  1616. }
  1617. /* Record the need for the future grace period. */
  1618. rnp_root->need_future_gp[c & 0x1]++;
  1619. /* If a grace period is not already in progress, start one. */
  1620. if (rnp_root->gpnum != rnp_root->completed) {
  1621. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1622. } else {
  1623. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1624. ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1625. }
  1626. unlock_out:
  1627. if (rnp != rnp_root)
  1628. raw_spin_unlock_rcu_node(rnp_root);
  1629. out:
  1630. if (c_out != NULL)
  1631. *c_out = c;
  1632. return ret;
  1633. }
  1634. /*
  1635. * Clean up any old requests for the just-ended grace period. Also return
  1636. * whether any additional grace periods have been requested.
  1637. */
  1638. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1639. {
  1640. int c = rnp->completed;
  1641. int needmore;
  1642. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1643. rnp->need_future_gp[c & 0x1] = 0;
  1644. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1645. trace_rcu_future_gp(rnp, rdp, c,
  1646. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1647. return needmore;
  1648. }
  1649. /*
  1650. * Awaken the grace-period kthread for the specified flavor of RCU.
  1651. * Don't do a self-awaken, and don't bother awakening when there is
  1652. * nothing for the grace-period kthread to do (as in several CPUs
  1653. * raced to awaken, and we lost), and finally don't try to awaken
  1654. * a kthread that has not yet been created.
  1655. */
  1656. static void rcu_gp_kthread_wake(struct rcu_state *rsp)
  1657. {
  1658. if (current == rsp->gp_kthread ||
  1659. !READ_ONCE(rsp->gp_flags) ||
  1660. !rsp->gp_kthread)
  1661. return;
  1662. swake_up(&rsp->gp_wq);
  1663. }
  1664. /*
  1665. * If there is room, assign a ->completed number to any callbacks on
  1666. * this CPU that have not already been assigned. Also accelerate any
  1667. * callbacks that were previously assigned a ->completed number that has
  1668. * since proven to be too conservative, which can happen if callbacks get
  1669. * assigned a ->completed number while RCU is idle, but with reference to
  1670. * a non-root rcu_node structure. This function is idempotent, so it does
  1671. * not hurt to call it repeatedly. Returns an flag saying that we should
  1672. * awaken the RCU grace-period kthread.
  1673. *
  1674. * The caller must hold rnp->lock with interrupts disabled.
  1675. */
  1676. static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1677. struct rcu_data *rdp)
  1678. {
  1679. bool ret = false;
  1680. lockdep_assert_held(&rnp->lock);
  1681. /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
  1682. if (!rcu_segcblist_pend_cbs(&rdp->cblist))
  1683. return false;
  1684. /*
  1685. * Callbacks are often registered with incomplete grace-period
  1686. * information. Something about the fact that getting exact
  1687. * information requires acquiring a global lock... RCU therefore
  1688. * makes a conservative estimate of the grace period number at which
  1689. * a given callback will become ready to invoke. The following
  1690. * code checks this estimate and improves it when possible, thus
  1691. * accelerating callback invocation to an earlier grace-period
  1692. * number.
  1693. */
  1694. if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
  1695. ret = rcu_start_future_gp(rnp, rdp, NULL);
  1696. /* Trace depending on how much we were able to accelerate. */
  1697. if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
  1698. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1699. else
  1700. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1701. return ret;
  1702. }
  1703. /*
  1704. * Move any callbacks whose grace period has completed to the
  1705. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1706. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1707. * sublist. This function is idempotent, so it does not hurt to
  1708. * invoke it repeatedly. As long as it is not invoked -too- often...
  1709. * Returns true if the RCU grace-period kthread needs to be awakened.
  1710. *
  1711. * The caller must hold rnp->lock with interrupts disabled.
  1712. */
  1713. static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1714. struct rcu_data *rdp)
  1715. {
  1716. lockdep_assert_held(&rnp->lock);
  1717. /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
  1718. if (!rcu_segcblist_pend_cbs(&rdp->cblist))
  1719. return false;
  1720. /*
  1721. * Find all callbacks whose ->completed numbers indicate that they
  1722. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1723. */
  1724. rcu_segcblist_advance(&rdp->cblist, rnp->completed);
  1725. /* Classify any remaining callbacks. */
  1726. return rcu_accelerate_cbs(rsp, rnp, rdp);
  1727. }
  1728. /*
  1729. * Update CPU-local rcu_data state to record the beginnings and ends of
  1730. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1731. * structure corresponding to the current CPU, and must have irqs disabled.
  1732. * Returns true if the grace-period kthread needs to be awakened.
  1733. */
  1734. static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
  1735. struct rcu_data *rdp)
  1736. {
  1737. bool ret;
  1738. bool need_gp;
  1739. lockdep_assert_held(&rnp->lock);
  1740. /* Handle the ends of any preceding grace periods first. */
  1741. if (rdp->completed == rnp->completed &&
  1742. !unlikely(READ_ONCE(rdp->gpwrap))) {
  1743. /* No grace period end, so just accelerate recent callbacks. */
  1744. ret = rcu_accelerate_cbs(rsp, rnp, rdp);
  1745. } else {
  1746. /* Advance callbacks. */
  1747. ret = rcu_advance_cbs(rsp, rnp, rdp);
  1748. /* Remember that we saw this grace-period completion. */
  1749. rdp->completed = rnp->completed;
  1750. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1751. }
  1752. if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
  1753. /*
  1754. * If the current grace period is waiting for this CPU,
  1755. * set up to detect a quiescent state, otherwise don't
  1756. * go looking for one.
  1757. */
  1758. rdp->gpnum = rnp->gpnum;
  1759. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1760. need_gp = !!(rnp->qsmask & rdp->grpmask);
  1761. rdp->cpu_no_qs.b.norm = need_gp;
  1762. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
  1763. rdp->core_needs_qs = need_gp;
  1764. zero_cpu_stall_ticks(rdp);
  1765. WRITE_ONCE(rdp->gpwrap, false);
  1766. rcu_gpnum_ovf(rnp, rdp);
  1767. }
  1768. return ret;
  1769. }
  1770. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1771. {
  1772. unsigned long flags;
  1773. bool needwake;
  1774. struct rcu_node *rnp;
  1775. local_irq_save(flags);
  1776. rnp = rdp->mynode;
  1777. if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
  1778. rdp->completed == READ_ONCE(rnp->completed) &&
  1779. !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
  1780. !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
  1781. local_irq_restore(flags);
  1782. return;
  1783. }
  1784. needwake = __note_gp_changes(rsp, rnp, rdp);
  1785. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1786. if (needwake)
  1787. rcu_gp_kthread_wake(rsp);
  1788. }
  1789. static void rcu_gp_slow(struct rcu_state *rsp, int delay)
  1790. {
  1791. if (delay > 0 &&
  1792. !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
  1793. schedule_timeout_uninterruptible(delay);
  1794. }
  1795. /*
  1796. * Initialize a new grace period. Return false if no grace period required.
  1797. */
  1798. static bool rcu_gp_init(struct rcu_state *rsp)
  1799. {
  1800. unsigned long oldmask;
  1801. struct rcu_data *rdp;
  1802. struct rcu_node *rnp = rcu_get_root(rsp);
  1803. WRITE_ONCE(rsp->gp_activity, jiffies);
  1804. raw_spin_lock_irq_rcu_node(rnp);
  1805. if (!READ_ONCE(rsp->gp_flags)) {
  1806. /* Spurious wakeup, tell caller to go back to sleep. */
  1807. raw_spin_unlock_irq_rcu_node(rnp);
  1808. return false;
  1809. }
  1810. WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
  1811. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1812. /*
  1813. * Grace period already in progress, don't start another.
  1814. * Not supposed to be able to happen.
  1815. */
  1816. raw_spin_unlock_irq_rcu_node(rnp);
  1817. return false;
  1818. }
  1819. /* Advance to a new grace period and initialize state. */
  1820. record_gp_stall_check_time(rsp);
  1821. /* Record GP times before starting GP, hence smp_store_release(). */
  1822. smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
  1823. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1824. raw_spin_unlock_irq_rcu_node(rnp);
  1825. /*
  1826. * Apply per-leaf buffered online and offline operations to the
  1827. * rcu_node tree. Note that this new grace period need not wait
  1828. * for subsequent online CPUs, and that quiescent-state forcing
  1829. * will handle subsequent offline CPUs.
  1830. */
  1831. rcu_for_each_leaf_node(rsp, rnp) {
  1832. rcu_gp_slow(rsp, gp_preinit_delay);
  1833. raw_spin_lock_irq_rcu_node(rnp);
  1834. if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
  1835. !rnp->wait_blkd_tasks) {
  1836. /* Nothing to do on this leaf rcu_node structure. */
  1837. raw_spin_unlock_irq_rcu_node(rnp);
  1838. continue;
  1839. }
  1840. /* Record old state, apply changes to ->qsmaskinit field. */
  1841. oldmask = rnp->qsmaskinit;
  1842. rnp->qsmaskinit = rnp->qsmaskinitnext;
  1843. /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
  1844. if (!oldmask != !rnp->qsmaskinit) {
  1845. if (!oldmask) /* First online CPU for this rcu_node. */
  1846. rcu_init_new_rnp(rnp);
  1847. else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
  1848. rnp->wait_blkd_tasks = true;
  1849. else /* Last offline CPU and can propagate. */
  1850. rcu_cleanup_dead_rnp(rnp);
  1851. }
  1852. /*
  1853. * If all waited-on tasks from prior grace period are
  1854. * done, and if all this rcu_node structure's CPUs are
  1855. * still offline, propagate up the rcu_node tree and
  1856. * clear ->wait_blkd_tasks. Otherwise, if one of this
  1857. * rcu_node structure's CPUs has since come back online,
  1858. * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
  1859. * checks for this, so just call it unconditionally).
  1860. */
  1861. if (rnp->wait_blkd_tasks &&
  1862. (!rcu_preempt_has_tasks(rnp) ||
  1863. rnp->qsmaskinit)) {
  1864. rnp->wait_blkd_tasks = false;
  1865. rcu_cleanup_dead_rnp(rnp);
  1866. }
  1867. raw_spin_unlock_irq_rcu_node(rnp);
  1868. }
  1869. /*
  1870. * Set the quiescent-state-needed bits in all the rcu_node
  1871. * structures for all currently online CPUs in breadth-first order,
  1872. * starting from the root rcu_node structure, relying on the layout
  1873. * of the tree within the rsp->node[] array. Note that other CPUs
  1874. * will access only the leaves of the hierarchy, thus seeing that no
  1875. * grace period is in progress, at least until the corresponding
  1876. * leaf node has been initialized.
  1877. *
  1878. * The grace period cannot complete until the initialization
  1879. * process finishes, because this kthread handles both.
