node.c 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include "xattr.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  25. static struct kmem_cache *nat_entry_slab;
  26. static struct kmem_cache *free_nid_slab;
  27. static struct kmem_cache *nat_entry_set_slab;
  28. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  29. {
  30. struct f2fs_nm_info *nm_i = NM_I(sbi);
  31. struct sysinfo val;
  32. unsigned long avail_ram;
  33. unsigned long mem_size = 0;
  34. bool res = false;
  35. si_meminfo(&val);
  36. /* only uses low memory */
  37. avail_ram = val.totalram - val.totalhigh;
  38. /*
  39. * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  40. */
  41. if (type == FREE_NIDS) {
  42. mem_size = (nm_i->nid_cnt[FREE_NID] *
  43. sizeof(struct free_nid)) >> PAGE_SHIFT;
  44. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  45. } else if (type == NAT_ENTRIES) {
  46. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  47. PAGE_SHIFT;
  48. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  49. if (excess_cached_nats(sbi))
  50. res = false;
  51. } else if (type == DIRTY_DENTS) {
  52. if (sbi->sb->s_bdi->wb.dirty_exceeded)
  53. return false;
  54. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  55. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  56. } else if (type == INO_ENTRIES) {
  57. int i;
  58. for (i = 0; i < MAX_INO_ENTRY; i++)
  59. mem_size += sbi->im[i].ino_num *
  60. sizeof(struct ino_entry);
  61. mem_size >>= PAGE_SHIFT;
  62. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  63. } else if (type == EXTENT_CACHE) {
  64. mem_size = (atomic_read(&sbi->total_ext_tree) *
  65. sizeof(struct extent_tree) +
  66. atomic_read(&sbi->total_ext_node) *
  67. sizeof(struct extent_node)) >> PAGE_SHIFT;
  68. res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  69. } else if (type == INMEM_PAGES) {
  70. /* it allows 20% / total_ram for inmemory pages */
  71. mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
  72. res = mem_size < (val.totalram / 5);
  73. } else {
  74. if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  75. return true;
  76. }
  77. return res;
  78. }
  79. static void clear_node_page_dirty(struct page *page)
  80. {
  81. struct address_space *mapping = page->mapping;
  82. unsigned int long flags;
  83. if (PageDirty(page)) {
  84. spin_lock_irqsave(&mapping->tree_lock, flags);
  85. radix_tree_tag_clear(&mapping->page_tree,
  86. page_index(page),
  87. PAGECACHE_TAG_DIRTY);
  88. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  89. clear_page_dirty_for_io(page);
  90. dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  91. }
  92. ClearPageUptodate(page);
  93. }
  94. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  95. {
  96. pgoff_t index = current_nat_addr(sbi, nid);
  97. return get_meta_page(sbi, index);
  98. }
  99. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  100. {
  101. struct page *src_page;
  102. struct page *dst_page;
  103. pgoff_t src_off;
  104. pgoff_t dst_off;
  105. void *src_addr;
  106. void *dst_addr;
  107. struct f2fs_nm_info *nm_i = NM_I(sbi);
  108. src_off = current_nat_addr(sbi, nid);
  109. dst_off = next_nat_addr(sbi, src_off);
  110. /* get current nat block page with lock */
  111. src_page = get_meta_page(sbi, src_off);
  112. dst_page = grab_meta_page(sbi, dst_off);
  113. f2fs_bug_on(sbi, PageDirty(src_page));
  114. src_addr = page_address(src_page);
  115. dst_addr = page_address(dst_page);
  116. memcpy(dst_addr, src_addr, PAGE_SIZE);
  117. set_page_dirty(dst_page);
  118. f2fs_put_page(src_page, 1);
  119. set_to_next_nat(nm_i, nid);
  120. return dst_page;
  121. }
  122. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  123. {
  124. return radix_tree_lookup(&nm_i->nat_root, n);
  125. }
  126. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  127. nid_t start, unsigned int nr, struct nat_entry **ep)
  128. {
  129. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  130. }
  131. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  132. {
  133. list_del(&e->list);
  134. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  135. nm_i->nat_cnt--;
  136. kmem_cache_free(nat_entry_slab, e);
  137. }
  138. static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  139. struct nat_entry *ne)
  140. {
  141. nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
  142. struct nat_entry_set *head;
  143. head = radix_tree_lookup(&nm_i->nat_set_root, set);
  144. if (!head) {
  145. head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
  146. INIT_LIST_HEAD(&head->entry_list);
  147. INIT_LIST_HEAD(&head->set_list);
  148. head->set = set;
  149. head->entry_cnt = 0;
  150. f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
  151. }
  152. if (get_nat_flag(ne, IS_DIRTY))
  153. goto refresh_list;
  154. nm_i->dirty_nat_cnt++;
  155. head->entry_cnt++;
  156. set_nat_flag(ne, IS_DIRTY, true);
  157. refresh_list:
  158. if (nat_get_blkaddr(ne) == NEW_ADDR)
  159. list_del_init(&ne->list);
  160. else
  161. list_move_tail(&ne->list, &head->entry_list);
  162. }
  163. static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
  164. struct nat_entry_set *set, struct nat_entry *ne)
  165. {
  166. list_move_tail(&ne->list, &nm_i->nat_entries);
  167. set_nat_flag(ne, IS_DIRTY, false);
  168. set->entry_cnt--;
  169. nm_i->dirty_nat_cnt--;
  170. }
  171. static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
  172. nid_t start, unsigned int nr, struct nat_entry_set **ep)
  173. {
  174. return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
  175. start, nr);
  176. }
  177. int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
  178. {
  179. struct f2fs_nm_info *nm_i = NM_I(sbi);
  180. struct nat_entry *e;
  181. bool need = false;
  182. down_read(&nm_i->nat_tree_lock);
  183. e = __lookup_nat_cache(nm_i, nid);
  184. if (e) {
  185. if (!get_nat_flag(e, IS_CHECKPOINTED) &&
  186. !get_nat_flag(e, HAS_FSYNCED_INODE))
  187. need = true;
  188. }
  189. up_read(&nm_i->nat_tree_lock);
  190. return need;
  191. }
  192. bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  193. {
  194. struct f2fs_nm_info *nm_i = NM_I(sbi);
  195. struct nat_entry *e;
  196. bool is_cp = true;
  197. down_read(&nm_i->nat_tree_lock);
  198. e = __lookup_nat_cache(nm_i, nid);
  199. if (e && !get_nat_flag(e, IS_CHECKPOINTED))
  200. is_cp = false;
  201. up_read(&nm_i->nat_tree_lock);
  202. return is_cp;
  203. }
  204. bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
  205. {
  206. struct f2fs_nm_info *nm_i = NM_I(sbi);
  207. struct nat_entry *e;
  208. bool need_update = true;
  209. down_read(&nm_i->nat_tree_lock);
  210. e = __lookup_nat_cache(nm_i, ino);
  211. if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
  212. (get_nat_flag(e, IS_CHECKPOINTED) ||
  213. get_nat_flag(e, HAS_FSYNCED_INODE)))
  214. need_update = false;
  215. up_read(&nm_i->nat_tree_lock);
  216. return need_update;
  217. }
  218. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  219. bool no_fail)
  220. {
  221. struct nat_entry *new;
  222. if (no_fail) {
  223. new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
  224. f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
  225. } else {
  226. new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
  227. if (!new)
  228. return NULL;
  229. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  230. kmem_cache_free(nat_entry_slab, new);
  231. return NULL;
  232. }
  233. }
  234. memset(new, 0, sizeof(struct nat_entry));
  235. nat_set_nid(new, nid);
  236. nat_reset_flag(new);
  237. list_add_tail(&new->list, &nm_i->nat_entries);
  238. nm_i->nat_cnt++;
  239. return new;
  240. }
  241. static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
  242. struct f2fs_nat_entry *ne)
  243. {
  244. struct f2fs_nm_info *nm_i = NM_I(sbi);
  245. struct nat_entry *e;
  246. e = __lookup_nat_cache(nm_i, nid);
  247. if (!e) {
  248. e = grab_nat_entry(nm_i, nid, false);
  249. if (e)
  250. node_info_from_raw_nat(&e->ni, ne);
  251. } else {
  252. f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
  253. nat_get_blkaddr(e) !=
  254. le32_to_cpu(ne->block_addr) ||
  255. nat_get_version(e) != ne->version);
  256. }
  257. }
  258. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  259. block_t new_blkaddr, bool fsync_done)
  260. {
  261. struct f2fs_nm_info *nm_i = NM_I(sbi);
  262. struct nat_entry *e;
  263. down_write(&nm_i->nat_tree_lock);
  264. e = __lookup_nat_cache(nm_i, ni->nid);
  265. if (!e) {
  266. e = grab_nat_entry(nm_i, ni->nid, true);
  267. copy_node_info(&e->ni, ni);
  268. f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
  269. } else if (new_blkaddr == NEW_ADDR) {
  270. /*
  271. * when nid is reallocated,
  272. * previous nat entry can be remained in nat cache.
  273. * So, reinitialize it with new information.
