write.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/migrate.h>
  16. #include <linux/sunrpc/clnt.h>
  17. #include <linux/nfs_fs.h>
  18. #include <linux/nfs_mount.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/backing-dev.h>
  21. #include <linux/export.h>
  22. #include <asm/uaccess.h>
  23. #include "delegation.h"
  24. #include "internal.h"
  25. #include "iostat.h"
  26. #include "nfs4_fs.h"
  27. #include "fscache.h"
  28. #include "pnfs.h"
  29. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  30. #define MIN_POOL_WRITE (32)
  31. #define MIN_POOL_COMMIT (4)
  32. /*
  33. * Local function declarations
  34. */
  35. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  36. struct inode *inode, int ioflags);
  37. static void nfs_redirty_request(struct nfs_page *req);
  38. static const struct rpc_call_ops nfs_write_partial_ops;
  39. static const struct rpc_call_ops nfs_write_full_ops;
  40. static const struct rpc_call_ops nfs_commit_ops;
  41. static struct kmem_cache *nfs_wdata_cachep;
  42. static mempool_t *nfs_wdata_mempool;
  43. static mempool_t *nfs_commit_mempool;
  44. struct nfs_write_data *nfs_commitdata_alloc(void)
  45. {
  46. struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  47. if (p) {
  48. memset(p, 0, sizeof(*p));
  49. INIT_LIST_HEAD(&p->pages);
  50. }
  51. return p;
  52. }
  53. EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
  54. void nfs_commit_free(struct nfs_write_data *p)
  55. {
  56. if (p && (p->pagevec != &p->page_array[0]))
  57. kfree(p->pagevec);
  58. mempool_free(p, nfs_commit_mempool);
  59. }
  60. EXPORT_SYMBOL_GPL(nfs_commit_free);
  61. struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  62. {
  63. struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  64. if (p) {
  65. memset(p, 0, sizeof(*p));
  66. INIT_LIST_HEAD(&p->pages);
  67. p->npages = pagecount;
  68. if (pagecount <= ARRAY_SIZE(p->page_array))
  69. p->pagevec = p->page_array;
  70. else {
  71. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  72. if (!p->pagevec) {
  73. mempool_free(p, nfs_wdata_mempool);
  74. p = NULL;
  75. }
  76. }
  77. }
  78. return p;
  79. }
  80. void nfs_writedata_free(struct nfs_write_data *p)
  81. {
  82. if (p && (p->pagevec != &p->page_array[0]))
  83. kfree(p->pagevec);
  84. mempool_free(p, nfs_wdata_mempool);
  85. }
  86. void nfs_writedata_release(struct nfs_write_data *wdata)
  87. {
  88. put_lseg(wdata->lseg);
  89. put_nfs_open_context(wdata->args.context);
  90. nfs_writedata_free(wdata);
  91. }
  92. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  93. {
  94. ctx->error = error;
  95. smp_wmb();
  96. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  97. }
  98. static struct nfs_page *nfs_page_find_request_locked(struct page *page)
  99. {
  100. struct nfs_page *req = NULL;
  101. if (PagePrivate(page)) {
  102. req = (struct nfs_page *)page_private(page);
  103. if (req != NULL)
  104. kref_get(&req->wb_kref);
  105. }
  106. return req;
  107. }
  108. static struct nfs_page *nfs_page_find_request(struct page *page)
  109. {
  110. struct inode *inode = page->mapping->host;
  111. struct nfs_page *req = NULL;
  112. spin_lock(&inode->i_lock);
  113. req = nfs_page_find_request_locked(page);
  114. spin_unlock(&inode->i_lock);
  115. return req;
  116. }
  117. /* Adjust the file length if we're writing beyond the end */
  118. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  119. {
  120. struct inode *inode = page->mapping->host;
  121. loff_t end, i_size;
  122. pgoff_t end_index;
  123. spin_lock(&inode->i_lock);
  124. i_size = i_size_read(inode);
  125. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  126. if (i_size > 0 && page->index < end_index)
  127. goto out;
  128. end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
  129. if (i_size >= end)
  130. goto out;
  131. i_size_write(inode, end);
  132. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  133. out:
  134. spin_unlock(&inode->i_lock);
  135. }
  136. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  137. static void nfs_set_pageerror(struct page *page)
  138. {
  139. SetPageError(page);
  140. nfs_zap_mapping(page->mapping->host, page->mapping);
  141. }
  142. /* We can set the PG_uptodate flag if we see that a write request
  143. * covers the full page.
  144. */
  145. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  146. {
  147. if (PageUptodate(page))
  148. return;
  149. if (base != 0)
  150. return;
  151. if (count != nfs_page_length(page))
  152. return;
  153. SetPageUptodate(page);
  154. }
  155. static int wb_priority(struct writeback_control *wbc)
  156. {
  157. if (wbc->for_reclaim)
  158. return FLUSH_HIGHPRI | FLUSH_STABLE;
  159. if (wbc->for_kupdate || wbc->for_background)
  160. return FLUSH_LOWPRI | FLUSH_COND_STABLE;
  161. return FLUSH_COND_STABLE;
  162. }
  163. /*
  164. * NFS congestion control
  165. */
  166. int nfs_congestion_kb;
  167. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  168. #define NFS_CONGESTION_OFF_THRESH \
  169. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  170. static int nfs_set_page_writeback(struct page *page)
  171. {
  172. int ret = test_set_page_writeback(page);
  173. if (!ret) {
  174. struct inode *inode = page->mapping->host;
  175. struct nfs_server *nfss = NFS_SERVER(inode);
  176. page_cache_get(page);
  177. if (atomic_long_inc_return(&nfss->writeback) >
  178. NFS_CONGESTION_ON_THRESH) {
  179. set_bdi_congested(&nfss->backing_dev_info,
  180. BLK_RW_ASYNC);
  181. }
  182. }
  183. return ret;
  184. }
  185. static void nfs_end_page_writeback(struct page *page)
  186. {
  187. struct inode *inode = page->mapping->host;
  188. struct nfs_server *nfss = NFS_SERVER(inode);
  189. end_page_writeback(page);
  190. page_cache_release(page);
  191. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  192. clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
  193. }
  194. static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
  195. {
  196. struct inode *inode = page->mapping->host;
  197. struct nfs_page *req;
  198. int ret;
  199. spin_lock(&inode->i_lock);
  200. for (;;) {
  201. req = nfs_page_find_request_locked(page);
  202. if (req == NULL)
  203. break;
  204. if (nfs_lock_request_dontget(req))
  205. break;
  206. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  207. * then the call to nfs_lock_request_dontget() will always
  208. * succeed provided that someone hasn't already marked the
  209. * request as dirty (in which case we don't care).