  1880. */
  1881. rcu_for_each_node_breadth_first(rsp, rnp) {
  1882. rcu_gp_slow(rsp, gp_init_delay);
  1883. raw_spin_lock_irq_rcu_node(rnp);
  1884. rdp = this_cpu_ptr(rsp->rda);
  1885. rcu_preempt_check_blocked_tasks(rnp);
  1886. rnp->qsmask = rnp->qsmaskinit;
  1887. WRITE_ONCE(rnp->gpnum, rsp->gpnum);
  1888. if (WARN_ON_ONCE(rnp->completed != rsp->completed))
  1889. WRITE_ONCE(rnp->completed, rsp->completed);
  1890. if (rnp == rdp->mynode)
  1891. (void)__note_gp_changes(rsp, rnp, rdp);
  1892. rcu_preempt_boost_start_gp(rnp);
  1893. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1894. rnp->level, rnp->grplo,
  1895. rnp->grphi, rnp->qsmask);
  1896. raw_spin_unlock_irq_rcu_node(rnp);
  1897. cond_resched_rcu_qs();
  1898. WRITE_ONCE(rsp->gp_activity, jiffies);
  1899. }
  1900. return true;
  1901. }
  1902. /*
  1903. * Helper function for swait_event_idle() wakeup at force-quiescent-state
  1904. * time.
  1905. */
  1906. static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
  1907. {
  1908. struct rcu_node *rnp = rcu_get_root(rsp);
  1909. /* Someone like call_rcu() requested a force-quiescent-state scan. */
  1910. *gfp = READ_ONCE(rsp->gp_flags);
  1911. if (*gfp & RCU_GP_FLAG_FQS)
  1912. return true;
  1913. /* The current grace period has completed. */
  1914. if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
  1915. return true;
  1916. return false;
  1917. }
  1918. /*
  1919. * Do one round of quiescent-state forcing.
  1920. */
  1921. static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
  1922. {
  1923. struct rcu_node *rnp = rcu_get_root(rsp);
  1924. WRITE_ONCE(rsp->gp_activity, jiffies);
  1925. rsp->n_force_qs++;
  1926. if (first_time) {
  1927. /* Collect dyntick-idle snapshots. */
  1928. force_qs_rnp(rsp, dyntick_save_progress_counter);
  1929. } else {
  1930. /* Handle dyntick-idle and offline CPUs. */
  1931. force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
  1932. }
  1933. /* Clear flag to prevent immediate re-entry. */
  1934. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1935. raw_spin_lock_irq_rcu_node(rnp);
  1936. WRITE_ONCE(rsp->gp_flags,
  1937. READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
  1938. raw_spin_unlock_irq_rcu_node(rnp);
  1939. }
  1940. }
  1941. /*
  1942. * Clean up after the old grace period.
  1943. */
  1944. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1945. {
  1946. unsigned long gp_duration;
  1947. bool needgp = false;
  1948. int nocb = 0;
  1949. struct rcu_data *rdp;
  1950. struct rcu_node *rnp = rcu_get_root(rsp);
  1951. struct swait_queue_head *sq;
  1952. WRITE_ONCE(rsp->gp_activity, jiffies);
  1953. raw_spin_lock_irq_rcu_node(rnp);
  1954. gp_duration = jiffies - rsp->gp_start;
  1955. if (gp_duration > rsp->gp_max)
  1956. rsp->gp_max = gp_duration;
  1957. /*
  1958. * We know the grace period is complete, but to everyone else
  1959. * it appears to still be ongoing. But it is also the case
  1960. * that to everyone else it looks like there is nothing that
  1961. * they can do to advance the grace period. It is therefore
  1962. * safe for us to drop the lock in order to mark the grace
  1963. * period as completed in all of the rcu_node structures.
  1964. */
  1965. raw_spin_unlock_irq_rcu_node(rnp);
  1966. /*
  1967. * Propagate new ->completed value to rcu_node structures so
  1968. * that other CPUs don't have to wait until the start of the next
  1969. * grace period to process their callbacks. This also avoids
  1970. * some nasty RCU grace-period initialization races by forcing
  1971. * the end of the current grace period to be completely recorded in
  1972. * all of the rcu_node structures before the beginning of the next
  1973. * grace period is recorded in any of the rcu_node structures.
  1974. */
  1975. rcu_for_each_node_breadth_first(rsp, rnp) {
  1976. raw_spin_lock_irq_rcu_node(rnp);
  1977. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  1978. WARN_ON_ONCE(rnp->qsmask);
  1979. WRITE_ONCE(rnp->completed, rsp->gpnum);
  1980. rdp = this_cpu_ptr(rsp->rda);
  1981. if (rnp == rdp->mynode)
  1982. needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
  1983. /* smp_mb() provided by prior unlock-lock pair. */
  1984. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1985. sq = rcu_nocb_gp_get(rnp);
  1986. raw_spin_unlock_irq_rcu_node(rnp);
  1987. rcu_nocb_gp_cleanup(sq);
  1988. cond_resched_rcu_qs();
  1989. WRITE_ONCE(rsp->gp_activity, jiffies);
  1990. rcu_gp_slow(rsp, gp_cleanup_delay);
  1991. }
  1992. rnp = rcu_get_root(rsp);
  1993. raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
  1994. rcu_nocb_gp_set(rnp, nocb);
  1995. /* Declare grace period done. */
  1996. WRITE_ONCE(rsp->completed, rsp->gpnum);
  1997. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  1998. rsp->gp_state = RCU_GP_IDLE;
  1999. rdp = this_cpu_ptr(rsp->rda);
  2000. /* Advance CBs to reduce false positives below. */
  2001. needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
  2002. if (needgp || cpu_needs_another_gp(rsp, rdp)) {
  2003. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  2004. trace_rcu_grace_period(rsp->name,
  2005. READ_ONCE(rsp->gpnum),
  2006. TPS("newreq"));
  2007. }
  2008. raw_spin_unlock_irq_rcu_node(rnp);
  2009. }
  2010. /*
  2011. * Body of kthread that handles grace periods.
  2012. */
  2013. static int __noreturn rcu_gp_kthread(void *arg)
  2014. {
  2015. bool first_gp_fqs;
  2016. int gf;
  2017. unsigned long j;
  2018. int ret;
  2019. struct rcu_state *rsp = arg;
  2020. struct rcu_node *rnp = rcu_get_root(rsp);
  2021. rcu_bind_gp_kthread();
  2022. for (;;) {
  2023. /* Handle grace-period start. */
  2024. for (;;) {
  2025. trace_rcu_grace_period(rsp->name,
  2026. READ_ONCE(rsp->gpnum),
  2027. TPS("reqwait"));
  2028. rsp->gp_state = RCU_GP_WAIT_GPS;
  2029. swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
  2030. RCU_GP_FLAG_INIT);
  2031. rsp->gp_state = RCU_GP_DONE_GPS;
  2032. /* Locking provides needed memory barrier. */
  2033. if (rcu_gp_init(rsp))
  2034. break;
  2035. cond_resched_rcu_qs();
  2036. WRITE_ONCE(rsp->gp_activity, jiffies);
  2037. WARN_ON(signal_pending(current));
  2038. trace_rcu_grace_period(rsp->name,
  2039. READ_ONCE(rsp->gpnum),
  2040. TPS("reqwaitsig"));
  2041. }
  2042. /* Handle quiescent-state forcing. */
  2043. first_gp_fqs = true;
  2044. j = jiffies_till_first_fqs;
  2045. if (j > HZ) {
  2046. j = HZ;
  2047. jiffies_till_first_fqs = HZ;
  2048. }
  2049. ret = 0;
  2050. for (;;) {
  2051. if (!ret) {
  2052. rsp->jiffies_force_qs = jiffies + j;
  2053. WRITE_ONCE(rsp->jiffies_kick_kthreads,
  2054. jiffies + 3 * j);
  2055. }
  2056. trace_rcu_grace_period(rsp->name,
  2057. READ_ONCE(rsp->gpnum),
  2058. TPS("fqswait"));
  2059. rsp->gp_state = RCU_GP_WAIT_FQS;
  2060. ret = swait_event_idle_timeout(rsp->gp_wq,
  2061. rcu_gp_fqs_check_wake(rsp, &gf), j);
  2062. rsp->gp_state = RCU_GP_DOING_FQS;
  2063. /* Locking provides needed memory barriers. */
  2064. /* If grace period done, leave loop. */
  2065. if (!READ_ONCE(rnp->qsmask) &&
  2066. !rcu_preempt_blocked_readers_cgp(rnp))
  2067. break;
  2068. /* If time for quiescent-state forcing, do it. */
  2069. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  2070. (gf & RCU_GP_FLAG_FQS)) {
  2071. trace_rcu_grace_period(rsp->name,
  2072. READ_ONCE(rsp->gpnum),
  2073. TPS("fqsstart"));
  2074. rcu_gp_fqs(rsp, first_gp_fqs);
  2075. first_gp_fqs = false;
  2076. trace_rcu_grace_period(rsp->name,
  2077. READ_ONCE(rsp->gpnum),
  2078. TPS("fqsend"));
  2079. cond_resched_rcu_qs();
  2080. WRITE_ONCE(rsp->gp_activity, jiffies);
  2081. ret = 0; /* Force full wait till next FQS. */
  2082. j = jiffies_till_next_fqs;
  2083. if (j > HZ) {
  2084. j = HZ;
  2085. jiffies_till_next_fqs = HZ;
  2086. } else if (j < 1) {
  2087. j = 1;
  2088. jiffies_till_next_fqs = 1;
  2089. }
  2090. } else {
  2091. /* Deal with stray signal. */
  2092. cond_resched_rcu_qs();
  2093. WRITE_ONCE(rsp->gp_activity, jiffies);
  2094. WARN_ON(signal_pending(current));
  2095. trace_rcu_grace_period(rsp->name,
  2096. READ_ONCE(rsp->gpnum),
  2097. TPS("fqswaitsig"));
  2098. ret = 1; /* Keep old FQS timing. */
  2099. j = jiffies;
  2100. if (time_after(jiffies, rsp->jiffies_force_qs))
  2101. j = 1;
  2102. else
  2103. j = rsp->jiffies_force_qs - j;
  2104. }
  2105. }
  2106. /* Handle grace-period end. */
  2107. rsp->gp_state = RCU_GP_CLEANUP;
  2108. rcu_gp_cleanup(rsp);
  2109. rsp->gp_state = RCU_GP_CLEANED;
  2110. }
  2111. }
  2112. /*
  2113. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  2114. * in preparation for detecting the next grace period. The caller must hold
  2115. * the root node's ->lock and hard irqs must be disabled.
  2116. *
  2117. * Note that it is legal for a dying CPU (which is marked as offline) to
  2118. * invoke this function. This can happen when the dying CPU reports its
  2119. * quiescent state.
  2120. *
  2121. * Returns true if the grace-period kthread must be awakened.