  274. */
  275. copy_node_info(&e->ni, ni);
  276. f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
  277. }
  278. /* sanity check */
  279. f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
  280. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
  281. new_blkaddr == NULL_ADDR);
  282. f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
  283. new_blkaddr == NEW_ADDR);
  284. f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
  285. nat_get_blkaddr(e) != NULL_ADDR &&
  286. new_blkaddr == NEW_ADDR);
  287. /* increment version no as node is removed */
  288. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  289. unsigned char version = nat_get_version(e);
  290. nat_set_version(e, inc_node_version(version));
  291. }
  292. /* change address */
  293. nat_set_blkaddr(e, new_blkaddr);
  294. if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
  295. set_nat_flag(e, IS_CHECKPOINTED, false);
  296. __set_nat_cache_dirty(nm_i, e);
  297. /* update fsync_mark if its inode nat entry is still alive */
  298. if (ni->nid != ni->ino)
  299. e = __lookup_nat_cache(nm_i, ni->ino);
  300. if (e) {
  301. if (fsync_done && ni->nid == ni->ino)
  302. set_nat_flag(e, HAS_FSYNCED_INODE, true);
  303. set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
  304. }
  305. up_write(&nm_i->nat_tree_lock);
  306. }
  307. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  308. {
  309. struct f2fs_nm_info *nm_i = NM_I(sbi);
  310. int nr = nr_shrink;
  311. if (!down_write_trylock(&nm_i->nat_tree_lock))
  312. return 0;
  313. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  314. struct nat_entry *ne;
  315. ne = list_first_entry(&nm_i->nat_entries,
  316. struct nat_entry, list);
  317. __del_from_nat_cache(nm_i, ne);
  318. nr_shrink--;
  319. }
  320. up_write(&nm_i->nat_tree_lock);
  321. return nr - nr_shrink;
  322. }
  323. /*
  324. * This function always returns success
  325. */
  326. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  327. {
  328. struct f2fs_nm_info *nm_i = NM_I(sbi);
  329. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  330. struct f2fs_journal *journal = curseg->journal;
  331. nid_t start_nid = START_NID(nid);
  332. struct f2fs_nat_block *nat_blk;
  333. struct page *page = NULL;
  334. struct f2fs_nat_entry ne;
  335. struct nat_entry *e;
  336. pgoff_t index;
  337. int i;
  338. ni->nid = nid;
  339. /* Check nat cache */
  340. down_read(&nm_i->nat_tree_lock);
  341. e = __lookup_nat_cache(nm_i, nid);
  342. if (e) {
  343. ni->ino = nat_get_ino(e);
  344. ni->blk_addr = nat_get_blkaddr(e);
  345. ni->version = nat_get_version(e);
  346. up_read(&nm_i->nat_tree_lock);
  347. return;
  348. }
  349. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  350. /* Check current segment summary */
  351. down_read(&curseg->journal_rwsem);
  352. i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
  353. if (i >= 0) {
  354. ne = nat_in_journal(journal, i);
  355. node_info_from_raw_nat(ni, &ne);
  356. }
  357. up_read(&curseg->journal_rwsem);
  358. if (i >= 0) {
  359. up_read(&nm_i->nat_tree_lock);
  360. goto cache;
  361. }
  362. /* Fill node_info from nat page */
  363. index = current_nat_addr(sbi, nid);
  364. up_read(&nm_i->nat_tree_lock);
  365. page = get_meta_page(sbi, index);
  366. nat_blk = (struct f2fs_nat_block *)page_address(page);
  367. ne = nat_blk->entries[nid - start_nid];
  368. node_info_from_raw_nat(ni, &ne);
  369. f2fs_put_page(page, 1);
  370. cache:
  371. /* cache nat entry */
  372. down_write(&nm_i->nat_tree_lock);
  373. cache_nat_entry(sbi, nid, &ne);
  374. up_write(&nm_i->nat_tree_lock);
  375. }
  376. /*
  377. * readahead MAX_RA_NODE number of node pages.
  378. */
  379. static void ra_node_pages(struct page *parent, int start, int n)
  380. {
  381. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  382. struct blk_plug plug;
  383. int i, end;
  384. nid_t nid;
  385. blk_start_plug(&plug);
  386. /* Then, try readahead for siblings of the desired node */
  387. end = start + n;
  388. end = min(end, NIDS_PER_BLOCK);
  389. for (i = start; i < end; i++) {
  390. nid = get_nid(parent, i, false);
  391. ra_node_page(sbi, nid);
  392. }
  393. blk_finish_plug(&plug);
  394. }
  395. pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
  396. {
  397. const long direct_index = ADDRS_PER_INODE(dn->inode);
  398. const long direct_blks = ADDRS_PER_BLOCK;
  399. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  400. unsigned int skipped_unit = ADDRS_PER_BLOCK;
  401. int cur_level = dn->cur_level;
  402. int max_level = dn->max_level;
  403. pgoff_t base = 0;
  404. if (!dn->max_level)
  405. return pgofs + 1;
  406. while (max_level-- > cur_level)
  407. skipped_unit *= NIDS_PER_BLOCK;
  408. switch (dn->max_level) {
  409. case 3:
  410. base += 2 * indirect_blks;
  411. case 2:
  412. base += 2 * direct_blks;
  413. case 1:
  414. base += direct_index;
  415. break;
  416. default:
  417. f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
  418. }
  419. return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
  420. }
  421. /*
  422. * The maximum depth is four.
  423. * Offset[0] will have raw inode offset.
  424. */
  425. static int get_node_path(struct inode *inode, long block,
  426. int offset[4], unsigned int noffset[4])
  427. {
  428. const long direct_index = ADDRS_PER_INODE(inode);
  429. const long direct_blks = ADDRS_PER_BLOCK;
  430. const long dptrs_per_blk = NIDS_PER_BLOCK;
  431. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  432. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  433. int n = 0;
  434. int level = 0;
  435. noffset[0] = 0;
  436. if (block < direct_index) {
  437. offset[n] = block;
  438. goto got;
  439. }
  440. block -= direct_index;
  441. if (block < direct_blks) {
  442. offset[n++] = NODE_DIR1_BLOCK;
  443. noffset[n] = 1;
  444. offset[n] = block;
  445. level = 1;
  446. goto got;
  447. }
  448. block -= direct_blks;
  449. if (block < direct_blks) {
  450. offset[n++] = NODE_DIR2_BLOCK;
  451. noffset[n] = 2;
  452. offset[n] = block;
  453. level = 1;
  454. goto got;
  455. }
  456. block -= direct_blks;
  457. if (block < indirect_blks) {
  458. offset[n++] = NODE_IND1_BLOCK;
  459. noffset[n] = 3;
  460. offset[n++] = block / direct_blks;
  461. noffset[n] = 4 + offset[n - 1];
  462. offset[n] = block % direct_blks;
  463. level = 2;
  464. goto got;
  465. }
  466. block -= indirect_blks;
  467. if (block < indirect_blks) {
  468. offset[n++] = NODE_IND2_BLOCK;
  469. noffset[n] = 4 + dptrs_per_blk;
  470. offset[n++] = block / direct_blks;
  471. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  472. offset[n] = block % direct_blks;
  473. level = 2;
  474. goto got;
  475. }
  476. block -= indirect_blks;
  477. if (block < dindirect_blks) {
  478. offset[n++] = NODE_DIND_BLOCK;
  479. noffset[n] = 5 + (dptrs_per_blk * 2);
  480. offset[n++] = block / indirect_blks;
  481. noffset[n] = 6 + (dptrs_per_blk * 2) +
  482. offset[n - 1] * (dptrs_per_blk + 1);
  483. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  484. noffset[n] = 7 + (dptrs_per_blk * 2) +
  485. offset[n - 2] * (dptrs_per_blk + 1) +
  486. offset[n - 1];
  487. offset[n] = block % direct_blks;
  488. level = 3;
  489. goto got;
  490. } else {
  491. return -E2BIG;
  492. }
  493. got:
  494. return level;
  495. }
  496. /*
  497. * Caller should call f2fs_put_dnode(dn).
  498. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  499. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  500. * In the case of RDONLY_NODE, we don't need to care about mutex.
  501. */
  502. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  503. {
  504. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  505. struct page *npage[4];
  506. struct page *parent = NULL;
  507. int offset[4];
  508. unsigned int noffset[4];
  509. nid_t nids[4];
  510. int level, i = 0;
  511. int err = 0;
  512. level = get_node_path(dn->inode, index, offset, noffset);
  513. if (level < 0)
  514. return level;
  515. nids[0] = dn->inode->i_ino;
  516. npage[0] = dn->inode_page;
  517. if (!npage[0]) {
  518. npage[0] = get_node_page(sbi, nids[0]);
  519. if (IS_ERR(npage[0]))
  520. return PTR_ERR(npage[0]);
  521. }
  522. /* if inline_data is set, should not report any block indices */
  523. if (f2fs_has_inline_data(dn->inode) && index) {
  524. err = -ENOENT;
  525. f2fs_put_page(npage[0], 1);
  526. goto release_out;
  527. }
  528. parent = npage[0];
  529. if (level != 0)
  530. nids[1] = get_nid(parent, offset[0], true);
  531. dn->inode_page = npage[0];
  532. dn->inode_page_locked = true;
  533. /* get indirect or direct nodes */
  534. for (i = 1; i <= level; i++) {
  535. bool done = false;
  536. if (!nids[i] && mode == ALLOC_NODE) {
  537. /* alloc new node */
  538. if (!alloc_nid(sbi, &(nids[i]))) {
  539. err = -ENOSPC;
  540. goto release_pages;
  541. }
  542. dn->nid = nids[i];
  543. npage[i] = new_node_page(dn, noffset[i]);
  544. if (IS_ERR(npage[i])) {
  545. alloc_nid_failed(sbi, nids[i]);
  546. err = PTR_ERR(npage[i]);
  547. goto release_pages;
  548. }
  549. set_nid(parent, offset[i - 1], nids[i], i == 1);
  550. alloc_nid_done(sbi, nids[i]);
  551. done = true;
  552. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  553. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  554. if (IS_ERR(npage[i])) {
  555. err = PTR_ERR(npage[i]);
  556. goto release_pages;
  557. }
  558. done = true;
  559. }
  560. if (i == 1) {
  561. dn->inode_page_locked = false;
  562. unlock_page(parent);
  563. } else {
  564. f2fs_put_page(parent, 1);
  565. }
  566. if (!done) {
  567. npage[i] = get_node_page(sbi, nids[i]);
  568. if (IS_ERR(npage[i])) {
  569. err = PTR_ERR(npage[i]);
  570. f2fs_put_page(npage[0], 0);
  571. goto release_out;
  572. }
  573. }
  574. if (i < level) {
  575. parent = npage[i];
  576. nids[i + 1] = get_nid(parent, offset[i], false);
  577. }
  578. }
  579. dn->nid = nids[level];
  580. dn->ofs_in_node = offset[level];
  581. dn->node_page = npage[level];
  582. dn->data_blkaddr = datablock_addr(dn->inode,
  583. dn->node_page, dn->ofs_in_node);
  584. return 0;
  585. release_pages:
  586. f2fs_put_page(parent, 1);
  587. if (i > 1)
  588. f2fs_put_page(npage[0], 0);
  589. release_out:
  590. dn->inode_page = NULL;
  591. dn->node_page = NULL;
  592. if (err == -ENOENT) {
  593. dn->cur_level = i;
  594. dn->max_level = level;
  595. dn->ofs_in_node = offset[level];
  596. }
  597. return err;
  598. }
  599. static void truncate_node(struct dnode_of_data *dn)
  600. {
  601. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  602. struct node_info ni;
  603. get_node_info(sbi, dn->nid, &ni);
