sched.c 269 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_GROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. #ifdef CONFIG_CGROUP_SCHED
  208. struct cgroup_subsys_state css;
  209. #endif
  210. #ifdef CONFIG_USER_SCHED
  211. uid_t uid;
  212. #endif
  213. #ifdef CONFIG_FAIR_GROUP_SCHED
  214. /* schedulable entities of this group on each cpu */
  215. struct sched_entity **se;
  216. /* runqueue "owned" by this group on each cpu */
  217. struct cfs_rq **cfs_rq;
  218. unsigned long shares;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. };
  231. #ifdef CONFIG_USER_SCHED
  232. /* Helper function to pass uid information to create_sched_user() */
  233. void set_tg_uid(struct user_struct *user)
  234. {
  235. user->tg->uid = user->uid;
  236. }
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
  252. #endif /* CONFIG_RT_GROUP_SCHED */
  253. #else /* !CONFIG_USER_SCHED */
  254. #define root_task_group init_task_group
  255. #endif /* CONFIG_USER_SCHED */
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_SMP
  262. static int root_task_group_empty(void)
  263. {
  264. return list_empty(&root_task_group.children);
  265. }
  266. #endif
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. rcu_read_lock();
  294. tg = __task_cred(p)->user->tg;
  295. rcu_read_unlock();
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  318. static inline struct task_group *task_group(struct task_struct *p)
  319. {
  320. return NULL;
  321. }
  322. #endif /* CONFIG_GROUP_SCHED */
  323. /* CFS-related fields in a runqueue */
  324. struct cfs_rq {
  325. struct load_weight load;
  326. unsigned long nr_running;
  327. u64 exec_clock;
  328. u64 min_vruntime;
  329. struct rb_root tasks_timeline;
  330. struct rb_node *rb_leftmost;
  331. struct list_head tasks;
  332. struct list_head *balance_iterator;
  333. /*
  334. * 'curr' points to currently running entity on this cfs_rq.
  335. * It is set to NULL otherwise (i.e when none are currently running).
  336. */
  337. struct sched_entity *curr, *next, *last;
  338. unsigned int nr_spread_over;
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. struct list_head leaf_cfs_rq_list;
  350. struct task_group *tg; /* group that "owns" this runqueue */
  351. #ifdef CONFIG_SMP
  352. /*
  353. * the part of load.weight contributed by tasks
  354. */
  355. unsigned long task_weight;
  356. /*
  357. * h_load = weight * f(tg)
  358. *
  359. * Where f(tg) is the recursive weight fraction assigned to
  360. * this group.
  361. */
  362. unsigned long h_load;
  363. /*
  364. * this cpu's part of tg->shares
  365. */
  366. unsigned long shares;
  367. /*
  368. * load.weight at the time we set shares
  369. */
  370. unsigned long rq_weight;
  371. #endif
  372. #endif
  373. };
  374. /* Real-Time classes' related field in a runqueue: */
  375. struct rt_rq {
  376. struct rt_prio_array active;
  377. unsigned long rt_nr_running;
  378. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  379. struct {
  380. int curr; /* highest queued rt task prio */
  381. #ifdef CONFIG_SMP
  382. int next; /* next highest */
  383. #endif
  384. } highest_prio;
  385. #endif
  386. #ifdef CONFIG_SMP
  387. unsigned long rt_nr_migratory;
  388. unsigned long rt_nr_total;
  389. int overloaded;
  390. struct plist_head pushable_tasks;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_var_t span;
  417. cpumask_var_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_var_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. #ifdef CONFIG_NO_HZ
  452. unsigned char in_nohz_recently;
  453. #endif
  454. /* capture load from *all* tasks on this cpu: */
  455. struct load_weight load;
  456. unsigned long nr_load_updates;
  457. u64 nr_switches;
  458. struct cfs_rq cfs;
  459. struct rt_rq rt;
  460. #ifdef CONFIG_FAIR_GROUP_SCHED
  461. /* list of leaf cfs_rq on this cpu: */
  462. struct list_head leaf_cfs_rq_list;
  463. #endif
  464. #ifdef CONFIG_RT_GROUP_SCHED
  465. struct list_head leaf_rt_rq_list;
  466. #endif
  467. /*
  468. * This is part of a global counter where only the total sum
  469. * over all CPUs matters. A task can increase this counter on
  470. * one CPU and if it got migrated afterwards it may decrease
  471. * it on another CPU. Always updated under the runqueue lock:
  472. */
  473. unsigned long nr_uninterruptible;
  474. struct task_struct *curr, *idle;
  475. unsigned long next_balance;
  476. struct mm_struct *prev_mm;
  477. u64 clock;
  478. atomic_t nr_iowait;
  479. #ifdef CONFIG_SMP
  480. struct root_domain *rd;
  481. struct sched_domain *sd;
  482. unsigned char idle_at_tick;
  483. /* For active balancing */
  484. int post_schedule;
  485. int active_balance;
  486. int push_cpu;
  487. /* cpu of this runqueue: */
  488. int cpu;
  489. int online;
  490. unsigned long avg_load_per_task;
  491. struct task_struct *migration_thread;
  492. struct list_head migration_queue;
  493. u64 rt_avg;
  494. u64 age_stamp;
  495. u64 idle_stamp;
  496. u64 avg_idle;
  497. #endif
  498. /* calc_load related fields */
  499. unsigned long calc_load_update;
  500. long calc_load_active;
  501. #ifdef CONFIG_SCHED_HRTICK
  502. #ifdef CONFIG_SMP
  503. int hrtick_csd_pending;
  504. struct call_single_data hrtick_csd;
  505. #endif
  506. struct hrtimer hrtick_timer;
  507. #endif
  508. #ifdef CONFIG_SCHEDSTATS
  509. /* latency stats */
  510. struct sched_info rq_sched_info;
  511. unsigned long long rq_cpu_time;
  512. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  513. /* sys_sched_yield() stats */
  514. unsigned int yld_count;
  515. /* schedule() stats */
  516. unsigned int sched_switch;
  517. unsigned int sched_count;
  518. unsigned int sched_goidle;
  519. /* try_to_wake_up() stats */
  520. unsigned int ttwu_count;
  521. unsigned int ttwu_local;
  522. /* BKL stats */
  523. unsigned int bkl_count;
  524. #endif
  525. };
  526. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  527. static inline
  528. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  529. {
  530. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  531. }
  532. static inline int cpu_of(struct rq *rq)
  533. {
  534. #ifdef CONFIG_SMP
  535. return rq->cpu;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. /*
  541. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  542. * See detach_destroy_domains: synchronize_sched for details.
  543. *
  544. * The domain tree of any CPU may only be accessed from within
  545. * preempt-disabled sections.
  546. */
  547. #define for_each_domain(cpu, __sd) \
  548. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  549. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  550. #define this_rq() (&__get_cpu_var(runqueues))
  551. #define task_rq(p) cpu_rq(task_cpu(p))
  552. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  553. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  554. inline void update_rq_clock(struct rq *rq)
  555. {
  556. rq->clock = sched_clock_cpu(cpu_of(rq));
  557. }
  558. /*
  559. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  560. */
  561. #ifdef CONFIG_SCHED_DEBUG
  562. # define const_debug __read_mostly
  563. #else
  564. # define const_debug static const
  565. #endif
  566. /**
  567. * runqueue_is_locked
  568. * @cpu: the processor in question.
  569. *
  570. * Returns true if the current cpu runqueue is locked.
  571. * This interface allows printk to be called with the runqueue lock
  572. * held and know whether or not it is OK to wake up the klogd.
  573. */
  574. int runqueue_is_locked(int cpu)
  575. {
  576. return spin_is_locked(&cpu_rq(cpu)->lock);
  577. }
  578. /*
  579. * Debugging: various feature bits
  580. */
  581. #define SCHED_FEAT(name, enabled) \
  582. __SCHED_FEAT_##name ,
  583. enum {
  584. #include "sched_features.h"
  585. };
  586. #undef SCHED_FEAT
  587. #define SCHED_FEAT(name, enabled) \
  588. (1UL << __SCHED_FEAT_##name) * enabled |
  589. const_debug unsigned int sysctl_sched_features =
  590. #include "sched_features.h"
  591. 0;
  592. #undef SCHED_FEAT
  593. #ifdef CONFIG_SCHED_DEBUG
  594. #define SCHED_FEAT(name, enabled) \
  595. #name ,
  596. static __read_mostly char *sched_feat_names[] = {
  597. #include "sched_features.h"
  598. NULL
  599. };
  600. #undef SCHED_FEAT
  601. static int sched_feat_show(struct seq_file *m, void *v)
  602. {
  603. int i;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. if (!(sysctl_sched_features & (1UL << i)))
  606. seq_puts(m, "NO_");
  607. seq_printf(m, "%s ", sched_feat_names[i]);
  608. }
  609. seq_puts(m, "\n");
  610. return 0;
  611. }
  612. static ssize_t
  613. sched_feat_write(struct file *filp, const char __user *ubuf,
  614. size_t cnt, loff_t *ppos)
  615. {
  616. char buf[64];
  617. char *cmp = buf;
  618. int neg = 0;
  619. int i;
  620. if (cnt > 63)
  621. cnt = 63;
  622. if (copy_from_user(&buf, ubuf, cnt))
  623. return -EFAULT;
  624. buf[cnt] = 0;
  625. if (strncmp(buf, "NO_", 3) == 0) {
  626. neg = 1;
  627. cmp += 3;
  628. }
  629. for (i = 0; sched_feat_names[i]; i++) {
  630. int len = strlen(sched_feat_names[i]);
  631. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  632. if (neg)
  633. sysctl_sched_features &= ~(1UL << i);
  634. else
  635. sysctl_sched_features |= (1UL << i);
  636. break;
  637. }
  638. }
  639. if (!sched_feat_names[i])
  640. return -EINVAL;
  641. *ppos += cnt;
  642. return cnt;
  643. }
  644. static int sched_feat_open(struct inode *inode, struct file *filp)
  645. {
  646. return single_open(filp, sched_feat_show, NULL);
  647. }
  648. static const struct file_operations sched_feat_fops = {
  649. .open = sched_feat_open,
  650. .write = sched_feat_write,
  651. .read = seq_read,
  652. .llseek = seq_lseek,
  653. .release = single_release,
  654. };
  655. static __init int sched_init_debug(void)
  656. {
  657. debugfs_create_file("sched_features", 0644, NULL, NULL,
  658. &sched_feat_fops);
  659. return 0;
  660. }
  661. late_initcall(sched_init_debug);
  662. #endif
  663. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  664. /*
  665. * Number of tasks to iterate in a single balance run.
  666. * Limited because this is done with IRQs disabled.
  667. */
  668. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  669. /*
  670. * ratelimit for updating the group shares.
  671. * default: 0.25ms
  672. */
  673. unsigned int sysctl_sched_shares_ratelimit = 250000;
  674. /*
  675. * Inject some fuzzyness into changing the per-cpu group shares
  676. * this avoids remote rq-locks at the expense of fairness.
  677. * default: 4
  678. */
  679. unsigned int sysctl_sched_shares_thresh = 4;
  680. /*
  681. * period over which we average the RT time consumption, measured
  682. * in ms.
  683. *
  684. * default: 1s
  685. */
  686. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  687. /*
  688. * period over which we measure -rt task cpu usage in us.
  689. * default: 1s
  690. */
  691. unsigned int sysctl_sched_rt_period = 1000000;
  692. static __read_mostly int scheduler_running;
  693. /*
  694. * part of the period that we allow rt tasks to run in us.
  695. * default: 0.95s
  696. */
  697. int sysctl_sched_rt_runtime = 950000;
  698. static inline u64 global_rt_period(void)
  699. {
  700. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  701. }
  702. static inline u64 global_rt_runtime(void)
  703. {
  704. if (sysctl_sched_rt_runtime < 0)
  705. return RUNTIME_INF;
  706. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  707. }
  708. #ifndef prepare_arch_switch
  709. # define prepare_arch_switch(next) do { } while (0)
  710. #endif
  711. #ifndef finish_arch_switch
  712. # define finish_arch_switch(prev) do { } while (0)
  713. #endif
  714. static inline int task_current(struct rq *rq, struct task_struct *p)
  715. {
  716. return rq->curr == p;
  717. }
  718. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  719. static inline int task_running(struct rq *rq, struct task_struct *p)
  720. {
  721. return task_current(rq, p);
  722. }
  723. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  724. {
  725. }
  726. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  727. {
  728. #ifdef CONFIG_DEBUG_SPINLOCK
  729. /* this is a valid case when another task releases the spinlock */
  730. rq->lock.owner = current;
  731. #endif
  732. /*
  733. * If we are tracking spinlock dependencies then we have to
  734. * fix up the runqueue lock - which gets 'carried over' from
  735. * prev into current:
  736. */
  737. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  738. spin_unlock_irq(&rq->lock);
  739. }
  740. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  741. static inline int task_running(struct rq *rq, struct task_struct *p)
  742. {
  743. #ifdef CONFIG_SMP
  744. return p->oncpu;
  745. #else
  746. return task_current(rq, p);
  747. #endif
  748. }
  749. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * We can optimise this out completely for !SMP, because the
  754. * SMP rebalancing from interrupt is the only thing that cares
  755. * here.
  756. */
  757. next->oncpu = 1;
  758. #endif
  759. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  760. spin_unlock_irq(&rq->lock);
  761. #else
  762. spin_unlock(&rq->lock);
  763. #endif
  764. }
  765. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  766. {
  767. #ifdef CONFIG_SMP
  768. /*
  769. * After ->oncpu is cleared, the task can be moved to a different CPU.
  770. * We must ensure this doesn't happen until the switch is completely
  771. * finished.
  772. */
  773. smp_wmb();
  774. prev->oncpu = 0;
  775. #endif
  776. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  777. local_irq_enable();
  778. #endif
  779. }
  780. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  781. /*
  782. * __task_rq_lock - lock the runqueue a given task resides on.
  783. * Must be called interrupts disabled.
  784. */
  785. static inline struct rq *__task_rq_lock(struct task_struct *p)
  786. __acquires(rq->lock)
  787. {
  788. for (;;) {
  789. struct rq *rq = task_rq(p);
  790. spin_lock(&rq->lock);
  791. if (likely(rq == task_rq(p)))
  792. return rq;
  793. spin_unlock(&rq->lock);
  794. }
  795. }
  796. /*
  797. * task_rq_lock - lock the runqueue a given task resides on and disable
  798. * interrupts. Note the ordering: we can safely lookup the task_rq without
  799. * explicitly disabling preemption.
  800. */
  801. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  802. __acquires(rq->lock)
  803. {
  804. struct rq *rq;
  805. for (;;) {
  806. local_irq_save(*flags);
  807. rq = task_rq(p);
  808. spin_lock(&rq->lock);
  809. if (likely(rq == task_rq(p)))
  810. return rq;
  811. spin_unlock_irqrestore(&rq->lock, *flags);
  812. }
  813. }
  814. void task_rq_unlock_wait(struct task_struct *p)
  815. {
  816. struct rq *rq = task_rq(p);
  817. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  818. spin_unlock_wait(&rq->lock);
  819. }
  820. static void __task_rq_unlock(struct rq *rq)
  821. __releases(rq->lock)
  822. {
  823. spin_unlock(&rq->lock);
  824. }
  825. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  826. __releases(rq->lock)
  827. {
  828. spin_unlock_irqrestore(&rq->lock, *flags);
  829. }
  830. /*
  831. * this_rq_lock - lock this runqueue and disable interrupts.
  832. */
  833. static struct rq *this_rq_lock(void)
  834. __acquires(rq->lock)
  835. {
  836. struct rq *rq;
  837. local_irq_disable();
  838. rq = this_rq();
  839. spin_lock(&rq->lock);
  840. return rq;
  841. }
  842. #ifdef CONFIG_SCHED_HRTICK
  843. /*
  844. * Use HR-timers to deliver accurate preemption points.