  210. */
  211. spin_unlock(&inode->i_lock);
  212. if (!nonblock)
  213. ret = nfs_wait_on_request(req);
  214. else
  215. ret = -EAGAIN;
  216. nfs_release_request(req);
  217. if (ret != 0)
  218. return ERR_PTR(ret);
  219. spin_lock(&inode->i_lock);
  220. }
  221. spin_unlock(&inode->i_lock);
  222. return req;
  223. }
  224. /*
  225. * Find an associated nfs write request, and prepare to flush it out
  226. * May return an error if the user signalled nfs_wait_on_request().
  227. */
  228. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  229. struct page *page, bool nonblock)
  230. {
  231. struct nfs_page *req;
  232. int ret = 0;
  233. req = nfs_find_and_lock_request(page, nonblock);
  234. if (!req)
  235. goto out;
  236. ret = PTR_ERR(req);
  237. if (IS_ERR(req))
  238. goto out;
  239. ret = nfs_set_page_writeback(page);
  240. BUG_ON(ret != 0);
  241. BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
  242. if (!nfs_pageio_add_request(pgio, req)) {
  243. nfs_redirty_request(req);
  244. ret = pgio->pg_error;
  245. }
  246. out:
  247. return ret;
  248. }
  249. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  250. {
  251. struct inode *inode = page->mapping->host;
  252. int ret;
  253. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  254. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  255. nfs_pageio_cond_complete(pgio, page->index);
  256. ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
  257. if (ret == -EAGAIN) {
  258. redirty_page_for_writepage(wbc, page);
  259. ret = 0;
  260. }
  261. return ret;
  262. }
  263. /*
  264. * Write an mmapped page to the server.
  265. */
  266. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  267. {
  268. struct nfs_pageio_descriptor pgio;
  269. int err;
  270. nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
  271. err = nfs_do_writepage(page, wbc, &pgio);
  272. nfs_pageio_complete(&pgio);
  273. if (err < 0)
  274. return err;
  275. if (pgio.pg_error < 0)
  276. return pgio.pg_error;
  277. return 0;
  278. }
  279. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  280. {
  281. int ret;
  282. ret = nfs_writepage_locked(page, wbc);
  283. unlock_page(page);
  284. return ret;
  285. }
  286. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  287. {
  288. int ret;
  289. ret = nfs_do_writepage(page, wbc, data);
  290. unlock_page(page);
  291. return ret;
  292. }
  293. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  294. {
  295. struct inode *inode = mapping->host;
  296. unsigned long *bitlock = &NFS_I(inode)->flags;
  297. struct nfs_pageio_descriptor pgio;
  298. int err;
  299. /* Stop dirtying of new pages while we sync */
  300. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  301. nfs_wait_bit_killable, TASK_KILLABLE);
  302. if (err)
  303. goto out_err;
  304. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  305. nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
  306. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  307. nfs_pageio_complete(&pgio);
  308. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  309. smp_mb__after_clear_bit();
  310. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  311. if (err < 0)
  312. goto out_err;
  313. err = pgio.pg_error;
  314. if (err < 0)
  315. goto out_err;
  316. return 0;
  317. out_err:
  318. return err;
  319. }
  320. /*
  321. * Insert a write request into an inode
  322. */
  323. static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  324. {
  325. struct nfs_inode *nfsi = NFS_I(inode);
  326. int error;
  327. error = radix_tree_preload(GFP_NOFS);
  328. if (error != 0)
  329. goto out;
  330. /* Lock the request! */
  331. nfs_lock_request_dontget(req);
  332. spin_lock(&inode->i_lock);
  333. error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
  334. BUG_ON(error);
  335. if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
  336. inode->i_version++;
  337. set_bit(PG_MAPPED, &req->wb_flags);
  338. SetPagePrivate(req->wb_page);
  339. set_page_private(req->wb_page, (unsigned long)req);
  340. nfsi->npages++;
  341. kref_get(&req->wb_kref);
  342. spin_unlock(&inode->i_lock);
  343. radix_tree_preload_end();
  344. out:
  345. return error;
  346. }
  347. /*
  348. * Remove a write request from an inode
  349. */
  350. static void nfs_inode_remove_request(struct nfs_page *req)
  351. {
  352. struct inode *inode = req->wb_context->dentry->d_inode;
  353. struct nfs_inode *nfsi = NFS_I(inode);
  354. BUG_ON (!NFS_WBACK_BUSY(req));
  355. spin_lock(&inode->i_lock);
  356. set_page_private(req->wb_page, 0);
  357. ClearPagePrivate(req->wb_page);
  358. clear_bit(PG_MAPPED, &req->wb_flags);
  359. radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
  360. nfsi->npages--;
  361. spin_unlock(&inode->i_lock);
  362. nfs_release_request(req);
  363. }
  364. static void
  365. nfs_mark_request_dirty(struct nfs_page *req)
  366. {
  367. __set_page_dirty_nobuffers(req->wb_page);
  368. }
  369. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  370. /*
  371. * Add a request to the inode's commit list.
  372. */
  373. static void
  374. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  375. {
  376. struct inode *inode = req->wb_context->dentry->d_inode;
  377. struct nfs_inode *nfsi = NFS_I(inode);
  378. spin_lock(&inode->i_lock);
  379. set_bit(PG_CLEAN, &(req)->wb_flags);
  380. radix_tree_tag_set(&nfsi->nfs_page_tree,
  381. req->wb_index,
  382. NFS_PAGE_TAG_COMMIT);
  383. nfsi->ncommit++;
  384. spin_unlock(&inode->i_lock);
  385. pnfs_mark_request_commit(req, lseg);
  386. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  387. inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  388. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  389. }
  390. static int
  391. nfs_clear_request_commit(struct nfs_page *req)
  392. {
  393. struct page *page = req->wb_page;
  394. if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
  395. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  396. dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  397. return 1;
  398. }
  399. return 0;
  400. }
  401. static inline
  402. int nfs_write_need_commit(struct nfs_write_data *data)
  403. {
  404. if (data->verf.committed == NFS_DATA_SYNC)
  405. return data->lseg == NULL;
  406. else
  407. return data->verf.committed != NFS_FILE_SYNC;
  408. }
  409. static inline
  410. int nfs_reschedule_unstable_write(struct nfs_page *req,
  411. struct nfs_write_data *data)
  412. {
  413. if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  414. nfs_mark_request_commit(req, data->lseg);
  415. return 1;
  416. }
  417. if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  418. nfs_mark_request_dirty(req);
  419. return 1;
  420. }
  421. return 0;
  422. }
  423. #else
  424. static inline void
  425. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  426. {
  427. }
  428. static inline int
  429. nfs_clear_request_commit(struct nfs_page *req)
  430. {
  431. return 0;
  432. }
  433. static inline
  434. int nfs_write_need_commit(struct nfs_write_data *data)
  435. {
  436. return 0;
  437. }
  438. static inline
  439. int nfs_reschedule_unstable_write(struct nfs_page *req,
  440. struct nfs_write_data *data)
  441. {
  442. return 0;
  443. }
  444. #endif
  445. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  446. static int
  447. nfs_need_commit(struct nfs_inode *nfsi)
  448. {
  449. return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
  450. }
  451. /*
  452. * nfs_scan_commit - Scan an inode for commit requests
  453. * @inode: NFS inode to scan
  454. * @dst: destination list
  455. * @idx_start: lower bound of page->index to scan.