  604. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  605. /* Deallocate node address */
  606. invalidate_blocks(sbi, ni.blk_addr);
  607. dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
  608. set_node_addr(sbi, &ni, NULL_ADDR, false);
  609. if (dn->nid == dn->inode->i_ino) {
  610. remove_orphan_inode(sbi, dn->nid);
  611. dec_valid_inode_count(sbi);
  612. f2fs_inode_synced(dn->inode);
  613. }
  614. clear_node_page_dirty(dn->node_page);
  615. set_sbi_flag(sbi, SBI_IS_DIRTY);
  616. f2fs_put_page(dn->node_page, 1);
  617. invalidate_mapping_pages(NODE_MAPPING(sbi),
  618. dn->node_page->index, dn->node_page->index);
  619. dn->node_page = NULL;
  620. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  621. }
  622. static int truncate_dnode(struct dnode_of_data *dn)
  623. {
  624. struct page *page;
  625. if (dn->nid == 0)
  626. return 1;
  627. /* get direct node */
  628. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  629. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  630. return 1;
  631. else if (IS_ERR(page))
  632. return PTR_ERR(page);
  633. /* Make dnode_of_data for parameter */
  634. dn->node_page = page;
  635. dn->ofs_in_node = 0;
  636. truncate_data_blocks(dn);
  637. truncate_node(dn);
  638. return 1;
  639. }
  640. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  641. int ofs, int depth)
  642. {
  643. struct dnode_of_data rdn = *dn;
  644. struct page *page;
  645. struct f2fs_node *rn;
  646. nid_t child_nid;
  647. unsigned int child_nofs;
  648. int freed = 0;
  649. int i, ret;
  650. if (dn->nid == 0)
  651. return NIDS_PER_BLOCK + 1;
  652. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  653. page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
  654. if (IS_ERR(page)) {
  655. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  656. return PTR_ERR(page);
  657. }
  658. ra_node_pages(page, ofs, NIDS_PER_BLOCK);
  659. rn = F2FS_NODE(page);
  660. if (depth < 3) {
  661. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  662. child_nid = le32_to_cpu(rn->in.nid[i]);
  663. if (child_nid == 0)
  664. continue;
  665. rdn.nid = child_nid;
  666. ret = truncate_dnode(&rdn);
  667. if (ret < 0)
  668. goto out_err;
  669. if (set_nid(page, i, 0, false))
  670. dn->node_changed = true;
  671. }
  672. } else {
  673. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  674. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  675. child_nid = le32_to_cpu(rn->in.nid[i]);
  676. if (child_nid == 0) {
  677. child_nofs += NIDS_PER_BLOCK + 1;
  678. continue;
  679. }
  680. rdn.nid = child_nid;
  681. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  682. if (ret == (NIDS_PER_BLOCK + 1)) {
  683. if (set_nid(page, i, 0, false))
  684. dn->node_changed = true;
  685. child_nofs += ret;
  686. } else if (ret < 0 && ret != -ENOENT) {
  687. goto out_err;
  688. }
  689. }
  690. freed = child_nofs;
  691. }
  692. if (!ofs) {
  693. /* remove current indirect node */
  694. dn->node_page = page;
  695. truncate_node(dn);
  696. freed++;
  697. } else {
  698. f2fs_put_page(page, 1);
  699. }
  700. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  701. return freed;
  702. out_err:
  703. f2fs_put_page(page, 1);
  704. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  705. return ret;
  706. }
  707. static int truncate_partial_nodes(struct dnode_of_data *dn,
  708. struct f2fs_inode *ri, int *offset, int depth)
  709. {
  710. struct page *pages[2];
  711. nid_t nid[3];
  712. nid_t child_nid;
  713. int err = 0;
  714. int i;
  715. int idx = depth - 2;
  716. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  717. if (!nid[0])
  718. return 0;
  719. /* get indirect nodes in the path */
  720. for (i = 0; i < idx + 1; i++) {
  721. /* reference count'll be increased */
  722. pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
  723. if (IS_ERR(pages[i])) {
  724. err = PTR_ERR(pages[i]);
  725. idx = i - 1;
  726. goto fail;
  727. }
  728. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  729. }
  730. ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
  731. /* free direct nodes linked to a partial indirect node */
  732. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  733. child_nid = get_nid(pages[idx], i, false);
  734. if (!child_nid)
  735. continue;
  736. dn->nid = child_nid;
  737. err = truncate_dnode(dn);
  738. if (err < 0)
  739. goto fail;
  740. if (set_nid(pages[idx], i, 0, false))
  741. dn->node_changed = true;
  742. }
  743. if (offset[idx + 1] == 0) {
  744. dn->node_page = pages[idx];
  745. dn->nid = nid[idx];
  746. truncate_node(dn);
  747. } else {
  748. f2fs_put_page(pages[idx], 1);
  749. }
  750. offset[idx]++;
  751. offset[idx + 1] = 0;
  752. idx--;
  753. fail:
  754. for (i = idx; i >= 0; i--)
  755. f2fs_put_page(pages[i], 1);
  756. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  757. return err;
  758. }
  759. /*
  760. * All the block addresses of data and nodes should be nullified.
  761. */
  762. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  763. {
  764. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  765. int err = 0, cont = 1;
  766. int level, offset[4], noffset[4];
  767. unsigned int nofs = 0;
  768. struct f2fs_inode *ri;
  769. struct dnode_of_data dn;
  770. struct page *page;
  771. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  772. level = get_node_path(inode, from, offset, noffset);
  773. if (level < 0)
  774. return level;
  775. page = get_node_page(sbi, inode->i_ino);
  776. if (IS_ERR(page)) {
  777. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  778. return PTR_ERR(page);
  779. }
  780. set_new_dnode(&dn, inode, page, NULL, 0);
  781. unlock_page(page);
  782. ri = F2FS_INODE(page);
  783. switch (level) {
  784. case 0:
  785. case 1:
  786. nofs = noffset[1];
  787. break;
  788. case 2:
  789. nofs = noffset[1];
  790. if (!offset[level - 1])
  791. goto skip_partial;
  792. err = truncate_partial_nodes(&dn, ri, offset, level);
  793. if (err < 0 && err != -ENOENT)
  794. goto fail;
  795. nofs += 1 + NIDS_PER_BLOCK;
  796. break;
  797. case 3:
  798. nofs = 5 + 2 * NIDS_PER_BLOCK;
  799. if (!offset[level - 1])
  800. goto skip_partial;
  801. err = truncate_partial_nodes(&dn, ri, offset, level);
  802. if (err < 0 && err != -ENOENT)
  803. goto fail;
  804. break;
  805. default:
  806. BUG();
  807. }
  808. skip_partial:
  809. while (cont) {
  810. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  811. switch (offset[0]) {
  812. case NODE_DIR1_BLOCK:
  813. case NODE_DIR2_BLOCK:
  814. err = truncate_dnode(&dn);
  815. break;
  816. case NODE_IND1_BLOCK:
  817. case NODE_IND2_BLOCK:
  818. err = truncate_nodes(&dn, nofs, offset[1], 2);
  819. break;
  820. case NODE_DIND_BLOCK:
  821. err = truncate_nodes(&dn, nofs, offset[1], 3);
  822. cont = 0;
  823. break;
  824. default:
  825. BUG();
  826. }
  827. if (err < 0 && err != -ENOENT)
  828. goto fail;
  829. if (offset[1] == 0 &&
  830. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  831. lock_page(page);
  832. BUG_ON(page->mapping != NODE_MAPPING(sbi));
  833. f2fs_wait_on_page_writeback(page, NODE, true);
  834. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  835. set_page_dirty(page);
  836. unlock_page(page);
  837. }
  838. offset[1] = 0;
  839. offset[0]++;
  840. nofs += err;
  841. }
  842. fail:
  843. f2fs_put_page(page, 0);
  844. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  845. return err > 0 ? 0 : err;
  846. }
  847. /* caller must lock inode page */
  848. int truncate_xattr_node(struct inode *inode)
  849. {
  850. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  851. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  852. struct dnode_of_data dn;
  853. struct page *npage;
  854. if (!nid)
  855. return 0;
  856. npage = get_node_page(sbi, nid);
  857. if (IS_ERR(npage))
  858. return PTR_ERR(npage);
  859. f2fs_i_xnid_write(inode, 0);
  860. set_new_dnode(&dn, inode, NULL, npage, nid);
  861. truncate_node(&dn);
  862. return 0;
  863. }
  864. /*
  865. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  866. * f2fs_unlock_op().
  867. */
  868. int remove_inode_page(struct inode *inode)
  869. {
  870. struct dnode_of_data dn;
  871. int err;
  872. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  873. err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
  874. if (err)
  875. return err;
  876. err = truncate_xattr_node(inode);
  877. if (err) {
  878. f2fs_put_dnode(&dn);
  879. return err;
  880. }
  881. /* remove potential inline_data blocks */
  882. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  883. S_ISLNK(inode->i_mode))
  884. truncate_data_blocks_range(&dn, 1);
  885. /* 0 is possible, after f2fs_new_inode() has failed */
  886. f2fs_bug_on(F2FS_I_SB(inode),
  887. inode->i_blocks != 0 && inode->i_blocks != 8);
  888. /* will put inode & node pages */
  889. truncate_node(&dn);
  890. return 0;
  891. }
  892. struct page *new_inode_page(struct inode *inode)
  893. {
  894. struct dnode_of_data dn;
  895. /* allocate inode page for new inode */
  896. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  897. /* caller should f2fs_put_page(page, 1); */
  898. return new_node_page(&dn, 0);
  899. }
  900. struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
  901. {
  902. struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
  903. struct node_info new_ni;
  904. struct page *page;
  905. int err;
  906. if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
  907. return ERR_PTR(-EPERM);
  908. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
  909. if (!page)
  910. return ERR_PTR(-ENOMEM);
  911. if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
  912. goto fail;
  913. #ifdef CONFIG_F2FS_CHECK_FS
  914. get_node_info(sbi, dn->nid, &new_ni);
  915. f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
  916. #endif
  917. new_ni.nid = dn->nid;
  918. new_ni.ino = dn->inode->i_ino;
  919. new_ni.blk_addr = NULL_ADDR;
  920. new_ni.flag = 0;
  921. new_ni.version = 0;
  922. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  923. f2fs_wait_on_page_writeback(page, NODE, true);
  924. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  925. set_cold_node(dn->inode, page);
  926. if (!PageUptodate(page))
  927. SetPageUptodate(page);
  928. if (set_page_dirty(page))
  929. dn->node_changed = true;
  930. if (f2fs_has_xattr_block(ofs))
  931. f2fs_i_xnid_write(dn->inode, dn->nid);
  932. if (ofs == 0)
  933. inc_valid_inode_count(sbi);
  934. return page;
  935. fail:
  936. clear_node_page_dirty(page);
  937. f2fs_put_page(page, 1);
  938. return ERR_PTR(err);
  939. }
  940. /*
  941. * Caller should do after getting the following values.