  2122. */
  2123. static bool
  2124. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  2125. struct rcu_data *rdp)
  2126. {
  2127. lockdep_assert_held(&rnp->lock);
  2128. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  2129. /*
  2130. * Either we have not yet spawned the grace-period
  2131. * task, this CPU does not need another grace period,
  2132. * or a grace period is already in progress.
  2133. * Either way, don't start a new grace period.
  2134. */
  2135. return false;
  2136. }
  2137. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  2138. trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
  2139. TPS("newreq"));
  2140. /*
  2141. * We can't do wakeups while holding the rnp->lock, as that
  2142. * could cause possible deadlocks with the rq->lock. Defer
  2143. * the wakeup to our caller.
  2144. */
  2145. return true;
  2146. }
  2147. /*
  2148. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  2149. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  2150. * is invoked indirectly from rcu_advance_cbs(), which would result in
  2151. * endless recursion -- or would do so if it wasn't for the self-deadlock
  2152. * that is encountered beforehand.
  2153. *
  2154. * Returns true if the grace-period kthread needs to be awakened.
  2155. */
  2156. static bool rcu_start_gp(struct rcu_state *rsp)
  2157. {
  2158. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  2159. struct rcu_node *rnp = rcu_get_root(rsp);
  2160. bool ret = false;
  2161. /*
  2162. * If there is no grace period in progress right now, any
  2163. * callbacks we have up to this point will be satisfied by the
  2164. * next grace period. Also, advancing the callbacks reduces the
  2165. * probability of false positives from cpu_needs_another_gp()
  2166. * resulting in pointless grace periods. So, advance callbacks
  2167. * then start the grace period!
  2168. */
  2169. ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
  2170. ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
  2171. return ret;
  2172. }
  2173. /*
  2174. * Report a full set of quiescent states to the specified rcu_state data
  2175. * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
  2176. * kthread if another grace period is required. Whether we wake
  2177. * the grace-period kthread or it awakens itself for the next round
  2178. * of quiescent-state forcing, that kthread will clean up after the
  2179. * just-completed grace period. Note that the caller must hold rnp->lock,
  2180. * which is released before return.
  2181. */
  2182. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  2183. __releases(rcu_get_root(rsp)->lock)
  2184. {
  2185. lockdep_assert_held(&rcu_get_root(rsp)->lock);
  2186. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  2187. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2188. raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
  2189. rcu_gp_kthread_wake(rsp);
  2190. }
  2191. /*
  2192. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  2193. * Allows quiescent states for a group of CPUs to be reported at one go
  2194. * to the specified rcu_node structure, though all the CPUs in the group
  2195. * must be represented by the same rcu_node structure (which need not be a
  2196. * leaf rcu_node structure, though it often will be). The gps parameter
  2197. * is the grace-period snapshot, which means that the quiescent states
  2198. * are valid only if rnp->gpnum is equal to gps. That structure's lock
  2199. * must be held upon entry, and it is released before return.
  2200. */
  2201. static void
  2202. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  2203. struct rcu_node *rnp, unsigned long gps, unsigned long flags)
  2204. __releases(rnp->lock)
  2205. {
  2206. unsigned long oldmask = 0;
  2207. struct rcu_node *rnp_c;
  2208. lockdep_assert_held(&rnp->lock);
  2209. /* Walk up the rcu_node hierarchy. */
  2210. for (;;) {
  2211. if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
  2212. /*
  2213. * Our bit has already been cleared, or the
  2214. * relevant grace period is already over, so done.
  2215. */
  2216. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2217. return;
  2218. }
  2219. WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
  2220. WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
  2221. rcu_preempt_blocked_readers_cgp(rnp));
  2222. rnp->qsmask &= ~mask;
  2223. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  2224. mask, rnp->qsmask, rnp->level,
  2225. rnp->grplo, rnp->grphi,
  2226. !!rnp->gp_tasks);
  2227. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2228. /* Other bits still set at this level, so done. */
  2229. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2230. return;
  2231. }
  2232. mask = rnp->grpmask;
  2233. if (rnp->parent == NULL) {
  2234. /* No more levels. Exit loop holding root lock. */
  2235. break;
  2236. }
  2237. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2238. rnp_c = rnp;
  2239. rnp = rnp->parent;
  2240. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2241. oldmask = rnp_c->qsmask;
  2242. }
  2243. /*
  2244. * Get here if we are the last CPU to pass through a quiescent
  2245. * state for this grace period. Invoke rcu_report_qs_rsp()
  2246. * to clean up and start the next grace period if one is needed.
  2247. */
  2248. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  2249. }
  2250. /*
  2251. * Record a quiescent state for all tasks that were previously queued
  2252. * on the specified rcu_node structure and that were blocking the current
  2253. * RCU grace period. The caller must hold the specified rnp->lock with
  2254. * irqs disabled, and this lock is released upon return, but irqs remain
  2255. * disabled.
  2256. */
  2257. static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
  2258. struct rcu_node *rnp, unsigned long flags)
  2259. __releases(rnp->lock)
  2260. {
  2261. unsigned long gps;
  2262. unsigned long mask;
  2263. struct rcu_node *rnp_p;
  2264. lockdep_assert_held(&rnp->lock);
  2265. if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
  2266. rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2267. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2268. return; /* Still need more quiescent states! */
  2269. }
  2270. rnp_p = rnp->parent;
  2271. if (rnp_p == NULL) {
  2272. /*
  2273. * Only one rcu_node structure in the tree, so don't
  2274. * try to report up to its nonexistent parent!
  2275. */
  2276. rcu_report_qs_rsp(rsp, flags);
  2277. return;
  2278. }
  2279. /* Report up the rest of the hierarchy, tracking current ->gpnum. */
  2280. gps = rnp->gpnum;
  2281. mask = rnp->grpmask;
  2282. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  2283. raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
  2284. rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
  2285. }
  2286. /*
  2287. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  2288. * structure. This must be called from the specified CPU.
  2289. */
  2290. static void
  2291. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  2292. {
  2293. unsigned long flags;
  2294. unsigned long mask;
  2295. bool needwake;
  2296. struct rcu_node *rnp;
  2297. rnp = rdp->mynode;
  2298. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2299. if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
  2300. rnp->completed == rnp->gpnum || rdp->gpwrap) {
  2301. /*
  2302. * The grace period in which this quiescent state was
  2303. * recorded has ended, so don't report it upwards.
  2304. * We will instead need a new quiescent state that lies
  2305. * within the current grace period.
  2306. */
  2307. rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
  2308. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
  2309. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2310. return;
  2311. }
  2312. mask = rdp->grpmask;
  2313. if ((rnp->qsmask & mask) == 0) {
  2314. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2315. } else {
  2316. rdp->core_needs_qs = false;
  2317. /*
  2318. * This GP can't end until cpu checks in, so all of our
  2319. * callbacks can be processed during the next GP.
  2320. */
  2321. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  2322. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2323. /* ^^^ Released rnp->lock */
  2324. if (needwake)
  2325. rcu_gp_kthread_wake(rsp);
  2326. }
  2327. }
  2328. /*
  2329. * Check to see if there is a new grace period of which this CPU
  2330. * is not yet aware, and if so, set up local rcu_data state for it.
  2331. * Otherwise, see if this CPU has just passed through its first
  2332. * quiescent state for this grace period, and record that fact if so.
  2333. */
  2334. static void
  2335. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  2336. {
  2337. /* Check for grace-period ends and beginnings. */
  2338. note_gp_changes(rsp, rdp);
  2339. /*
  2340. * Does this CPU still need to do its part for current grace period?
  2341. * If no, return and let the other CPUs do their part as well.
  2342. */
  2343. if (!rdp->core_needs_qs)
  2344. return;
  2345. /*
  2346. * Was there a quiescent state since the beginning of the grace
  2347. * period? If no, then exit and wait for the next call.
  2348. */
  2349. if (rdp->cpu_no_qs.b.norm)
  2350. return;
  2351. /*
  2352. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  2353. * judge of that).
  2354. */
  2355. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  2356. }
  2357. /*
  2358. * Trace the fact that this CPU is going offline.
  2359. */
  2360. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  2361. {
  2362. RCU_TRACE(unsigned long mask;)
  2363. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
  2364. RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
  2365. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2366. return;
  2367. RCU_TRACE(mask = rdp->grpmask;)
  2368. trace_rcu_grace_period(rsp->name,
  2369. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  2370. TPS("cpuofl"));
  2371. }
  2372. /*
  2373. * All CPUs for the specified rcu_node structure have gone offline,
  2374. * and all tasks that were preempted within an RCU read-side critical
  2375. * section while running on one of those CPUs have since exited their RCU
  2376. * read-side critical section. Some other CPU is reporting this fact with
  2377. * the specified rcu_node structure's ->lock held and interrupts disabled.
  2378. * This function therefore goes up the tree of rcu_node structures,
  2379. * clearing the corresponding bits in the ->qsmaskinit fields. Note that
  2380. * the leaf rcu_node structure's ->qsmaskinit field has already been
  2381. * updated
  2382. *
  2383. * This function does check that the specified rcu_node structure has
  2384. * all CPUs offline and no blocked tasks, so it is OK to invoke it
  2385. * prematurely. That said, invoking it after the fact will cost you
  2386. * a needless lock acquisition. So once it has done its work, don't
  2387. * invoke it again.
  2388. */
  2389. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
  2390. {
  2391. long mask;
  2392. struct rcu_node *rnp = rnp_leaf;
  2393. lockdep_assert_held(&rnp->lock);
  2394. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
  2395. rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
  2396. return;
  2397. for (;;) {
  2398. mask = rnp->grpmask;
  2399. rnp = rnp->parent;
  2400. if (!rnp)
  2401. break;
  2402. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  2403. rnp->qsmaskinit &= ~mask;
  2404. rnp->qsmask &= ~mask;
  2405. if (rnp->qsmaskinit) {
  2406. raw_spin_unlock_rcu_node(rnp);
  2407. /* irqs remain disabled. */
  2408. return;
  2409. }
  2410. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  2411. }
  2412. }
  2413. /*
  2414. * The CPU has been completely removed, and some other CPU is reporting
  2415. * this fact from process context. Do the remainder of the cleanup.
  2416. * There can only be one CPU hotplug operation at a time, so no need for
  2417. * explicit locking.
  2418. */
  2419. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  2420. {
  2421. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2422. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2423. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2424. return;
  2425. /* Adjust any no-longer-needed kthreads. */
  2426. rcu_boost_kthread_setaffinity(rnp, -1);
  2427. }
  2428. /*
  2429. * Invoke any RCU callbacks that have made it to the end of their grace
  2430. * period. Thottle as specified by rdp->blimit.