  456. * @npages: idx_start + npages sets the upper bound to scan.
  457. *
  458. * Moves requests from the inode's 'commit' request list.
  459. * The requests are *not* checked to ensure that they form a contiguous set.
  460. */
  461. static int
  462. nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  463. {
  464. struct nfs_inode *nfsi = NFS_I(inode);
  465. int ret;
  466. if (!nfs_need_commit(nfsi))
  467. return 0;
  468. spin_lock(&inode->i_lock);
  469. ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
  470. if (ret > 0)
  471. nfsi->ncommit -= ret;
  472. spin_unlock(&inode->i_lock);
  473. if (nfs_need_commit(NFS_I(inode)))
  474. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  475. return ret;
  476. }
  477. #else
  478. static inline int nfs_need_commit(struct nfs_inode *nfsi)
  479. {
  480. return 0;
  481. }
  482. static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  483. {
  484. return 0;
  485. }
  486. #endif
  487. /*
  488. * Search for an existing write request, and attempt to update
  489. * it to reflect a new dirty region on a given page.
  490. *
  491. * If the attempt fails, then the existing request is flushed out
  492. * to disk.
  493. */
  494. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  495. struct page *page,
  496. unsigned int offset,
  497. unsigned int bytes)
  498. {
  499. struct nfs_page *req;
  500. unsigned int rqend;
  501. unsigned int end;
  502. int error;
  503. if (!PagePrivate(page))
  504. return NULL;
  505. end = offset + bytes;
  506. spin_lock(&inode->i_lock);
  507. for (;;) {
  508. req = nfs_page_find_request_locked(page);
  509. if (req == NULL)
  510. goto out_unlock;
  511. rqend = req->wb_offset + req->wb_bytes;
  512. /*
  513. * Tell the caller to flush out the request if
  514. * the offsets are non-contiguous.
  515. * Note: nfs_flush_incompatible() will already
  516. * have flushed out requests having wrong owners.
  517. */
  518. if (offset > rqend
  519. || end < req->wb_offset)
  520. goto out_flushme;
  521. if (nfs_lock_request_dontget(req))
  522. break;
  523. /* The request is locked, so wait and then retry */
  524. spin_unlock(&inode->i_lock);
  525. error = nfs_wait_on_request(req);
  526. nfs_release_request(req);
  527. if (error != 0)
  528. goto out_err;
  529. spin_lock(&inode->i_lock);
  530. }
  531. if (nfs_clear_request_commit(req) &&
  532. radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
  533. req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
  534. NFS_I(inode)->ncommit--;
  535. pnfs_clear_request_commit(req);
  536. }
  537. /* Okay, the request matches. Update the region */
  538. if (offset < req->wb_offset) {
  539. req->wb_offset = offset;
  540. req->wb_pgbase = offset;
  541. }
  542. if (end > rqend)
  543. req->wb_bytes = end - req->wb_offset;
  544. else
  545. req->wb_bytes = rqend - req->wb_offset;
  546. out_unlock:
  547. spin_unlock(&inode->i_lock);
  548. return req;
  549. out_flushme:
  550. spin_unlock(&inode->i_lock);
  551. nfs_release_request(req);
  552. error = nfs_wb_page(inode, page);
  553. out_err:
  554. return ERR_PTR(error);
  555. }
  556. /*
  557. * Try to update an existing write request, or create one if there is none.
  558. *
  559. * Note: Should always be called with the Page Lock held to prevent races
  560. * if we have to add a new request. Also assumes that the caller has
  561. * already called nfs_flush_incompatible() if necessary.
  562. */
  563. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  564. struct page *page, unsigned int offset, unsigned int bytes)
  565. {
  566. struct inode *inode = page->mapping->host;
  567. struct nfs_page *req;
  568. int error;
  569. req = nfs_try_to_update_request(inode, page, offset, bytes);
  570. if (req != NULL)
  571. goto out;
  572. req = nfs_create_request(ctx, inode, page, offset, bytes);
  573. if (IS_ERR(req))
  574. goto out;
  575. error = nfs_inode_add_request(inode, req);
  576. if (error != 0) {
  577. nfs_release_request(req);
  578. req = ERR_PTR(error);
  579. }
  580. out:
  581. return req;
  582. }
  583. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  584. unsigned int offset, unsigned int count)
  585. {
  586. struct nfs_page *req;
  587. req = nfs_setup_write_request(ctx, page, offset, count);
  588. if (IS_ERR(req))
  589. return PTR_ERR(req);
  590. /* Update file length */
  591. nfs_grow_file(page, offset, count);
  592. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  593. nfs_mark_request_dirty(req);
  594. nfs_unlock_request(req);
  595. return 0;
  596. }
  597. int nfs_flush_incompatible(struct file *file, struct page *page)
  598. {
  599. struct nfs_open_context *ctx = nfs_file_open_context(file);
  600. struct nfs_page *req;
  601. int do_flush, status;
  602. /*
  603. * Look for a request corresponding to this page. If there
  604. * is one, and it belongs to another file, we flush it out
  605. * before we try to copy anything into the page. Do this
  606. * due to the lack of an ACCESS-type call in NFSv2.
  607. * Also do the same if we find a request from an existing
  608. * dropped page.
  609. */
  610. do {
  611. req = nfs_page_find_request(page);
  612. if (req == NULL)
  613. return 0;
  614. do_flush = req->wb_page != page || req->wb_context != ctx ||
  615. req->wb_lock_context->lockowner != current->files ||
  616. req->wb_lock_context->pid != current->tgid;
  617. nfs_release_request(req);
  618. if (!do_flush)
  619. return 0;
  620. status = nfs_wb_page(page->mapping->host, page);
  621. } while (status == 0);
  622. return status;
  623. }
  624. /*
  625. * If the page cache is marked as unsafe or invalid, then we can't rely on
  626. * the PageUptodate() flag. In this case, we will need to turn off
  627. * write optimisations that depend on the page contents being correct.