  942. * 0: f2fs_put_page(page, 0)
  943. * LOCKED_PAGE or error: f2fs_put_page(page, 1)
  944. */
  945. static int read_node_page(struct page *page, int op_flags)
  946. {
  947. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  948. struct node_info ni;
  949. struct f2fs_io_info fio = {
  950. .sbi = sbi,
  951. .type = NODE,
  952. .op = REQ_OP_READ,
  953. .op_flags = op_flags,
  954. .page = page,
  955. .encrypted_page = NULL,
  956. };
  957. if (PageUptodate(page))
  958. return LOCKED_PAGE;
  959. get_node_info(sbi, page->index, &ni);
  960. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  961. ClearPageUptodate(page);
  962. return -ENOENT;
  963. }
  964. fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
  965. return f2fs_submit_page_bio(&fio);
  966. }
  967. /*
  968. * Readahead a node page
  969. */
  970. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  971. {
  972. struct page *apage;
  973. int err;
  974. if (!nid)
  975. return;
  976. f2fs_bug_on(sbi, check_nid_range(sbi, nid));
  977. rcu_read_lock();
  978. apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
  979. rcu_read_unlock();
  980. if (apage)
  981. return;
  982. apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
  983. if (!apage)
  984. return;
  985. err = read_node_page(apage, REQ_RAHEAD);
  986. f2fs_put_page(apage, err ? 1 : 0);
  987. }
  988. static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
  989. struct page *parent, int start)
  990. {
  991. struct page *page;
  992. int err;
  993. if (!nid)
  994. return ERR_PTR(-ENOENT);
  995. f2fs_bug_on(sbi, check_nid_range(sbi, nid));
  996. repeat:
  997. page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
  998. if (!page)
  999. return ERR_PTR(-ENOMEM);
  1000. err = read_node_page(page, 0);
  1001. if (err < 0) {
  1002. f2fs_put_page(page, 1);
  1003. return ERR_PTR(err);
  1004. } else if (err == LOCKED_PAGE) {
  1005. err = 0;
  1006. goto page_hit;
  1007. }
  1008. if (parent)
  1009. ra_node_pages(parent, start + 1, MAX_RA_NODE);
  1010. lock_page(page);
  1011. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1012. f2fs_put_page(page, 1);
  1013. goto repeat;
  1014. }
  1015. if (unlikely(!PageUptodate(page))) {
  1016. err = -EIO;
  1017. goto out_err;
  1018. }
  1019. if (!f2fs_inode_chksum_verify(sbi, page)) {
  1020. err = -EBADMSG;
  1021. goto out_err;
  1022. }
  1023. page_hit:
  1024. if(unlikely(nid != nid_of_node(page))) {
  1025. f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
  1026. "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
  1027. nid, nid_of_node(page), ino_of_node(page),
  1028. ofs_of_node(page), cpver_of_node(page),
  1029. next_blkaddr_of_node(page));
  1030. err = -EINVAL;
  1031. out_err:
  1032. ClearPageUptodate(page);
  1033. f2fs_put_page(page, 1);
  1034. return ERR_PTR(err);
  1035. }
  1036. return page;
  1037. }
  1038. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  1039. {
  1040. return __get_node_page(sbi, nid, NULL, 0);
  1041. }
  1042. struct page *get_node_page_ra(struct page *parent, int start)
  1043. {
  1044. struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
  1045. nid_t nid = get_nid(parent, start, false);
  1046. return __get_node_page(sbi, nid, parent, start);
  1047. }
  1048. static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
  1049. {
  1050. struct inode *inode;
  1051. struct page *page;
  1052. int ret;
  1053. /* should flush inline_data before evict_inode */
  1054. inode = ilookup(sbi->sb, ino);
  1055. if (!inode)
  1056. return;
  1057. page = f2fs_pagecache_get_page(inode->i_mapping, 0,
  1058. FGP_LOCK|FGP_NOWAIT, 0);
  1059. if (!page)
  1060. goto iput_out;
  1061. if (!PageUptodate(page))
  1062. goto page_out;
  1063. if (!PageDirty(page))
  1064. goto page_out;
  1065. if (!clear_page_dirty_for_io(page))
  1066. goto page_out;
  1067. ret = f2fs_write_inline_data(inode, page);
  1068. inode_dec_dirty_pages(inode);
  1069. remove_dirty_inode(inode);
  1070. if (ret)
  1071. set_page_dirty(page);
  1072. page_out:
  1073. f2fs_put_page(page, 1);
  1074. iput_out:
  1075. iput(inode);
  1076. }
  1077. static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
  1078. {
  1079. pgoff_t index, end;
  1080. struct pagevec pvec;
  1081. struct page *last_page = NULL;
  1082. pagevec_init(&pvec, 0);
  1083. index = 0;
  1084. end = ULONG_MAX;
  1085. while (index <= end) {
  1086. int i, nr_pages;
  1087. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1088. PAGECACHE_TAG_DIRTY,
  1089. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1090. if (nr_pages == 0)
  1091. break;
  1092. for (i = 0; i < nr_pages; i++) {
  1093. struct page *page = pvec.pages[i];
  1094. if (unlikely(f2fs_cp_error(sbi))) {
  1095. f2fs_put_page(last_page, 0);
  1096. pagevec_release(&pvec);
  1097. return ERR_PTR(-EIO);
  1098. }
  1099. if (!IS_DNODE(page) || !is_cold_node(page))
  1100. continue;
  1101. if (ino_of_node(page) != ino)
  1102. continue;
  1103. lock_page(page);
  1104. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1105. continue_unlock:
  1106. unlock_page(page);
  1107. continue;
  1108. }
  1109. if (ino_of_node(page) != ino)
  1110. goto continue_unlock;
  1111. if (!PageDirty(page)) {
  1112. /* someone wrote it for us */
  1113. goto continue_unlock;
  1114. }
  1115. if (last_page)
  1116. f2fs_put_page(last_page, 0);
  1117. get_page(page);
  1118. last_page = page;
  1119. unlock_page(page);
  1120. }
  1121. pagevec_release(&pvec);
  1122. cond_resched();
  1123. }
  1124. return last_page;
  1125. }
  1126. static int __write_node_page(struct page *page, bool atomic, bool *submitted,
  1127. struct writeback_control *wbc, bool do_balance,
  1128. enum iostat_type io_type)
  1129. {
  1130. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1131. nid_t nid;
  1132. struct node_info ni;
  1133. struct f2fs_io_info fio = {
  1134. .sbi = sbi,
  1135. .ino = ino_of_node(page),
  1136. .type = NODE,
  1137. .op = REQ_OP_WRITE,
  1138. .op_flags = wbc_to_write_flags(wbc),
  1139. .page = page,
  1140. .encrypted_page = NULL,
  1141. .submitted = false,
  1142. .io_type = io_type,
  1143. };
  1144. trace_f2fs_writepage(page, NODE);
  1145. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1146. goto redirty_out;
  1147. if (unlikely(f2fs_cp_error(sbi)))
  1148. goto redirty_out;
  1149. /* get old block addr of this node page */
  1150. nid = nid_of_node(page);
  1151. f2fs_bug_on(sbi, page->index != nid);
  1152. if (wbc->for_reclaim) {
  1153. if (!down_read_trylock(&sbi->node_write))
  1154. goto redirty_out;
  1155. } else {
  1156. down_read(&sbi->node_write);
  1157. }
  1158. get_node_info(sbi, nid, &ni);
  1159. /* This page is already truncated */
  1160. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1161. ClearPageUptodate(page);
  1162. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1163. up_read(&sbi->node_write);
  1164. unlock_page(page);
  1165. return 0;
  1166. }
  1167. if (atomic && !test_opt(sbi, NOBARRIER))
  1168. fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
  1169. set_page_writeback(page);
  1170. fio.old_blkaddr = ni.blk_addr;
  1171. write_node_page(nid, &fio);
  1172. set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
  1173. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1174. up_read(&sbi->node_write);
  1175. if (wbc->for_reclaim) {
  1176. f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
  1177. page->index, NODE);
  1178. submitted = NULL;
  1179. }
  1180. unlock_page(page);
  1181. if (unlikely(f2fs_cp_error(sbi))) {
  1182. f2fs_submit_merged_write(sbi, NODE);
  1183. submitted = NULL;
  1184. }
  1185. if (submitted)
  1186. *submitted = fio.submitted;
  1187. if (do_balance)
  1188. f2fs_balance_fs(sbi, false);
  1189. return 0;
  1190. redirty_out:
  1191. redirty_page_for_writepage(wbc, page);
  1192. return AOP_WRITEPAGE_ACTIVATE;
  1193. }
  1194. void move_node_page(struct page *node_page, int gc_type)
  1195. {
  1196. if (gc_type == FG_GC) {
  1197. struct writeback_control wbc = {
  1198. .sync_mode = WB_SYNC_ALL,
  1199. .nr_to_write = 1,
  1200. .for_reclaim = 0,
  1201. };
  1202. set_page_dirty(node_page);
  1203. f2fs_wait_on_page_writeback(node_page, NODE, true);
  1204. f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
  1205. if (!clear_page_dirty_for_io(node_page))
  1206. goto out_page;
  1207. if (__write_node_page(node_page, false, NULL,
  1208. &wbc, false, FS_GC_NODE_IO))
  1209. unlock_page(node_page);
  1210. goto release_page;
  1211. } else {
  1212. /* set page dirty and write it */
  1213. if (!PageWriteback(node_page))
  1214. set_page_dirty(node_page);
  1215. }
  1216. out_page:
  1217. unlock_page(node_page);
  1218. release_page:
  1219. f2fs_put_page(node_page, 0);
  1220. }
  1221. static int f2fs_write_node_page(struct page *page,
  1222. struct writeback_control *wbc)
  1223. {
  1224. return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
  1225. }
  1226. int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
  1227. struct writeback_control *wbc, bool atomic)
  1228. {
  1229. pgoff_t index, end;
  1230. pgoff_t last_idx = ULONG_MAX;
  1231. struct pagevec pvec;
  1232. int ret = 0;
  1233. struct page *last_page = NULL;
  1234. bool marked = false;
  1235. nid_t ino = inode->i_ino;
  1236. if (atomic) {
  1237. last_page = last_fsync_dnode(sbi, ino);
  1238. if (IS_ERR_OR_NULL(last_page))
  1239. return PTR_ERR_OR_ZERO(last_page);
  1240. }
  1241. retry:
  1242. pagevec_init(&pvec, 0);
  1243. index = 0;
  1244. end = ULONG_MAX;
  1245. while (index <= end) {
  1246. int i, nr_pages;