  2431. */
  2432. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  2433. {
  2434. unsigned long flags;
  2435. struct rcu_head *rhp;
  2436. struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
  2437. long bl, count;
  2438. /* If no callbacks are ready, just return. */
  2439. if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
  2440. trace_rcu_batch_start(rsp->name,
  2441. rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2442. rcu_segcblist_n_cbs(&rdp->cblist), 0);
  2443. trace_rcu_batch_end(rsp->name, 0,
  2444. !rcu_segcblist_empty(&rdp->cblist),
  2445. need_resched(), is_idle_task(current),
  2446. rcu_is_callbacks_kthread());
  2447. return;
  2448. }
  2449. /*
  2450. * Extract the list of ready callbacks, disabling to prevent
  2451. * races with call_rcu() from interrupt handlers. Leave the
  2452. * callback counts, as rcu_barrier() needs to be conservative.
  2453. */
  2454. local_irq_save(flags);
  2455. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  2456. bl = rdp->blimit;
  2457. trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2458. rcu_segcblist_n_cbs(&rdp->cblist), bl);
  2459. rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
  2460. local_irq_restore(flags);
  2461. /* Invoke callbacks. */
  2462. rhp = rcu_cblist_dequeue(&rcl);
  2463. for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
  2464. debug_rcu_head_unqueue(rhp);
  2465. if (__rcu_reclaim(rsp->name, rhp))
  2466. rcu_cblist_dequeued_lazy(&rcl);
  2467. /*
  2468. * Stop only if limit reached and CPU has something to do.
  2469. * Note: The rcl structure counts down from zero.
  2470. */
  2471. if (-rcl.len >= bl &&
  2472. (need_resched() ||
  2473. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  2474. break;
  2475. }
  2476. local_irq_save(flags);
  2477. count = -rcl.len;
  2478. trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
  2479. is_idle_task(current), rcu_is_callbacks_kthread());
  2480. /* Update counts and requeue any remaining callbacks. */
  2481. rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
  2482. smp_mb(); /* List handling before counting for rcu_barrier(). */
  2483. rdp->n_cbs_invoked += count;
  2484. rcu_segcblist_insert_count(&rdp->cblist, &rcl);
  2485. /* Reinstate batch limit if we have worked down the excess. */
  2486. count = rcu_segcblist_n_cbs(&rdp->cblist);
  2487. if (rdp->blimit == LONG_MAX && count <= qlowmark)
  2488. rdp->blimit = blimit;
  2489. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  2490. if (count == 0 && rdp->qlen_last_fqs_check != 0) {
  2491. rdp->qlen_last_fqs_check = 0;
  2492. rdp->n_force_qs_snap = rsp->n_force_qs;
  2493. } else if (count < rdp->qlen_last_fqs_check - qhimark)
  2494. rdp->qlen_last_fqs_check = count;
  2495. WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
  2496. local_irq_restore(flags);
  2497. /* Re-invoke RCU core processing if there are callbacks remaining. */
  2498. if (rcu_segcblist_ready_cbs(&rdp->cblist))
  2499. invoke_rcu_core();
  2500. }
  2501. /*
  2502. * Check to see if this CPU is in a non-context-switch quiescent state
  2503. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  2504. * Also schedule RCU core processing.
  2505. *
  2506. * This function must be called from hardirq context. It is normally
  2507. * invoked from the scheduling-clock interrupt.
  2508. */
  2509. void rcu_check_callbacks(int user)
  2510. {
  2511. trace_rcu_utilization(TPS("Start scheduler-tick"));
  2512. increment_cpu_stall_ticks();
  2513. if (user || rcu_is_cpu_rrupt_from_idle()) {
  2514. /*
  2515. * Get here if this CPU took its interrupt from user
  2516. * mode or from the idle loop, and if this is not a
  2517. * nested interrupt. In this case, the CPU is in
  2518. * a quiescent state, so note it.
  2519. *
  2520. * No memory barrier is required here because both
  2521. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  2522. * variables that other CPUs neither access nor modify,
  2523. * at least not while the corresponding CPU is online.
  2524. */
  2525. rcu_sched_qs();
  2526. rcu_bh_qs();
  2527. } else if (!in_softirq()) {
  2528. /*
  2529. * Get here if this CPU did not take its interrupt from
  2530. * softirq, in other words, if it is not interrupting
  2531. * a rcu_bh read-side critical section. This is an _bh
  2532. * critical section, so note it.
  2533. */
  2534. rcu_bh_qs();
  2535. }
  2536. rcu_preempt_check_callbacks();
  2537. if (rcu_pending())
  2538. invoke_rcu_core();
  2539. if (user)
  2540. rcu_note_voluntary_context_switch(current);
  2541. trace_rcu_utilization(TPS("End scheduler-tick"));
  2542. }
  2543. /*
  2544. * Scan the leaf rcu_node structures, processing dyntick state for any that
  2545. * have not yet encountered a quiescent state, using the function specified.
  2546. * Also initiate boosting for any threads blocked on the root rcu_node.
  2547. *
  2548. * The caller must have suppressed start of new grace periods.
  2549. */
  2550. static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
  2551. {
  2552. int cpu;
  2553. unsigned long flags;
  2554. unsigned long mask;
  2555. struct rcu_node *rnp;
  2556. rcu_for_each_leaf_node(rsp, rnp) {
  2557. cond_resched_rcu_qs();
  2558. mask = 0;
  2559. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2560. if (rnp->qsmask == 0) {
  2561. if (rcu_state_p == &rcu_sched_state ||
  2562. rsp != rcu_state_p ||
  2563. rcu_preempt_blocked_readers_cgp(rnp)) {
  2564. /*
  2565. * No point in scanning bits because they
  2566. * are all zero. But we might need to
  2567. * priority-boost blocked readers.
  2568. */
  2569. rcu_initiate_boost(rnp, flags);
  2570. /* rcu_initiate_boost() releases rnp->lock */
  2571. continue;
  2572. }
  2573. if (rnp->parent &&
  2574. (rnp->parent->qsmask & rnp->grpmask)) {
  2575. /*
  2576. * Race between grace-period
  2577. * initialization and task exiting RCU
  2578. * read-side critical section: Report.
  2579. */
  2580. rcu_report_unblock_qs_rnp(rsp, rnp, flags);
  2581. /* rcu_report_unblock_qs_rnp() rlses ->lock */
  2582. continue;
  2583. }
  2584. }
  2585. for_each_leaf_node_possible_cpu(rnp, cpu) {
  2586. unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
  2587. if ((rnp->qsmask & bit) != 0) {
  2588. if (f(per_cpu_ptr(rsp->rda, cpu)))
  2589. mask |= bit;
  2590. }
  2591. }
  2592. if (mask != 0) {
  2593. /* Idle/offline CPUs, report (releases rnp->lock. */
  2594. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2595. } else {
  2596. /* Nothing to do here, so just drop the lock. */
  2597. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2598. }
  2599. }
  2600. }
  2601. /*
  2602. * Force quiescent states on reluctant CPUs, and also detect which
  2603. * CPUs are in dyntick-idle mode.
  2604. */
  2605. static void force_quiescent_state(struct rcu_state *rsp)
  2606. {
  2607. unsigned long flags;
  2608. bool ret;
  2609. struct rcu_node *rnp;
  2610. struct rcu_node *rnp_old = NULL;
  2611. /* Funnel through hierarchy to reduce memory contention. */
  2612. rnp = __this_cpu_read(rsp->rda->mynode);
  2613. for (; rnp != NULL; rnp = rnp->parent) {
  2614. ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2615. !raw_spin_trylock(&rnp->fqslock);
  2616. if (rnp_old != NULL)
  2617. raw_spin_unlock(&rnp_old->fqslock);
  2618. if (ret) {
  2619. rsp->n_force_qs_lh++;
  2620. return;
  2621. }
  2622. rnp_old = rnp;
  2623. }
  2624. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2625. /* Reached the root of the rcu_node tree, acquire lock. */
  2626. raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
  2627. raw_spin_unlock(&rnp_old->fqslock);
  2628. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2629. rsp->n_force_qs_lh++;
  2630. raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
  2631. return; /* Someone beat us to it. */
  2632. }
  2633. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2634. raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
  2635. rcu_gp_kthread_wake(rsp);
  2636. }
  2637. /*
  2638. * This does the RCU core processing work for the specified rcu_state
  2639. * and rcu_data structures. This may be called only from the CPU to
  2640. * whom the rdp belongs.
  2641. */
  2642. static void
  2643. __rcu_process_callbacks(struct rcu_state *rsp)
  2644. {
  2645. unsigned long flags;
  2646. bool needwake;
  2647. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2648. WARN_ON_ONCE(!rdp->beenonline);
  2649. /* Update RCU state based on any recent quiescent states. */
  2650. rcu_check_quiescent_state(rsp, rdp);
  2651. /* Does this CPU require a not-yet-started grace period? */
  2652. local_irq_save(flags);
  2653. if (cpu_needs_another_gp(rsp, rdp)) {
  2654. raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
  2655. needwake = rcu_start_gp(rsp);
  2656. raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
  2657. if (needwake)
  2658. rcu_gp_kthread_wake(rsp);
  2659. } else {
  2660. local_irq_restore(flags);
  2661. }
  2662. /* If there are callbacks ready, invoke them. */
  2663. if (rcu_segcblist_ready_cbs(&rdp->cblist))
  2664. invoke_rcu_callbacks(rsp, rdp);
  2665. /* Do any needed deferred wakeups of rcuo kthreads. */
  2666. do_nocb_deferred_wakeup(rdp);
  2667. }
  2668. /*
  2669. * Do RCU core processing for the current CPU.
  2670. */
  2671. static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
  2672. {
  2673. struct rcu_state *rsp;
  2674. if (cpu_is_offline(smp_processor_id()))
  2675. return;
  2676. trace_rcu_utilization(TPS("Start RCU core"));
  2677. for_each_rcu_flavor(rsp)
  2678. __rcu_process_callbacks(rsp);
  2679. trace_rcu_utilization(TPS("End RCU core"));
  2680. }
  2681. /*
  2682. * Schedule RCU callback invocation. If the specified type of RCU
  2683. * does not support RCU priority boosting, just do a direct call,
  2684. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2685. * are running on the current CPU with softirqs disabled, the
  2686. * rcu_cpu_kthread_task cannot disappear out from under us.
  2687. */
  2688. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2689. {
  2690. if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
  2691. return;
  2692. if (likely(!rsp->boost)) {
  2693. rcu_do_batch(rsp, rdp);
  2694. return;
  2695. }
  2696. invoke_rcu_callbacks_kthread();
  2697. }
  2698. static void invoke_rcu_core(void)
  2699. {
  2700. if (cpu_online(smp_processor_id()))
  2701. raise_softirq(RCU_SOFTIRQ);
  2702. }
  2703. /*
  2704. * Handle any core-RCU processing required by a call_rcu() invocation.
  2705. */
  2706. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2707. struct rcu_head *head, unsigned long flags)
  2708. {
  2709. bool needwake;
  2710. /*
  2711. * If called from an extended quiescent state, invoke the RCU
  2712. * core in order to force a re-evaluation of RCU's idleness.