  845. *
  846. * Its all a bit involved since we cannot program an hrt while holding the
  847. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  848. * reschedule event.
  849. *
  850. * When we get rescheduled we reprogram the hrtick_timer outside of the
  851. * rq->lock.
  852. */
  853. /*
  854. * Use hrtick when:
  855. * - enabled by features
  856. * - hrtimer is actually high res
  857. */
  858. static inline int hrtick_enabled(struct rq *rq)
  859. {
  860. if (!sched_feat(HRTICK))
  861. return 0;
  862. if (!cpu_active(cpu_of(rq)))
  863. return 0;
  864. return hrtimer_is_hres_active(&rq->hrtick_timer);
  865. }
  866. static void hrtick_clear(struct rq *rq)
  867. {
  868. if (hrtimer_active(&rq->hrtick_timer))
  869. hrtimer_cancel(&rq->hrtick_timer);
  870. }
  871. /*
  872. * High-resolution timer tick.
  873. * Runs from hardirq context with interrupts disabled.
  874. */
  875. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  876. {
  877. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  878. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  879. spin_lock(&rq->lock);
  880. update_rq_clock(rq);
  881. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  882. spin_unlock(&rq->lock);
  883. return HRTIMER_NORESTART;
  884. }
  885. #ifdef CONFIG_SMP
  886. /*
  887. * called from hardirq (IPI) context
  888. */
  889. static void __hrtick_start(void *arg)
  890. {
  891. struct rq *rq = arg;
  892. spin_lock(&rq->lock);
  893. hrtimer_restart(&rq->hrtick_timer);
  894. rq->hrtick_csd_pending = 0;
  895. spin_unlock(&rq->lock);
  896. }
  897. /*
  898. * Called to set the hrtick timer state.
  899. *
  900. * called with rq->lock held and irqs disabled
  901. */
  902. static void hrtick_start(struct rq *rq, u64 delay)
  903. {
  904. struct hrtimer *timer = &rq->hrtick_timer;
  905. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  906. hrtimer_set_expires(timer, time);
  907. if (rq == this_rq()) {
  908. hrtimer_restart(timer);
  909. } else if (!rq->hrtick_csd_pending) {
  910. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  911. rq->hrtick_csd_pending = 1;
  912. }
  913. }
  914. static int
  915. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  916. {
  917. int cpu = (int)(long)hcpu;
  918. switch (action) {
  919. case CPU_UP_CANCELED:
  920. case CPU_UP_CANCELED_FROZEN:
  921. case CPU_DOWN_PREPARE:
  922. case CPU_DOWN_PREPARE_FROZEN:
  923. case CPU_DEAD:
  924. case CPU_DEAD_FROZEN:
  925. hrtick_clear(cpu_rq(cpu));
  926. return NOTIFY_OK;
  927. }
  928. return NOTIFY_DONE;
  929. }
  930. static __init void init_hrtick(void)
  931. {
  932. hotcpu_notifier(hotplug_hrtick, 0);
  933. }
  934. #else
  935. /*
  936. * Called to set the hrtick timer state.
  937. *
  938. * called with rq->lock held and irqs disabled
  939. */
  940. static void hrtick_start(struct rq *rq, u64 delay)
  941. {
  942. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  943. HRTIMER_MODE_REL_PINNED, 0);
  944. }
  945. static inline void init_hrtick(void)
  946. {
  947. }
  948. #endif /* CONFIG_SMP */
  949. static void init_rq_hrtick(struct rq *rq)
  950. {
  951. #ifdef CONFIG_SMP
  952. rq->hrtick_csd_pending = 0;
  953. rq->hrtick_csd.flags = 0;
  954. rq->hrtick_csd.func = __hrtick_start;
  955. rq->hrtick_csd.info = rq;
  956. #endif
  957. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  958. rq->hrtick_timer.function = hrtick;
  959. }
  960. #else /* CONFIG_SCHED_HRTICK */
  961. static inline void hrtick_clear(struct rq *rq)
  962. {
  963. }
  964. static inline void init_rq_hrtick(struct rq *rq)
  965. {
  966. }
  967. static inline void init_hrtick(void)
  968. {
  969. }
  970. #endif /* CONFIG_SCHED_HRTICK */
  971. /*
  972. * resched_task - mark a task 'to be rescheduled now'.
  973. *
  974. * On UP this means the setting of the need_resched flag, on SMP it
  975. * might also involve a cross-CPU call to trigger the scheduler on
  976. * the target CPU.
  977. */
  978. #ifdef CONFIG_SMP
  979. #ifndef tsk_is_polling
  980. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  981. #endif
  982. static void resched_task(struct task_struct *p)
  983. {
  984. int cpu;
  985. assert_spin_locked(&task_rq(p)->lock);
  986. if (test_tsk_need_resched(p))
  987. return;
  988. set_tsk_need_resched(p);
  989. cpu = task_cpu(p);
  990. if (cpu == smp_processor_id())
  991. return;
  992. /* NEED_RESCHED must be visible before we test polling */
  993. smp_mb();
  994. if (!tsk_is_polling(p))
  995. smp_send_reschedule(cpu);
  996. }
  997. static void resched_cpu(int cpu)
  998. {
  999. struct rq *rq = cpu_rq(cpu);
  1000. unsigned long flags;
  1001. if (!spin_trylock_irqsave(&rq->lock, flags))
  1002. return;
  1003. resched_task(cpu_curr(cpu));
  1004. spin_unlock_irqrestore(&rq->lock, flags);
  1005. }
  1006. #ifdef CONFIG_NO_HZ
  1007. /*
  1008. * When add_timer_on() enqueues a timer into the timer wheel of an
  1009. * idle CPU then this timer might expire before the next timer event
  1010. * which is scheduled to wake up that CPU. In case of a completely
  1011. * idle system the next event might even be infinite time into the
  1012. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1013. * leaves the inner idle loop so the newly added timer is taken into
  1014. * account when the CPU goes back to idle and evaluates the timer
  1015. * wheel for the next timer event.
  1016. */
  1017. void wake_up_idle_cpu(int cpu)
  1018. {
  1019. struct rq *rq = cpu_rq(cpu);
  1020. if (cpu == smp_processor_id())
  1021. return;
  1022. /*
  1023. * This is safe, as this function is called with the timer
  1024. * wheel base lock of (cpu) held. When the CPU is on the way
  1025. * to idle and has not yet set rq->curr to idle then it will
  1026. * be serialized on the timer wheel base lock and take the new
  1027. * timer into account automatically.
  1028. */
  1029. if (rq->curr != rq->idle)
  1030. return;
  1031. /*
  1032. * We can set TIF_RESCHED on the idle task of the other CPU
  1033. * lockless. The worst case is that the other CPU runs the
  1034. * idle task through an additional NOOP schedule()
  1035. */
  1036. set_tsk_need_resched(rq->idle);
  1037. /* NEED_RESCHED must be visible before we test polling */
  1038. smp_mb();
  1039. if (!tsk_is_polling(rq->idle))
  1040. smp_send_reschedule(cpu);
  1041. }
  1042. #endif /* CONFIG_NO_HZ */
  1043. static u64 sched_avg_period(void)
  1044. {
  1045. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1046. }
  1047. static void sched_avg_update(struct rq *rq)
  1048. {
  1049. s64 period = sched_avg_period();
  1050. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1051. rq->age_stamp += period;
  1052. rq->rt_avg /= 2;
  1053. }
  1054. }
  1055. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1056. {
  1057. rq->rt_avg += rt_delta;
  1058. sched_avg_update(rq);
  1059. }
  1060. #else /* !CONFIG_SMP */
  1061. static void resched_task(struct task_struct *p)
  1062. {
  1063. assert_spin_locked(&task_rq(p)->lock);
  1064. set_tsk_need_resched(p);
  1065. }
  1066. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1067. {
  1068. }
  1069. #endif /* CONFIG_SMP */
  1070. #if BITS_PER_LONG == 32
  1071. # define WMULT_CONST (~0UL)
  1072. #else
  1073. # define WMULT_CONST (1UL << 32)
  1074. #endif
  1075. #define WMULT_SHIFT 32
  1076. /*
  1077. * Shift right and round:
  1078. */
  1079. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1080. /*
  1081. * delta *= weight / lw
  1082. */
  1083. static unsigned long
  1084. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1085. struct load_weight *lw)
  1086. {
  1087. u64 tmp;
  1088. if (!lw->inv_weight) {
  1089. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1090. lw->inv_weight = 1;
  1091. else
  1092. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1093. / (lw->weight+1);
  1094. }
  1095. tmp = (u64)delta_exec * weight;
  1096. /*
  1097. * Check whether we'd overflow the 64-bit multiplication:
  1098. */
  1099. if (unlikely(tmp > WMULT_CONST))
  1100. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1101. WMULT_SHIFT/2);
  1102. else
  1103. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1104. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1105. }
  1106. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1107. {
  1108. lw->weight += inc;
  1109. lw->inv_weight = 0;
  1110. }
  1111. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1112. {
  1113. lw->weight -= dec;
  1114. lw->inv_weight = 0;
  1115. }
  1116. /*
  1117. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1118. * of tasks with abnormal "nice" values across CPUs the contribution that
  1119. * each task makes to its run queue's load is weighted according to its
  1120. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1121. * scaled version of the new time slice allocation that they receive on time
  1122. * slice expiry etc.
  1123. */
  1124. #define WEIGHT_IDLEPRIO 3
  1125. #define WMULT_IDLEPRIO 1431655765
  1126. /*
  1127. * Nice levels are multiplicative, with a gentle 10% change for every
  1128. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1129. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1130. * that remained on nice 0.
  1131. *
  1132. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1133. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1134. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1135. * If a task goes up by ~10% and another task goes down by ~10% then
  1136. * the relative distance between them is ~25%.)
  1137. */
  1138. static const int prio_to_weight[40] = {
  1139. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1140. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1141. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1142. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1143. /* 0 */ 1024, 820, 655, 526, 423,
  1144. /* 5 */ 335, 272, 215, 172, 137,
  1145. /* 10 */ 110, 87, 70, 56, 45,
  1146. /* 15 */ 36, 29, 23, 18, 15,
  1147. };
  1148. /*
  1149. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1150. *
  1151. * In cases where the weight does not change often, we can use the
  1152. * precalculated inverse to speed up arithmetics by turning divisions
  1153. * into multiplications:
  1154. */
  1155. static const u32 prio_to_wmult[40] = {
  1156. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1157. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1158. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1159. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1160. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1161. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1162. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1163. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1164. };
  1165. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1166. /*
  1167. * runqueue iterator, to support SMP load-balancing between different
  1168. * scheduling classes, without having to expose their internal data
  1169. * structures to the load-balancing proper:
  1170. */
  1171. struct rq_iterator {
  1172. void *arg;
  1173. struct task_struct *(*start)(void *);
  1174. struct task_struct *(*next)(void *);
  1175. };
  1176. #ifdef CONFIG_SMP
  1177. static unsigned long
  1178. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1179. unsigned long max_load_move, struct sched_domain *sd,
  1180. enum cpu_idle_type idle, int *all_pinned,
  1181. int *this_best_prio, struct rq_iterator *iterator);
  1182. static int
  1183. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1184. struct sched_domain *sd, enum cpu_idle_type idle,
  1185. struct rq_iterator *iterator);
  1186. #endif
  1187. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1188. enum cpuacct_stat_index {
  1189. CPUACCT_STAT_USER, /* ... user mode */
  1190. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1191. CPUACCT_STAT_NSTATS,
  1192. };
  1193. #ifdef CONFIG_CGROUP_CPUACCT
  1194. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1195. static void cpuacct_update_stats(struct task_struct *tsk,
  1196. enum cpuacct_stat_index idx, cputime_t val);
  1197. #else
  1198. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1199. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1200. enum cpuacct_stat_index idx, cputime_t val) {}
  1201. #endif
  1202. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1203. {
  1204. update_load_add(&rq->load, load);
  1205. }
  1206. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1207. {
  1208. update_load_sub(&rq->load, load);
  1209. }
  1210. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1211. typedef int (*tg_visitor)(struct task_group *, void *);
  1212. /*
  1213. * Iterate the full tree, calling @down when first entering a node and @up when
  1214. * leaving it for the final time.
  1215. */
  1216. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1217. {
  1218. struct task_group *parent, *child;
  1219. int ret;
  1220. rcu_read_lock();
  1221. parent = &root_task_group;
  1222. down:
  1223. ret = (*down)(parent, data);
  1224. if (ret)
  1225. goto out_unlock;
  1226. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1227. parent = child;
  1228. goto down;
  1229. up:
  1230. continue;
  1231. }
  1232. ret = (*up)(parent, data);
  1233. if (ret)
  1234. goto out_unlock;
  1235. child = parent;
  1236. parent = parent->parent;
  1237. if (parent)
  1238. goto up;
  1239. out_unlock:
  1240. rcu_read_unlock();
  1241. return ret;
  1242. }
  1243. static int tg_nop(struct task_group *tg, void *data)
  1244. {
  1245. return 0;
  1246. }
  1247. #endif
  1248. #ifdef CONFIG_SMP
  1249. /* Used instead of source_load when we know the type == 0 */
  1250. static unsigned long weighted_cpuload(const int cpu)
  1251. {
  1252. return cpu_rq(cpu)->load.weight;
  1253. }
  1254. /*
  1255. * Return a low guess at the load of a migration-source cpu weighted
  1256. * according to the scheduling class and "nice" value.
  1257. *
  1258. * We want to under-estimate the load of migration sources, to
  1259. * balance conservatively.
  1260. */
  1261. static unsigned long source_load(int cpu, int type)
  1262. {
  1263. struct rq *rq = cpu_rq(cpu);
  1264. unsigned long total = weighted_cpuload(cpu);
  1265. if (type == 0 || !sched_feat(LB_BIAS))
  1266. return total;
  1267. return min(rq->cpu_load[type-1], total);
  1268. }
  1269. /*
  1270. * Return a high guess at the load of a migration-target cpu weighted
  1271. * according to the scheduling class and "nice" value.
  1272. */
  1273. static unsigned long target_load(int cpu, int type)
  1274. {
  1275. struct rq *rq = cpu_rq(cpu);
  1276. unsigned long total = weighted_cpuload(cpu);
  1277. if (type == 0 || !sched_feat(LB_BIAS))
  1278. return total;
  1279. return max(rq->cpu_load[type-1], total);
  1280. }
  1281. static struct sched_group *group_of(int cpu)
  1282. {
  1283. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1284. if (!sd)
  1285. return NULL;
  1286. return sd->groups;
  1287. }
  1288. static unsigned long power_of(int cpu)
  1289. {
  1290. struct sched_group *group = group_of(cpu);
  1291. if (!group)
  1292. return SCHED_LOAD_SCALE;
  1293. return group->cpu_power;
  1294. }
  1295. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1296. static unsigned long cpu_avg_load_per_task(int cpu)
  1297. {
  1298. struct rq *rq = cpu_rq(cpu);
  1299. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1300. if (nr_running)
  1301. rq->avg_load_per_task = rq->load.weight / nr_running;
  1302. else
  1303. rq->avg_load_per_task = 0;
  1304. return rq->avg_load_per_task;
  1305. }
  1306. #ifdef CONFIG_FAIR_GROUP_SCHED
  1307. static __read_mostly unsigned long *update_shares_data;
  1308. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1309. /*
  1310. * Calculate and set the cpu's group shares.