  1247. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1248. PAGECACHE_TAG_DIRTY,
  1249. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1250. if (nr_pages == 0)
  1251. break;
  1252. for (i = 0; i < nr_pages; i++) {
  1253. struct page *page = pvec.pages[i];
  1254. bool submitted = false;
  1255. if (unlikely(f2fs_cp_error(sbi))) {
  1256. f2fs_put_page(last_page, 0);
  1257. pagevec_release(&pvec);
  1258. ret = -EIO;
  1259. goto out;
  1260. }
  1261. if (!IS_DNODE(page) || !is_cold_node(page))
  1262. continue;
  1263. if (ino_of_node(page) != ino)
  1264. continue;
  1265. lock_page(page);
  1266. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1267. continue_unlock:
  1268. unlock_page(page);
  1269. continue;
  1270. }
  1271. if (ino_of_node(page) != ino)
  1272. goto continue_unlock;
  1273. if (!PageDirty(page) && page != last_page) {
  1274. /* someone wrote it for us */
  1275. goto continue_unlock;
  1276. }
  1277. f2fs_wait_on_page_writeback(page, NODE, true);
  1278. BUG_ON(PageWriteback(page));
  1279. set_fsync_mark(page, 0);
  1280. set_dentry_mark(page, 0);
  1281. if (!atomic || page == last_page) {
  1282. set_fsync_mark(page, 1);
  1283. if (IS_INODE(page)) {
  1284. if (is_inode_flag_set(inode,
  1285. FI_DIRTY_INODE))
  1286. update_inode(inode, page);
  1287. set_dentry_mark(page,
  1288. need_dentry_mark(sbi, ino));
  1289. }
  1290. /* may be written by other thread */
  1291. if (!PageDirty(page))
  1292. set_page_dirty(page);
  1293. }
  1294. if (!clear_page_dirty_for_io(page))
  1295. goto continue_unlock;
  1296. ret = __write_node_page(page, atomic &&
  1297. page == last_page,
  1298. &submitted, wbc, true,
  1299. FS_NODE_IO);
  1300. if (ret) {
  1301. unlock_page(page);
  1302. f2fs_put_page(last_page, 0);
  1303. break;
  1304. } else if (submitted) {
  1305. last_idx = page->index;
  1306. }
  1307. if (page == last_page) {
  1308. f2fs_put_page(page, 0);
  1309. marked = true;
  1310. break;
  1311. }
  1312. }
  1313. pagevec_release(&pvec);
  1314. cond_resched();
  1315. if (ret || marked)
  1316. break;
  1317. }
  1318. if (!ret && atomic && !marked) {
  1319. f2fs_msg(sbi->sb, KERN_DEBUG,
  1320. "Retry to write fsync mark: ino=%u, idx=%lx",
  1321. ino, last_page->index);
  1322. lock_page(last_page);
  1323. f2fs_wait_on_page_writeback(last_page, NODE, true);
  1324. set_page_dirty(last_page);
  1325. unlock_page(last_page);
  1326. goto retry;
  1327. }
  1328. out:
  1329. if (last_idx != ULONG_MAX)
  1330. f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
  1331. return ret ? -EIO: 0;
  1332. }
  1333. int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
  1334. bool do_balance, enum iostat_type io_type)
  1335. {
  1336. pgoff_t index, end;
  1337. struct pagevec pvec;
  1338. int step = 0;
  1339. int nwritten = 0;
  1340. int ret = 0;
  1341. pagevec_init(&pvec, 0);
  1342. next_step:
  1343. index = 0;
  1344. end = ULONG_MAX;
  1345. while (index <= end) {
  1346. int i, nr_pages;
  1347. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1348. PAGECACHE_TAG_DIRTY,
  1349. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1350. if (nr_pages == 0)
  1351. break;
  1352. for (i = 0; i < nr_pages; i++) {
  1353. struct page *page = pvec.pages[i];
  1354. bool submitted = false;
  1355. if (unlikely(f2fs_cp_error(sbi))) {
  1356. pagevec_release(&pvec);
  1357. ret = -EIO;
  1358. goto out;
  1359. }
  1360. /*
  1361. * flushing sequence with step:
  1362. * 0. indirect nodes
  1363. * 1. dentry dnodes
  1364. * 2. file dnodes
  1365. */
  1366. if (step == 0 && IS_DNODE(page))
  1367. continue;
  1368. if (step == 1 && (!IS_DNODE(page) ||
  1369. is_cold_node(page)))
  1370. continue;
  1371. if (step == 2 && (!IS_DNODE(page) ||
  1372. !is_cold_node(page)))
  1373. continue;
  1374. lock_node:
  1375. if (!trylock_page(page))
  1376. continue;
  1377. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  1378. continue_unlock:
  1379. unlock_page(page);
  1380. continue;
  1381. }
  1382. if (!PageDirty(page)) {
  1383. /* someone wrote it for us */
  1384. goto continue_unlock;
  1385. }
  1386. /* flush inline_data */
  1387. if (is_inline_node(page)) {
  1388. clear_inline_node(page);
  1389. unlock_page(page);
  1390. flush_inline_data(sbi, ino_of_node(page));
  1391. goto lock_node;
  1392. }
  1393. f2fs_wait_on_page_writeback(page, NODE, true);
  1394. BUG_ON(PageWriteback(page));
  1395. if (!clear_page_dirty_for_io(page))
  1396. goto continue_unlock;
  1397. set_fsync_mark(page, 0);
  1398. set_dentry_mark(page, 0);
  1399. ret = __write_node_page(page, false, &submitted,
  1400. wbc, do_balance, io_type);
  1401. if (ret)
  1402. unlock_page(page);
  1403. else if (submitted)
  1404. nwritten++;
  1405. if (--wbc->nr_to_write == 0)
  1406. break;
  1407. }
  1408. pagevec_release(&pvec);
  1409. cond_resched();
  1410. if (wbc->nr_to_write == 0) {
  1411. step = 2;
  1412. break;
  1413. }
  1414. }
  1415. if (step < 2) {
  1416. step++;
  1417. goto next_step;
  1418. }
  1419. out:
  1420. if (nwritten)
  1421. f2fs_submit_merged_write(sbi, NODE);
  1422. return ret;
  1423. }
  1424. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1425. {
  1426. pgoff_t index = 0, end = ULONG_MAX;
  1427. struct pagevec pvec;
  1428. int ret2, ret = 0;
  1429. pagevec_init(&pvec, 0);
  1430. while (index <= end) {
  1431. int i, nr_pages;
  1432. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1433. PAGECACHE_TAG_WRITEBACK,
  1434. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1435. if (nr_pages == 0)
  1436. break;
  1437. for (i = 0; i < nr_pages; i++) {
  1438. struct page *page = pvec.pages[i];
  1439. /* until radix tree lookup accepts end_index */
  1440. if (unlikely(page->index > end))
  1441. continue;
  1442. if (ino && ino_of_node(page) == ino) {
  1443. f2fs_wait_on_page_writeback(page, NODE, true);
  1444. if (TestClearPageError(page))
  1445. ret = -EIO;
  1446. }
  1447. }
  1448. pagevec_release(&pvec);
  1449. cond_resched();
  1450. }
  1451. ret2 = filemap_check_errors(NODE_MAPPING(sbi));
  1452. if (!ret)
  1453. ret = ret2;
  1454. return ret;
  1455. }
  1456. static int f2fs_write_node_pages(struct address_space *mapping,
  1457. struct writeback_control *wbc)
  1458. {
  1459. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  1460. struct blk_plug plug;
  1461. long diff;
  1462. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  1463. goto skip_write;
  1464. /* balancing f2fs's metadata in background */
  1465. f2fs_balance_fs_bg(sbi);
  1466. /* collect a number of dirty node pages and write together */
  1467. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1468. goto skip_write;
  1469. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1470. diff = nr_pages_to_write(sbi, NODE, wbc);
  1471. wbc->sync_mode = WB_SYNC_NONE;
  1472. blk_start_plug(&plug);
  1473. sync_node_pages(sbi, wbc, true, FS_NODE_IO);
  1474. blk_finish_plug(&plug);
  1475. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1476. return 0;
  1477. skip_write:
  1478. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1479. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1480. return 0;
  1481. }
  1482. static int f2fs_set_node_page_dirty(struct page *page)
  1483. {
  1484. trace_f2fs_set_page_dirty(page, NODE);
  1485. if (!PageUptodate(page))
  1486. SetPageUptodate(page);
  1487. if (!PageDirty(page)) {
  1488. f2fs_set_page_dirty_nobuffers(page);
  1489. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
  1490. SetPagePrivate(page);
  1491. f2fs_trace_pid(page);
  1492. return 1;
  1493. }
  1494. return 0;
  1495. }
  1496. /*
  1497. * Structure of the f2fs node operations
  1498. */
  1499. const struct address_space_operations f2fs_node_aops = {
  1500. .writepage = f2fs_write_node_page,
  1501. .writepages = f2fs_write_node_pages,
  1502. .set_page_dirty = f2fs_set_node_page_dirty,
  1503. .invalidatepage = f2fs_invalidate_page,
  1504. .releasepage = f2fs_release_page,
  1505. #ifdef CONFIG_MIGRATION
  1506. .migratepage = f2fs_migrate_page,
  1507. #endif
  1508. };
  1509. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1510. nid_t n)
  1511. {
  1512. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1513. }
  1514. static int __insert_free_nid(struct f2fs_sb_info *sbi,
  1515. struct free_nid *i, enum nid_state state)
  1516. {
  1517. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1518. int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
  1519. if (err)
  1520. return err;
  1521. f2fs_bug_on(sbi, state != i->state);
  1522. nm_i->nid_cnt[state]++;
  1523. if (state == FREE_NID)
  1524. list_add_tail(&i->list, &nm_i->free_nid_list);
  1525. return 0;
  1526. }
  1527. static void __remove_free_nid(struct f2fs_sb_info *sbi,
  1528. struct free_nid *i, enum nid_state state)
  1529. {
  1530. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1531. f2fs_bug_on(sbi, state != i->state);
  1532. nm_i->nid_cnt[state]--;
  1533. if (state == FREE_NID)
  1534. list_del(&i->list);
  1535. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1536. }
  1537. static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
  1538. enum nid_state org_state, enum nid_state dst_state)
  1539. {
  1540. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1541. f2fs_bug_on(sbi, org_state != i->state);
  1542. i->state = dst_state;
  1543. nm_i->nid_cnt[org_state]--;
  1544. nm_i->nid_cnt[dst_state]++;
  1545. switch (dst_state) {
  1546. case PREALLOC_NID:
  1547. list_del(&i->list);
  1548. break;
  1549. case FREE_NID:
  1550. list_add_tail(&i->list, &nm_i->free_nid_list);
  1551. break;
  1552. default:
  1553. BUG_ON(1);
  1554. }
  1555. }