  2713. */
  2714. if (!rcu_is_watching())
  2715. invoke_rcu_core();
  2716. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2717. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2718. return;
  2719. /*
  2720. * Force the grace period if too many callbacks or too long waiting.
  2721. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2722. * if some other CPU has recently done so. Also, don't bother
  2723. * invoking force_quiescent_state() if the newly enqueued callback
  2724. * is the only one waiting for a grace period to complete.
  2725. */
  2726. if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
  2727. rdp->qlen_last_fqs_check + qhimark)) {
  2728. /* Are we ignoring a completed grace period? */
  2729. note_gp_changes(rsp, rdp);
  2730. /* Start a new grace period if one not already started. */
  2731. if (!rcu_gp_in_progress(rsp)) {
  2732. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2733. raw_spin_lock_rcu_node(rnp_root);
  2734. needwake = rcu_start_gp(rsp);
  2735. raw_spin_unlock_rcu_node(rnp_root);
  2736. if (needwake)
  2737. rcu_gp_kthread_wake(rsp);
  2738. } else {
  2739. /* Give the grace period a kick. */
  2740. rdp->blimit = LONG_MAX;
  2741. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2742. rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
  2743. force_quiescent_state(rsp);
  2744. rdp->n_force_qs_snap = rsp->n_force_qs;
  2745. rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
  2746. }
  2747. }
  2748. }
  2749. /*
  2750. * RCU callback function to leak a callback.
  2751. */
  2752. static void rcu_leak_callback(struct rcu_head *rhp)
  2753. {
  2754. }
  2755. /*
  2756. * Helper function for call_rcu() and friends. The cpu argument will
  2757. * normally be -1, indicating "currently running CPU". It may specify
  2758. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2759. * is expected to specify a CPU.
  2760. */
  2761. static void
  2762. __call_rcu(struct rcu_head *head, rcu_callback_t func,
  2763. struct rcu_state *rsp, int cpu, bool lazy)
  2764. {
  2765. unsigned long flags;
  2766. struct rcu_data *rdp;
  2767. /* Misaligned rcu_head! */
  2768. WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
  2769. if (debug_rcu_head_queue(head)) {
  2770. /*
  2771. * Probable double call_rcu(), so leak the callback.
  2772. * Use rcu:rcu_callback trace event to find the previous
  2773. * time callback was passed to __call_rcu().
  2774. */
  2775. WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
  2776. head, head->func);
  2777. WRITE_ONCE(head->func, rcu_leak_callback);
  2778. return;
  2779. }
  2780. head->func = func;
  2781. head->next = NULL;
  2782. local_irq_save(flags);
  2783. rdp = this_cpu_ptr(rsp->rda);
  2784. /* Add the callback to our list. */
  2785. if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
  2786. int offline;
  2787. if (cpu != -1)
  2788. rdp = per_cpu_ptr(rsp->rda, cpu);
  2789. if (likely(rdp->mynode)) {
  2790. /* Post-boot, so this should be for a no-CBs CPU. */
  2791. offline = !__call_rcu_nocb(rdp, head, lazy, flags);
  2792. WARN_ON_ONCE(offline);
  2793. /* Offline CPU, _call_rcu() illegal, leak callback. */
  2794. local_irq_restore(flags);
  2795. return;
  2796. }
  2797. /*
  2798. * Very early boot, before rcu_init(). Initialize if needed
  2799. * and then drop through to queue the callback.
  2800. */
  2801. BUG_ON(cpu != -1);
  2802. WARN_ON_ONCE(!rcu_is_watching());
  2803. if (rcu_segcblist_empty(&rdp->cblist))
  2804. rcu_segcblist_init(&rdp->cblist);
  2805. }
  2806. rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
  2807. if (!lazy)
  2808. rcu_idle_count_callbacks_posted();
  2809. if (__is_kfree_rcu_offset((unsigned long)func))
  2810. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2811. rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2812. rcu_segcblist_n_cbs(&rdp->cblist));
  2813. else
  2814. trace_rcu_callback(rsp->name, head,
  2815. rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2816. rcu_segcblist_n_cbs(&rdp->cblist));
  2817. /* Go handle any RCU core processing required. */
  2818. __call_rcu_core(rsp, rdp, head, flags);
  2819. local_irq_restore(flags);
  2820. }
  2821. /**
  2822. * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
  2823. * @head: structure to be used for queueing the RCU updates.
  2824. * @func: actual callback function to be invoked after the grace period
  2825. *
  2826. * The callback function will be invoked some time after a full grace
  2827. * period elapses, in other words after all currently executing RCU
  2828. * read-side critical sections have completed. call_rcu_sched() assumes
  2829. * that the read-side critical sections end on enabling of preemption
  2830. * or on voluntary preemption.
  2831. * RCU read-side critical sections are delimited by :
  2832. * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
  2833. * - anything that disables preemption.
  2834. *
  2835. * These may be nested.
  2836. *
  2837. * See the description of call_rcu() for more detailed information on
  2838. * memory ordering guarantees.
  2839. */
  2840. void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
  2841. {
  2842. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2843. }
  2844. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2845. /**
  2846. * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
  2847. * @head: structure to be used for queueing the RCU updates.
  2848. * @func: actual callback function to be invoked after the grace period
  2849. *
  2850. * The callback function will be invoked some time after a full grace
  2851. * period elapses, in other words after all currently executing RCU
  2852. * read-side critical sections have completed. call_rcu_bh() assumes
  2853. * that the read-side critical sections end on completion of a softirq
  2854. * handler. This means that read-side critical sections in process
  2855. * context must not be interrupted by softirqs. This interface is to be
  2856. * used when most of the read-side critical sections are in softirq context.
  2857. * RCU read-side critical sections are delimited by :
  2858. * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
  2859. * OR
  2860. * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
  2861. * These may be nested.
  2862. *
  2863. * See the description of call_rcu() for more detailed information on
  2864. * memory ordering guarantees.
  2865. */
  2866. void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
  2867. {
  2868. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2869. }
  2870. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2871. /*
  2872. * Queue an RCU callback for lazy invocation after a grace period.
  2873. * This will likely be later named something like "call_rcu_lazy()",
  2874. * but this change will require some way of tagging the lazy RCU
  2875. * callbacks in the list of pending callbacks. Until then, this
  2876. * function may only be called from __kfree_rcu().
  2877. */
  2878. void kfree_call_rcu(struct rcu_head *head,
  2879. rcu_callback_t func)
  2880. {
  2881. __call_rcu(head, func, rcu_state_p, -1, 1);
  2882. }
  2883. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  2884. /*
  2885. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2886. * any blocking grace-period wait automatically implies a grace period
  2887. * if there is only one CPU online at any point time during execution
  2888. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2889. * occasionally incorrectly indicate that there are multiple CPUs online
  2890. * when there was in fact only one the whole time, as this just adds
  2891. * some overhead: RCU still operates correctly.
  2892. */
  2893. static inline int rcu_blocking_is_gp(void)
  2894. {
  2895. int ret;
  2896. might_sleep(); /* Check for RCU read-side critical section. */
  2897. preempt_disable();
  2898. ret = num_online_cpus() <= 1;
  2899. preempt_enable();
  2900. return ret;
  2901. }
  2902. /**
  2903. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2904. *
  2905. * Control will return to the caller some time after a full rcu-sched
  2906. * grace period has elapsed, in other words after all currently executing
  2907. * rcu-sched read-side critical sections have completed. These read-side
  2908. * critical sections are delimited by rcu_read_lock_sched() and
  2909. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2910. * local_irq_disable(), and so on may be used in place of
  2911. * rcu_read_lock_sched().
  2912. *
  2913. * This means that all preempt_disable code sequences, including NMI and
  2914. * non-threaded hardware-interrupt handlers, in progress on entry will
  2915. * have completed before this primitive returns. However, this does not
  2916. * guarantee that softirq handlers will have completed, since in some
  2917. * kernels, these handlers can run in process context, and can block.
  2918. *
  2919. * Note that this guarantee implies further memory-ordering guarantees.
  2920. * On systems with more than one CPU, when synchronize_sched() returns,
  2921. * each CPU is guaranteed to have executed a full memory barrier since the
  2922. * end of its last RCU-sched read-side critical section whose beginning
  2923. * preceded the call to synchronize_sched(). In addition, each CPU having
  2924. * an RCU read-side critical section that extends beyond the return from
  2925. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2926. * after the beginning of synchronize_sched() and before the beginning of
  2927. * that RCU read-side critical section. Note that these guarantees include
  2928. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2929. * that are executing in the kernel.
  2930. *
  2931. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2932. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2933. * to have executed a full memory barrier during the execution of
  2934. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2935. * again only if the system has more than one CPU).
  2936. */
  2937. void synchronize_sched(void)
  2938. {
  2939. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2940. lock_is_held(&rcu_lock_map) ||
  2941. lock_is_held(&rcu_sched_lock_map),
  2942. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2943. if (rcu_blocking_is_gp())
  2944. return;
  2945. if (rcu_gp_is_expedited())
  2946. synchronize_sched_expedited();
  2947. else
  2948. wait_rcu_gp(call_rcu_sched);
  2949. }
  2950. EXPORT_SYMBOL_GPL(synchronize_sched);
  2951. /**
  2952. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2953. *
  2954. * Control will return to the caller some time after a full rcu_bh grace
  2955. * period has elapsed, in other words after all currently executing rcu_bh
  2956. * read-side critical sections have completed. RCU read-side critical
  2957. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2958. * and may be nested.
  2959. *
  2960. * See the description of synchronize_sched() for more detailed information
  2961. * on memory ordering guarantees.
  2962. */
  2963. void synchronize_rcu_bh(void)
  2964. {
  2965. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2966. lock_is_held(&rcu_lock_map) ||
  2967. lock_is_held(&rcu_sched_lock_map),
  2968. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2969. if (rcu_blocking_is_gp())
  2970. return;
  2971. if (rcu_gp_is_expedited())
  2972. synchronize_rcu_bh_expedited();
  2973. else
  2974. wait_rcu_gp(call_rcu_bh);
  2975. }
  2976. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2977. /**
  2978. * get_state_synchronize_rcu - Snapshot current RCU state
  2979. *
  2980. * Returns a cookie that is used by a later call to cond_synchronize_rcu()
  2981. * to determine whether or not a full grace period has elapsed in the
  2982. * meantime.
  2983. */
  2984. unsigned long get_state_synchronize_rcu(void)
  2985. {
  2986. /*
  2987. * Any prior manipulation of RCU-protected data must happen
  2988. * before the load from ->gpnum.
  2989. */
  2990. smp_mb(); /* ^^^ */
  2991. /*
  2992. * Make sure this load happens before the purportedly
  2993. * time-consuming work between get_state_synchronize_rcu()
  2994. * and cond_synchronize_rcu().
