crash_dump.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. /*
  2. * S390 kdump implementation
  3. *
  4. * Copyright IBM Corp. 2011
  5. * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
  6. */
  7. #include <linux/crash_dump.h>
  8. #include <asm/lowcore.h>
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/gfp.h>
  12. #include <linux/slab.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/elf.h>
  15. #include <asm/os_info.h>
  16. #include <asm/elf.h>
  17. #include <asm/ipl.h>
  18. #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
  19. #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
  20. #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
  21. /*
  22. * Return physical address for virtual address
  23. */
  24. static inline void *load_real_addr(void *addr)
  25. {
  26. unsigned long real_addr;
  27. asm volatile(
  28. " lra %0,0(%1)\n"
  29. " jz 0f\n"
  30. " la %0,0\n"
  31. "0:"
  32. : "=a" (real_addr) : "a" (addr) : "cc");
  33. return (void *)real_addr;
  34. }
  35. /*
  36. * Copy up to one page to vmalloc or real memory
  37. */
  38. static ssize_t copy_page_real(void *buf, void *src, size_t csize)
  39. {
  40. size_t size;
  41. if (is_vmalloc_addr(buf)) {
  42. BUG_ON(csize >= PAGE_SIZE);
  43. /* If buf is not page aligned, copy first part */
  44. size = min(roundup(__pa(buf), PAGE_SIZE) - __pa(buf), csize);
  45. if (size) {
  46. if (memcpy_real(load_real_addr(buf), src, size))
  47. return -EFAULT;
  48. buf += size;
  49. src += size;
  50. }
  51. /* Copy second part */
  52. size = csize - size;
  53. return (size) ? memcpy_real(load_real_addr(buf), src, size) : 0;
  54. } else {
  55. return memcpy_real(buf, src, csize);
  56. }
  57. }
  58. /*
  59. * Pointer to ELF header in new kernel
  60. */
  61. static void *elfcorehdr_newmem;
  62. /*
  63. * Copy one page from "oldmem"
  64. *
  65. * For the kdump reserved memory this functions performs a swap operation:
  66. * - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
  67. * - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
  68. */
  69. ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
  70. size_t csize, unsigned long offset, int userbuf)
  71. {
  72. unsigned long src;
  73. int rc;
  74. if (!csize)
  75. return 0;
  76. src = (pfn << PAGE_SHIFT) + offset;
  77. if (src < OLDMEM_SIZE)
  78. src += OLDMEM_BASE;
  79. else if (src > OLDMEM_BASE &&
  80. src < OLDMEM_BASE + OLDMEM_SIZE)
  81. src -= OLDMEM_BASE;
  82. if (userbuf)
  83. rc = copy_to_user_real((void __force __user *) buf,
  84. (void *) src, csize);
  85. else
  86. rc = copy_page_real(buf, (void *) src, csize);
  87. return (rc == 0) ? csize : rc;
  88. }
  89. /*
  90. * Copy memory from old kernel
  91. */
  92. int copy_from_oldmem(void *dest, void *src, size_t count)
  93. {
  94. unsigned long copied = 0;
  95. int rc;
  96. if ((unsigned long) src < OLDMEM_SIZE) {
  97. copied = min(count, OLDMEM_SIZE - (unsigned long) src);
  98. rc = memcpy_real(dest, src + OLDMEM_BASE, copied);
  99. if (rc)
  100. return rc;
  101. }
  102. return memcpy_real(dest + copied, src + copied, count - copied);
  103. }
  104. /*
  105. * Alloc memory and panic in case of ENOMEM
  106. */
  107. static void *kzalloc_panic(int len)
  108. {
  109. void *rc;
  110. rc = kzalloc(len, GFP_KERNEL);
  111. if (!rc)
  112. panic("s390 kdump kzalloc (%d) failed", len);
  113. return rc;
  114. }
  115. /*
  116. * Get memory layout and create hole for oldmem
  117. */
  118. static struct mem_chunk *get_memory_layout(void)
  119. {