  1556. /* return if the nid is recognized as free */
  1557. static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
  1558. {
  1559. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1560. struct free_nid *i, *e;
  1561. struct nat_entry *ne;
  1562. int err = -EINVAL;
  1563. bool ret = false;
  1564. /* 0 nid should not be used */
  1565. if (unlikely(nid == 0))
  1566. return false;
  1567. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1568. i->nid = nid;
  1569. i->state = FREE_NID;
  1570. if (radix_tree_preload(GFP_NOFS))
  1571. goto err;
  1572. spin_lock(&nm_i->nid_list_lock);
  1573. if (build) {
  1574. /*
  1575. * Thread A Thread B
  1576. * - f2fs_create
  1577. * - f2fs_new_inode
  1578. * - alloc_nid
  1579. * - __insert_nid_to_list(PREALLOC_NID)
  1580. * - f2fs_balance_fs_bg
  1581. * - build_free_nids
  1582. * - __build_free_nids
  1583. * - scan_nat_page
  1584. * - add_free_nid
  1585. * - __lookup_nat_cache
  1586. * - f2fs_add_link
  1587. * - init_inode_metadata
  1588. * - new_inode_page
  1589. * - new_node_page
  1590. * - set_node_addr
  1591. * - alloc_nid_done
  1592. * - __remove_nid_from_list(PREALLOC_NID)
  1593. * - __insert_nid_to_list(FREE_NID)
  1594. */
  1595. ne = __lookup_nat_cache(nm_i, nid);
  1596. if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
  1597. nat_get_blkaddr(ne) != NULL_ADDR))
  1598. goto err_out;
  1599. e = __lookup_free_nid_list(nm_i, nid);
  1600. if (e) {
  1601. if (e->state == FREE_NID)
  1602. ret = true;
  1603. goto err_out;
  1604. }
  1605. }
  1606. ret = true;
  1607. err = __insert_free_nid(sbi, i, FREE_NID);
  1608. err_out:
  1609. spin_unlock(&nm_i->nid_list_lock);
  1610. radix_tree_preload_end();
  1611. err:
  1612. if (err)
  1613. kmem_cache_free(free_nid_slab, i);
  1614. return ret;
  1615. }
  1616. static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
  1617. {
  1618. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1619. struct free_nid *i;
  1620. bool need_free = false;
  1621. spin_lock(&nm_i->nid_list_lock);
  1622. i = __lookup_free_nid_list(nm_i, nid);
  1623. if (i && i->state == FREE_NID) {
  1624. __remove_free_nid(sbi, i, FREE_NID);
  1625. need_free = true;
  1626. }
  1627. spin_unlock(&nm_i->nid_list_lock);
  1628. if (need_free)
  1629. kmem_cache_free(free_nid_slab, i);
  1630. }
  1631. static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
  1632. bool set, bool build)
  1633. {
  1634. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1635. unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
  1636. unsigned int nid_ofs = nid - START_NID(nid);
  1637. if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
  1638. return;
  1639. if (set)
  1640. __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
  1641. else
  1642. __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
  1643. if (set)
  1644. nm_i->free_nid_count[nat_ofs]++;
  1645. else if (!build)
  1646. nm_i->free_nid_count[nat_ofs]--;
  1647. }
  1648. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1649. struct page *nat_page, nid_t start_nid)
  1650. {
  1651. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1652. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1653. block_t blk_addr;
  1654. unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
  1655. int i;
  1656. if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
  1657. return;
  1658. __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
  1659. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1660. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1661. bool freed = false;
  1662. if (unlikely(start_nid >= nm_i->max_nid))
  1663. break;
  1664. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1665. f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
  1666. if (blk_addr == NULL_ADDR)
  1667. freed = add_free_nid(sbi, start_nid, true);
  1668. spin_lock(&NM_I(sbi)->nid_list_lock);
  1669. update_free_nid_bitmap(sbi, start_nid, freed, true);
  1670. spin_unlock(&NM_I(sbi)->nid_list_lock);
  1671. }
  1672. }
  1673. static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
  1674. {
  1675. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1676. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1677. struct f2fs_journal *journal = curseg->journal;
  1678. unsigned int i, idx;
  1679. nid_t nid;
  1680. down_read(&nm_i->nat_tree_lock);
  1681. for (i = 0; i < nm_i->nat_blocks; i++) {
  1682. if (!test_bit_le(i, nm_i->nat_block_bitmap))
  1683. continue;
  1684. if (!nm_i->free_nid_count[i])
  1685. continue;
  1686. for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
  1687. idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
  1688. NAT_ENTRY_PER_BLOCK, idx);
  1689. if (idx >= NAT_ENTRY_PER_BLOCK)
  1690. break;
  1691. nid = i * NAT_ENTRY_PER_BLOCK + idx;
  1692. add_free_nid(sbi, nid, true);
  1693. if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
  1694. goto out;
  1695. }
  1696. }
  1697. out:
  1698. down_read(&curseg->journal_rwsem);
  1699. for (i = 0; i < nats_in_cursum(journal); i++) {
  1700. block_t addr;
  1701. addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
  1702. nid = le32_to_cpu(nid_in_journal(journal, i));
  1703. if (addr == NULL_ADDR)
  1704. add_free_nid(sbi, nid, true);
  1705. else
  1706. remove_free_nid(sbi, nid);
  1707. }
  1708. up_read(&curseg->journal_rwsem);
  1709. up_read(&nm_i->nat_tree_lock);
  1710. }
  1711. static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
  1712. {
  1713. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1714. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1715. struct f2fs_journal *journal = curseg->journal;
  1716. int i = 0;
  1717. nid_t nid = nm_i->next_scan_nid;
  1718. if (unlikely(nid >= nm_i->max_nid))
  1719. nid = 0;
  1720. /* Enough entries */
  1721. if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
  1722. return;
  1723. if (!sync && !available_free_memory(sbi, FREE_NIDS))
  1724. return;
  1725. if (!mount) {
  1726. /* try to find free nids in free_nid_bitmap */
  1727. scan_free_nid_bits(sbi);
  1728. if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
  1729. return;
  1730. }
  1731. /* readahead nat pages to be scanned */
  1732. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
  1733. META_NAT, true);
  1734. down_read(&nm_i->nat_tree_lock);
  1735. while (1) {
  1736. struct page *page = get_current_nat_page(sbi, nid);
  1737. scan_nat_page(sbi, page, nid);
  1738. f2fs_put_page(page, 1);
  1739. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1740. if (unlikely(nid >= nm_i->max_nid))
  1741. nid = 0;
  1742. if (++i >= FREE_NID_PAGES)
  1743. break;
  1744. }
  1745. /* go to the next free nat pages to find free nids abundantly */
  1746. nm_i->next_scan_nid = nid;
  1747. /* find free nids from current sum_pages */
  1748. down_read(&curseg->journal_rwsem);
  1749. for (i = 0; i < nats_in_cursum(journal); i++) {
  1750. block_t addr;
  1751. addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
  1752. nid = le32_to_cpu(nid_in_journal(journal, i));
  1753. if (addr == NULL_ADDR)
  1754. add_free_nid(sbi, nid, true);
  1755. else
  1756. remove_free_nid(sbi, nid);
  1757. }
  1758. up_read(&curseg->journal_rwsem);
  1759. up_read(&nm_i->nat_tree_lock);
  1760. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
  1761. nm_i->ra_nid_pages, META_NAT, false);
  1762. }
  1763. void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
  1764. {
  1765. mutex_lock(&NM_I(sbi)->build_lock);
  1766. __build_free_nids(sbi, sync, mount);
  1767. mutex_unlock(&NM_I(sbi)->build_lock);
  1768. }
  1769. /*
  1770. * If this function returns success, caller can obtain a new nid
  1771. * from second parameter of this function.
  1772. * The returned nid could be used ino as well as nid when inode is created.
  1773. */
  1774. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1775. {
  1776. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1777. struct free_nid *i = NULL;
  1778. retry:
  1779. #ifdef CONFIG_F2FS_FAULT_INJECTION
  1780. if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
  1781. f2fs_show_injection_info(FAULT_ALLOC_NID);
  1782. return false;
  1783. }
  1784. #endif
  1785. spin_lock(&nm_i->nid_list_lock);
  1786. if (unlikely(nm_i->available_nids == 0)) {
  1787. spin_unlock(&nm_i->nid_list_lock);
  1788. return false;
  1789. }
  1790. /* We should not use stale free nids created by build_free_nids */
  1791. if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
  1792. f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
  1793. i = list_first_entry(&nm_i->free_nid_list,
  1794. struct free_nid, list);
  1795. *nid = i->nid;
  1796. __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
  1797. nm_i->available_nids--;
  1798. update_free_nid_bitmap(sbi, *nid, false, false);
  1799. spin_unlock(&nm_i->nid_list_lock);
  1800. return true;
  1801. }
  1802. spin_unlock(&nm_i->nid_list_lock);
  1803. /* Let's scan nat pages and its caches to get free nids */
  1804. build_free_nids(sbi, true, false);
  1805. goto retry;
  1806. }
  1807. /*
  1808. * alloc_nid() should be called prior to this function.
  1809. */
  1810. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1811. {
  1812. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1813. struct free_nid *i;
  1814. spin_lock(&nm_i->nid_list_lock);
  1815. i = __lookup_free_nid_list(nm_i, nid);
  1816. f2fs_bug_on(sbi, !i);
  1817. __remove_free_nid(sbi, i, PREALLOC_NID);
  1818. spin_unlock(&nm_i->nid_list_lock);
  1819. kmem_cache_free(free_nid_slab, i);
  1820. }
  1821. /*
  1822. * alloc_nid() should be called prior to this function.