  2995. */
  2996. return smp_load_acquire(&rcu_state_p->gpnum);
  2997. }
  2998. EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
  2999. /**
  3000. * cond_synchronize_rcu - Conditionally wait for an RCU grace period
  3001. *
  3002. * @oldstate: return value from earlier call to get_state_synchronize_rcu()
  3003. *
  3004. * If a full RCU grace period has elapsed since the earlier call to
  3005. * get_state_synchronize_rcu(), just return. Otherwise, invoke
  3006. * synchronize_rcu() to wait for a full grace period.
  3007. *
  3008. * Yes, this function does not take counter wrap into account. But
  3009. * counter wrap is harmless. If the counter wraps, we have waited for
  3010. * more than 2 billion grace periods (and way more on a 64-bit system!),
  3011. * so waiting for one additional grace period should be just fine.
  3012. */
  3013. void cond_synchronize_rcu(unsigned long oldstate)
  3014. {
  3015. unsigned long newstate;
  3016. /*
  3017. * Ensure that this load happens before any RCU-destructive
  3018. * actions the caller might carry out after we return.
  3019. */
  3020. newstate = smp_load_acquire(&rcu_state_p->completed);
  3021. if (ULONG_CMP_GE(oldstate, newstate))
  3022. synchronize_rcu();
  3023. }
  3024. EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
  3025. /**
  3026. * get_state_synchronize_sched - Snapshot current RCU-sched state
  3027. *
  3028. * Returns a cookie that is used by a later call to cond_synchronize_sched()
  3029. * to determine whether or not a full grace period has elapsed in the
  3030. * meantime.
  3031. */
  3032. unsigned long get_state_synchronize_sched(void)
  3033. {
  3034. /*
  3035. * Any prior manipulation of RCU-protected data must happen
  3036. * before the load from ->gpnum.
  3037. */
  3038. smp_mb(); /* ^^^ */
  3039. /*
  3040. * Make sure this load happens before the purportedly
  3041. * time-consuming work between get_state_synchronize_sched()
  3042. * and cond_synchronize_sched().
  3043. */
  3044. return smp_load_acquire(&rcu_sched_state.gpnum);
  3045. }
  3046. EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
  3047. /**
  3048. * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
  3049. *
  3050. * @oldstate: return value from earlier call to get_state_synchronize_sched()
  3051. *
  3052. * If a full RCU-sched grace period has elapsed since the earlier call to
  3053. * get_state_synchronize_sched(), just return. Otherwise, invoke
  3054. * synchronize_sched() to wait for a full grace period.
  3055. *
  3056. * Yes, this function does not take counter wrap into account. But
  3057. * counter wrap is harmless. If the counter wraps, we have waited for
  3058. * more than 2 billion grace periods (and way more on a 64-bit system!),
  3059. * so waiting for one additional grace period should be just fine.
  3060. */
  3061. void cond_synchronize_sched(unsigned long oldstate)
  3062. {
  3063. unsigned long newstate;
  3064. /*
  3065. * Ensure that this load happens before any RCU-destructive
  3066. * actions the caller might carry out after we return.
  3067. */
  3068. newstate = smp_load_acquire(&rcu_sched_state.completed);
  3069. if (ULONG_CMP_GE(oldstate, newstate))
  3070. synchronize_sched();
  3071. }
  3072. EXPORT_SYMBOL_GPL(cond_synchronize_sched);
  3073. /*
  3074. * Check to see if there is any immediate RCU-related work to be done
  3075. * by the current CPU, for the specified type of RCU, returning 1 if so.
  3076. * The checks are in order of increasing expense: checks that can be
  3077. * carried out against CPU-local state are performed first. However,
  3078. * we must check for CPU stalls first, else we might not get a chance.
  3079. */
  3080. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  3081. {
  3082. struct rcu_node *rnp = rdp->mynode;
  3083. rdp->n_rcu_pending++;
  3084. /* Check for CPU stalls, if enabled. */
  3085. check_cpu_stall(rsp, rdp);
  3086. /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
  3087. if (rcu_nohz_full_cpu(rsp))
  3088. return 0;
  3089. /* Is the RCU core waiting for a quiescent state from this CPU? */
  3090. if (rcu_scheduler_fully_active &&
  3091. rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
  3092. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
  3093. rdp->n_rp_core_needs_qs++;
  3094. } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
  3095. rdp->n_rp_report_qs++;
  3096. return 1;
  3097. }
  3098. /* Does this CPU have callbacks ready to invoke? */
  3099. if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
  3100. rdp->n_rp_cb_ready++;
  3101. return 1;
  3102. }
  3103. /* Has RCU gone idle with this CPU needing another grace period? */
  3104. if (cpu_needs_another_gp(rsp, rdp)) {
  3105. rdp->n_rp_cpu_needs_gp++;
  3106. return 1;
  3107. }
  3108. /* Has another RCU grace period completed? */
  3109. if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  3110. rdp->n_rp_gp_completed++;
  3111. return 1;
  3112. }
  3113. /* Has a new RCU grace period started? */
  3114. if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
  3115. unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
  3116. rdp->n_rp_gp_started++;
  3117. return 1;
  3118. }
  3119. /* Does this CPU need a deferred NOCB wakeup? */
  3120. if (rcu_nocb_need_deferred_wakeup(rdp)) {
  3121. rdp->n_rp_nocb_defer_wakeup++;
  3122. return 1;
  3123. }
  3124. /* nothing to do */
  3125. rdp->n_rp_need_nothing++;
  3126. return 0;
  3127. }
  3128. /*
  3129. * Check to see if there is any immediate RCU-related work to be done
  3130. * by the current CPU, returning 1 if so. This function is part of the
  3131. * RCU implementation; it is -not- an exported member of the RCU API.
  3132. */
  3133. static int rcu_pending(void)
  3134. {
  3135. struct rcu_state *rsp;
  3136. for_each_rcu_flavor(rsp)
  3137. if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
  3138. return 1;
  3139. return 0;
  3140. }
  3141. /*
  3142. * Return true if the specified CPU has any callback. If all_lazy is
  3143. * non-NULL, store an indication of whether all callbacks are lazy.
  3144. * (If there are no callbacks, all of them are deemed to be lazy.)
  3145. */
  3146. static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
  3147. {
  3148. bool al = true;
  3149. bool hc = false;
  3150. struct rcu_data *rdp;
  3151. struct rcu_state *rsp;
  3152. for_each_rcu_flavor(rsp) {
  3153. rdp = this_cpu_ptr(rsp->rda);
  3154. if (rcu_segcblist_empty(&rdp->cblist))
  3155. continue;
  3156. hc = true;
  3157. if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
  3158. al = false;
  3159. break;
  3160. }
  3161. }
  3162. if (all_lazy)
  3163. *all_lazy = al;
  3164. return hc;
  3165. }
  3166. /*
  3167. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  3168. * the compiler is expected to optimize this away.
  3169. */
  3170. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  3171. int cpu, unsigned long done)
  3172. {
  3173. trace_rcu_barrier(rsp->name, s, cpu,
  3174. atomic_read(&rsp->barrier_cpu_count), done);
  3175. }
  3176. /*
  3177. * RCU callback function for _rcu_barrier(). If we are last, wake
  3178. * up the task executing _rcu_barrier().
  3179. */
  3180. static void rcu_barrier_callback(struct rcu_head *rhp)
  3181. {
  3182. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  3183. struct rcu_state *rsp = rdp->rsp;
  3184. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  3185. _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
  3186. rsp->barrier_sequence);
  3187. complete(&rsp->barrier_completion);
  3188. } else {
  3189. _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
  3190. }
  3191. }
  3192. /*
  3193. * Called with preemption disabled, and from cross-cpu IRQ context.
  3194. */
  3195. static void rcu_barrier_func(void *type)
  3196. {
  3197. struct rcu_state *rsp = type;
  3198. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  3199. _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
  3200. rdp->barrier_head.func = rcu_barrier_callback;
  3201. debug_rcu_head_queue(&rdp->barrier_head);
  3202. if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
  3203. atomic_inc(&rsp->barrier_cpu_count);
  3204. } else {
  3205. debug_rcu_head_unqueue(&rdp->barrier_head);
  3206. _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
  3207. rsp->barrier_sequence);
  3208. }
  3209. }
  3210. /*
  3211. * Orchestrate the specified type of RCU barrier, waiting for all
  3212. * RCU callbacks of the specified type to complete.
  3213. */
  3214. static void _rcu_barrier(struct rcu_state *rsp)
  3215. {
  3216. int cpu;
  3217. struct rcu_data *rdp;
  3218. unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
  3219. _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
  3220. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  3221. mutex_lock(&rsp->barrier_mutex);
  3222. /* Did someone else do our work for us? */
  3223. if (rcu_seq_done(&rsp->barrier_sequence, s)) {
  3224. _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
  3225. rsp->barrier_sequence);
  3226. smp_mb(); /* caller's subsequent code after above check. */
  3227. mutex_unlock(&rsp->barrier_mutex);
  3228. return;
  3229. }
  3230. /* Mark the start of the barrier operation. */
  3231. rcu_seq_start(&rsp->barrier_sequence);
  3232. _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
  3233. /*
  3234. * Initialize the count to one rather than to zero in order to
  3235. * avoid a too-soon return to zero in case of a short grace period
  3236. * (or preemption of this task). Exclude CPU-hotplug operations
  3237. * to ensure that no offline CPU has callbacks queued.
  3238. */
  3239. init_completion(&rsp->barrier_completion);
  3240. atomic_set(&rsp->barrier_cpu_count, 1);
  3241. get_online_cpus();
  3242. /*
  3243. * Force each CPU with callbacks to register a new callback.
  3244. * When that callback is invoked, we will know that all of the
  3245. * corresponding CPU's preceding callbacks have been invoked.
  3246. */
  3247. for_each_possible_cpu(cpu) {
  3248. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  3249. continue;
  3250. rdp = per_cpu_ptr(rsp->rda, cpu);
  3251. if (rcu_is_nocb_cpu(cpu)) {
  3252. if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
  3253. _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
  3254. rsp->barrier_sequence);
  3255. } else {
  3256. _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
  3257. rsp->barrier_sequence);
  3258. smp_mb__before_atomic();
  3259. atomic_inc(&rsp->barrier_cpu_count);
  3260. __call_rcu(&rdp->barrier_head,
  3261. rcu_barrier_callback, rsp, cpu, 0);
  3262. }
  3263. } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
  3264. _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
  3265. rsp->barrier_sequence);
  3266. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  3267. } else {
  3268. _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
  3269. rsp->barrier_sequence);
  3270. }
  3271. }
  3272. put_online_cpus();
  3273. /*
  3274. * Now that we have an rcu_barrier_callback() callback on each
  3275. * CPU, and thus each counted, remove the initial count.