  1311. */
  1312. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1313. unsigned long sd_shares,
  1314. unsigned long sd_rq_weight,
  1315. unsigned long *usd_rq_weight)
  1316. {
  1317. unsigned long shares, rq_weight;
  1318. int boost = 0;
  1319. rq_weight = usd_rq_weight[cpu];
  1320. if (!rq_weight) {
  1321. boost = 1;
  1322. rq_weight = NICE_0_LOAD;
  1323. }
  1324. /*
  1325. * \Sum_j shares_j * rq_weight_i
  1326. * shares_i = -----------------------------
  1327. * \Sum_j rq_weight_j
  1328. */
  1329. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1330. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1331. if (abs(shares - tg->se[cpu]->load.weight) >
  1332. sysctl_sched_shares_thresh) {
  1333. struct rq *rq = cpu_rq(cpu);
  1334. unsigned long flags;
  1335. spin_lock_irqsave(&rq->lock, flags);
  1336. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1337. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1338. __set_se_shares(tg->se[cpu], shares);
  1339. spin_unlock_irqrestore(&rq->lock, flags);
  1340. }
  1341. }
  1342. /*
  1343. * Re-compute the task group their per cpu shares over the given domain.
  1344. * This needs to be done in a bottom-up fashion because the rq weight of a
  1345. * parent group depends on the shares of its child groups.
  1346. */
  1347. static int tg_shares_up(struct task_group *tg, void *data)
  1348. {
  1349. unsigned long weight, rq_weight = 0, shares = 0;
  1350. unsigned long *usd_rq_weight;
  1351. struct sched_domain *sd = data;
  1352. unsigned long flags;
  1353. int i;
  1354. if (!tg->se[0])
  1355. return 0;
  1356. local_irq_save(flags);
  1357. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1358. for_each_cpu(i, sched_domain_span(sd)) {
  1359. weight = tg->cfs_rq[i]->load.weight;
  1360. usd_rq_weight[i] = weight;
  1361. /*
  1362. * If there are currently no tasks on the cpu pretend there
  1363. * is one of average load so that when a new task gets to
  1364. * run here it will not get delayed by group starvation.
  1365. */
  1366. if (!weight)
  1367. weight = NICE_0_LOAD;
  1368. rq_weight += weight;
  1369. shares += tg->cfs_rq[i]->shares;
  1370. }
  1371. if ((!shares && rq_weight) || shares > tg->shares)
  1372. shares = tg->shares;
  1373. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1374. shares = tg->shares;
  1375. for_each_cpu(i, sched_domain_span(sd))
  1376. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1377. local_irq_restore(flags);
  1378. return 0;
  1379. }
  1380. /*
  1381. * Compute the cpu's hierarchical load factor for each task group.
  1382. * This needs to be done in a top-down fashion because the load of a child
  1383. * group is a fraction of its parents load.
  1384. */
  1385. static int tg_load_down(struct task_group *tg, void *data)
  1386. {
  1387. unsigned long load;
  1388. long cpu = (long)data;
  1389. if (!tg->parent) {
  1390. load = cpu_rq(cpu)->load.weight;
  1391. } else {
  1392. load = tg->parent->cfs_rq[cpu]->h_load;
  1393. load *= tg->cfs_rq[cpu]->shares;
  1394. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1395. }
  1396. tg->cfs_rq[cpu]->h_load = load;
  1397. return 0;
  1398. }
  1399. static void update_shares(struct sched_domain *sd)
  1400. {
  1401. s64 elapsed;
  1402. u64 now;
  1403. if (root_task_group_empty())
  1404. return;
  1405. now = cpu_clock(raw_smp_processor_id());
  1406. elapsed = now - sd->last_update;
  1407. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1408. sd->last_update = now;
  1409. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1410. }
  1411. }
  1412. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1413. {
  1414. if (root_task_group_empty())
  1415. return;
  1416. spin_unlock(&rq->lock);
  1417. update_shares(sd);
  1418. spin_lock(&rq->lock);
  1419. }
  1420. static void update_h_load(long cpu)
  1421. {
  1422. if (root_task_group_empty())
  1423. return;
  1424. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1425. }
  1426. #else
  1427. static inline void update_shares(struct sched_domain *sd)
  1428. {
  1429. }
  1430. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1431. {
  1432. }
  1433. #endif
  1434. #ifdef CONFIG_PREEMPT
  1435. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1436. /*
  1437. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1438. * way at the expense of forcing extra atomic operations in all
  1439. * invocations. This assures that the double_lock is acquired using the
  1440. * same underlying policy as the spinlock_t on this architecture, which
  1441. * reduces latency compared to the unfair variant below. However, it
  1442. * also adds more overhead and therefore may reduce throughput.
  1443. */
  1444. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1445. __releases(this_rq->lock)
  1446. __acquires(busiest->lock)
  1447. __acquires(this_rq->lock)
  1448. {
  1449. spin_unlock(&this_rq->lock);
  1450. double_rq_lock(this_rq, busiest);
  1451. return 1;
  1452. }
  1453. #else
  1454. /*
  1455. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1456. * latency by eliminating extra atomic operations when the locks are
  1457. * already in proper order on entry. This favors lower cpu-ids and will
  1458. * grant the double lock to lower cpus over higher ids under contention,
  1459. * regardless of entry order into the function.
  1460. */
  1461. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1462. __releases(this_rq->lock)
  1463. __acquires(busiest->lock)
  1464. __acquires(this_rq->lock)
  1465. {
  1466. int ret = 0;
  1467. if (unlikely(!spin_trylock(&busiest->lock))) {
  1468. if (busiest < this_rq) {
  1469. spin_unlock(&this_rq->lock);
  1470. spin_lock(&busiest->lock);
  1471. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1472. ret = 1;
  1473. } else
  1474. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1475. }
  1476. return ret;
  1477. }
  1478. #endif /* CONFIG_PREEMPT */
  1479. /*
  1480. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1481. */
  1482. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1483. {
  1484. if (unlikely(!irqs_disabled())) {
  1485. /* printk() doesn't work good under rq->lock */
  1486. spin_unlock(&this_rq->lock);
  1487. BUG_ON(1);
  1488. }
  1489. return _double_lock_balance(this_rq, busiest);
  1490. }
  1491. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1492. __releases(busiest->lock)
  1493. {
  1494. spin_unlock(&busiest->lock);
  1495. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1496. }
  1497. #endif
  1498. #ifdef CONFIG_FAIR_GROUP_SCHED
  1499. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1500. {
  1501. #ifdef CONFIG_SMP
  1502. cfs_rq->shares = shares;
  1503. #endif
  1504. }
  1505. #endif
  1506. static void calc_load_account_active(struct rq *this_rq);
  1507. #include "sched_stats.h"
  1508. #include "sched_idletask.c"
  1509. #include "sched_fair.c"
  1510. #include "sched_rt.c"
  1511. #ifdef CONFIG_SCHED_DEBUG
  1512. # include "sched_debug.c"
  1513. #endif
  1514. #define sched_class_highest (&rt_sched_class)
  1515. #define for_each_class(class) \
  1516. for (class = sched_class_highest; class; class = class->next)
  1517. static void inc_nr_running(struct rq *rq)
  1518. {
  1519. rq->nr_running++;
  1520. }
  1521. static void dec_nr_running(struct rq *rq)
  1522. {
  1523. rq->nr_running--;
  1524. }
  1525. static void set_load_weight(struct task_struct *p)
  1526. {
  1527. if (task_has_rt_policy(p)) {
  1528. p->se.load.weight = prio_to_weight[0] * 2;
  1529. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1530. return;
  1531. }
  1532. /*
  1533. * SCHED_IDLE tasks get minimal weight:
  1534. */
  1535. if (p->policy == SCHED_IDLE) {
  1536. p->se.load.weight = WEIGHT_IDLEPRIO;
  1537. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1538. return;
  1539. }
  1540. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1541. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1542. }
  1543. static void update_avg(u64 *avg, u64 sample)
  1544. {
  1545. s64 diff = sample - *avg;
  1546. *avg += diff >> 3;
  1547. }
  1548. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1549. {
  1550. if (wakeup)
  1551. p->se.start_runtime = p->se.sum_exec_runtime;
  1552. sched_info_queued(p);
  1553. p->sched_class->enqueue_task(rq, p, wakeup);
  1554. p->se.on_rq = 1;
  1555. }
  1556. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1557. {
  1558. if (sleep) {
  1559. if (p->se.last_wakeup) {
  1560. update_avg(&p->se.avg_overlap,
  1561. p->se.sum_exec_runtime - p->se.last_wakeup);
  1562. p->se.last_wakeup = 0;
  1563. } else {
  1564. update_avg(&p->se.avg_wakeup,
  1565. sysctl_sched_wakeup_granularity);
  1566. }
  1567. }
  1568. sched_info_dequeued(p);
  1569. p->sched_class->dequeue_task(rq, p, sleep);
  1570. p->se.on_rq = 0;
  1571. }
  1572. /*
  1573. * __normal_prio - return the priority that is based on the static prio
  1574. */
  1575. static inline int __normal_prio(struct task_struct *p)
  1576. {
  1577. return p->static_prio;
  1578. }
  1579. /*
  1580. * Calculate the expected normal priority: i.e. priority
  1581. * without taking RT-inheritance into account. Might be
  1582. * boosted by interactivity modifiers. Changes upon fork,
  1583. * setprio syscalls, and whenever the interactivity
  1584. * estimator recalculates.
  1585. */
  1586. static inline int normal_prio(struct task_struct *p)
  1587. {
  1588. int prio;
  1589. if (task_has_rt_policy(p))
  1590. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1591. else
  1592. prio = __normal_prio(p);
  1593. return prio;
  1594. }
  1595. /*
  1596. * Calculate the current priority, i.e. the priority
  1597. * taken into account by the scheduler. This value might
  1598. * be boosted by RT tasks, or might be boosted by
  1599. * interactivity modifiers. Will be RT if the task got
  1600. * RT-boosted. If not then it returns p->normal_prio.
  1601. */
  1602. static int effective_prio(struct task_struct *p)
  1603. {
  1604. p->normal_prio = normal_prio(p);
  1605. /*
  1606. * If we are RT tasks or we were boosted to RT priority,
  1607. * keep the priority unchanged. Otherwise, update priority
  1608. * to the normal priority:
  1609. */
  1610. if (!rt_prio(p->prio))
  1611. return p->normal_prio;
  1612. return p->prio;
  1613. }
  1614. /*
  1615. * activate_task - move a task to the runqueue.
  1616. */
  1617. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1618. {
  1619. if (task_contributes_to_load(p))
  1620. rq->nr_uninterruptible--;
  1621. enqueue_task(rq, p, wakeup);
  1622. inc_nr_running(rq);
  1623. }
  1624. /*
  1625. * deactivate_task - remove a task from the runqueue.
  1626. */
  1627. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1628. {
  1629. if (task_contributes_to_load(p))
  1630. rq->nr_uninterruptible++;
  1631. dequeue_task(rq, p, sleep);
  1632. dec_nr_running(rq);
  1633. }
  1634. /**
  1635. * task_curr - is this task currently executing on a CPU?
  1636. * @p: the task in question.
  1637. */
  1638. inline int task_curr(const struct task_struct *p)
  1639. {
  1640. return cpu_curr(task_cpu(p)) == p;
  1641. }
  1642. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1643. {
  1644. set_task_rq(p, cpu);
  1645. #ifdef CONFIG_SMP
  1646. /*
  1647. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1648. * successfuly executed on another CPU. We must ensure that updates of
  1649. * per-task data have been completed by this moment.
  1650. */
  1651. smp_wmb();
  1652. task_thread_info(p)->cpu = cpu;
  1653. #endif
  1654. }
  1655. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1656. const struct sched_class *prev_class,
  1657. int oldprio, int running)
  1658. {
  1659. if (prev_class != p->sched_class) {
  1660. if (prev_class->switched_from)
  1661. prev_class->switched_from(rq, p, running);
  1662. p->sched_class->switched_to(rq, p, running);
  1663. } else
  1664. p->sched_class->prio_changed(rq, p, oldprio, running);
  1665. }
  1666. /**
  1667. * kthread_bind - bind a just-created kthread to a cpu.
  1668. * @p: thread created by kthread_create().
  1669. * @cpu: cpu (might not be online, must be possible) for @k to run on.
  1670. *
  1671. * Description: This function is equivalent to set_cpus_allowed(),
  1672. * except that @cpu doesn't need to be online, and the thread must be
  1673. * stopped (i.e., just returned from kthread_create()).
  1674. *
  1675. * Function lives here instead of kthread.c because it messes with
  1676. * scheduler internals which require locking.
  1677. */
  1678. void kthread_bind(struct task_struct *p, unsigned int cpu)
  1679. {
  1680. struct rq *rq = cpu_rq(cpu);
  1681. unsigned long flags;
  1682. /* Must have done schedule() in kthread() before we set_task_cpu */
  1683. if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
  1684. WARN_ON(1);
  1685. return;
  1686. }
  1687. spin_lock_irqsave(&rq->lock, flags);
  1688. update_rq_clock(rq);
  1689. set_task_cpu(p, cpu);
  1690. p->cpus_allowed = cpumask_of_cpu(cpu);
  1691. p->rt.nr_cpus_allowed = 1;
  1692. p->flags |= PF_THREAD_BOUND;
  1693. spin_unlock_irqrestore(&rq->lock, flags);
  1694. }
  1695. EXPORT_SYMBOL(kthread_bind);
  1696. #ifdef CONFIG_SMP
  1697. /*
  1698. * Is this task likely cache-hot:
  1699. */
  1700. static int
  1701. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1702. {
  1703. s64 delta;
  1704. /*
  1705. * Buddy candidates are cache hot:
  1706. */
  1707. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1708. (&p->se == cfs_rq_of(&p->se)->next ||
  1709. &p->se == cfs_rq_of(&p->se)->last))
  1710. return 1;
  1711. if (p->sched_class != &fair_sched_class)
  1712. return 0;
  1713. if (sysctl_sched_migration_cost == -1)
  1714. return 1;
  1715. if (sysctl_sched_migration_cost == 0)
  1716. return 0;
  1717. delta = now - p->se.exec_start;
  1718. return delta < (s64)sysctl_sched_migration_cost;
  1719. }
  1720. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1721. {
  1722. int old_cpu = task_cpu(p);
  1723. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1724. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1725. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1726. u64 clock_offset;
  1727. clock_offset = old_rq->clock - new_rq->clock;
  1728. trace_sched_migrate_task(p, new_cpu);
  1729. #ifdef CONFIG_SCHEDSTATS
  1730. if (p->se.wait_start)
  1731. p->se.wait_start -= clock_offset;
  1732. if (p->se.sleep_start)
  1733. p->se.sleep_start -= clock_offset;
  1734. if (p->se.block_start)
  1735. p->se.block_start -= clock_offset;
  1736. #endif
  1737. if (old_cpu != new_cpu) {
  1738. p->se.nr_migrations++;
  1739. #ifdef CONFIG_SCHEDSTATS
  1740. if (task_hot(p, old_rq->clock, NULL))
  1741. schedstat_inc(p, se.nr_forced2_migrations);
  1742. #endif
  1743. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
  1744. 1, 1, NULL, 0);
  1745. }
  1746. p->se.vruntime -= old_cfsrq->min_vruntime -
  1747. new_cfsrq->min_vruntime;
  1748. __set_task_cpu(p, new_cpu);
  1749. }
  1750. struct migration_req {
  1751. struct list_head list;
  1752. struct task_struct *task;
  1753. int dest_cpu;
  1754. struct completion done;
  1755. };
  1756. /*
  1757. * The task's runqueue lock must be held.
  1758. * Returns true if you have to wait for migration thread.
  1759. */
  1760. static int
  1761. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1762. {
  1763. struct rq *rq = task_rq(p);
  1764. /*
  1765. * If the task is not on a runqueue (and not running), then
  1766. * it is sufficient to simply update the task's cpu field.