  628. */
  629. static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
  630. {
  631. return PageUptodate(page) &&
  632. !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
  633. }
  634. /*
  635. * Update and possibly write a cached page of an NFS file.
  636. *
  637. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  638. * things with a page scheduled for an RPC call (e.g. invalidate it).
  639. */
  640. int nfs_updatepage(struct file *file, struct page *page,
  641. unsigned int offset, unsigned int count)
  642. {
  643. struct nfs_open_context *ctx = nfs_file_open_context(file);
  644. struct inode *inode = page->mapping->host;
  645. int status = 0;
  646. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  647. dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
  648. file->f_path.dentry->d_parent->d_name.name,
  649. file->f_path.dentry->d_name.name, count,
  650. (long long)(page_offset(page) + offset));
  651. /* If we're not using byte range locks, and we know the page
  652. * is up to date, it may be more efficient to extend the write
  653. * to cover the entire page in order to avoid fragmentation
  654. * inefficiencies.
  655. */
  656. if (nfs_write_pageuptodate(page, inode) &&
  657. inode->i_flock == NULL &&
  658. !(file->f_flags & O_DSYNC)) {
  659. count = max(count + offset, nfs_page_length(page));
  660. offset = 0;
  661. }
  662. status = nfs_writepage_setup(ctx, page, offset, count);
  663. if (status < 0)
  664. nfs_set_pageerror(page);
  665. else
  666. __set_page_dirty_nobuffers(page);
  667. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  668. status, (long long)i_size_read(inode));
  669. return status;
  670. }
  671. static void nfs_writepage_release(struct nfs_page *req,
  672. struct nfs_write_data *data)
  673. {
  674. struct page *page = req->wb_page;
  675. if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
  676. nfs_inode_remove_request(req);
  677. nfs_unlock_request(req);
  678. nfs_end_page_writeback(page);
  679. }
  680. static int flush_task_priority(int how)
  681. {
  682. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  683. case FLUSH_HIGHPRI:
  684. return RPC_PRIORITY_HIGH;
  685. case FLUSH_LOWPRI:
  686. return RPC_PRIORITY_LOW;
  687. }
  688. return RPC_PRIORITY_NORMAL;
  689. }
  690. int nfs_initiate_write(struct nfs_write_data *data,
  691. struct rpc_clnt *clnt,
  692. const struct rpc_call_ops *call_ops,
  693. int how)
  694. {
  695. struct inode *inode = data->inode;
  696. int priority = flush_task_priority(how);
  697. struct rpc_task *task;
  698. struct rpc_message msg = {
  699. .rpc_argp = &data->args,
  700. .rpc_resp = &data->res,
  701. .rpc_cred = data->cred,
  702. };
  703. struct rpc_task_setup task_setup_data = {
  704. .rpc_client = clnt,
  705. .task = &data->task,
  706. .rpc_message = &msg,
  707. .callback_ops = call_ops,
  708. .callback_data = data,
  709. .workqueue = nfsiod_workqueue,
  710. .flags = RPC_TASK_ASYNC,
  711. .priority = priority,
  712. };
  713. int ret = 0;
  714. /* Set up the initial task struct. */
  715. NFS_PROTO(inode)->write_setup(data, &msg);
  716. dprintk("NFS: %5u initiated write call "
  717. "(req %s/%lld, %u bytes @ offset %llu)\n",
  718. data->task.tk_pid,
  719. inode->i_sb->s_id,
  720. (long long)NFS_FILEID(inode),
  721. data->args.count,
  722. (unsigned long long)data->args.offset);
  723. task = rpc_run_task(&task_setup_data);
  724. if (IS_ERR(task)) {
  725. ret = PTR_ERR(task);
  726. goto out;
  727. }
  728. if (how & FLUSH_SYNC) {
  729. ret = rpc_wait_for_completion_task(task);
  730. if (ret == 0)
  731. ret = task->tk_status;
  732. }
  733. rpc_put_task(task);
  734. out:
  735. return ret;
  736. }
  737. EXPORT_SYMBOL_GPL(nfs_initiate_write);
  738. /*
  739. * Set up the argument/result storage required for the RPC call.
  740. */
  741. static void nfs_write_rpcsetup(struct nfs_page *req,
  742. struct nfs_write_data *data,
  743. unsigned int count, unsigned int offset,
  744. int how)
  745. {
  746. struct inode *inode = req->wb_context->dentry->d_inode;
  747. /* Set up the RPC argument and reply structs
  748. * NB: take care not to mess about with data->commit et al. */
  749. data->req = req;
  750. data->inode = inode = req->wb_context->dentry->d_inode;
  751. data->cred = req->wb_context->cred;
  752. data->args.fh = NFS_FH(inode);
  753. data->args.offset = req_offset(req) + offset;
  754. /* pnfs_set_layoutcommit needs this */
  755. data->mds_offset = data->args.offset;
  756. data->args.pgbase = req->wb_pgbase + offset;
  757. data->args.pages = data->pagevec;
  758. data->args.count = count;
  759. data->args.context = get_nfs_open_context(req->wb_context);
  760. data->args.lock_context = req->wb_lock_context;
  761. data->args.stable = NFS_UNSTABLE;
  762. switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
  763. case 0:
  764. break;
  765. case FLUSH_COND_STABLE:
  766. if (nfs_need_commit(NFS_I(inode)))
  767. break;
  768. default:
  769. data->args.stable = NFS_FILE_SYNC;
  770. }
  771. data->res.fattr = &data->fattr;
  772. data->res.count = count;
  773. data->res.verf = &data->verf;
  774. nfs_fattr_init(&data->fattr);
  775. }
  776. static int nfs_do_write(struct nfs_write_data *data,
  777. const struct rpc_call_ops *call_ops,
  778. int how)
  779. {
  780. struct inode *inode = data->args.context->dentry->d_inode;
  781. return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
  782. }
  783. static int nfs_do_multiple_writes(struct list_head *head,
  784. const struct rpc_call_ops *call_ops,
  785. int how)
  786. {
  787. struct nfs_write_data *data;
  788. int ret = 0;
  789. while (!list_empty(head)) {
  790. int ret2;
  791. data = list_entry(head->next, struct nfs_write_data, list);
  792. list_del_init(&data->list);
  793. ret2 = nfs_do_write(data, call_ops, how);
  794. if (ret == 0)
  795. ret = ret2;
  796. }
  797. return ret;
  798. }
  799. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  800. * call this on each, which will prepare them to be retried on next
  801. * writeback using standard nfs.
  802. */
  803. static void nfs_redirty_request(struct nfs_page *req)
  804. {
  805. struct page *page = req->wb_page;
  806. nfs_mark_request_dirty(req);
  807. nfs_unlock_request(req);
  808. nfs_end_page_writeback(page);
  809. }
  810. /*
  811. * Generate multiple small requests to write out a single
  812. * contiguous dirty area on one page.