  1823. */
  1824. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1825. {
  1826. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1827. struct free_nid *i;
  1828. bool need_free = false;
  1829. if (!nid)
  1830. return;
  1831. spin_lock(&nm_i->nid_list_lock);
  1832. i = __lookup_free_nid_list(nm_i, nid);
  1833. f2fs_bug_on(sbi, !i);
  1834. if (!available_free_memory(sbi, FREE_NIDS)) {
  1835. __remove_free_nid(sbi, i, PREALLOC_NID);
  1836. need_free = true;
  1837. } else {
  1838. __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
  1839. }
  1840. nm_i->available_nids++;
  1841. update_free_nid_bitmap(sbi, nid, true, false);
  1842. spin_unlock(&nm_i->nid_list_lock);
  1843. if (need_free)
  1844. kmem_cache_free(free_nid_slab, i);
  1845. }
  1846. int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
  1847. {
  1848. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1849. struct free_nid *i, *next;
  1850. int nr = nr_shrink;
  1851. if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
  1852. return 0;
  1853. if (!mutex_trylock(&nm_i->build_lock))
  1854. return 0;
  1855. spin_lock(&nm_i->nid_list_lock);
  1856. list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
  1857. if (nr_shrink <= 0 ||
  1858. nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
  1859. break;
  1860. __remove_free_nid(sbi, i, FREE_NID);
  1861. kmem_cache_free(free_nid_slab, i);
  1862. nr_shrink--;
  1863. }
  1864. spin_unlock(&nm_i->nid_list_lock);
  1865. mutex_unlock(&nm_i->build_lock);
  1866. return nr - nr_shrink;
  1867. }
  1868. void recover_inline_xattr(struct inode *inode, struct page *page)
  1869. {
  1870. void *src_addr, *dst_addr;
  1871. size_t inline_size;
  1872. struct page *ipage;
  1873. struct f2fs_inode *ri;
  1874. ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
  1875. f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
  1876. ri = F2FS_INODE(page);
  1877. if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
  1878. clear_inode_flag(inode, FI_INLINE_XATTR);
  1879. goto update_inode;
  1880. }
  1881. dst_addr = inline_xattr_addr(inode, ipage);
  1882. src_addr = inline_xattr_addr(inode, page);
  1883. inline_size = inline_xattr_size(inode);
  1884. f2fs_wait_on_page_writeback(ipage, NODE, true);
  1885. memcpy(dst_addr, src_addr, inline_size);
  1886. update_inode:
  1887. update_inode(inode, ipage);
  1888. f2fs_put_page(ipage, 1);
  1889. }
  1890. int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1891. {
  1892. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  1893. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1894. nid_t new_xnid;
  1895. struct dnode_of_data dn;
  1896. struct node_info ni;
  1897. struct page *xpage;
  1898. if (!prev_xnid)
  1899. goto recover_xnid;
  1900. /* 1: invalidate the previous xattr nid */
  1901. get_node_info(sbi, prev_xnid, &ni);
  1902. f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
  1903. invalidate_blocks(sbi, ni.blk_addr);
  1904. dec_valid_node_count(sbi, inode, false);
  1905. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1906. recover_xnid:
  1907. /* 2: update xattr nid in inode */
  1908. if (!alloc_nid(sbi, &new_xnid))
  1909. return -ENOSPC;
  1910. set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
  1911. xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
  1912. if (IS_ERR(xpage)) {
  1913. alloc_nid_failed(sbi, new_xnid);
  1914. return PTR_ERR(xpage);
  1915. }
  1916. alloc_nid_done(sbi, new_xnid);
  1917. update_inode_page(inode);
  1918. /* 3: update and set xattr node page dirty */
  1919. memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
  1920. set_page_dirty(xpage);
  1921. f2fs_put_page(xpage, 1);
  1922. return 0;
  1923. }
  1924. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1925. {
  1926. struct f2fs_inode *src, *dst;
  1927. nid_t ino = ino_of_node(page);
  1928. struct node_info old_ni, new_ni;
  1929. struct page *ipage;
  1930. get_node_info(sbi, ino, &old_ni);
  1931. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1932. return -EINVAL;
  1933. retry:
  1934. ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
  1935. if (!ipage) {
  1936. congestion_wait(BLK_RW_ASYNC, HZ/50);
  1937. goto retry;
  1938. }
  1939. /* Should not use this inode from free nid list */
  1940. remove_free_nid(sbi, ino);
  1941. if (!PageUptodate(ipage))
  1942. SetPageUptodate(ipage);
  1943. fill_node_footer(ipage, ino, ino, 0, true);
  1944. src = F2FS_INODE(page);
  1945. dst = F2FS_INODE(ipage);
  1946. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1947. dst->i_size = 0;
  1948. dst->i_blocks = cpu_to_le64(1);
  1949. dst->i_links = cpu_to_le32(1);
  1950. dst->i_xattr_nid = 0;
  1951. dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
  1952. if (dst->i_inline & F2FS_EXTRA_ATTR) {
  1953. dst->i_extra_isize = src->i_extra_isize;
  1954. if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
  1955. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  1956. i_inline_xattr_size))
  1957. dst->i_inline_xattr_size = src->i_inline_xattr_size;
  1958. if (f2fs_sb_has_project_quota(sbi->sb) &&
  1959. F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
  1960. i_projid))
  1961. dst->i_projid = src->i_projid;
  1962. }
  1963. new_ni = old_ni;
  1964. new_ni.ino = ino;
  1965. if (unlikely(inc_valid_node_count(sbi, NULL, true)))
  1966. WARN_ON(1);
  1967. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1968. inc_valid_inode_count(sbi);
  1969. set_page_dirty(ipage);
  1970. f2fs_put_page(ipage, 1);
  1971. return 0;
  1972. }
  1973. int restore_node_summary(struct f2fs_sb_info *sbi,
  1974. unsigned int segno, struct f2fs_summary_block *sum)
  1975. {
  1976. struct f2fs_node *rn;
  1977. struct f2fs_summary *sum_entry;
  1978. block_t addr;
  1979. int i, idx, last_offset, nrpages;
  1980. /* scan the node segment */
  1981. last_offset = sbi->blocks_per_seg;
  1982. addr = START_BLOCK(sbi, segno);
  1983. sum_entry = &sum->entries[0];
  1984. for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
  1985. nrpages = min(last_offset - i, BIO_MAX_PAGES);
  1986. /* readahead node pages */
  1987. ra_meta_pages(sbi, addr, nrpages, META_POR, true);
  1988. for (idx = addr; idx < addr + nrpages; idx++) {
  1989. struct page *page = get_tmp_page(sbi, idx);
  1990. rn = F2FS_NODE(page);
  1991. sum_entry->nid = rn->footer.nid;
  1992. sum_entry->version = 0;
  1993. sum_entry->ofs_in_node = 0;
  1994. sum_entry++;
  1995. f2fs_put_page(page, 1);
  1996. }
  1997. invalidate_mapping_pages(META_MAPPING(sbi), addr,
  1998. addr + nrpages);
  1999. }
  2000. return 0;
  2001. }
  2002. static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
  2003. {
  2004. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2005. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2006. struct f2fs_journal *journal = curseg->journal;
  2007. int i;
  2008. down_write(&curseg->journal_rwsem);
  2009. for (i = 0; i < nats_in_cursum(journal); i++) {
  2010. struct nat_entry *ne;
  2011. struct f2fs_nat_entry raw_ne;
  2012. nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
  2013. raw_ne = nat_in_journal(journal, i);
  2014. ne = __lookup_nat_cache(nm_i, nid);
  2015. if (!ne) {
  2016. ne = grab_nat_entry(nm_i, nid, true);
  2017. node_info_from_raw_nat(&ne->ni, &raw_ne);
  2018. }
  2019. /*
  2020. * if a free nat in journal has not been used after last
  2021. * checkpoint, we should remove it from available nids,
  2022. * since later we will add it again.
  2023. */
  2024. if (!get_nat_flag(ne, IS_DIRTY) &&
  2025. le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
  2026. spin_lock(&nm_i->nid_list_lock);
  2027. nm_i->available_nids--;
  2028. spin_unlock(&nm_i->nid_list_lock);
  2029. }
  2030. __set_nat_cache_dirty(nm_i, ne);
  2031. }
  2032. update_nats_in_cursum(journal, -i);
  2033. up_write(&curseg->journal_rwsem);
  2034. }
  2035. static void __adjust_nat_entry_set(struct nat_entry_set *nes,
  2036. struct list_head *head, int max)
  2037. {
  2038. struct nat_entry_set *cur;
  2039. if (nes->entry_cnt >= max)
  2040. goto add_out;
  2041. list_for_each_entry(cur, head, set_list) {
  2042. if (cur->entry_cnt >= nes->entry_cnt) {
  2043. list_add(&nes->set_list, cur->set_list.prev);
  2044. return;
  2045. }
  2046. }
  2047. add_out:
  2048. list_add_tail(&nes->set_list, head);
  2049. }
  2050. static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
  2051. struct page *page)
  2052. {
  2053. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2054. unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
  2055. struct f2fs_nat_block *nat_blk = page_address(page);
  2056. int valid = 0;
  2057. int i = 0;
  2058. if (!enabled_nat_bits(sbi, NULL))
  2059. return;
  2060. if (nat_index == 0) {
  2061. valid = 1;
  2062. i = 1;
  2063. }
  2064. for (; i < NAT_ENTRY_PER_BLOCK; i++) {
  2065. if (nat_blk->entries[i].block_addr != NULL_ADDR)
  2066. valid++;
  2067. }
  2068. if (valid == 0) {
  2069. __set_bit_le(nat_index, nm_i->empty_nat_bits);
  2070. __clear_bit_le(nat_index, nm_i->full_nat_bits);
  2071. return;
  2072. }
  2073. __clear_bit_le(nat_index, nm_i->empty_nat_bits);
  2074. if (valid == NAT_ENTRY_PER_BLOCK)
  2075. __set_bit_le(nat_index, nm_i->full_nat_bits);
  2076. else
  2077. __clear_bit_le(nat_index, nm_i->full_nat_bits);
  2078. }
  2079. static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
  2080. struct nat_entry_set *set, struct cp_control *cpc)
  2081. {
  2082. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2083. struct f2fs_journal *journal = curseg->journal;
  2084. nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
  2085. bool to_journal = true;
  2086. struct f2fs_nat_block *nat_blk;
  2087. struct nat_entry *ne, *cur;
  2088. struct page *page = NULL;
  2089. /*
  2090. * there are two steps to flush nat entries:
  2091. * #1, flush nat entries to journal in current hot data summary block.
  2092. * #2, flush nat entries to nat page.
  2093. */
  2094. if (enabled_nat_bits(sbi, cpc) ||
  2095. !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
  2096. to_journal = false;
  2097. if (to_journal) {
  2098. down_write(&curseg->journal_rwsem);
  2099. } else {
  2100. page = get_next_nat_page(sbi, start_nid);
  2101. nat_blk = page_address(page);
  2102. f2fs_bug_on(sbi, !nat_blk);
  2103. }
  2104. /* flush dirty nats in nat entry set */
  2105. list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
  2106. struct f2fs_nat_entry *raw_ne;
  2107. nid_t nid = nat_get_nid(ne);
  2108. int offset;
  2109. f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
  2110. if (to_journal) {
  2111. offset = lookup_journal_in_cursum(journal,
  2112. NAT_JOURNAL, nid, 1);
  2113. f2fs_bug_on(sbi, offset < 0);
  2114. raw_ne = &nat_in_journal(journal, offset);
  2115. nid_in_journal(journal, offset) = cpu_to_le32(nid);
  2116. } else {
  2117. raw_ne = &nat_blk->entries[nid - start_nid];
  2118. }
  2119. raw_nat_from_node_info(raw_ne, &ne->ni);
  2120. nat_reset_flag(ne);
  2121. __clear_nat_cache_dirty(NM_I(sbi), set, ne);
  2122. if (nat_get_blkaddr(ne) == NULL_ADDR) {
  2123. add_free_nid(sbi, nid, false);
  2124. spin_lock(&NM_I(sbi)->nid_list_lock);
  2125. NM_I(sbi)->available_nids++;
  2126. update_free_nid_bitmap(sbi, nid, true, false);
  2127. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2128. } else {
  2129. spin_lock(&NM_I(sbi)->nid_list_lock);
  2130. update_free_nid_bitmap(sbi, nid, false, false);
  2131. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2132. }
  2133. }
  2134. if (to_journal) {
  2135. up_write(&curseg->journal_rwsem);
  2136. } else {
  2137. __update_nat_bits(sbi, start_nid, page);
  2138. f2fs_put_page(page, 1);
  2139. }
  2140. /* Allow dirty nats by node block allocation in write_begin */
  2141. if (!set->entry_cnt) {
  2142. radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
  2143. kmem_cache_free(nat_entry_set_slab, set);
  2144. }
  2145. }
  2146. /*
  2147. * This function is called during the checkpointing process.