  1767. */
  1768. if (!p->se.on_rq && !task_running(rq, p)) {
  1769. update_rq_clock(rq);
  1770. set_task_cpu(p, dest_cpu);
  1771. return 0;
  1772. }
  1773. init_completion(&req->done);
  1774. req->task = p;
  1775. req->dest_cpu = dest_cpu;
  1776. list_add(&req->list, &rq->migration_queue);
  1777. return 1;
  1778. }
  1779. /*
  1780. * wait_task_context_switch - wait for a thread to complete at least one
  1781. * context switch.
  1782. *
  1783. * @p must not be current.
  1784. */
  1785. void wait_task_context_switch(struct task_struct *p)
  1786. {
  1787. unsigned long nvcsw, nivcsw, flags;
  1788. int running;
  1789. struct rq *rq;
  1790. nvcsw = p->nvcsw;
  1791. nivcsw = p->nivcsw;
  1792. for (;;) {
  1793. /*
  1794. * The runqueue is assigned before the actual context
  1795. * switch. We need to take the runqueue lock.
  1796. *
  1797. * We could check initially without the lock but it is
  1798. * very likely that we need to take the lock in every
  1799. * iteration.
  1800. */
  1801. rq = task_rq_lock(p, &flags);
  1802. running = task_running(rq, p);
  1803. task_rq_unlock(rq, &flags);
  1804. if (likely(!running))
  1805. break;
  1806. /*
  1807. * The switch count is incremented before the actual
  1808. * context switch. We thus wait for two switches to be
  1809. * sure at least one completed.
  1810. */
  1811. if ((p->nvcsw - nvcsw) > 1)
  1812. break;
  1813. if ((p->nivcsw - nivcsw) > 1)
  1814. break;
  1815. cpu_relax();
  1816. }
  1817. }
  1818. /*
  1819. * wait_task_inactive - wait for a thread to unschedule.
  1820. *
  1821. * If @match_state is nonzero, it's the @p->state value just checked and
  1822. * not expected to change. If it changes, i.e. @p might have woken up,
  1823. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1824. * we return a positive number (its total switch count). If a second call
  1825. * a short while later returns the same number, the caller can be sure that
  1826. * @p has remained unscheduled the whole time.
  1827. *
  1828. * The caller must ensure that the task *will* unschedule sometime soon,
  1829. * else this function might spin for a *long* time. This function can't
  1830. * be called with interrupts off, or it may introduce deadlock with
  1831. * smp_call_function() if an IPI is sent by the same process we are
  1832. * waiting to become inactive.
  1833. */
  1834. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1835. {
  1836. unsigned long flags;
  1837. int running, on_rq;
  1838. unsigned long ncsw;
  1839. struct rq *rq;
  1840. for (;;) {
  1841. /*
  1842. * We do the initial early heuristics without holding
  1843. * any task-queue locks at all. We'll only try to get
  1844. * the runqueue lock when things look like they will
  1845. * work out!
  1846. */
  1847. rq = task_rq(p);
  1848. /*
  1849. * If the task is actively running on another CPU
  1850. * still, just relax and busy-wait without holding
  1851. * any locks.
  1852. *
  1853. * NOTE! Since we don't hold any locks, it's not
  1854. * even sure that "rq" stays as the right runqueue!
  1855. * But we don't care, since "task_running()" will
  1856. * return false if the runqueue has changed and p
  1857. * is actually now running somewhere else!
  1858. */
  1859. while (task_running(rq, p)) {
  1860. if (match_state && unlikely(p->state != match_state))
  1861. return 0;
  1862. cpu_relax();
  1863. }
  1864. /*
  1865. * Ok, time to look more closely! We need the rq
  1866. * lock now, to be *sure*. If we're wrong, we'll
  1867. * just go back and repeat.
  1868. */
  1869. rq = task_rq_lock(p, &flags);
  1870. trace_sched_wait_task(rq, p);
  1871. running = task_running(rq, p);
  1872. on_rq = p->se.on_rq;
  1873. ncsw = 0;
  1874. if (!match_state || p->state == match_state)
  1875. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1876. task_rq_unlock(rq, &flags);
  1877. /*
  1878. * If it changed from the expected state, bail out now.
  1879. */
  1880. if (unlikely(!ncsw))
  1881. break;
  1882. /*
  1883. * Was it really running after all now that we
  1884. * checked with the proper locks actually held?
  1885. *
  1886. * Oops. Go back and try again..
  1887. */
  1888. if (unlikely(running)) {
  1889. cpu_relax();
  1890. continue;
  1891. }
  1892. /*
  1893. * It's not enough that it's not actively running,
  1894. * it must be off the runqueue _entirely_, and not
  1895. * preempted!
  1896. *
  1897. * So if it was still runnable (but just not actively
  1898. * running right now), it's preempted, and we should
  1899. * yield - it could be a while.
  1900. */
  1901. if (unlikely(on_rq)) {
  1902. schedule_timeout_uninterruptible(1);
  1903. continue;
  1904. }
  1905. /*
  1906. * Ahh, all good. It wasn't running, and it wasn't
  1907. * runnable, which means that it will never become
  1908. * running in the future either. We're all done!
  1909. */
  1910. break;
  1911. }
  1912. return ncsw;
  1913. }
  1914. /***
  1915. * kick_process - kick a running thread to enter/exit the kernel
  1916. * @p: the to-be-kicked thread
  1917. *
  1918. * Cause a process which is running on another CPU to enter
  1919. * kernel-mode, without any delay. (to get signals handled.)
  1920. *
  1921. * NOTE: this function doesnt have to take the runqueue lock,
  1922. * because all it wants to ensure is that the remote task enters
  1923. * the kernel. If the IPI races and the task has been migrated
  1924. * to another CPU then no harm is done and the purpose has been
  1925. * achieved as well.
  1926. */
  1927. void kick_process(struct task_struct *p)
  1928. {
  1929. int cpu;
  1930. preempt_disable();
  1931. cpu = task_cpu(p);
  1932. if ((cpu != smp_processor_id()) && task_curr(p))
  1933. smp_send_reschedule(cpu);
  1934. preempt_enable();
  1935. }
  1936. EXPORT_SYMBOL_GPL(kick_process);
  1937. #endif /* CONFIG_SMP */
  1938. /**
  1939. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1940. * @p: the task to evaluate
  1941. * @func: the function to be called
  1942. * @info: the function call argument
  1943. *
  1944. * Calls the function @func when the task is currently running. This might
  1945. * be on the current CPU, which just calls the function directly
  1946. */
  1947. void task_oncpu_function_call(struct task_struct *p,
  1948. void (*func) (void *info), void *info)
  1949. {
  1950. int cpu;
  1951. preempt_disable();
  1952. cpu = task_cpu(p);
  1953. if (task_curr(p))
  1954. smp_call_function_single(cpu, func, info, 1);
  1955. preempt_enable();
  1956. }
  1957. #ifdef CONFIG_SMP
  1958. static inline
  1959. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1960. {
  1961. return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1962. }
  1963. #endif
  1964. /***
  1965. * try_to_wake_up - wake up a thread
  1966. * @p: the to-be-woken-up thread
  1967. * @state: the mask of task states that can be woken
  1968. * @sync: do a synchronous wakeup?
  1969. *
  1970. * Put it on the run-queue if it's not already there. The "current"
  1971. * thread is always on the run-queue (except when the actual
  1972. * re-schedule is in progress), and as such you're allowed to do
  1973. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1974. * runnable without the overhead of this.
  1975. *
  1976. * returns failure only if the task is already active.
  1977. */
  1978. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1979. int wake_flags)
  1980. {
  1981. int cpu, orig_cpu, this_cpu, success = 0;
  1982. unsigned long flags;
  1983. struct rq *rq, *orig_rq;
  1984. if (!sched_feat(SYNC_WAKEUPS))
  1985. wake_flags &= ~WF_SYNC;
  1986. this_cpu = get_cpu();
  1987. smp_wmb();
  1988. rq = orig_rq = task_rq_lock(p, &flags);
  1989. update_rq_clock(rq);
  1990. if (!(p->state & state))
  1991. goto out;
  1992. if (p->se.on_rq)
  1993. goto out_running;
  1994. cpu = task_cpu(p);
  1995. orig_cpu = cpu;
  1996. #ifdef CONFIG_SMP
  1997. if (unlikely(task_running(rq, p)))
  1998. goto out_activate;
  1999. /*
  2000. * In order to handle concurrent wakeups and release the rq->lock
  2001. * we put the task in TASK_WAKING state.
  2002. *
  2003. * First fix up the nr_uninterruptible count:
  2004. */
  2005. if (task_contributes_to_load(p))
  2006. rq->nr_uninterruptible--;
  2007. p->state = TASK_WAKING;
  2008. task_rq_unlock(rq, &flags);
  2009. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2010. if (cpu != orig_cpu) {
  2011. local_irq_save(flags);
  2012. rq = cpu_rq(cpu);
  2013. update_rq_clock(rq);
  2014. set_task_cpu(p, cpu);
  2015. local_irq_restore(flags);
  2016. }
  2017. rq = task_rq_lock(p, &flags);
  2018. WARN_ON(p->state != TASK_WAKING);
  2019. cpu = task_cpu(p);
  2020. #ifdef CONFIG_SCHEDSTATS
  2021. schedstat_inc(rq, ttwu_count);
  2022. if (cpu == this_cpu)
  2023. schedstat_inc(rq, ttwu_local);
  2024. else {
  2025. struct sched_domain *sd;
  2026. for_each_domain(this_cpu, sd) {
  2027. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2028. schedstat_inc(sd, ttwu_wake_remote);
  2029. break;
  2030. }
  2031. }
  2032. }
  2033. #endif /* CONFIG_SCHEDSTATS */
  2034. out_activate:
  2035. #endif /* CONFIG_SMP */
  2036. schedstat_inc(p, se.nr_wakeups);
  2037. if (wake_flags & WF_SYNC)
  2038. schedstat_inc(p, se.nr_wakeups_sync);
  2039. if (orig_cpu != cpu)
  2040. schedstat_inc(p, se.nr_wakeups_migrate);
  2041. if (cpu == this_cpu)
  2042. schedstat_inc(p, se.nr_wakeups_local);
  2043. else
  2044. schedstat_inc(p, se.nr_wakeups_remote);
  2045. activate_task(rq, p, 1);
  2046. success = 1;
  2047. /*
  2048. * Only attribute actual wakeups done by this task.
  2049. */
  2050. if (!in_interrupt()) {
  2051. struct sched_entity *se = &current->se;
  2052. u64 sample = se->sum_exec_runtime;
  2053. if (se->last_wakeup)
  2054. sample -= se->last_wakeup;
  2055. else
  2056. sample -= se->start_runtime;
  2057. update_avg(&se->avg_wakeup, sample);
  2058. se->last_wakeup = se->sum_exec_runtime;
  2059. }
  2060. out_running:
  2061. trace_sched_wakeup(rq, p, success);
  2062. check_preempt_curr(rq, p, wake_flags);
  2063. p->state = TASK_RUNNING;
  2064. #ifdef CONFIG_SMP
  2065. if (p->sched_class->task_wake_up)
  2066. p->sched_class->task_wake_up(rq, p);
  2067. if (unlikely(rq->idle_stamp)) {
  2068. u64 delta = rq->clock - rq->idle_stamp;
  2069. u64 max = 2*sysctl_sched_migration_cost;
  2070. if (delta > max)
  2071. rq->avg_idle = max;
  2072. else
  2073. update_avg(&rq->avg_idle, delta);
  2074. rq->idle_stamp = 0;
  2075. }
  2076. #endif
  2077. out:
  2078. task_rq_unlock(rq, &flags);
  2079. put_cpu();
  2080. return success;
  2081. }
  2082. /**
  2083. * wake_up_process - Wake up a specific process
  2084. * @p: The process to be woken up.
  2085. *
  2086. * Attempt to wake up the nominated process and move it to the set of runnable
  2087. * processes. Returns 1 if the process was woken up, 0 if it was already
  2088. * running.
  2089. *
  2090. * It may be assumed that this function implies a write memory barrier before
  2091. * changing the task state if and only if any tasks are woken up.
  2092. */
  2093. int wake_up_process(struct task_struct *p)
  2094. {
  2095. return try_to_wake_up(p, TASK_ALL, 0);
  2096. }
  2097. EXPORT_SYMBOL(wake_up_process);
  2098. int wake_up_state(struct task_struct *p, unsigned int state)
  2099. {
  2100. return try_to_wake_up(p, state, 0);
  2101. }
  2102. /*
  2103. * Perform scheduler related setup for a newly forked process p.
  2104. * p is forked by current.
  2105. *
  2106. * __sched_fork() is basic setup used by init_idle() too:
  2107. */
  2108. static void __sched_fork(struct task_struct *p)
  2109. {
  2110. p->se.exec_start = 0;
  2111. p->se.sum_exec_runtime = 0;
  2112. p->se.prev_sum_exec_runtime = 0;
  2113. p->se.nr_migrations = 0;
  2114. p->se.last_wakeup = 0;
  2115. p->se.avg_overlap = 0;
  2116. p->se.start_runtime = 0;
  2117. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2118. p->se.avg_running = 0;
  2119. #ifdef CONFIG_SCHEDSTATS
  2120. p->se.wait_start = 0;
  2121. p->se.wait_max = 0;
  2122. p->se.wait_count = 0;
  2123. p->se.wait_sum = 0;
  2124. p->se.sleep_start = 0;
  2125. p->se.sleep_max = 0;
  2126. p->se.sum_sleep_runtime = 0;
  2127. p->se.block_start = 0;
  2128. p->se.block_max = 0;
  2129. p->se.exec_max = 0;
  2130. p->se.slice_max = 0;
  2131. p->se.nr_migrations_cold = 0;
  2132. p->se.nr_failed_migrations_affine = 0;
  2133. p->se.nr_failed_migrations_running = 0;
  2134. p->se.nr_failed_migrations_hot = 0;
  2135. p->se.nr_forced_migrations = 0;
  2136. p->se.nr_forced2_migrations = 0;
  2137. p->se.nr_wakeups = 0;
  2138. p->se.nr_wakeups_sync = 0;
  2139. p->se.nr_wakeups_migrate = 0;
  2140. p->se.nr_wakeups_local = 0;
  2141. p->se.nr_wakeups_remote = 0;
  2142. p->se.nr_wakeups_affine = 0;
  2143. p->se.nr_wakeups_affine_attempts = 0;
  2144. p->se.nr_wakeups_passive = 0;
  2145. p->se.nr_wakeups_idle = 0;
  2146. #endif
  2147. INIT_LIST_HEAD(&p->rt.run_list);
  2148. p->se.on_rq = 0;
  2149. INIT_LIST_HEAD(&p->se.group_node);
  2150. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2151. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2152. #endif
  2153. /*
  2154. * We mark the process as running here, but have not actually
  2155. * inserted it onto the runqueue yet. This guarantees that
  2156. * nobody will actually run it, and a signal or other external
  2157. * event cannot wake it up and insert it on the runqueue either.
  2158. */
  2159. p->state = TASK_RUNNING;
  2160. }
  2161. /*
  2162. * fork()/clone()-time setup:
  2163. */
  2164. void sched_fork(struct task_struct *p, int clone_flags)
  2165. {
  2166. int cpu = get_cpu();
  2167. unsigned long flags;
  2168. __sched_fork(p);
  2169. /*
  2170. * Revert to default priority/policy on fork if requested.
  2171. */
  2172. if (unlikely(p->sched_reset_on_fork)) {
  2173. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2174. p->policy = SCHED_NORMAL;
  2175. p->normal_prio = p->static_prio;
  2176. }
  2177. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2178. p->static_prio = NICE_TO_PRIO(0);
  2179. p->normal_prio = p->static_prio;
  2180. set_load_weight(p);
  2181. }
  2182. /*
  2183. * We don't need the reset flag anymore after the fork. It has
  2184. * fulfilled its duty:
  2185. */
  2186. p->sched_reset_on_fork = 0;
  2187. }
  2188. /*
  2189. * Make sure we do not leak PI boosting priority to the child.