  813. */
  814. static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
  815. {
  816. struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
  817. struct page *page = req->wb_page;
  818. struct nfs_write_data *data;
  819. size_t wsize = desc->pg_bsize, nbytes;
  820. unsigned int offset;
  821. int requests = 0;
  822. int ret = 0;
  823. nfs_list_remove_request(req);
  824. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  825. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
  826. desc->pg_count > wsize))
  827. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  828. offset = 0;
  829. nbytes = desc->pg_count;
  830. do {
  831. size_t len = min(nbytes, wsize);
  832. data = nfs_writedata_alloc(1);
  833. if (!data)
  834. goto out_bad;
  835. data->pagevec[0] = page;
  836. nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags);
  837. list_add(&data->list, res);
  838. requests++;
  839. nbytes -= len;
  840. offset += len;
  841. } while (nbytes != 0);
  842. atomic_set(&req->wb_complete, requests);
  843. desc->pg_rpc_callops = &nfs_write_partial_ops;
  844. return ret;
  845. out_bad:
  846. while (!list_empty(res)) {
  847. data = list_entry(res->next, struct nfs_write_data, list);
  848. list_del(&data->list);
  849. nfs_writedata_free(data);
  850. }
  851. nfs_redirty_request(req);
  852. return -ENOMEM;
  853. }
  854. /*
  855. * Create an RPC task for the given write request and kick it.
  856. * The page must have been locked by the caller.
  857. *
  858. * It may happen that the page we're passed is not marked dirty.
  859. * This is the case if nfs_updatepage detects a conflicting request
  860. * that has been written but not committed.
  861. */
  862. static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
  863. {
  864. struct nfs_page *req;
  865. struct page **pages;
  866. struct nfs_write_data *data;
  867. struct list_head *head = &desc->pg_list;
  868. int ret = 0;
  869. data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
  870. desc->pg_count));
  871. if (!data) {
  872. while (!list_empty(head)) {
  873. req = nfs_list_entry(head->next);
  874. nfs_list_remove_request(req);
  875. nfs_redirty_request(req);
  876. }
  877. ret = -ENOMEM;
  878. goto out;
  879. }
  880. pages = data->pagevec;
  881. while (!list_empty(head)) {
  882. req = nfs_list_entry(head->next);
  883. nfs_list_remove_request(req);
  884. nfs_list_add_request(req, &data->pages);
  885. *pages++ = req->wb_page;
  886. }
  887. req = nfs_list_entry(data->pages.next);
  888. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  889. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
  890. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  891. /* Set up the argument struct */
  892. nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
  893. list_add(&data->list, res);
  894. desc->pg_rpc_callops = &nfs_write_full_ops;
  895. out:
  896. return ret;
  897. }
  898. int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head)
  899. {
  900. if (desc->pg_bsize < PAGE_CACHE_SIZE)
  901. return nfs_flush_multi(desc, head);
  902. return nfs_flush_one(desc, head);
  903. }
  904. static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
  905. {
  906. LIST_HEAD(head);
  907. int ret;
  908. ret = nfs_generic_flush(desc, &head);
  909. if (ret == 0)
  910. ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops,
  911. desc->pg_ioflags);
  912. return ret;
  913. }
  914. static const struct nfs_pageio_ops nfs_pageio_write_ops = {
  915. .pg_test = nfs_generic_pg_test,
  916. .pg_doio = nfs_generic_pg_writepages,
  917. };
  918. void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
  919. struct inode *inode, int ioflags)
  920. {
  921. nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
  922. NFS_SERVER(inode)->wsize, ioflags);
  923. }
  924. void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
  925. {
  926. pgio->pg_ops = &nfs_pageio_write_ops;
  927. pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
  928. }
  929. EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
  930. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  931. struct inode *inode, int ioflags)
  932. {
  933. if (!pnfs_pageio_init_write(pgio, inode, ioflags))
  934. nfs_pageio_init_write_mds(pgio, inode, ioflags);
  935. }
  936. /*
  937. * Handle a write reply that flushed part of a page.
  938. */
  939. static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
  940. {
  941. struct nfs_write_data *data = calldata;
  942. dprintk("NFS: %5u write(%s/%lld %d@%lld)",
  943. task->tk_pid,
  944. data->req->wb_context->dentry->d_inode->i_sb->s_id,
  945. (long long)
  946. NFS_FILEID(data->req->wb_context->dentry->d_inode),
  947. data->req->wb_bytes, (long long)req_offset(data->req));
  948. nfs_writeback_done(task, data);
  949. }
  950. static void nfs_writeback_release_partial(void *calldata)
  951. {
  952. struct nfs_write_data *data = calldata;
  953. struct nfs_page *req = data->req;
  954. struct page *page = req->wb_page;
  955. int status = data->task.tk_status;
  956. if (status < 0) {
  957. nfs_set_pageerror(page);
  958. nfs_context_set_write_error(req->wb_context, status);
  959. dprintk(", error = %d\n", status);
  960. goto out;
  961. }
  962. if (nfs_write_need_commit(data)) {
  963. struct inode *inode = page->mapping->host;
  964. spin_lock(&inode->i_lock);
  965. if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  966. /* Do nothing we need to resend the writes */
  967. } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  968. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  969. dprintk(" defer commit\n");
  970. } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
  971. set_bit(PG_NEED_RESCHED, &req->wb_flags);
  972. clear_bit(PG_NEED_COMMIT, &req->wb_flags);
  973. dprintk(" server reboot detected\n");
  974. }
  975. spin_unlock(&inode->i_lock);
  976. } else
  977. dprintk(" OK\n");
  978. out:
  979. if (atomic_dec_and_test(&req->wb_complete))
  980. nfs_writepage_release(req, data);
  981. nfs_writedata_release(calldata);
  982. }
  983. #if defined(CONFIG_NFS_V4_1)
  984. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  985. {
  986. struct nfs_write_data *data = calldata;
  987. if (nfs4_setup_sequence(NFS_SERVER(data->inode),
  988. &data->args.seq_args,
  989. &data->res.seq_res, task))
  990. return;
  991. rpc_call_start(task);
  992. }
  993. #endif /* CONFIG_NFS_V4_1 */
  994. static const struct rpc_call_ops nfs_write_partial_ops = {
  995. #if defined(CONFIG_NFS_V4_1)
  996. .rpc_call_prepare = nfs_write_prepare,
  997. #endif /* CONFIG_NFS_V4_1 */
  998. .rpc_call_done = nfs_writeback_done_partial,
  999. .rpc_release = nfs_writeback_release_partial,
  1000. };
  1001. /*
  1002. * Handle a write reply that flushes a whole page.