  3276. */
  3277. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  3278. complete(&rsp->barrier_completion);
  3279. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  3280. wait_for_completion(&rsp->barrier_completion);
  3281. /* Mark the end of the barrier operation. */
  3282. _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
  3283. rcu_seq_end(&rsp->barrier_sequence);
  3284. /* Other rcu_barrier() invocations can now safely proceed. */
  3285. mutex_unlock(&rsp->barrier_mutex);
  3286. }
  3287. /**
  3288. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  3289. */
  3290. void rcu_barrier_bh(void)
  3291. {
  3292. _rcu_barrier(&rcu_bh_state);
  3293. }
  3294. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  3295. /**
  3296. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  3297. */
  3298. void rcu_barrier_sched(void)
  3299. {
  3300. _rcu_barrier(&rcu_sched_state);
  3301. }
  3302. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  3303. /*
  3304. * Propagate ->qsinitmask bits up the rcu_node tree to account for the
  3305. * first CPU in a given leaf rcu_node structure coming online. The caller
  3306. * must hold the corresponding leaf rcu_node ->lock with interrrupts
  3307. * disabled.
  3308. */
  3309. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
  3310. {
  3311. long mask;
  3312. struct rcu_node *rnp = rnp_leaf;
  3313. lockdep_assert_held(&rnp->lock);
  3314. for (;;) {
  3315. mask = rnp->grpmask;
  3316. rnp = rnp->parent;
  3317. if (rnp == NULL)
  3318. return;
  3319. raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
  3320. rnp->qsmaskinit |= mask;
  3321. raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
  3322. }
  3323. }
  3324. /*
  3325. * Do boot-time initialization of a CPU's per-CPU RCU data.
  3326. */
  3327. static void __init
  3328. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  3329. {
  3330. unsigned long flags;
  3331. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3332. struct rcu_node *rnp = rcu_get_root(rsp);
  3333. /* Set up local state, ensuring consistent view of global state. */
  3334. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3335. rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
  3336. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  3337. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  3338. WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
  3339. rdp->cpu = cpu;
  3340. rdp->rsp = rsp;
  3341. rcu_boot_init_nocb_percpu_data(rdp);
  3342. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3343. }
  3344. /*
  3345. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  3346. * offline event can be happening at a given time. Note also that we
  3347. * can accept some slop in the rsp->completed access due to the fact
  3348. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  3349. */
  3350. static void
  3351. rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
  3352. {
  3353. unsigned long flags;
  3354. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3355. struct rcu_node *rnp = rcu_get_root(rsp);
  3356. /* Set up local state, ensuring consistent view of global state. */
  3357. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3358. rdp->qlen_last_fqs_check = 0;
  3359. rdp->n_force_qs_snap = rsp->n_force_qs;
  3360. rdp->blimit = blimit;
  3361. if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
  3362. !init_nocb_callback_list(rdp))
  3363. rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
  3364. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  3365. rcu_dynticks_eqs_online();
  3366. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  3367. /*
  3368. * Add CPU to leaf rcu_node pending-online bitmask. Any needed
  3369. * propagation up the rcu_node tree will happen at the beginning
  3370. * of the next grace period.
  3371. */
  3372. rnp = rdp->mynode;
  3373. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  3374. rdp->beenonline = true; /* We have now been online. */
  3375. rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
  3376. rdp->completed = rnp->completed;
  3377. rdp->cpu_no_qs.b.norm = true;
  3378. rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
  3379. rdp->core_needs_qs = false;
  3380. rdp->rcu_iw_pending = false;
  3381. rdp->rcu_iw_gpnum = rnp->gpnum - 1;
  3382. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  3383. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3384. }
  3385. /*
  3386. * Invoked early in the CPU-online process, when pretty much all
  3387. * services are available. The incoming CPU is not present.
  3388. */
  3389. int rcutree_prepare_cpu(unsigned int cpu)
  3390. {
  3391. struct rcu_state *rsp;
  3392. for_each_rcu_flavor(rsp)
  3393. rcu_init_percpu_data(cpu, rsp);
  3394. rcu_prepare_kthreads(cpu);
  3395. rcu_spawn_all_nocb_kthreads(cpu);
  3396. return 0;
  3397. }
  3398. /*
  3399. * Update RCU priority boot kthread affinity for CPU-hotplug changes.
  3400. */
  3401. static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
  3402. {
  3403. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  3404. rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
  3405. }
  3406. /*
  3407. * Near the end of the CPU-online process. Pretty much all services
  3408. * enabled, and the CPU is now very much alive.
  3409. */
  3410. int rcutree_online_cpu(unsigned int cpu)
  3411. {
  3412. unsigned long flags;
  3413. struct rcu_data *rdp;
  3414. struct rcu_node *rnp;
  3415. struct rcu_state *rsp;
  3416. for_each_rcu_flavor(rsp) {
  3417. rdp = per_cpu_ptr(rsp->rda, cpu);
  3418. rnp = rdp->mynode;
  3419. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3420. rnp->ffmask |= rdp->grpmask;
  3421. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3422. }
  3423. if (IS_ENABLED(CONFIG_TREE_SRCU))
  3424. srcu_online_cpu(cpu);
  3425. if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
  3426. return 0; /* Too early in boot for scheduler work. */
  3427. sync_sched_exp_online_cleanup(cpu);
  3428. rcutree_affinity_setting(cpu, -1);
  3429. return 0;
  3430. }
  3431. /*
  3432. * Near the beginning of the process. The CPU is still very much alive
  3433. * with pretty much all services enabled.
  3434. */
  3435. int rcutree_offline_cpu(unsigned int cpu)
  3436. {
  3437. unsigned long flags;
  3438. struct rcu_data *rdp;
  3439. struct rcu_node *rnp;
  3440. struct rcu_state *rsp;
  3441. for_each_rcu_flavor(rsp) {
  3442. rdp = per_cpu_ptr(rsp->rda, cpu);
  3443. rnp = rdp->mynode;
  3444. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3445. rnp->ffmask &= ~rdp->grpmask;
  3446. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3447. }
  3448. rcutree_affinity_setting(cpu, cpu);
  3449. if (IS_ENABLED(CONFIG_TREE_SRCU))
  3450. srcu_offline_cpu(cpu);
  3451. return 0;
  3452. }
  3453. /*
  3454. * Near the end of the offline process. We do only tracing here.
  3455. */
  3456. int rcutree_dying_cpu(unsigned int cpu)
  3457. {
  3458. struct rcu_state *rsp;
  3459. for_each_rcu_flavor(rsp)
  3460. rcu_cleanup_dying_cpu(rsp);
  3461. return 0;
  3462. }
  3463. /*
  3464. * The outgoing CPU is gone and we are running elsewhere.
  3465. */
  3466. int rcutree_dead_cpu(unsigned int cpu)
  3467. {
  3468. struct rcu_state *rsp;
  3469. for_each_rcu_flavor(rsp) {
  3470. rcu_cleanup_dead_cpu(cpu, rsp);
  3471. do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
  3472. }
  3473. return 0;
  3474. }
  3475. /*
  3476. * Mark the specified CPU as being online so that subsequent grace periods
  3477. * (both expedited and normal) will wait on it. Note that this means that
  3478. * incoming CPUs are not allowed to use RCU read-side critical sections
  3479. * until this function is called. Failing to observe this restriction
  3480. * will result in lockdep splats.
  3481. *
  3482. * Note that this function is special in that it is invoked directly
  3483. * from the incoming CPU rather than from the cpuhp_step mechanism.
  3484. * This is because this function must be invoked at a precise location.
  3485. */
  3486. void rcu_cpu_starting(unsigned int cpu)
  3487. {
  3488. unsigned long flags;
  3489. unsigned long mask;
  3490. int nbits;
  3491. unsigned long oldmask;
  3492. struct rcu_data *rdp;
  3493. struct rcu_node *rnp;
  3494. struct rcu_state *rsp;
  3495. for_each_rcu_flavor(rsp) {
  3496. rdp = per_cpu_ptr(rsp->rda, cpu);
  3497. rnp = rdp->mynode;
  3498. mask = rdp->grpmask;
  3499. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3500. rnp->qsmaskinitnext |= mask;
  3501. oldmask = rnp->expmaskinitnext;
  3502. rnp->expmaskinitnext |= mask;
  3503. oldmask ^= rnp->expmaskinitnext;
  3504. nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
  3505. /* Allow lockless access for expedited grace periods. */
  3506. smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
  3507. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3508. }
  3509. smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
  3510. }
  3511. #ifdef CONFIG_HOTPLUG_CPU
  3512. /*
  3513. * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
  3514. * function. We now remove it from the rcu_node tree's ->qsmaskinit
  3515. * bit masks.
  3516. */
  3517. static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
  3518. {
  3519. unsigned long flags;
  3520. unsigned long mask;
  3521. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3522. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  3523. /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
  3524. mask = rdp->grpmask;
  3525. raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
  3526. rnp->qsmaskinitnext &= ~mask;
  3527. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3528. }
  3529. /*
  3530. * The outgoing function has no further need of RCU, so remove it from
  3531. * the list of CPUs that RCU must track.
  3532. *
  3533. * Note that this function is special in that it is invoked directly
  3534. * from the outgoing CPU rather than from the cpuhp_step mechanism.
  3535. * This is because this function must be invoked at a precise location.
  3536. */
  3537. void rcu_report_dead(unsigned int cpu)
  3538. {
  3539. struct rcu_state *rsp;
  3540. /* QS for any half-done expedited RCU-sched GP. */
  3541. preempt_disable();
  3542. rcu_report_exp_rdp(&rcu_sched_state,
  3543. this_cpu_ptr(rcu_sched_state.rda), true);
  3544. preempt_enable();
  3545. for_each_rcu_flavor(rsp)
  3546. rcu_cleanup_dying_idle_cpu(cpu, rsp);
  3547. }
  3548. /* Migrate the dead CPU's callbacks to the current CPU. */
  3549. static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
  3550. {
  3551. unsigned long flags;
  3552. struct rcu_data *my_rdp;
  3553. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3554. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  3555. if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
  3556. return; /* No callbacks to migrate. */
  3557. local_irq_save(flags);
  3558. my_rdp = this_cpu_ptr(rsp->rda);
  3559. if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
  3560. local_irq_restore(flags);
  3561. return;
  3562. }
  3563. raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
  3564. rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
  3565. rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
  3566. rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
  3567. WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
  3568. !rcu_segcblist_n_cbs(&my_rdp->cblist));
  3569. raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
  3570. WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
  3571. !rcu_segcblist_empty(&rdp->cblist),
  3572. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
  3573. cpu, rcu_segcblist_n_cbs(&rdp->cblist),
  3574. rcu_segcblist_first_cb(&rdp->cblist));
  3575. }
  3576. /*
  3577. * The outgoing CPU has just passed through the dying-idle state,
  3578. * and we are being invoked from the CPU that was IPIed to continue the
  3579. * offline operation. We need to migrate the outgoing CPU's callbacks.