  2190. */
  2191. p->prio = current->normal_prio;
  2192. if (!rt_prio(p->prio))
  2193. p->sched_class = &fair_sched_class;
  2194. #ifdef CONFIG_SMP
  2195. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2196. #endif
  2197. local_irq_save(flags);
  2198. update_rq_clock(cpu_rq(cpu));
  2199. set_task_cpu(p, cpu);
  2200. local_irq_restore(flags);
  2201. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2202. if (likely(sched_info_on()))
  2203. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2204. #endif
  2205. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2206. p->oncpu = 0;
  2207. #endif
  2208. #ifdef CONFIG_PREEMPT
  2209. /* Want to start with kernel preemption disabled. */
  2210. task_thread_info(p)->preempt_count = 1;
  2211. #endif
  2212. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2213. put_cpu();
  2214. }
  2215. /*
  2216. * wake_up_new_task - wake up a newly created task for the first time.
  2217. *
  2218. * This function will do some initial scheduler statistics housekeeping
  2219. * that must be done for every newly created context, then puts the task
  2220. * on the runqueue and wakes it.
  2221. */
  2222. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2223. {
  2224. unsigned long flags;
  2225. struct rq *rq;
  2226. rq = task_rq_lock(p, &flags);
  2227. BUG_ON(p->state != TASK_RUNNING);
  2228. update_rq_clock(rq);
  2229. if (!p->sched_class->task_new || !current->se.on_rq) {
  2230. activate_task(rq, p, 0);
  2231. } else {
  2232. /*
  2233. * Let the scheduling class do new task startup
  2234. * management (if any):
  2235. */
  2236. p->sched_class->task_new(rq, p);
  2237. inc_nr_running(rq);
  2238. }
  2239. trace_sched_wakeup_new(rq, p, 1);
  2240. check_preempt_curr(rq, p, WF_FORK);
  2241. #ifdef CONFIG_SMP
  2242. if (p->sched_class->task_wake_up)
  2243. p->sched_class->task_wake_up(rq, p);
  2244. #endif
  2245. task_rq_unlock(rq, &flags);
  2246. }
  2247. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2248. /**
  2249. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2250. * @notifier: notifier struct to register
  2251. */
  2252. void preempt_notifier_register(struct preempt_notifier *notifier)
  2253. {
  2254. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2255. }
  2256. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2257. /**
  2258. * preempt_notifier_unregister - no longer interested in preemption notifications
  2259. * @notifier: notifier struct to unregister
  2260. *
  2261. * This is safe to call from within a preemption notifier.
  2262. */
  2263. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2264. {
  2265. hlist_del(&notifier->link);
  2266. }
  2267. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2268. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2269. {
  2270. struct preempt_notifier *notifier;
  2271. struct hlist_node *node;
  2272. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2273. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2274. }
  2275. static void
  2276. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2277. struct task_struct *next)
  2278. {
  2279. struct preempt_notifier *notifier;
  2280. struct hlist_node *node;
  2281. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2282. notifier->ops->sched_out(notifier, next);
  2283. }
  2284. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2285. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2286. {
  2287. }
  2288. static void
  2289. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2290. struct task_struct *next)
  2291. {
  2292. }
  2293. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2294. /**
  2295. * prepare_task_switch - prepare to switch tasks
  2296. * @rq: the runqueue preparing to switch
  2297. * @prev: the current task that is being switched out
  2298. * @next: the task we are going to switch to.
  2299. *
  2300. * This is called with the rq lock held and interrupts off. It must
  2301. * be paired with a subsequent finish_task_switch after the context
  2302. * switch.
  2303. *
  2304. * prepare_task_switch sets up locking and calls architecture specific
  2305. * hooks.
  2306. */
  2307. static inline void
  2308. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2309. struct task_struct *next)
  2310. {
  2311. fire_sched_out_preempt_notifiers(prev, next);
  2312. prepare_lock_switch(rq, next);
  2313. prepare_arch_switch(next);
  2314. }
  2315. /**
  2316. * finish_task_switch - clean up after a task-switch
  2317. * @rq: runqueue associated with task-switch
  2318. * @prev: the thread we just switched away from.
  2319. *
  2320. * finish_task_switch must be called after the context switch, paired
  2321. * with a prepare_task_switch call before the context switch.
  2322. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2323. * and do any other architecture-specific cleanup actions.
  2324. *
  2325. * Note that we may have delayed dropping an mm in context_switch(). If
  2326. * so, we finish that here outside of the runqueue lock. (Doing it
  2327. * with the lock held can cause deadlocks; see schedule() for
  2328. * details.)
  2329. */
  2330. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2331. __releases(rq->lock)
  2332. {
  2333. struct mm_struct *mm = rq->prev_mm;
  2334. long prev_state;
  2335. rq->prev_mm = NULL;
  2336. /*
  2337. * A task struct has one reference for the use as "current".
  2338. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2339. * schedule one last time. The schedule call will never return, and
  2340. * the scheduled task must drop that reference.
  2341. * The test for TASK_DEAD must occur while the runqueue locks are
  2342. * still held, otherwise prev could be scheduled on another cpu, die
  2343. * there before we look at prev->state, and then the reference would
  2344. * be dropped twice.
  2345. * Manfred Spraul <manfred@colorfullife.com>
  2346. */
  2347. prev_state = prev->state;
  2348. finish_arch_switch(prev);
  2349. perf_event_task_sched_in(current, cpu_of(rq));
  2350. finish_lock_switch(rq, prev);
  2351. fire_sched_in_preempt_notifiers(current);
  2352. if (mm)
  2353. mmdrop(mm);
  2354. if (unlikely(prev_state == TASK_DEAD)) {
  2355. /*
  2356. * Remove function-return probe instances associated with this
  2357. * task and put them back on the free list.
  2358. */
  2359. kprobe_flush_task(prev);
  2360. put_task_struct(prev);
  2361. }
  2362. }
  2363. #ifdef CONFIG_SMP
  2364. /* assumes rq->lock is held */
  2365. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2366. {
  2367. if (prev->sched_class->pre_schedule)
  2368. prev->sched_class->pre_schedule(rq, prev);
  2369. }
  2370. /* rq->lock is NOT held, but preemption is disabled */
  2371. static inline void post_schedule(struct rq *rq)
  2372. {
  2373. if (rq->post_schedule) {
  2374. unsigned long flags;
  2375. spin_lock_irqsave(&rq->lock, flags);
  2376. if (rq->curr->sched_class->post_schedule)
  2377. rq->curr->sched_class->post_schedule(rq);
  2378. spin_unlock_irqrestore(&rq->lock, flags);
  2379. rq->post_schedule = 0;
  2380. }
  2381. }
  2382. #else
  2383. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2384. {
  2385. }
  2386. static inline void post_schedule(struct rq *rq)
  2387. {
  2388. }
  2389. #endif
  2390. /**
  2391. * schedule_tail - first thing a freshly forked thread must call.
  2392. * @prev: the thread we just switched away from.
  2393. */
  2394. asmlinkage void schedule_tail(struct task_struct *prev)
  2395. __releases(rq->lock)
  2396. {
  2397. struct rq *rq = this_rq();
  2398. finish_task_switch(rq, prev);
  2399. /*
  2400. * FIXME: do we need to worry about rq being invalidated by the
  2401. * task_switch?
  2402. */
  2403. post_schedule(rq);
  2404. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2405. /* In this case, finish_task_switch does not reenable preemption */
  2406. preempt_enable();
  2407. #endif
  2408. if (current->set_child_tid)
  2409. put_user(task_pid_vnr(current), current->set_child_tid);
  2410. }
  2411. /*
  2412. * context_switch - switch to the new MM and the new
  2413. * thread's register state.
  2414. */
  2415. static inline void
  2416. context_switch(struct rq *rq, struct task_struct *prev,
  2417. struct task_struct *next)
  2418. {
  2419. struct mm_struct *mm, *oldmm;
  2420. prepare_task_switch(rq, prev, next);
  2421. trace_sched_switch(rq, prev, next);
  2422. mm = next->mm;
  2423. oldmm = prev->active_mm;
  2424. /*
  2425. * For paravirt, this is coupled with an exit in switch_to to
  2426. * combine the page table reload and the switch backend into
  2427. * one hypercall.
  2428. */
  2429. arch_start_context_switch(prev);
  2430. if (likely(!mm)) {
  2431. next->active_mm = oldmm;
  2432. atomic_inc(&oldmm->mm_count);
  2433. enter_lazy_tlb(oldmm, next);
  2434. } else
  2435. switch_mm(oldmm, mm, next);
  2436. if (likely(!prev->mm)) {
  2437. prev->active_mm = NULL;
  2438. rq->prev_mm = oldmm;
  2439. }
  2440. /*
  2441. * Since the runqueue lock will be released by the next
  2442. * task (which is an invalid locking op but in the case
  2443. * of the scheduler it's an obvious special-case), so we
  2444. * do an early lockdep release here:
  2445. */
  2446. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2447. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2448. #endif
  2449. /* Here we just switch the register state and the stack. */
  2450. switch_to(prev, next, prev);
  2451. barrier();
  2452. /*
  2453. * this_rq must be evaluated again because prev may have moved
  2454. * CPUs since it called schedule(), thus the 'rq' on its stack
  2455. * frame will be invalid.
  2456. */
  2457. finish_task_switch(this_rq(), prev);
  2458. }
  2459. /*
  2460. * nr_running, nr_uninterruptible and nr_context_switches:
  2461. *
  2462. * externally visible scheduler statistics: current number of runnable
  2463. * threads, current number of uninterruptible-sleeping threads, total
  2464. * number of context switches performed since bootup.
  2465. */
  2466. unsigned long nr_running(void)
  2467. {
  2468. unsigned long i, sum = 0;
  2469. for_each_online_cpu(i)
  2470. sum += cpu_rq(i)->nr_running;
  2471. return sum;
  2472. }
  2473. unsigned long nr_uninterruptible(void)
  2474. {
  2475. unsigned long i, sum = 0;
  2476. for_each_possible_cpu(i)
  2477. sum += cpu_rq(i)->nr_uninterruptible;
  2478. /*
  2479. * Since we read the counters lockless, it might be slightly
  2480. * inaccurate. Do not allow it to go below zero though:
  2481. */
  2482. if (unlikely((long)sum < 0))
  2483. sum = 0;
  2484. return sum;
  2485. }
  2486. unsigned long long nr_context_switches(void)
  2487. {
  2488. int i;
  2489. unsigned long long sum = 0;
  2490. for_each_possible_cpu(i)
  2491. sum += cpu_rq(i)->nr_switches;
  2492. return sum;
  2493. }
  2494. unsigned long nr_iowait(void)
  2495. {
  2496. unsigned long i, sum = 0;
  2497. for_each_possible_cpu(i)
  2498. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2499. return sum;
  2500. }
  2501. unsigned long nr_iowait_cpu(void)
  2502. {
  2503. struct rq *this = this_rq();
  2504. return atomic_read(&this->nr_iowait);
  2505. }
  2506. unsigned long this_cpu_load(void)
  2507. {
  2508. struct rq *this = this_rq();
  2509. return this->cpu_load[0];
  2510. }
  2511. /* Variables and functions for calc_load */
  2512. static atomic_long_t calc_load_tasks;
  2513. static unsigned long calc_load_update;
  2514. unsigned long avenrun[3];
  2515. EXPORT_SYMBOL(avenrun);
  2516. /**
  2517. * get_avenrun - get the load average array
  2518. * @loads: pointer to dest load array
  2519. * @offset: offset to add
  2520. * @shift: shift count to shift the result left
  2521. *
  2522. * These values are estimates at best, so no need for locking.
  2523. */
  2524. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2525. {
  2526. loads[0] = (avenrun[0] + offset) << shift;
  2527. loads[1] = (avenrun[1] + offset) << shift;
  2528. loads[2] = (avenrun[2] + offset) << shift;
  2529. }
  2530. static unsigned long
  2531. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2532. {
  2533. load *= exp;
  2534. load += active * (FIXED_1 - exp);
  2535. return load >> FSHIFT;
  2536. }
  2537. /*
  2538. * calc_load - update the avenrun load estimates 10 ticks after the
  2539. * CPUs have updated calc_load_tasks.
  2540. */
  2541. void calc_global_load(void)
  2542. {
  2543. unsigned long upd = calc_load_update + 10;
  2544. long active;
  2545. if (time_before(jiffies, upd))
  2546. return;
  2547. active = atomic_long_read(&calc_load_tasks);
  2548. active = active > 0 ? active * FIXED_1 : 0;
  2549. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2550. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2551. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2552. calc_load_update += LOAD_FREQ;
  2553. }
  2554. /*
  2555. * Either called from update_cpu_load() or from a cpu going idle
  2556. */
  2557. static void calc_load_account_active(struct rq *this_rq)
  2558. {
  2559. long nr_active, delta;
  2560. nr_active = this_rq->nr_running;
  2561. nr_active += (long) this_rq->nr_uninterruptible;
  2562. if (nr_active != this_rq->calc_load_active) {
  2563. delta = nr_active - this_rq->calc_load_active;
  2564. this_rq->calc_load_active = nr_active;
  2565. atomic_long_add(delta, &calc_load_tasks);
  2566. }
  2567. }
  2568. /*
  2569. * Update rq->cpu_load[] statistics. This function is usually called every
  2570. * scheduler tick (TICK_NSEC).
  2571. */
  2572. static void update_cpu_load(struct rq *this_rq)
  2573. {
  2574. unsigned long this_load = this_rq->load.weight;
  2575. int i, scale;
  2576. this_rq->nr_load_updates++;
  2577. /* Update our load: */
  2578. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2579. unsigned long old_load, new_load;
  2580. /* scale is effectively 1 << i now, and >> i divides by scale */
  2581. old_load = this_rq->cpu_load[i];
  2582. new_load = this_load;
  2583. /*
  2584. * Round up the averaging division if load is increasing. This
  2585. * prevents us from getting stuck on 9 if the load is 10, for
  2586. * example.
  2587. */
  2588. if (new_load > old_load)
  2589. new_load += scale-1;
  2590. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2591. }
  2592. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2593. this_rq->calc_load_update += LOAD_FREQ;
  2594. calc_load_account_active(this_rq);
  2595. }
  2596. }
  2597. #ifdef CONFIG_SMP
  2598. /*
  2599. * double_rq_lock - safely lock two runqueues
  2600. *
  2601. * Note this does not disable interrupts like task_rq_lock,
  2602. * you need to do so manually before calling.
  2603. */
  2604. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2605. __acquires(rq1->lock)
  2606. __acquires(rq2->lock)
  2607. {
  2608. BUG_ON(!irqs_disabled());
  2609. if (rq1 == rq2) {
  2610. spin_lock(&rq1->lock);
  2611. __acquire(rq2->lock); /* Fake it out ;) */
  2612. } else {
  2613. if (rq1 < rq2) {
  2614. spin_lock(&rq1->lock);
  2615. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2616. } else {
  2617. spin_lock(&rq2->lock);
  2618. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2619. }
  2620. }
  2621. update_rq_clock(rq1);
  2622. update_rq_clock(rq2);
  2623. }
  2624. /*
  2625. * double_rq_unlock - safely unlock two runqueues
  2626. *
  2627. * Note this does not restore interrupts like task_rq_unlock,
  2628. * you need to do so manually after calling.