  1003. *
  1004. * FIXME: There is an inherent race with invalidate_inode_pages and
  1005. * writebacks since the page->count is kept > 1 for as long
  1006. * as the page has a write request pending.
  1007. */
  1008. static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
  1009. {
  1010. struct nfs_write_data *data = calldata;
  1011. nfs_writeback_done(task, data);
  1012. }
  1013. static void nfs_writeback_release_full(void *calldata)
  1014. {
  1015. struct nfs_write_data *data = calldata;
  1016. int status = data->task.tk_status;
  1017. /* Update attributes as result of writeback. */
  1018. while (!list_empty(&data->pages)) {
  1019. struct nfs_page *req = nfs_list_entry(data->pages.next);
  1020. struct page *page = req->wb_page;
  1021. nfs_list_remove_request(req);
  1022. dprintk("NFS: %5u write (%s/%lld %d@%lld)",
  1023. data->task.tk_pid,
  1024. req->wb_context->dentry->d_inode->i_sb->s_id,
  1025. (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  1026. req->wb_bytes,
  1027. (long long)req_offset(req));
  1028. if (status < 0) {
  1029. nfs_set_pageerror(page);
  1030. nfs_context_set_write_error(req->wb_context, status);
  1031. dprintk(", error = %d\n", status);
  1032. goto remove_request;
  1033. }
  1034. if (nfs_write_need_commit(data)) {
  1035. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  1036. nfs_mark_request_commit(req, data->lseg);
  1037. dprintk(" marked for commit\n");
  1038. goto next;
  1039. }
  1040. dprintk(" OK\n");
  1041. remove_request:
  1042. nfs_inode_remove_request(req);
  1043. next:
  1044. nfs_unlock_request(req);
  1045. nfs_end_page_writeback(page);
  1046. }
  1047. nfs_writedata_release(calldata);
  1048. }
  1049. static const struct rpc_call_ops nfs_write_full_ops = {
  1050. #if defined(CONFIG_NFS_V4_1)
  1051. .rpc_call_prepare = nfs_write_prepare,
  1052. #endif /* CONFIG_NFS_V4_1 */
  1053. .rpc_call_done = nfs_writeback_done_full,
  1054. .rpc_release = nfs_writeback_release_full,
  1055. };
  1056. /*
  1057. * This function is called when the WRITE call is complete.
  1058. */
  1059. void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  1060. {
  1061. struct nfs_writeargs *argp = &data->args;
  1062. struct nfs_writeres *resp = &data->res;
  1063. int status;
  1064. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1065. task->tk_pid, task->tk_status);
  1066. /*
  1067. * ->write_done will attempt to use post-op attributes to detect
  1068. * conflicting writes by other clients. A strict interpretation
  1069. * of close-to-open would allow us to continue caching even if
  1070. * another writer had changed the file, but some applications
  1071. * depend on tighter cache coherency when writing.
  1072. */
  1073. status = NFS_PROTO(data->inode)->write_done(task, data);
  1074. if (status != 0)
  1075. return;
  1076. nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1077. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1078. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1079. /* We tried a write call, but the server did not
  1080. * commit data to stable storage even though we
  1081. * requested it.
  1082. * Note: There is a known bug in Tru64 < 5.0 in which
  1083. * the server reports NFS_DATA_SYNC, but performs
  1084. * NFS_FILE_SYNC. We therefore implement this checking
  1085. * as a dprintk() in order to avoid filling syslog.
  1086. */
  1087. static unsigned long complain;
  1088. /* Note this will print the MDS for a DS write */
  1089. if (time_before(complain, jiffies)) {
  1090. dprintk("NFS: faulty NFS server %s:"
  1091. " (committed = %d) != (stable = %d)\n",
  1092. NFS_SERVER(data->inode)->nfs_client->cl_hostname,
  1093. resp->verf->committed, argp->stable);
  1094. complain = jiffies + 300 * HZ;
  1095. }
  1096. }
  1097. #endif
  1098. /* Is this a short write? */
  1099. if (task->tk_status >= 0 && resp->count < argp->count) {
  1100. static unsigned long complain;
  1101. nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
  1102. /* Has the server at least made some progress? */
  1103. if (resp->count != 0) {
  1104. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1105. if (resp->verf->committed != NFS_UNSTABLE) {
  1106. /* Resend from where the server left off */
  1107. data->mds_offset += resp->count;
  1108. argp->offset += resp->count;
  1109. argp->pgbase += resp->count;
  1110. argp->count -= resp->count;
  1111. } else {
  1112. /* Resend as a stable write in order to avoid
  1113. * headaches in the case of a server crash.
  1114. */
  1115. argp->stable = NFS_FILE_SYNC;
  1116. }
  1117. rpc_restart_call_prepare(task);
  1118. return;
  1119. }
  1120. if (time_before(complain, jiffies)) {
  1121. printk(KERN_WARNING
  1122. "NFS: Server wrote zero bytes, expected %u.\n",
  1123. argp->count);
  1124. complain = jiffies + 300 * HZ;
  1125. }
  1126. /* Can't do anything about it except throw an error. */
  1127. task->tk_status = -EIO;
  1128. }
  1129. return;
  1130. }
  1131. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1132. static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
  1133. {
  1134. int ret;
  1135. if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
  1136. return 1;
  1137. if (!may_wait)
  1138. return 0;
  1139. ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
  1140. NFS_INO_COMMIT,
  1141. nfs_wait_bit_killable,
  1142. TASK_KILLABLE);
  1143. return (ret < 0) ? ret : 1;
  1144. }
  1145. void nfs_commit_clear_lock(struct nfs_inode *nfsi)
  1146. {
  1147. clear_bit(NFS_INO_COMMIT, &nfsi->flags);
  1148. smp_mb__after_clear_bit();
  1149. wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
  1150. }
  1151. EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
  1152. void nfs_commitdata_release(void *data)
  1153. {
  1154. struct nfs_write_data *wdata = data;
  1155. put_lseg(wdata->lseg);
  1156. put_nfs_open_context(wdata->args.context);
  1157. nfs_commit_free(wdata);
  1158. }
  1159. EXPORT_SYMBOL_GPL(nfs_commitdata_release);
  1160. int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
  1161. const struct rpc_call_ops *call_ops,
  1162. int how)
  1163. {
  1164. struct rpc_task *task;
  1165. int priority = flush_task_priority(how);
  1166. struct rpc_message msg = {
  1167. .rpc_argp = &data->args,
  1168. .rpc_resp = &data->res,
  1169. .rpc_cred = data->cred,
  1170. };
  1171. struct rpc_task_setup task_setup_data = {
  1172. .task = &data->task,
  1173. .rpc_client = clnt,
  1174. .rpc_message = &msg,
  1175. .callback_ops = call_ops,
  1176. .callback_data = data,
  1177. .workqueue = nfsiod_workqueue,
  1178. .flags = RPC_TASK_ASYNC,
  1179. .priority = priority,
  1180. };
  1181. /* Set up the initial task struct. */
  1182. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  1183. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1184. task = rpc_run_task(&task_setup_data);
  1185. if (IS_ERR(task))
  1186. return PTR_ERR(task);
  1187. if (how & FLUSH_SYNC)
  1188. rpc_wait_for_completion_task(task);
  1189. rpc_put_task(task);
  1190. return 0;
  1191. }
  1192. EXPORT_SYMBOL_GPL(nfs_initiate_commit);
  1193. /*
  1194. * Set up the argument/result storage required for the RPC call.