  120. struct mem_chunk *chunk_array;
  121. chunk_array = kzalloc_panic(MEMORY_CHUNKS * sizeof(struct mem_chunk));
  122. detect_memory_layout(chunk_array, 0);
  123. create_mem_hole(chunk_array, OLDMEM_BASE, OLDMEM_SIZE);
  124. return chunk_array;
  125. }
  126. /*
  127. * Initialize ELF note
  128. */
  129. static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
  130. const char *name)
  131. {
  132. Elf64_Nhdr *note;
  133. u64 len;
  134. note = (Elf64_Nhdr *)buf;
  135. note->n_namesz = strlen(name) + 1;
  136. note->n_descsz = d_len;
  137. note->n_type = type;
  138. len = sizeof(Elf64_Nhdr);
  139. memcpy(buf + len, name, note->n_namesz);
  140. len = roundup(len + note->n_namesz, 4);
  141. memcpy(buf + len, desc, note->n_descsz);
  142. len = roundup(len + note->n_descsz, 4);
  143. return PTR_ADD(buf, len);
  144. }
  145. /*
  146. * Initialize prstatus note
  147. */
  148. static void *nt_prstatus(void *ptr, struct save_area *sa)
  149. {
  150. struct elf_prstatus nt_prstatus;
  151. static int cpu_nr = 1;
  152. memset(&nt_prstatus, 0, sizeof(nt_prstatus));
  153. memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
  154. memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
  155. memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
  156. nt_prstatus.pr_pid = cpu_nr;
  157. cpu_nr++;
  158. return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
  159. "CORE");
  160. }
  161. /*
  162. * Initialize fpregset (floating point) note
  163. */
  164. static void *nt_fpregset(void *ptr, struct save_area *sa)
  165. {
  166. elf_fpregset_t nt_fpregset;
  167. memset(&nt_fpregset, 0, sizeof(nt_fpregset));
  168. memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
  169. memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
  170. return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
  171. "CORE");
  172. }
  173. /*
  174. * Initialize timer note
  175. */
  176. static void *nt_s390_timer(void *ptr, struct save_area *sa)
  177. {
  178. return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
  179. KEXEC_CORE_NOTE_NAME);
  180. }
  181. /*
  182. * Initialize TOD clock comparator note
  183. */
  184. static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
  185. {
  186. return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
  187. sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
  188. }
  189. /*
  190. * Initialize TOD programmable register note
  191. */
  192. static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
  193. {
  194. return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
  195. sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
  196. }
  197. /*
  198. * Initialize control register note
  199. */
  200. static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
  201. {
  202. return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
  203. sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
  204. }
  205. /*
  206. * Initialize prefix register note
  207. */
  208. static void *nt_s390_prefix(void *ptr, struct save_area *sa)
  209. {
  210. return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
  211. sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
  212. }
  213. /*
  214. * Fill ELF notes for one CPU with save area registers
  215. */
  216. void *fill_cpu_elf_notes(void *ptr, struct save_area *sa)
  217. {
  218. ptr = nt_prstatus(ptr, sa);
  219. ptr = nt_fpregset(ptr, sa);
  220. ptr = nt_s390_timer(ptr, sa);
  221. ptr = nt_s390_tod_cmp(ptr, sa);
  222. ptr = nt_s390_tod_preg(ptr, sa);
  223. ptr = nt_s390_ctrs(ptr, sa);