  2629. */
  2630. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2631. __releases(rq1->lock)
  2632. __releases(rq2->lock)
  2633. {
  2634. spin_unlock(&rq1->lock);
  2635. if (rq1 != rq2)
  2636. spin_unlock(&rq2->lock);
  2637. else
  2638. __release(rq2->lock);
  2639. }
  2640. /*
  2641. * If dest_cpu is allowed for this process, migrate the task to it.
  2642. * This is accomplished by forcing the cpu_allowed mask to only
  2643. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2644. * the cpu_allowed mask is restored.
  2645. */
  2646. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2647. {
  2648. struct migration_req req;
  2649. unsigned long flags;
  2650. struct rq *rq;
  2651. rq = task_rq_lock(p, &flags);
  2652. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2653. || unlikely(!cpu_active(dest_cpu)))
  2654. goto out;
  2655. /* force the process onto the specified CPU */
  2656. if (migrate_task(p, dest_cpu, &req)) {
  2657. /* Need to wait for migration thread (might exit: take ref). */
  2658. struct task_struct *mt = rq->migration_thread;
  2659. get_task_struct(mt);
  2660. task_rq_unlock(rq, &flags);
  2661. wake_up_process(mt);
  2662. put_task_struct(mt);
  2663. wait_for_completion(&req.done);
  2664. return;
  2665. }
  2666. out:
  2667. task_rq_unlock(rq, &flags);
  2668. }
  2669. /*
  2670. * sched_exec - execve() is a valuable balancing opportunity, because at
  2671. * this point the task has the smallest effective memory and cache footprint.
  2672. */
  2673. void sched_exec(void)
  2674. {
  2675. int new_cpu, this_cpu = get_cpu();
  2676. new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
  2677. put_cpu();
  2678. if (new_cpu != this_cpu)
  2679. sched_migrate_task(current, new_cpu);
  2680. }
  2681. /*
  2682. * pull_task - move a task from a remote runqueue to the local runqueue.
  2683. * Both runqueues must be locked.
  2684. */
  2685. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2686. struct rq *this_rq, int this_cpu)
  2687. {
  2688. deactivate_task(src_rq, p, 0);
  2689. set_task_cpu(p, this_cpu);
  2690. activate_task(this_rq, p, 0);
  2691. /*
  2692. * Note that idle threads have a prio of MAX_PRIO, for this test
  2693. * to be always true for them.
  2694. */
  2695. check_preempt_curr(this_rq, p, 0);
  2696. }
  2697. /*
  2698. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2699. */
  2700. static
  2701. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2702. struct sched_domain *sd, enum cpu_idle_type idle,
  2703. int *all_pinned)
  2704. {
  2705. int tsk_cache_hot = 0;
  2706. /*
  2707. * We do not migrate tasks that are:
  2708. * 1) running (obviously), or
  2709. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2710. * 3) are cache-hot on their current CPU.
  2711. */
  2712. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2713. schedstat_inc(p, se.nr_failed_migrations_affine);
  2714. return 0;
  2715. }
  2716. *all_pinned = 0;
  2717. if (task_running(rq, p)) {
  2718. schedstat_inc(p, se.nr_failed_migrations_running);
  2719. return 0;
  2720. }
  2721. /*
  2722. * Aggressive migration if:
  2723. * 1) task is cache cold, or
  2724. * 2) too many balance attempts have failed.
  2725. */
  2726. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2727. if (!tsk_cache_hot ||
  2728. sd->nr_balance_failed > sd->cache_nice_tries) {
  2729. #ifdef CONFIG_SCHEDSTATS
  2730. if (tsk_cache_hot) {
  2731. schedstat_inc(sd, lb_hot_gained[idle]);
  2732. schedstat_inc(p, se.nr_forced_migrations);
  2733. }
  2734. #endif
  2735. return 1;
  2736. }
  2737. if (tsk_cache_hot) {
  2738. schedstat_inc(p, se.nr_failed_migrations_hot);
  2739. return 0;
  2740. }
  2741. return 1;
  2742. }
  2743. static unsigned long
  2744. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2745. unsigned long max_load_move, struct sched_domain *sd,
  2746. enum cpu_idle_type idle, int *all_pinned,
  2747. int *this_best_prio, struct rq_iterator *iterator)
  2748. {
  2749. int loops = 0, pulled = 0, pinned = 0;
  2750. struct task_struct *p;
  2751. long rem_load_move = max_load_move;
  2752. if (max_load_move == 0)
  2753. goto out;
  2754. pinned = 1;
  2755. /*
  2756. * Start the load-balancing iterator:
  2757. */
  2758. p = iterator->start(iterator->arg);
  2759. next:
  2760. if (!p || loops++ > sysctl_sched_nr_migrate)
  2761. goto out;
  2762. if ((p->se.load.weight >> 1) > rem_load_move ||
  2763. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2764. p = iterator->next(iterator->arg);
  2765. goto next;
  2766. }
  2767. pull_task(busiest, p, this_rq, this_cpu);
  2768. pulled++;
  2769. rem_load_move -= p->se.load.weight;
  2770. #ifdef CONFIG_PREEMPT
  2771. /*
  2772. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2773. * will stop after the first task is pulled to minimize the critical
  2774. * section.
  2775. */
  2776. if (idle == CPU_NEWLY_IDLE)
  2777. goto out;
  2778. #endif
  2779. /*
  2780. * We only want to steal up to the prescribed amount of weighted load.
  2781. */
  2782. if (rem_load_move > 0) {
  2783. if (p->prio < *this_best_prio)
  2784. *this_best_prio = p->prio;
  2785. p = iterator->next(iterator->arg);
  2786. goto next;
  2787. }
  2788. out:
  2789. /*
  2790. * Right now, this is one of only two places pull_task() is called,
  2791. * so we can safely collect pull_task() stats here rather than
  2792. * inside pull_task().
  2793. */
  2794. schedstat_add(sd, lb_gained[idle], pulled);
  2795. if (all_pinned)
  2796. *all_pinned = pinned;
  2797. return max_load_move - rem_load_move;
  2798. }
  2799. /*
  2800. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2801. * this_rq, as part of a balancing operation within domain "sd".
  2802. * Returns 1 if successful and 0 otherwise.
  2803. *
  2804. * Called with both runqueues locked.
  2805. */
  2806. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2807. unsigned long max_load_move,
  2808. struct sched_domain *sd, enum cpu_idle_type idle,
  2809. int *all_pinned)
  2810. {
  2811. const struct sched_class *class = sched_class_highest;
  2812. unsigned long total_load_moved = 0;
  2813. int this_best_prio = this_rq->curr->prio;
  2814. do {
  2815. total_load_moved +=
  2816. class->load_balance(this_rq, this_cpu, busiest,
  2817. max_load_move - total_load_moved,
  2818. sd, idle, all_pinned, &this_best_prio);
  2819. class = class->next;
  2820. #ifdef CONFIG_PREEMPT
  2821. /*
  2822. * NEWIDLE balancing is a source of latency, so preemptible
  2823. * kernels will stop after the first task is pulled to minimize
  2824. * the critical section.
  2825. */
  2826. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2827. break;
  2828. #endif
  2829. } while (class && max_load_move > total_load_moved);
  2830. return total_load_moved > 0;
  2831. }
  2832. static int
  2833. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2834. struct sched_domain *sd, enum cpu_idle_type idle,
  2835. struct rq_iterator *iterator)
  2836. {
  2837. struct task_struct *p = iterator->start(iterator->arg);
  2838. int pinned = 0;
  2839. while (p) {
  2840. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2841. pull_task(busiest, p, this_rq, this_cpu);
  2842. /*
  2843. * Right now, this is only the second place pull_task()
  2844. * is called, so we can safely collect pull_task()
  2845. * stats here rather than inside pull_task().
  2846. */
  2847. schedstat_inc(sd, lb_gained[idle]);
  2848. return 1;
  2849. }
  2850. p = iterator->next(iterator->arg);
  2851. }
  2852. return 0;
  2853. }
  2854. /*
  2855. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2856. * part of active balancing operations within "domain".
  2857. * Returns 1 if successful and 0 otherwise.
  2858. *
  2859. * Called with both runqueues locked.
  2860. */
  2861. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2862. struct sched_domain *sd, enum cpu_idle_type idle)
  2863. {
  2864. const struct sched_class *class;
  2865. for_each_class(class) {
  2866. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2867. return 1;
  2868. }
  2869. return 0;
  2870. }
  2871. /********** Helpers for find_busiest_group ************************/
  2872. /*
  2873. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2874. * during load balancing.
  2875. */
  2876. struct sd_lb_stats {
  2877. struct sched_group *busiest; /* Busiest group in this sd */
  2878. struct sched_group *this; /* Local group in this sd */
  2879. unsigned long total_load; /* Total load of all groups in sd */
  2880. unsigned long total_pwr; /* Total power of all groups in sd */
  2881. unsigned long avg_load; /* Average load across all groups in sd */
  2882. /** Statistics of this group */
  2883. unsigned long this_load;
  2884. unsigned long this_load_per_task;
  2885. unsigned long this_nr_running;
  2886. /* Statistics of the busiest group */
  2887. unsigned long max_load;
  2888. unsigned long busiest_load_per_task;
  2889. unsigned long busiest_nr_running;
  2890. int group_imb; /* Is there imbalance in this sd */
  2891. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2892. int power_savings_balance; /* Is powersave balance needed for this sd */
  2893. struct sched_group *group_min; /* Least loaded group in sd */
  2894. struct sched_group *group_leader; /* Group which relieves group_min */
  2895. unsigned long min_load_per_task; /* load_per_task in group_min */
  2896. unsigned long leader_nr_running; /* Nr running of group_leader */
  2897. unsigned long min_nr_running; /* Nr running of group_min */
  2898. #endif
  2899. };
  2900. /*
  2901. * sg_lb_stats - stats of a sched_group required for load_balancing
  2902. */
  2903. struct sg_lb_stats {
  2904. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2905. unsigned long group_load; /* Total load over the CPUs of the group */
  2906. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2907. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2908. unsigned long group_capacity;
  2909. int group_imb; /* Is there an imbalance in the group ? */
  2910. };
  2911. /**
  2912. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2913. * @group: The group whose first cpu is to be returned.
  2914. */
  2915. static inline unsigned int group_first_cpu(struct sched_group *group)
  2916. {
  2917. return cpumask_first(sched_group_cpus(group));
  2918. }
  2919. /**
  2920. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2921. * @sd: The sched_domain whose load_idx is to be obtained.
  2922. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2923. */
  2924. static inline int get_sd_load_idx(struct sched_domain *sd,
  2925. enum cpu_idle_type idle)
  2926. {
  2927. int load_idx;
  2928. switch (idle) {
  2929. case CPU_NOT_IDLE:
  2930. load_idx = sd->busy_idx;
  2931. break;
  2932. case CPU_NEWLY_IDLE:
  2933. load_idx = sd->newidle_idx;
  2934. break;
  2935. default:
  2936. load_idx = sd->idle_idx;
  2937. break;
  2938. }
  2939. return load_idx;
  2940. }
  2941. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2942. /**
  2943. * init_sd_power_savings_stats - Initialize power savings statistics for
  2944. * the given sched_domain, during load balancing.
  2945. *
  2946. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2947. * @sds: Variable containing the statistics for sd.
  2948. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2949. */
  2950. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2951. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2952. {
  2953. /*
  2954. * Busy processors will not participate in power savings
  2955. * balance.
  2956. */
  2957. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2958. sds->power_savings_balance = 0;
  2959. else {
  2960. sds->power_savings_balance = 1;
  2961. sds->min_nr_running = ULONG_MAX;
  2962. sds->leader_nr_running = 0;
  2963. }
  2964. }
  2965. /**
  2966. * update_sd_power_savings_stats - Update the power saving stats for a
  2967. * sched_domain while performing load balancing.
  2968. *
  2969. * @group: sched_group belonging to the sched_domain under consideration.
  2970. * @sds: Variable containing the statistics of the sched_domain
  2971. * @local_group: Does group contain the CPU for which we're performing
  2972. * load balancing ?
  2973. * @sgs: Variable containing the statistics of the group.
  2974. */
  2975. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2976. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2977. {
  2978. if (!sds->power_savings_balance)
  2979. return;
  2980. /*
  2981. * If the local group is idle or completely loaded
  2982. * no need to do power savings balance at this domain
  2983. */
  2984. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2985. !sds->this_nr_running))
  2986. sds->power_savings_balance = 0;
  2987. /*
  2988. * If a group is already running at full capacity or idle,
  2989. * don't include that group in power savings calculations
  2990. */
  2991. if (!sds->power_savings_balance ||
  2992. sgs->sum_nr_running >= sgs->group_capacity ||
  2993. !sgs->sum_nr_running)
  2994. return;
  2995. /*
  2996. * Calculate the group which has the least non-idle load.
  2997. * This is the group from where we need to pick up the load
  2998. * for saving power
  2999. */
  3000. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3001. (sgs->sum_nr_running == sds->min_nr_running &&
  3002. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3003. sds->group_min = group;
  3004. sds->min_nr_running = sgs->sum_nr_running;
  3005. sds->min_load_per_task = sgs->sum_weighted_load /
  3006. sgs->sum_nr_running;
  3007. }
  3008. /*
  3009. * Calculate the group which is almost near its
  3010. * capacity but still has some space to pick up some load
  3011. * from other group and save more power
  3012. */
  3013. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3014. return;
  3015. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3016. (sgs->sum_nr_running == sds->leader_nr_running &&
  3017. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3018. sds->group_leader = group;
  3019. sds->leader_nr_running = sgs->sum_nr_running;
  3020. }
  3021. }
  3022. /**
  3023. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3024. * @sds: Variable containing the statistics of the sched_domain
  3025. * under consideration.
  3026. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3027. * @imbalance: Variable to store the imbalance.
  3028. *
  3029. * Description:
  3030. * Check if we have potential to perform some power-savings balance.
  3031. * If yes, set the busiest group to be the least loaded group in the
  3032. * sched_domain, so that it's CPUs can be put to idle.
  3033. *
  3034. * Returns 1 if there is potential to perform power-savings balance.
  3035. * Else returns 0.
  3036. */
  3037. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3038. int this_cpu, unsigned long *imbalance)
  3039. {
  3040. if (!sds->power_savings_balance)
  3041. return 0;
  3042. if (sds->this != sds->group_leader ||
  3043. sds->group_leader == sds->group_min)
  3044. return 0;
  3045. *imbalance = sds->min_load_per_task;
  3046. sds->busiest = sds->group_min;
  3047. return 1;
  3048. }
  3049. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3050. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3051. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3052. {
  3053. return;
  3054. }
  3055. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3056. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3057. {
  3058. return;
  3059. }
  3060. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3061. int this_cpu, unsigned long *imbalance)
  3062. {
  3063. return 0;
  3064. }
  3065. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3066. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3067. {
  3068. return SCHED_LOAD_SCALE;
  3069. }
  3070. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3071. {
  3072. return default_scale_freq_power(sd, cpu);
  3073. }
  3074. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3075. {
  3076. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3077. unsigned long smt_gain = sd->smt_gain;
  3078. smt_gain /= weight;
  3079. return smt_gain;
  3080. }
  3081. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3082. {
  3083. return default_scale_smt_power(sd, cpu);
  3084. }
  3085. unsigned long scale_rt_power(int cpu)
  3086. {
  3087. struct rq *rq = cpu_rq(cpu);
  3088. u64 total, available;
  3089. sched_avg_update(rq);
  3090. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3091. available = total - rq->rt_avg;
  3092. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3093. total = SCHED_LOAD_SCALE;
  3094. total >>= SCHED_LOAD_SHIFT;
  3095. return div_u64(available, total);
  3096. }
  3097. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3098. {
  3099. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3100. unsigned long power = SCHED_LOAD_SCALE;
  3101. struct sched_group *sdg = sd->groups;
  3102. if (sched_feat(ARCH_POWER))
  3103. power *= arch_scale_freq_power(sd, cpu);
  3104. else
  3105. power *= default_scale_freq_power(sd, cpu);
  3106. power >>= SCHED_LOAD_SHIFT;
  3107. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3108. if (sched_feat(ARCH_POWER))
  3109. power *= arch_scale_smt_power(sd, cpu);
  3110. else
  3111. power *= default_scale_smt_power(sd, cpu);
  3112. power >>= SCHED_LOAD_SHIFT;
  3113. }
  3114. power *= scale_rt_power(cpu);
  3115. power >>= SCHED_LOAD_SHIFT;
  3116. if (!power)
  3117. power = 1;
  3118. sdg->cpu_power = power;
  3119. }
  3120. static void update_group_power(struct sched_domain *sd, int cpu)
  3121. {
  3122. struct sched_domain *child = sd->child;
  3123. struct sched_group *group, *sdg = sd->groups;
  3124. unsigned long power;
  3125. if (!child) {
  3126. update_cpu_power(sd, cpu);
  3127. return;
  3128. }
  3129. power = 0;
  3130. group = child->groups;
  3131. do {
  3132. power += group->cpu_power;
  3133. group = group->next;
  3134. } while (group != child->groups);
  3135. sdg->cpu_power = power;
  3136. }
  3137. /**
  3138. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3139. * @sd: The sched_domain whose statistics are to be updated.