  1195. */
  1196. void nfs_init_commit(struct nfs_write_data *data,
  1197. struct list_head *head,
  1198. struct pnfs_layout_segment *lseg)
  1199. {
  1200. struct nfs_page *first = nfs_list_entry(head->next);
  1201. struct inode *inode = first->wb_context->dentry->d_inode;
  1202. /* Set up the RPC argument and reply structs
  1203. * NB: take care not to mess about with data->commit et al. */
  1204. list_splice_init(head, &data->pages);
  1205. data->inode = inode;
  1206. data->cred = first->wb_context->cred;
  1207. data->lseg = lseg; /* reference transferred */
  1208. data->mds_ops = &nfs_commit_ops;
  1209. data->args.fh = NFS_FH(data->inode);
  1210. /* Note: we always request a commit of the entire inode */
  1211. data->args.offset = 0;
  1212. data->args.count = 0;
  1213. data->args.context = get_nfs_open_context(first->wb_context);
  1214. data->res.count = 0;
  1215. data->res.fattr = &data->fattr;
  1216. data->res.verf = &data->verf;
  1217. nfs_fattr_init(&data->fattr);
  1218. }
  1219. EXPORT_SYMBOL_GPL(nfs_init_commit);
  1220. void nfs_retry_commit(struct list_head *page_list,
  1221. struct pnfs_layout_segment *lseg)
  1222. {
  1223. struct nfs_page *req;
  1224. while (!list_empty(page_list)) {
  1225. req = nfs_list_entry(page_list->next);
  1226. nfs_list_remove_request(req);
  1227. nfs_mark_request_commit(req, lseg);
  1228. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1229. dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
  1230. BDI_RECLAIMABLE);
  1231. nfs_unlock_request(req);
  1232. }
  1233. }
  1234. EXPORT_SYMBOL_GPL(nfs_retry_commit);
  1235. /*
  1236. * Commit dirty pages
  1237. */
  1238. static int
  1239. nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1240. {
  1241. struct nfs_write_data *data;
  1242. data = nfs_commitdata_alloc();
  1243. if (!data)
  1244. goto out_bad;
  1245. /* Set up the argument struct */
  1246. nfs_init_commit(data, head, NULL);
  1247. return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
  1248. out_bad:
  1249. nfs_retry_commit(head, NULL);
  1250. nfs_commit_clear_lock(NFS_I(inode));
  1251. return -ENOMEM;
  1252. }
  1253. /*
  1254. * COMMIT call returned
  1255. */
  1256. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1257. {
  1258. struct nfs_write_data *data = calldata;
  1259. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1260. task->tk_pid, task->tk_status);
  1261. /* Call the NFS version-specific code */
  1262. NFS_PROTO(data->inode)->commit_done(task, data);
  1263. }
  1264. void nfs_commit_release_pages(struct nfs_write_data *data)
  1265. {
  1266. struct nfs_page *req;
  1267. int status = data->task.tk_status;
  1268. while (!list_empty(&data->pages)) {
  1269. req = nfs_list_entry(data->pages.next);
  1270. nfs_list_remove_request(req);
  1271. nfs_clear_request_commit(req);
  1272. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1273. req->wb_context->dentry->d_sb->s_id,
  1274. (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  1275. req->wb_bytes,
  1276. (long long)req_offset(req));
  1277. if (status < 0) {
  1278. nfs_context_set_write_error(req->wb_context, status);
  1279. nfs_inode_remove_request(req);
  1280. dprintk(", error = %d\n", status);
  1281. goto next;
  1282. }
  1283. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1284. * returned by the server against all stored verfs. */
  1285. if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
  1286. /* We have a match */
  1287. nfs_inode_remove_request(req);
  1288. dprintk(" OK\n");
  1289. goto next;
  1290. }
  1291. /* We have a mismatch. Write the page again */
  1292. dprintk(" mismatch\n");
  1293. nfs_mark_request_dirty(req);
  1294. next:
  1295. nfs_unlock_request(req);
  1296. }
  1297. }
  1298. EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
  1299. static void nfs_commit_release(void *calldata)
  1300. {
  1301. struct nfs_write_data *data = calldata;
  1302. nfs_commit_release_pages(data);
  1303. nfs_commit_clear_lock(NFS_I(data->inode));
  1304. nfs_commitdata_release(calldata);
  1305. }
  1306. static const struct rpc_call_ops nfs_commit_ops = {
  1307. #if defined(CONFIG_NFS_V4_1)
  1308. .rpc_call_prepare = nfs_write_prepare,
  1309. #endif /* CONFIG_NFS_V4_1 */
  1310. .rpc_call_done = nfs_commit_done,
  1311. .rpc_release = nfs_commit_release,
  1312. };
  1313. int nfs_commit_inode(struct inode *inode, int how)
  1314. {
  1315. LIST_HEAD(head);
  1316. int may_wait = how & FLUSH_SYNC;
  1317. int res;
  1318. res = nfs_commit_set_lock(NFS_I(inode), may_wait);
  1319. if (res <= 0)
  1320. goto out_mark_dirty;
  1321. res = nfs_scan_commit(inode, &head, 0, 0);
  1322. if (res) {
  1323. int error;
  1324. error = pnfs_commit_list(inode, &head, how);
  1325. if (error == PNFS_NOT_ATTEMPTED)
  1326. error = nfs_commit_list(inode, &head, how);
  1327. if (error < 0)
  1328. return error;
  1329. if (!may_wait)
  1330. goto out_mark_dirty;
  1331. error = wait_on_bit(&NFS_I(inode)->flags,
  1332. NFS_INO_COMMIT,
  1333. nfs_wait_bit_killable,
  1334. TASK_KILLABLE);
  1335. if (error < 0)
  1336. return error;
  1337. } else
  1338. nfs_commit_clear_lock(NFS_I(inode));
  1339. return res;
  1340. /* Note: If we exit without ensuring that the commit is complete,
  1341. * we must mark the inode as dirty. Otherwise, future calls to
  1342. * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
  1343. * that the data is on the disk.