  2148. */
  2149. void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2150. {
  2151. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2152. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2153. struct f2fs_journal *journal = curseg->journal;
  2154. struct nat_entry_set *setvec[SETVEC_SIZE];
  2155. struct nat_entry_set *set, *tmp;
  2156. unsigned int found;
  2157. nid_t set_idx = 0;
  2158. LIST_HEAD(sets);
  2159. if (!nm_i->dirty_nat_cnt)
  2160. return;
  2161. down_write(&nm_i->nat_tree_lock);
  2162. /*
  2163. * if there are no enough space in journal to store dirty nat
  2164. * entries, remove all entries from journal and merge them
  2165. * into nat entry set.
  2166. */
  2167. if (enabled_nat_bits(sbi, cpc) ||
  2168. !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
  2169. remove_nats_in_journal(sbi);
  2170. while ((found = __gang_lookup_nat_set(nm_i,
  2171. set_idx, SETVEC_SIZE, setvec))) {
  2172. unsigned idx;
  2173. set_idx = setvec[found - 1]->set + 1;
  2174. for (idx = 0; idx < found; idx++)
  2175. __adjust_nat_entry_set(setvec[idx], &sets,
  2176. MAX_NAT_JENTRIES(journal));
  2177. }
  2178. /* flush dirty nats in nat entry set */
  2179. list_for_each_entry_safe(set, tmp, &sets, set_list)
  2180. __flush_nat_entry_set(sbi, set, cpc);
  2181. up_write(&nm_i->nat_tree_lock);
  2182. /* Allow dirty nats by node block allocation in write_begin */
  2183. }
  2184. static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
  2185. {
  2186. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2187. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2188. unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
  2189. unsigned int i;
  2190. __u64 cp_ver = cur_cp_version(ckpt);
  2191. block_t nat_bits_addr;
  2192. if (!enabled_nat_bits(sbi, NULL))
  2193. return 0;
  2194. nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
  2195. F2FS_BLKSIZE - 1);
  2196. nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
  2197. GFP_KERNEL);
  2198. if (!nm_i->nat_bits)
  2199. return -ENOMEM;
  2200. nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
  2201. nm_i->nat_bits_blocks;
  2202. for (i = 0; i < nm_i->nat_bits_blocks; i++) {
  2203. struct page *page = get_meta_page(sbi, nat_bits_addr++);
  2204. memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
  2205. page_address(page), F2FS_BLKSIZE);
  2206. f2fs_put_page(page, 1);
  2207. }
  2208. cp_ver |= (cur_cp_crc(ckpt) << 32);
  2209. if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
  2210. disable_nat_bits(sbi, true);
  2211. return 0;
  2212. }
  2213. nm_i->full_nat_bits = nm_i->nat_bits + 8;
  2214. nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
  2215. f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
  2216. return 0;
  2217. }
  2218. static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
  2219. {
  2220. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2221. unsigned int i = 0;
  2222. nid_t nid, last_nid;
  2223. if (!enabled_nat_bits(sbi, NULL))
  2224. return;
  2225. for (i = 0; i < nm_i->nat_blocks; i++) {
  2226. i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
  2227. if (i >= nm_i->nat_blocks)
  2228. break;
  2229. __set_bit_le(i, nm_i->nat_block_bitmap);
  2230. nid = i * NAT_ENTRY_PER_BLOCK;
  2231. last_nid = nid + NAT_ENTRY_PER_BLOCK;
  2232. spin_lock(&NM_I(sbi)->nid_list_lock);
  2233. for (; nid < last_nid; nid++)
  2234. update_free_nid_bitmap(sbi, nid, true, true);
  2235. spin_unlock(&NM_I(sbi)->nid_list_lock);
  2236. }
  2237. for (i = 0; i < nm_i->nat_blocks; i++) {
  2238. i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
  2239. if (i >= nm_i->nat_blocks)
  2240. break;
  2241. __set_bit_le(i, nm_i->nat_block_bitmap);
  2242. }
  2243. }
  2244. static int init_node_manager(struct f2fs_sb_info *sbi)
  2245. {
  2246. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  2247. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2248. unsigned char *version_bitmap;
  2249. unsigned int nat_segs;
  2250. int err;
  2251. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  2252. /* segment_count_nat includes pair segment so divide to 2. */
  2253. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  2254. nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  2255. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
  2256. /* not used nids: 0, node, meta, (and root counted as valid node) */
  2257. nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
  2258. F2FS_RESERVED_NODE_NUM;
  2259. nm_i->nid_cnt[FREE_NID] = 0;
  2260. nm_i->nid_cnt[PREALLOC_NID] = 0;
  2261. nm_i->nat_cnt = 0;
  2262. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  2263. nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
  2264. nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
  2265. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  2266. INIT_LIST_HEAD(&nm_i->free_nid_list);
  2267. INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
  2268. INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
  2269. INIT_LIST_HEAD(&nm_i->nat_entries);
  2270. mutex_init(&nm_i->build_lock);
  2271. spin_lock_init(&nm_i->nid_list_lock);
  2272. init_rwsem(&nm_i->nat_tree_lock);
  2273. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  2274. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  2275. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  2276. if (!version_bitmap)
  2277. return -EFAULT;
  2278. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  2279. GFP_KERNEL);
  2280. if (!nm_i->nat_bitmap)
  2281. return -ENOMEM;
  2282. err = __get_nat_bitmaps(sbi);
  2283. if (err)
  2284. return err;
  2285. #ifdef CONFIG_F2FS_CHECK_FS
  2286. nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
  2287. GFP_KERNEL);
  2288. if (!nm_i->nat_bitmap_mir)
  2289. return -ENOMEM;
  2290. #endif
  2291. return 0;
  2292. }
  2293. static int init_free_nid_cache(struct f2fs_sb_info *sbi)
  2294. {
  2295. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2296. nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks *
  2297. NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
  2298. if (!nm_i->free_nid_bitmap)
  2299. return -ENOMEM;
  2300. nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8,
  2301. GFP_KERNEL);
  2302. if (!nm_i->nat_block_bitmap)
  2303. return -ENOMEM;
  2304. nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks *
  2305. sizeof(unsigned short), GFP_KERNEL);
  2306. if (!nm_i->free_nid_count)
  2307. return -ENOMEM;
  2308. return 0;
  2309. }
  2310. int build_node_manager(struct f2fs_sb_info *sbi)
  2311. {
  2312. int err;
  2313. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  2314. if (!sbi->nm_info)
  2315. return -ENOMEM;
  2316. err = init_node_manager(sbi);
  2317. if (err)
  2318. return err;
  2319. err = init_free_nid_cache(sbi);
  2320. if (err)
  2321. return err;
  2322. /* load free nid status from nat_bits table */
  2323. load_free_nid_bitmap(sbi);
  2324. build_free_nids(sbi, true, true);
  2325. return 0;
  2326. }
  2327. void destroy_node_manager(struct f2fs_sb_info *sbi)
  2328. {
  2329. struct f2fs_nm_info *nm_i = NM_I(sbi);
  2330. struct free_nid *i, *next_i;
  2331. struct nat_entry *natvec[NATVEC_SIZE];
  2332. struct nat_entry_set *setvec[SETVEC_SIZE];
  2333. nid_t nid = 0;
  2334. unsigned int found;
  2335. if (!nm_i)
  2336. return;
  2337. /* destroy free nid list */
  2338. spin_lock(&nm_i->nid_list_lock);
  2339. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  2340. __remove_free_nid(sbi, i, FREE_NID);
  2341. spin_unlock(&nm_i->nid_list_lock);
  2342. kmem_cache_free(free_nid_slab, i);
  2343. spin_lock(&nm_i->nid_list_lock);
  2344. }
  2345. f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
  2346. f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
  2347. f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
  2348. spin_unlock(&nm_i->nid_list_lock);
  2349. /* destroy nat cache */
  2350. down_write(&nm_i->nat_tree_lock);
  2351. while ((found = __gang_lookup_nat_cache(nm_i,
  2352. nid, NATVEC_SIZE, natvec))) {
  2353. unsigned idx;
  2354. nid = nat_get_nid(natvec[found - 1]) + 1;
  2355. for (idx = 0; idx < found; idx++)
  2356. __del_from_nat_cache(nm_i, natvec[idx]);
  2357. }
  2358. f2fs_bug_on(sbi, nm_i->nat_cnt);
  2359. /* destroy nat set cache */
  2360. nid = 0;
  2361. while ((found = __gang_lookup_nat_set(nm_i,
  2362. nid, SETVEC_SIZE, setvec))) {
  2363. unsigned idx;
  2364. nid = setvec[found - 1]->set + 1;
  2365. for (idx = 0; idx < found; idx++) {
  2366. /* entry_cnt is not zero, when cp_error was occurred */
  2367. f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
  2368. radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
  2369. kmem_cache_free(nat_entry_set_slab, setvec[idx]);
  2370. }
  2371. }
  2372. up_write(&nm_i->nat_tree_lock);
  2373. kvfree(nm_i->nat_block_bitmap);
  2374. kvfree(nm_i->free_nid_bitmap);
  2375. kvfree(nm_i->free_nid_count);
  2376. kfree(nm_i->nat_bitmap);
  2377. kfree(nm_i->nat_bits);
  2378. #ifdef CONFIG_F2FS_CHECK_FS
  2379. kfree(nm_i->nat_bitmap_mir);
  2380. #endif
  2381. sbi->nm_info = NULL;
  2382. kfree(nm_i);
  2383. }
  2384. int __init create_node_manager_caches(void)
  2385. {
  2386. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  2387. sizeof(struct nat_entry));
  2388. if (!nat_entry_slab)
  2389. goto fail;
  2390. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  2391. sizeof(struct free_nid));
  2392. if (!free_nid_slab)
  2393. goto destroy_nat_entry;
  2394. nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
  2395. sizeof(struct nat_entry_set));
  2396. if (!nat_entry_set_slab)
  2397. goto destroy_free_nid;
  2398. return 0;
  2399. destroy_free_nid:
  2400. kmem_cache_destroy(free_nid_slab);
  2401. destroy_nat_entry:
  2402. kmem_cache_destroy(nat_entry_slab);
  2403. fail:
  2404. return -ENOMEM;
  2405. }
  2406. void destroy_node_manager_caches(void)
  2407. {
  2408. kmem_cache_destroy(nat_entry_set_slab);
  2409. kmem_cache_destroy(free_nid_slab);
  2410. kmem_cache_destroy(nat_entry_slab);
  2411. }