  3140. * @group: sched_group whose statistics are to be updated.
  3141. * @this_cpu: Cpu for which load balance is currently performed.
  3142. * @idle: Idle status of this_cpu
  3143. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3144. * @sd_idle: Idle status of the sched_domain containing group.
  3145. * @local_group: Does group contain this_cpu.
  3146. * @cpus: Set of cpus considered for load balancing.
  3147. * @balance: Should we balance.
  3148. * @sgs: variable to hold the statistics for this group.
  3149. */
  3150. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3151. struct sched_group *group, int this_cpu,
  3152. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3153. int local_group, const struct cpumask *cpus,
  3154. int *balance, struct sg_lb_stats *sgs)
  3155. {
  3156. unsigned long load, max_cpu_load, min_cpu_load;
  3157. int i;
  3158. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3159. unsigned long sum_avg_load_per_task;
  3160. unsigned long avg_load_per_task;
  3161. if (local_group) {
  3162. balance_cpu = group_first_cpu(group);
  3163. if (balance_cpu == this_cpu)
  3164. update_group_power(sd, this_cpu);
  3165. }
  3166. /* Tally up the load of all CPUs in the group */
  3167. sum_avg_load_per_task = avg_load_per_task = 0;
  3168. max_cpu_load = 0;
  3169. min_cpu_load = ~0UL;
  3170. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3171. struct rq *rq = cpu_rq(i);
  3172. if (*sd_idle && rq->nr_running)
  3173. *sd_idle = 0;
  3174. /* Bias balancing toward cpus of our domain */
  3175. if (local_group) {
  3176. if (idle_cpu(i) && !first_idle_cpu) {
  3177. first_idle_cpu = 1;
  3178. balance_cpu = i;
  3179. }
  3180. load = target_load(i, load_idx);
  3181. } else {
  3182. load = source_load(i, load_idx);
  3183. if (load > max_cpu_load)
  3184. max_cpu_load = load;
  3185. if (min_cpu_load > load)
  3186. min_cpu_load = load;
  3187. }
  3188. sgs->group_load += load;
  3189. sgs->sum_nr_running += rq->nr_running;
  3190. sgs->sum_weighted_load += weighted_cpuload(i);
  3191. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3192. }
  3193. /*
  3194. * First idle cpu or the first cpu(busiest) in this sched group
  3195. * is eligible for doing load balancing at this and above
  3196. * domains. In the newly idle case, we will allow all the cpu's
  3197. * to do the newly idle load balance.
  3198. */
  3199. if (idle != CPU_NEWLY_IDLE && local_group &&
  3200. balance_cpu != this_cpu && balance) {
  3201. *balance = 0;
  3202. return;
  3203. }
  3204. /* Adjust by relative CPU power of the group */
  3205. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3206. /*
  3207. * Consider the group unbalanced when the imbalance is larger
  3208. * than the average weight of two tasks.
  3209. *
  3210. * APZ: with cgroup the avg task weight can vary wildly and
  3211. * might not be a suitable number - should we keep a
  3212. * normalized nr_running number somewhere that negates
  3213. * the hierarchy?
  3214. */
  3215. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3216. group->cpu_power;
  3217. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3218. sgs->group_imb = 1;
  3219. sgs->group_capacity =
  3220. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3221. }
  3222. /**
  3223. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3224. * @sd: sched_domain whose statistics are to be updated.
  3225. * @this_cpu: Cpu for which load balance is currently performed.
  3226. * @idle: Idle status of this_cpu
  3227. * @sd_idle: Idle status of the sched_domain containing group.
  3228. * @cpus: Set of cpus considered for load balancing.
  3229. * @balance: Should we balance.
  3230. * @sds: variable to hold the statistics for this sched_domain.
  3231. */
  3232. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3233. enum cpu_idle_type idle, int *sd_idle,
  3234. const struct cpumask *cpus, int *balance,
  3235. struct sd_lb_stats *sds)
  3236. {
  3237. struct sched_domain *child = sd->child;
  3238. struct sched_group *group = sd->groups;
  3239. struct sg_lb_stats sgs;
  3240. int load_idx, prefer_sibling = 0;
  3241. if (child && child->flags & SD_PREFER_SIBLING)
  3242. prefer_sibling = 1;
  3243. init_sd_power_savings_stats(sd, sds, idle);
  3244. load_idx = get_sd_load_idx(sd, idle);
  3245. do {
  3246. int local_group;
  3247. local_group = cpumask_test_cpu(this_cpu,
  3248. sched_group_cpus(group));
  3249. memset(&sgs, 0, sizeof(sgs));
  3250. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3251. local_group, cpus, balance, &sgs);
  3252. if (local_group && balance && !(*balance))
  3253. return;
  3254. sds->total_load += sgs.group_load;
  3255. sds->total_pwr += group->cpu_power;
  3256. /*
  3257. * In case the child domain prefers tasks go to siblings
  3258. * first, lower the group capacity to one so that we'll try
  3259. * and move all the excess tasks away.
  3260. */
  3261. if (prefer_sibling)
  3262. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3263. if (local_group) {
  3264. sds->this_load = sgs.avg_load;
  3265. sds->this = group;
  3266. sds->this_nr_running = sgs.sum_nr_running;
  3267. sds->this_load_per_task = sgs.sum_weighted_load;
  3268. } else if (sgs.avg_load > sds->max_load &&
  3269. (sgs.sum_nr_running > sgs.group_capacity ||
  3270. sgs.group_imb)) {
  3271. sds->max_load = sgs.avg_load;
  3272. sds->busiest = group;
  3273. sds->busiest_nr_running = sgs.sum_nr_running;
  3274. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3275. sds->group_imb = sgs.group_imb;
  3276. }
  3277. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3278. group = group->next;
  3279. } while (group != sd->groups);
  3280. }
  3281. /**
  3282. * fix_small_imbalance - Calculate the minor imbalance that exists
  3283. * amongst the groups of a sched_domain, during
  3284. * load balancing.
  3285. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3286. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3287. * @imbalance: Variable to store the imbalance.
  3288. */
  3289. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3290. int this_cpu, unsigned long *imbalance)
  3291. {
  3292. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3293. unsigned int imbn = 2;
  3294. if (sds->this_nr_running) {
  3295. sds->this_load_per_task /= sds->this_nr_running;
  3296. if (sds->busiest_load_per_task >
  3297. sds->this_load_per_task)
  3298. imbn = 1;
  3299. } else
  3300. sds->this_load_per_task =
  3301. cpu_avg_load_per_task(this_cpu);
  3302. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3303. sds->busiest_load_per_task * imbn) {
  3304. *imbalance = sds->busiest_load_per_task;
  3305. return;
  3306. }
  3307. /*
  3308. * OK, we don't have enough imbalance to justify moving tasks,
  3309. * however we may be able to increase total CPU power used by
  3310. * moving them.
  3311. */
  3312. pwr_now += sds->busiest->cpu_power *
  3313. min(sds->busiest_load_per_task, sds->max_load);
  3314. pwr_now += sds->this->cpu_power *
  3315. min(sds->this_load_per_task, sds->this_load);
  3316. pwr_now /= SCHED_LOAD_SCALE;
  3317. /* Amount of load we'd subtract */
  3318. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3319. sds->busiest->cpu_power;
  3320. if (sds->max_load > tmp)
  3321. pwr_move += sds->busiest->cpu_power *
  3322. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3323. /* Amount of load we'd add */
  3324. if (sds->max_load * sds->busiest->cpu_power <
  3325. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3326. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3327. sds->this->cpu_power;
  3328. else
  3329. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3330. sds->this->cpu_power;
  3331. pwr_move += sds->this->cpu_power *
  3332. min(sds->this_load_per_task, sds->this_load + tmp);
  3333. pwr_move /= SCHED_LOAD_SCALE;
  3334. /* Move if we gain throughput */
  3335. if (pwr_move > pwr_now)
  3336. *imbalance = sds->busiest_load_per_task;
  3337. }
  3338. /**
  3339. * calculate_imbalance - Calculate the amount of imbalance present within the
  3340. * groups of a given sched_domain during load balance.
  3341. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3342. * @this_cpu: Cpu for which currently load balance is being performed.
  3343. * @imbalance: The variable to store the imbalance.
  3344. */
  3345. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3346. unsigned long *imbalance)
  3347. {
  3348. unsigned long max_pull;
  3349. /*
  3350. * In the presence of smp nice balancing, certain scenarios can have
  3351. * max load less than avg load(as we skip the groups at or below
  3352. * its cpu_power, while calculating max_load..)
  3353. */
  3354. if (sds->max_load < sds->avg_load) {
  3355. *imbalance = 0;
  3356. return fix_small_imbalance(sds, this_cpu, imbalance);
  3357. }
  3358. /* Don't want to pull so many tasks that a group would go idle */
  3359. max_pull = min(sds->max_load - sds->avg_load,
  3360. sds->max_load - sds->busiest_load_per_task);
  3361. /* How much load to actually move to equalise the imbalance */
  3362. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3363. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3364. / SCHED_LOAD_SCALE;
  3365. /*
  3366. * if *imbalance is less than the average load per runnable task
  3367. * there is no gaurantee that any tasks will be moved so we'll have
  3368. * a think about bumping its value to force at least one task to be
  3369. * moved
  3370. */
  3371. if (*imbalance < sds->busiest_load_per_task)
  3372. return fix_small_imbalance(sds, this_cpu, imbalance);
  3373. }
  3374. /******* find_busiest_group() helpers end here *********************/
  3375. /**
  3376. * find_busiest_group - Returns the busiest group within the sched_domain
  3377. * if there is an imbalance. If there isn't an imbalance, and
  3378. * the user has opted for power-savings, it returns a group whose
  3379. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3380. * such a group exists.
  3381. *
  3382. * Also calculates the amount of weighted load which should be moved
  3383. * to restore balance.
  3384. *
  3385. * @sd: The sched_domain whose busiest group is to be returned.
  3386. * @this_cpu: The cpu for which load balancing is currently being performed.
  3387. * @imbalance: Variable which stores amount of weighted load which should
  3388. * be moved to restore balance/put a group to idle.
  3389. * @idle: The idle status of this_cpu.
  3390. * @sd_idle: The idleness of sd
  3391. * @cpus: The set of CPUs under consideration for load-balancing.
  3392. * @balance: Pointer to a variable indicating if this_cpu
  3393. * is the appropriate cpu to perform load balancing at this_level.
  3394. *
  3395. * Returns: - the busiest group if imbalance exists.
  3396. * - If no imbalance and user has opted for power-savings balance,
  3397. * return the least loaded group whose CPUs can be
  3398. * put to idle by rebalancing its tasks onto our group.
  3399. */
  3400. static struct sched_group *
  3401. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3402. unsigned long *imbalance, enum cpu_idle_type idle,
  3403. int *sd_idle, const struct cpumask *cpus, int *balance)
  3404. {
  3405. struct sd_lb_stats sds;
  3406. memset(&sds, 0, sizeof(sds));
  3407. /*
  3408. * Compute the various statistics relavent for load balancing at
  3409. * this level.
  3410. */
  3411. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3412. balance, &sds);
  3413. /* Cases where imbalance does not exist from POV of this_cpu */
  3414. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3415. * at this level.
  3416. * 2) There is no busy sibling group to pull from.
  3417. * 3) This group is the busiest group.
  3418. * 4) This group is more busy than the avg busieness at this
  3419. * sched_domain.
  3420. * 5) The imbalance is within the specified limit.
  3421. * 6) Any rebalance would lead to ping-pong
  3422. */
  3423. if (balance && !(*balance))
  3424. goto ret;
  3425. if (!sds.busiest || sds.busiest_nr_running == 0)
  3426. goto out_balanced;
  3427. if (sds.this_load >= sds.max_load)
  3428. goto out_balanced;
  3429. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3430. if (sds.this_load >= sds.avg_load)
  3431. goto out_balanced;
  3432. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3433. goto out_balanced;
  3434. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3435. if (sds.group_imb)
  3436. sds.busiest_load_per_task =
  3437. min(sds.busiest_load_per_task, sds.avg_load);
  3438. /*
  3439. * We're trying to get all the cpus to the average_load, so we don't
  3440. * want to push ourselves above the average load, nor do we wish to
  3441. * reduce the max loaded cpu below the average load, as either of these
  3442. * actions would just result in more rebalancing later, and ping-pong
  3443. * tasks around. Thus we look for the minimum possible imbalance.
  3444. * Negative imbalances (*we* are more loaded than anyone else) will
  3445. * be counted as no imbalance for these purposes -- we can't fix that
  3446. * by pulling tasks to us. Be careful of negative numbers as they'll
  3447. * appear as very large values with unsigned longs.
  3448. */
  3449. if (sds.max_load <= sds.busiest_load_per_task)
  3450. goto out_balanced;
  3451. /* Looks like there is an imbalance. Compute it */
  3452. calculate_imbalance(&sds, this_cpu, imbalance);
  3453. return sds.busiest;
  3454. out_balanced:
  3455. /*
  3456. * There is no obvious imbalance. But check if we can do some balancing
  3457. * to save power.
  3458. */
  3459. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3460. return sds.busiest;
  3461. ret:
  3462. *imbalance = 0;
  3463. return NULL;
  3464. }
  3465. /*
  3466. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3467. */
  3468. static struct rq *
  3469. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3470. unsigned long imbalance, const struct cpumask *cpus)
  3471. {
  3472. struct rq *busiest = NULL, *rq;
  3473. unsigned long max_load = 0;
  3474. int i;
  3475. for_each_cpu(i, sched_group_cpus(group)) {
  3476. unsigned long power = power_of(i);
  3477. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3478. unsigned long wl;
  3479. if (!cpumask_test_cpu(i, cpus))
  3480. continue;
  3481. rq = cpu_rq(i);
  3482. wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
  3483. wl /= power;
  3484. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3485. continue;
  3486. if (wl > max_load) {
  3487. max_load = wl;
  3488. busiest = rq;
  3489. }
  3490. }
  3491. return busiest;
  3492. }
  3493. /*
  3494. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3495. * so long as it is large enough.
  3496. */
  3497. #define MAX_PINNED_INTERVAL 512
  3498. /* Working cpumask for load_balance and load_balance_newidle. */
  3499. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3500. /*
  3501. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3502. * tasks if there is an imbalance.