  1344. */
  1345. out_mark_dirty:
  1346. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1347. return res;
  1348. }
  1349. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1350. {
  1351. struct nfs_inode *nfsi = NFS_I(inode);
  1352. int flags = FLUSH_SYNC;
  1353. int ret = 0;
  1354. /* no commits means nothing needs to be done */
  1355. if (!nfsi->ncommit)
  1356. return ret;
  1357. if (wbc->sync_mode == WB_SYNC_NONE) {
  1358. /* Don't commit yet if this is a non-blocking flush and there
  1359. * are a lot of outstanding writes for this mapping.
  1360. */
  1361. if (nfsi->ncommit <= (nfsi->npages >> 1))
  1362. goto out_mark_dirty;
  1363. /* don't wait for the COMMIT response */
  1364. flags = 0;
  1365. }
  1366. ret = nfs_commit_inode(inode, flags);
  1367. if (ret >= 0) {
  1368. if (wbc->sync_mode == WB_SYNC_NONE) {
  1369. if (ret < wbc->nr_to_write)
  1370. wbc->nr_to_write -= ret;
  1371. else
  1372. wbc->nr_to_write = 0;
  1373. }
  1374. return 0;
  1375. }
  1376. out_mark_dirty:
  1377. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1378. return ret;
  1379. }
  1380. #else
  1381. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1382. {
  1383. return 0;
  1384. }
  1385. #endif
  1386. int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  1387. {
  1388. int ret;
  1389. ret = nfs_commit_unstable_pages(inode, wbc);
  1390. if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
  1391. int status;
  1392. bool sync = true;
  1393. if (wbc->sync_mode == WB_SYNC_NONE)
  1394. sync = false;
  1395. status = pnfs_layoutcommit_inode(inode, sync);
  1396. if (status < 0)
  1397. return status;
  1398. }
  1399. return ret;
  1400. }
  1401. /*
  1402. * flush the inode to disk.
  1403. */
  1404. int nfs_wb_all(struct inode *inode)
  1405. {
  1406. struct writeback_control wbc = {
  1407. .sync_mode = WB_SYNC_ALL,
  1408. .nr_to_write = LONG_MAX,
  1409. .range_start = 0,
  1410. .range_end = LLONG_MAX,
  1411. };
  1412. return sync_inode(inode, &wbc);
  1413. }
  1414. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1415. {
  1416. struct nfs_page *req;
  1417. int ret = 0;
  1418. BUG_ON(!PageLocked(page));
  1419. for (;;) {
  1420. wait_on_page_writeback(page);
  1421. req = nfs_page_find_request(page);
  1422. if (req == NULL)
  1423. break;
  1424. if (nfs_lock_request_dontget(req)) {
  1425. nfs_inode_remove_request(req);
  1426. /*
  1427. * In case nfs_inode_remove_request has marked the
  1428. * page as being dirty
  1429. */
  1430. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1431. nfs_unlock_request(req);
  1432. break;
  1433. }
  1434. ret = nfs_wait_on_request(req);
  1435. nfs_release_request(req);
  1436. if (ret < 0)
  1437. break;
  1438. }
  1439. return ret;
  1440. }
  1441. /*
  1442. * Write back all requests on one page - we do this before reading it.
  1443. */
  1444. int nfs_wb_page(struct inode *inode, struct page *page)
  1445. {
  1446. loff_t range_start = page_offset(page);
  1447. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1448. struct writeback_control wbc = {
  1449. .sync_mode = WB_SYNC_ALL,
  1450. .nr_to_write = 0,
  1451. .range_start = range_start,
  1452. .range_end = range_end,
  1453. };
  1454. int ret;
  1455. for (;;) {
  1456. wait_on_page_writeback(page);
  1457. if (clear_page_dirty_for_io(page)) {
  1458. ret = nfs_writepage_locked(page, &wbc);
  1459. if (ret < 0)
  1460. goto out_error;
  1461. continue;
  1462. }
  1463. if (!PagePrivate(page))
  1464. break;
  1465. ret = nfs_commit_inode(inode, FLUSH_SYNC);
  1466. if (ret < 0)
  1467. goto out_error;
  1468. }
  1469. return 0;
  1470. out_error:
  1471. return ret;
  1472. }
  1473. #ifdef CONFIG_MIGRATION
  1474. int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
  1475. struct page *page, enum migrate_mode mode)
  1476. {
  1477. /*
  1478. * If PagePrivate is set, then the page is currently associated with
  1479. * an in-progress read or write request. Don't try to migrate it.
  1480. *
  1481. * FIXME: we could do this in principle, but we'll need a way to ensure
  1482. * that we can safely release the inode reference while holding
  1483. * the page lock.
  1484. */
  1485. if (PagePrivate(page))
  1486. return -EBUSY;
  1487. nfs_fscache_release_page(page, GFP_KERNEL);
  1488. return migrate_page(mapping, newpage, page, mode);
  1489. }
  1490. #endif
  1491. int __init nfs_init_writepagecache(void)
  1492. {
  1493. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1494. sizeof(struct nfs_write_data),
  1495. 0, SLAB_HWCACHE_ALIGN,
  1496. NULL);
  1497. if (nfs_wdata_cachep == NULL)
  1498. return -ENOMEM;
  1499. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1500. nfs_wdata_cachep);
  1501. if (nfs_wdata_mempool == NULL)
  1502. return -ENOMEM;
  1503. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1504. nfs_wdata_cachep);
  1505. if (nfs_commit_mempool == NULL)
  1506. return -ENOMEM;
  1507. /*
  1508. * NFS congestion size, scale with available memory.
  1509. *
  1510. * 64MB: 8192k
  1511. * 128MB: 11585k
  1512. * 256MB: 16384k
  1513. * 512MB: 23170k
  1514. * 1GB: 32768k
  1515. * 2GB: 46340k
  1516. * 4GB: 65536k
  1517. * 8GB: 92681k
  1518. * 16GB: 131072k
  1519. *
  1520. * This allows larger machines to have larger/more transfers.
  1521. * Limit the default to 256M
  1522. */
  1523. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1524. if (nfs_congestion_kb > 256*1024)
  1525. nfs_congestion_kb = 256*1024;
  1526. return 0;
  1527. }
  1528. void nfs_destroy_writepagecache(void)
  1529. {
  1530. mempool_destroy(nfs_commit_mempool);
  1531. mempool_destroy(nfs_wdata_mempool);
  1532. kmem_cache_destroy(nfs_wdata_cachep);
  1533. }