  224. ptr = nt_s390_prefix(ptr, sa);
  225. return ptr;
  226. }
  227. /*
  228. * Initialize prpsinfo note (new kernel)
  229. */
  230. static void *nt_prpsinfo(void *ptr)
  231. {
  232. struct elf_prpsinfo prpsinfo;
  233. memset(&prpsinfo, 0, sizeof(prpsinfo));
  234. prpsinfo.pr_sname = 'R';
  235. strcpy(prpsinfo.pr_fname, "vmlinux");
  236. return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
  237. KEXEC_CORE_NOTE_NAME);
  238. }
  239. /*
  240. * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
  241. */
  242. static void *get_vmcoreinfo_old(unsigned long *size)
  243. {
  244. char nt_name[11], *vmcoreinfo;
  245. Elf64_Nhdr note;
  246. void *addr;
  247. if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
  248. return NULL;
  249. memset(nt_name, 0, sizeof(nt_name));
  250. if (copy_from_oldmem(&note, addr, sizeof(note)))
  251. return NULL;
  252. if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
  253. return NULL;
  254. if (strcmp(nt_name, "VMCOREINFO") != 0)
  255. return NULL;
  256. vmcoreinfo = kzalloc_panic(note.n_descsz);
  257. if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
  258. return NULL;
  259. *size = note.n_descsz;
  260. return vmcoreinfo;
  261. }
  262. /*
  263. * Initialize vmcoreinfo note (new kernel)
  264. */
  265. static void *nt_vmcoreinfo(void *ptr)
  266. {
  267. unsigned long size;
  268. void *vmcoreinfo;
  269. vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
  270. if (!vmcoreinfo)
  271. vmcoreinfo = get_vmcoreinfo_old(&size);
  272. if (!vmcoreinfo)
  273. return ptr;
  274. return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
  275. }
  276. /*
  277. * Initialize ELF header (new kernel)
  278. */
  279. static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
  280. {
  281. memset(ehdr, 0, sizeof(*ehdr));
  282. memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
  283. ehdr->e_ident[EI_CLASS] = ELFCLASS64;
  284. ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
  285. ehdr->e_ident[EI_VERSION] = EV_CURRENT;
  286. memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
  287. ehdr->e_type = ET_CORE;
  288. ehdr->e_machine = EM_S390;
  289. ehdr->e_version = EV_CURRENT;
  290. ehdr->e_phoff = sizeof(Elf64_Ehdr);
  291. ehdr->e_ehsize = sizeof(Elf64_Ehdr);
  292. ehdr->e_phentsize = sizeof(Elf64_Phdr);
  293. ehdr->e_phnum = mem_chunk_cnt + 1;
  294. return ehdr + 1;
  295. }
  296. /*
  297. * Return CPU count for ELF header (new kernel)
  298. */
  299. static int get_cpu_cnt(void)
  300. {
  301. int i, cpus = 0;
  302. for (i = 0; zfcpdump_save_areas[i]; i++) {
  303. if (zfcpdump_save_areas[i]->pref_reg == 0)
  304. continue;
  305. cpus++;
  306. }
  307. return cpus;
  308. }
  309. /*
  310. * Return memory chunk count for ELF header (new kernel)
  311. */
  312. static int get_mem_chunk_cnt(void)
  313. {
  314. struct mem_chunk *chunk_array, *mem_chunk;
  315. int i, cnt = 0;
  316. chunk_array = get_memory_layout();
  317. for (i = 0; i < MEMORY_CHUNKS; i++) {
  318. mem_chunk = &chunk_array[i];
  319. if (chunk_array[i].type != CHUNK_READ_WRITE &&
  320. chunk_array[i].type != CHUNK_READ_ONLY)
  321. continue;
  322. if (mem_chunk->size == 0)
  323. continue;
  324. cnt++;
  325. }
  326. kfree(chunk_array);
  327. return cnt;
  328. }
  329. /*
  330. * Initialize ELF loads (new kernel)
  331. */
  332. static int loads_init(Elf64_Phdr *phdr, u64 loads_offset)
  333. {
  334. struct mem_chunk *chunk_array, *mem_chunk;
  335. int i;
  336. chunk_array = get_memory_layout();
  337. for (i = 0; i < MEMORY_CHUNKS; i++) {