  3580. */
  3581. void rcutree_migrate_callbacks(int cpu)
  3582. {
  3583. struct rcu_state *rsp;
  3584. for_each_rcu_flavor(rsp)
  3585. rcu_migrate_callbacks(cpu, rsp);
  3586. }
  3587. #endif
  3588. /*
  3589. * On non-huge systems, use expedited RCU grace periods to make suspend
  3590. * and hibernation run faster.
  3591. */
  3592. static int rcu_pm_notify(struct notifier_block *self,
  3593. unsigned long action, void *hcpu)
  3594. {
  3595. switch (action) {
  3596. case PM_HIBERNATION_PREPARE:
  3597. case PM_SUSPEND_PREPARE:
  3598. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3599. rcu_expedite_gp();
  3600. break;
  3601. case PM_POST_HIBERNATION:
  3602. case PM_POST_SUSPEND:
  3603. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3604. rcu_unexpedite_gp();
  3605. break;
  3606. default:
  3607. break;
  3608. }
  3609. return NOTIFY_OK;
  3610. }
  3611. /*
  3612. * Spawn the kthreads that handle each RCU flavor's grace periods.
  3613. */
  3614. static int __init rcu_spawn_gp_kthread(void)
  3615. {
  3616. unsigned long flags;
  3617. int kthread_prio_in = kthread_prio;
  3618. struct rcu_node *rnp;
  3619. struct rcu_state *rsp;
  3620. struct sched_param sp;
  3621. struct task_struct *t;
  3622. /* Force priority into range. */
  3623. if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
  3624. kthread_prio = 1;
  3625. else if (kthread_prio < 0)
  3626. kthread_prio = 0;
  3627. else if (kthread_prio > 99)
  3628. kthread_prio = 99;
  3629. if (kthread_prio != kthread_prio_in)
  3630. pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
  3631. kthread_prio, kthread_prio_in);
  3632. rcu_scheduler_fully_active = 1;
  3633. for_each_rcu_flavor(rsp) {
  3634. t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
  3635. BUG_ON(IS_ERR(t));
  3636. rnp = rcu_get_root(rsp);
  3637. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3638. rsp->gp_kthread = t;
  3639. if (kthread_prio) {
  3640. sp.sched_priority = kthread_prio;
  3641. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  3642. }
  3643. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3644. wake_up_process(t);
  3645. }
  3646. rcu_spawn_nocb_kthreads();
  3647. rcu_spawn_boost_kthreads();
  3648. return 0;
  3649. }
  3650. early_initcall(rcu_spawn_gp_kthread);
  3651. /*
  3652. * This function is invoked towards the end of the scheduler's
  3653. * initialization process. Before this is called, the idle task might
  3654. * contain synchronous grace-period primitives (during which time, this idle
  3655. * task is booting the system, and such primitives are no-ops). After this
  3656. * function is called, any synchronous grace-period primitives are run as
  3657. * expedited, with the requesting task driving the grace period forward.
  3658. * A later core_initcall() rcu_set_runtime_mode() will switch to full
  3659. * runtime RCU functionality.
  3660. */
  3661. void rcu_scheduler_starting(void)
  3662. {
  3663. WARN_ON(num_online_cpus() != 1);
  3664. WARN_ON(nr_context_switches() > 0);
  3665. rcu_test_sync_prims();
  3666. rcu_scheduler_active = RCU_SCHEDULER_INIT;
  3667. rcu_test_sync_prims();
  3668. }
  3669. /*
  3670. * Helper function for rcu_init() that initializes one rcu_state structure.
  3671. */
  3672. static void __init rcu_init_one(struct rcu_state *rsp)
  3673. {
  3674. static const char * const buf[] = RCU_NODE_NAME_INIT;
  3675. static const char * const fqs[] = RCU_FQS_NAME_INIT;
  3676. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  3677. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  3678. int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
  3679. int cpustride = 1;
  3680. int i;
  3681. int j;
  3682. struct rcu_node *rnp;
  3683. BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  3684. /* Silence gcc 4.8 false positive about array index out of range. */
  3685. if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
  3686. panic("rcu_init_one: rcu_num_lvls out of range");
  3687. /* Initialize the level-tracking arrays. */
  3688. for (i = 1; i < rcu_num_lvls; i++)
  3689. rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
  3690. rcu_init_levelspread(levelspread, num_rcu_lvl);
  3691. /* Initialize the elements themselves, starting from the leaves. */
  3692. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3693. cpustride *= levelspread[i];
  3694. rnp = rsp->level[i];
  3695. for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
  3696. raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
  3697. lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
  3698. &rcu_node_class[i], buf[i]);
  3699. raw_spin_lock_init(&rnp->fqslock);
  3700. lockdep_set_class_and_name(&rnp->fqslock,
  3701. &rcu_fqs_class[i], fqs[i]);
  3702. rnp->gpnum = rsp->gpnum;
  3703. rnp->completed = rsp->completed;
  3704. rnp->qsmask = 0;
  3705. rnp->qsmaskinit = 0;
  3706. rnp->grplo = j * cpustride;
  3707. rnp->grphi = (j + 1) * cpustride - 1;
  3708. if (rnp->grphi >= nr_cpu_ids)
  3709. rnp->grphi = nr_cpu_ids - 1;
  3710. if (i == 0) {
  3711. rnp->grpnum = 0;
  3712. rnp->grpmask = 0;
  3713. rnp->parent = NULL;
  3714. } else {
  3715. rnp->grpnum = j % levelspread[i - 1];
  3716. rnp->grpmask = 1UL << rnp->grpnum;
  3717. rnp->parent = rsp->level[i - 1] +
  3718. j / levelspread[i - 1];
  3719. }
  3720. rnp->level = i;
  3721. INIT_LIST_HEAD(&rnp->blkd_tasks);
  3722. rcu_init_one_nocb(rnp);
  3723. init_waitqueue_head(&rnp->exp_wq[0]);
  3724. init_waitqueue_head(&rnp->exp_wq[1]);
  3725. init_waitqueue_head(&rnp->exp_wq[2]);
  3726. init_waitqueue_head(&rnp->exp_wq[3]);
  3727. spin_lock_init(&rnp->exp_lock);
  3728. }
  3729. }
  3730. init_swait_queue_head(&rsp->gp_wq);
  3731. init_swait_queue_head(&rsp->expedited_wq);
  3732. rnp = rsp->level[rcu_num_lvls - 1];
  3733. for_each_possible_cpu(i) {
  3734. while (i > rnp->grphi)
  3735. rnp++;
  3736. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  3737. rcu_boot_init_percpu_data(i, rsp);
  3738. }
  3739. list_add(&rsp->flavors, &rcu_struct_flavors);
  3740. }
  3741. /*
  3742. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  3743. * replace the definitions in tree.h because those are needed to size
  3744. * the ->node array in the rcu_state structure.
  3745. */
  3746. static void __init rcu_init_geometry(void)
  3747. {
  3748. ulong d;
  3749. int i;
  3750. int rcu_capacity[RCU_NUM_LVLS];
  3751. /*
  3752. * Initialize any unspecified boot parameters.
  3753. * The default values of jiffies_till_first_fqs and
  3754. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  3755. * value, which is a function of HZ, then adding one for each
  3756. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  3757. */
  3758. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  3759. if (jiffies_till_first_fqs == ULONG_MAX)
  3760. jiffies_till_first_fqs = d;
  3761. if (jiffies_till_next_fqs == ULONG_MAX)
  3762. jiffies_till_next_fqs = d;
  3763. /* If the compile-time values are accurate, just leave. */
  3764. if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
  3765. nr_cpu_ids == NR_CPUS)
  3766. return;
  3767. pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
  3768. rcu_fanout_leaf, nr_cpu_ids);
  3769. /*
  3770. * The boot-time rcu_fanout_leaf parameter must be at least two
  3771. * and cannot exceed the number of bits in the rcu_node masks.
  3772. * Complain and fall back to the compile-time values if this
  3773. * limit is exceeded.
  3774. */
  3775. if (rcu_fanout_leaf < 2 ||
  3776. rcu_fanout_leaf > sizeof(unsigned long) * 8) {
  3777. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  3778. WARN_ON(1);
  3779. return;
  3780. }
  3781. /*
  3782. * Compute number of nodes that can be handled an rcu_node tree
  3783. * with the given number of levels.
  3784. */
  3785. rcu_capacity[0] = rcu_fanout_leaf;
  3786. for (i = 1; i < RCU_NUM_LVLS; i++)
  3787. rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
  3788. /*
  3789. * The tree must be able to accommodate the configured number of CPUs.
  3790. * If this limit is exceeded, fall back to the compile-time values.
  3791. */
  3792. if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
  3793. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  3794. WARN_ON(1);
  3795. return;
  3796. }
  3797. /* Calculate the number of levels in the tree. */
  3798. for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
  3799. }
  3800. rcu_num_lvls = i + 1;
  3801. /* Calculate the number of rcu_nodes at each level of the tree. */
  3802. for (i = 0; i < rcu_num_lvls; i++) {
  3803. int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
  3804. num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
  3805. }
  3806. /* Calculate the total number of rcu_node structures. */
  3807. rcu_num_nodes = 0;
  3808. for (i = 0; i < rcu_num_lvls; i++)
  3809. rcu_num_nodes += num_rcu_lvl[i];
  3810. }
  3811. /*
  3812. * Dump out the structure of the rcu_node combining tree associated
  3813. * with the rcu_state structure referenced by rsp.
  3814. */
  3815. static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
  3816. {
  3817. int level = 0;
  3818. struct rcu_node *rnp;
  3819. pr_info("rcu_node tree layout dump\n");
  3820. pr_info(" ");
  3821. rcu_for_each_node_breadth_first(rsp, rnp) {
  3822. if (rnp->level != level) {
  3823. pr_cont("\n");
  3824. pr_info(" ");
  3825. level = rnp->level;
  3826. }
  3827. pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
  3828. }
  3829. pr_cont("\n");
  3830. }
  3831. void __init rcu_init(void)
  3832. {
  3833. int cpu;
  3834. rcu_early_boot_tests();
  3835. rcu_bootup_announce();
  3836. rcu_init_geometry();
  3837. rcu_init_one(&rcu_bh_state);
  3838. rcu_init_one(&rcu_sched_state);
  3839. if (dump_tree)
  3840. rcu_dump_rcu_node_tree(&rcu_sched_state);
  3841. __rcu_init_preempt();
  3842. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  3843. /*
  3844. * We don't need protection against CPU-hotplug here because
  3845. * this is called early in boot, before either interrupts
  3846. * or the scheduler are operational.
  3847. */
  3848. pm_notifier(rcu_pm_notify, 0);
  3849. for_each_online_cpu(cpu) {
  3850. rcutree_prepare_cpu(cpu);
  3851. rcu_cpu_starting(cpu);
  3852. rcutree_online_cpu(cpu);
  3853. }
  3854. }
  3855. #include "tree_exp.h"
  3856. #include "tree_plugin.h"