  338. mem_chunk = &chunk_array[i];
  339. if (mem_chunk->size == 0)
  340. continue;
  341. if (chunk_array[i].type != CHUNK_READ_WRITE &&
  342. chunk_array[i].type != CHUNK_READ_ONLY)
  343. continue;
  344. else
  345. phdr->p_filesz = mem_chunk->size;
  346. phdr->p_type = PT_LOAD;
  347. phdr->p_offset = mem_chunk->addr;
  348. phdr->p_vaddr = mem_chunk->addr;
  349. phdr->p_paddr = mem_chunk->addr;
  350. phdr->p_memsz = mem_chunk->size;
  351. phdr->p_flags = PF_R | PF_W | PF_X;
  352. phdr->p_align = PAGE_SIZE;
  353. phdr++;
  354. }
  355. kfree(chunk_array);
  356. return i;
  357. }
  358. /*
  359. * Initialize notes (new kernel)
  360. */
  361. static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
  362. {
  363. struct save_area *sa;
  364. void *ptr_start = ptr;
  365. int i;
  366. ptr = nt_prpsinfo(ptr);
  367. for (i = 0; zfcpdump_save_areas[i]; i++) {
  368. sa = zfcpdump_save_areas[i];
  369. if (sa->pref_reg == 0)
  370. continue;
  371. ptr = fill_cpu_elf_notes(ptr, sa);
  372. }
  373. ptr = nt_vmcoreinfo(ptr);
  374. memset(phdr, 0, sizeof(*phdr));
  375. phdr->p_type = PT_NOTE;
  376. phdr->p_offset = notes_offset;
  377. phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
  378. phdr->p_memsz = phdr->p_filesz;
  379. return ptr;
  380. }
  381. /*
  382. * Create ELF core header (new kernel)
  383. */
  384. int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
  385. {
  386. Elf64_Phdr *phdr_notes, *phdr_loads;
  387. int mem_chunk_cnt;
  388. void *ptr, *hdr;
  389. u32 alloc_size;
  390. u64 hdr_off;
  391. if (!OLDMEM_BASE)
  392. return 0;
  393. /* If elfcorehdr= has been passed via cmdline, we use that one */
  394. if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
  395. return 0;
  396. mem_chunk_cnt = get_mem_chunk_cnt();
  397. alloc_size = 0x1000 + get_cpu_cnt() * 0x300 +
  398. mem_chunk_cnt * sizeof(Elf64_Phdr);
  399. hdr = kzalloc_panic(alloc_size);
  400. /* Init elf header */
  401. ptr = ehdr_init(hdr, mem_chunk_cnt);
  402. /* Init program headers */
  403. phdr_notes = ptr;
  404. ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
  405. phdr_loads = ptr;
  406. ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
  407. /* Init notes */
  408. hdr_off = PTR_DIFF(ptr, hdr);
  409. ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
  410. /* Init loads */
  411. hdr_off = PTR_DIFF(ptr, hdr);
  412. loads_init(phdr_loads, hdr_off);
  413. *addr = (unsigned long long) hdr;
  414. elfcorehdr_newmem = hdr;
  415. *size = (unsigned long long) hdr_off;
  416. BUG_ON(elfcorehdr_size > alloc_size);
  417. return 0;
  418. }
  419. /*
  420. * Free ELF core header (new kernel)
  421. */
  422. void elfcorehdr_free(unsigned long long addr)
  423. {
  424. if (!elfcorehdr_newmem)
  425. return;
  426. kfree((void *)(unsigned long)addr);
  427. }
  428. /*
  429. * Read from ELF header
  430. */
  431. ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
  432. {
  433. void *src = (void *)(unsigned long)*ppos;
  434. src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
  435. memcpy(buf, src, count);
  436. *ppos += count;
  437. return count;
  438. }
  439. /*
  440. * Read from ELF notes data
  441. */
  442. ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
  443. {
  444. void *src = (void *)(unsigned long)*ppos;
  445. int rc;
  446. if (elfcorehdr_newmem) {
  447. memcpy(buf, src, count);
  448. } else {
  449. rc = copy_from_oldmem(buf, src, count);
  450. if (rc)
  451. return rc;
  452. }
  453. *ppos += count;
  454. return count;
  455. }