  3503. */
  3504. static int load_balance(int this_cpu, struct rq *this_rq,
  3505. struct sched_domain *sd, enum cpu_idle_type idle,
  3506. int *balance)
  3507. {
  3508. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3509. struct sched_group *group;
  3510. unsigned long imbalance;
  3511. struct rq *busiest;
  3512. unsigned long flags;
  3513. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3514. cpumask_copy(cpus, cpu_active_mask);
  3515. /*
  3516. * When power savings policy is enabled for the parent domain, idle
  3517. * sibling can pick up load irrespective of busy siblings. In this case,
  3518. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3519. * portraying it as CPU_NOT_IDLE.
  3520. */
  3521. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3522. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3523. sd_idle = 1;
  3524. schedstat_inc(sd, lb_count[idle]);
  3525. redo:
  3526. update_shares(sd);
  3527. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3528. cpus, balance);
  3529. if (*balance == 0)
  3530. goto out_balanced;
  3531. if (!group) {
  3532. schedstat_inc(sd, lb_nobusyg[idle]);
  3533. goto out_balanced;
  3534. }
  3535. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3536. if (!busiest) {
  3537. schedstat_inc(sd, lb_nobusyq[idle]);
  3538. goto out_balanced;
  3539. }
  3540. BUG_ON(busiest == this_rq);
  3541. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3542. ld_moved = 0;
  3543. if (busiest->nr_running > 1) {
  3544. /*
  3545. * Attempt to move tasks. If find_busiest_group has found
  3546. * an imbalance but busiest->nr_running <= 1, the group is
  3547. * still unbalanced. ld_moved simply stays zero, so it is
  3548. * correctly treated as an imbalance.
  3549. */
  3550. local_irq_save(flags);
  3551. double_rq_lock(this_rq, busiest);
  3552. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3553. imbalance, sd, idle, &all_pinned);
  3554. double_rq_unlock(this_rq, busiest);
  3555. local_irq_restore(flags);
  3556. /*
  3557. * some other cpu did the load balance for us.
  3558. */
  3559. if (ld_moved && this_cpu != smp_processor_id())
  3560. resched_cpu(this_cpu);
  3561. /* All tasks on this runqueue were pinned by CPU affinity */
  3562. if (unlikely(all_pinned)) {
  3563. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3564. if (!cpumask_empty(cpus))
  3565. goto redo;
  3566. goto out_balanced;
  3567. }
  3568. }
  3569. if (!ld_moved) {
  3570. schedstat_inc(sd, lb_failed[idle]);
  3571. sd->nr_balance_failed++;
  3572. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3573. spin_lock_irqsave(&busiest->lock, flags);
  3574. /* don't kick the migration_thread, if the curr
  3575. * task on busiest cpu can't be moved to this_cpu
  3576. */
  3577. if (!cpumask_test_cpu(this_cpu,
  3578. &busiest->curr->cpus_allowed)) {
  3579. spin_unlock_irqrestore(&busiest->lock, flags);
  3580. all_pinned = 1;
  3581. goto out_one_pinned;
  3582. }
  3583. if (!busiest->active_balance) {
  3584. busiest->active_balance = 1;
  3585. busiest->push_cpu = this_cpu;
  3586. active_balance = 1;
  3587. }
  3588. spin_unlock_irqrestore(&busiest->lock, flags);
  3589. if (active_balance)
  3590. wake_up_process(busiest->migration_thread);
  3591. /*
  3592. * We've kicked active balancing, reset the failure
  3593. * counter.
  3594. */
  3595. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3596. }
  3597. } else
  3598. sd->nr_balance_failed = 0;
  3599. if (likely(!active_balance)) {
  3600. /* We were unbalanced, so reset the balancing interval */
  3601. sd->balance_interval = sd->min_interval;
  3602. } else {
  3603. /*
  3604. * If we've begun active balancing, start to back off. This
  3605. * case may not be covered by the all_pinned logic if there
  3606. * is only 1 task on the busy runqueue (because we don't call
  3607. * move_tasks).
  3608. */
  3609. if (sd->balance_interval < sd->max_interval)
  3610. sd->balance_interval *= 2;
  3611. }
  3612. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3613. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3614. ld_moved = -1;
  3615. goto out;
  3616. out_balanced:
  3617. schedstat_inc(sd, lb_balanced[idle]);
  3618. sd->nr_balance_failed = 0;
  3619. out_one_pinned:
  3620. /* tune up the balancing interval */
  3621. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3622. (sd->balance_interval < sd->max_interval))
  3623. sd->balance_interval *= 2;
  3624. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3625. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3626. ld_moved = -1;
  3627. else
  3628. ld_moved = 0;
  3629. out:
  3630. if (ld_moved)
  3631. update_shares(sd);
  3632. return ld_moved;
  3633. }
  3634. /*
  3635. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3636. * tasks if there is an imbalance.
  3637. *
  3638. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3639. * this_rq is locked.
  3640. */
  3641. static int
  3642. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3643. {
  3644. struct sched_group *group;
  3645. struct rq *busiest = NULL;
  3646. unsigned long imbalance;
  3647. int ld_moved = 0;
  3648. int sd_idle = 0;
  3649. int all_pinned = 0;
  3650. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3651. cpumask_copy(cpus, cpu_active_mask);
  3652. /*
  3653. * When power savings policy is enabled for the parent domain, idle
  3654. * sibling can pick up load irrespective of busy siblings. In this case,
  3655. * let the state of idle sibling percolate up as IDLE, instead of
  3656. * portraying it as CPU_NOT_IDLE.
  3657. */
  3658. if (sd->flags & SD_SHARE_CPUPOWER &&
  3659. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3660. sd_idle = 1;
  3661. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3662. redo:
  3663. update_shares_locked(this_rq, sd);
  3664. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3665. &sd_idle, cpus, NULL);
  3666. if (!group) {
  3667. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3668. goto out_balanced;
  3669. }
  3670. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3671. if (!busiest) {
  3672. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3673. goto out_balanced;
  3674. }
  3675. BUG_ON(busiest == this_rq);
  3676. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3677. ld_moved = 0;
  3678. if (busiest->nr_running > 1) {
  3679. /* Attempt to move tasks */
  3680. double_lock_balance(this_rq, busiest);
  3681. /* this_rq->clock is already updated */
  3682. update_rq_clock(busiest);
  3683. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3684. imbalance, sd, CPU_NEWLY_IDLE,
  3685. &all_pinned);
  3686. double_unlock_balance(this_rq, busiest);
  3687. if (unlikely(all_pinned)) {
  3688. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3689. if (!cpumask_empty(cpus))
  3690. goto redo;
  3691. }
  3692. }
  3693. if (!ld_moved) {
  3694. int active_balance = 0;
  3695. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3696. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3697. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3698. return -1;
  3699. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3700. return -1;
  3701. if (sd->nr_balance_failed++ < 2)
  3702. return -1;
  3703. /*
  3704. * The only task running in a non-idle cpu can be moved to this
  3705. * cpu in an attempt to completely freeup the other CPU
  3706. * package. The same method used to move task in load_balance()
  3707. * have been extended for load_balance_newidle() to speedup
  3708. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3709. *
  3710. * The package power saving logic comes from
  3711. * find_busiest_group(). If there are no imbalance, then
  3712. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3713. * f_b_g() will select a group from which a running task may be
  3714. * pulled to this cpu in order to make the other package idle.
  3715. * If there is no opportunity to make a package idle and if
  3716. * there are no imbalance, then f_b_g() will return NULL and no
  3717. * action will be taken in load_balance_newidle().
  3718. *
  3719. * Under normal task pull operation due to imbalance, there
  3720. * will be more than one task in the source run queue and
  3721. * move_tasks() will succeed. ld_moved will be true and this
  3722. * active balance code will not be triggered.
  3723. */
  3724. /* Lock busiest in correct order while this_rq is held */
  3725. double_lock_balance(this_rq, busiest);
  3726. /*
  3727. * don't kick the migration_thread, if the curr
  3728. * task on busiest cpu can't be moved to this_cpu
  3729. */
  3730. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3731. double_unlock_balance(this_rq, busiest);
  3732. all_pinned = 1;
  3733. return ld_moved;
  3734. }
  3735. if (!busiest->active_balance) {
  3736. busiest->active_balance = 1;
  3737. busiest->push_cpu = this_cpu;
  3738. active_balance = 1;
  3739. }
  3740. double_unlock_balance(this_rq, busiest);
  3741. /*
  3742. * Should not call ttwu while holding a rq->lock
  3743. */
  3744. spin_unlock(&this_rq->lock);
  3745. if (active_balance)
  3746. wake_up_process(busiest->migration_thread);
  3747. spin_lock(&this_rq->lock);
  3748. } else
  3749. sd->nr_balance_failed = 0;
  3750. update_shares_locked(this_rq, sd);
  3751. return ld_moved;
  3752. out_balanced:
  3753. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3754. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3755. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3756. return -1;
  3757. sd->nr_balance_failed = 0;
  3758. return 0;
  3759. }
  3760. /*
  3761. * idle_balance is called by schedule() if this_cpu is about to become
  3762. * idle. Attempts to pull tasks from other CPUs.
  3763. */
  3764. static void idle_balance(int this_cpu, struct rq *this_rq)
  3765. {
  3766. struct sched_domain *sd;
  3767. int pulled_task = 0;
  3768. unsigned long next_balance = jiffies + HZ;
  3769. this_rq->idle_stamp = this_rq->clock;
  3770. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3771. return;
  3772. for_each_domain(this_cpu, sd) {
  3773. unsigned long interval;
  3774. if (!(sd->flags & SD_LOAD_BALANCE))
  3775. continue;
  3776. if (sd->flags & SD_BALANCE_NEWIDLE)
  3777. /* If we've pulled tasks over stop searching: */
  3778. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3779. sd);
  3780. interval = msecs_to_jiffies(sd->balance_interval);
  3781. if (time_after(next_balance, sd->last_balance + interval))
  3782. next_balance = sd->last_balance + interval;
  3783. if (pulled_task) {
  3784. this_rq->idle_stamp = 0;
  3785. break;
  3786. }
  3787. }
  3788. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3789. /*
  3790. * We are going idle. next_balance may be set based on
  3791. * a busy processor. So reset next_balance.
  3792. */
  3793. this_rq->next_balance = next_balance;
  3794. }
  3795. }
  3796. /*
  3797. * active_load_balance is run by migration threads. It pushes running tasks
  3798. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3799. * running on each physical CPU where possible, and avoids physical /
  3800. * logical imbalances.
  3801. *
  3802. * Called with busiest_rq locked.
  3803. */
  3804. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3805. {
  3806. int target_cpu = busiest_rq->push_cpu;
  3807. struct sched_domain *sd;
  3808. struct rq *target_rq;
  3809. /* Is there any task to move? */
  3810. if (busiest_rq->nr_running <= 1)
  3811. return;
  3812. target_rq = cpu_rq(target_cpu);
  3813. /*
  3814. * This condition is "impossible", if it occurs
  3815. * we need to fix it. Originally reported by
  3816. * Bjorn Helgaas on a 128-cpu setup.
  3817. */
  3818. BUG_ON(busiest_rq == target_rq);
  3819. /* move a task from busiest_rq to target_rq */
  3820. double_lock_balance(busiest_rq, target_rq);
  3821. update_rq_clock(busiest_rq);
  3822. update_rq_clock(target_rq);
  3823. /* Search for an sd spanning us and the target CPU. */
  3824. for_each_domain(target_cpu, sd) {
  3825. if ((sd->flags & SD_LOAD_BALANCE) &&
  3826. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3827. break;
  3828. }
  3829. if (likely(sd)) {
  3830. schedstat_inc(sd, alb_count);
  3831. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3832. sd, CPU_IDLE))
  3833. schedstat_inc(sd, alb_pushed);
  3834. else
  3835. schedstat_inc(sd, alb_failed);
  3836. }
  3837. double_unlock_balance(busiest_rq, target_rq);
  3838. }
  3839. #ifdef CONFIG_NO_HZ
  3840. static struct {
  3841. atomic_t load_balancer;
  3842. cpumask_var_t cpu_mask;
  3843. cpumask_var_t ilb_grp_nohz_mask;
  3844. } nohz ____cacheline_aligned = {
  3845. .load_balancer = ATOMIC_INIT(-1),
  3846. };
  3847. int get_nohz_load_balancer(void)
  3848. {
  3849. return atomic_read(&nohz.load_balancer);
  3850. }
  3851. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3852. /**
  3853. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3854. * @cpu: The cpu whose lowest level of sched domain is to
  3855. * be returned.
  3856. * @flag: The flag to check for the lowest sched_domain
  3857. * for the given cpu.
  3858. *
  3859. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3860. */
  3861. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3862. {
  3863. struct sched_domain *sd;
  3864. for_each_domain(cpu, sd)
  3865. if (sd && (sd->flags & flag))
  3866. break;
  3867. return sd;
  3868. }
  3869. /**
  3870. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3871. * @cpu: The cpu whose domains we're iterating over.
  3872. * @sd: variable holding the value of the power_savings_sd
  3873. * for cpu.
  3874. * @flag: The flag to filter the sched_domains to be iterated.
  3875. *
  3876. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3877. * set, starting from the lowest sched_domain to the highest.
  3878. */
  3879. #define for_each_flag_domain(cpu, sd, flag) \
  3880. for (sd = lowest_flag_domain(cpu, flag); \
  3881. (sd && (sd->flags & flag)); sd = sd->parent)
  3882. /**
  3883. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3884. * @ilb_group: group to be checked for semi-idleness
  3885. *
  3886. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3887. *
  3888. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3889. * and atleast one non-idle CPU. This helper function checks if the given
  3890. * sched_group is semi-idle or not.
  3891. */
  3892. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3893. {
  3894. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3895. sched_group_cpus(ilb_group));
  3896. /*
  3897. * A sched_group is semi-idle when it has atleast one busy cpu
  3898. * and atleast one idle cpu.
  3899. */
  3900. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3901. return 0;
  3902. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3903. return 0;
  3904. return 1;
  3905. }
  3906. /**
  3907. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3908. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3909. *
  3910. * Returns: Returns the id of the idle load balancer if it exists,
  3911. * Else, returns >= nr_cpu_ids.
  3912. *
  3913. * This algorithm picks the idle load balancer such that it belongs to a
  3914. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3915. * completely idle packages/cores just for the purpose of idle load balancing
  3916. * when there are other idle cpu's which are better suited for that job.
  3917. */
  3918. static int find_new_ilb(int cpu)
  3919. {
  3920. struct sched_domain *sd;
  3921. struct sched_group *ilb_group;
  3922. /*
  3923. * Have idle load balancer selection from semi-idle packages only
  3924. * when power-aware load balancing is enabled
  3925. */
  3926. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3927. goto out_done;
  3928. /*
  3929. * Optimize for the case when we have no idle CPUs or only one
  3930. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3931. */
  3932. if (cpumask_weight(nohz.cpu_mask) < 2)
  3933. goto out_done;
  3934. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3935. ilb_group = sd->groups;
  3936. do {
  3937. if (is_semi_idle_group(ilb_group))
  3938. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3939. ilb_group = ilb_group->next;
  3940. } while (ilb_group != sd->groups);
  3941. }
  3942. out_done:
  3943. return cpumask_first(nohz.cpu_mask);
  3944. }
  3945. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3946. static inline int find_new_ilb(int call_cpu)
  3947. {
  3948. return cpumask_first(nohz.cpu_mask);
  3949. }
  3950. #endif
  3951. /*
  3952. * This routine will try to nominate the ilb (idle load balancing)
  3953. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3954. * load balancing on behalf of all those cpus. If all the cpus in the system
  3955. * go into this tickless mode, then there will be no ilb owner (as there is
  3956. * no need for one) and all the cpus will sleep till the next wakeup event
  3957. * arrives...
  3958. *
  3959. * For the ilb owner, tick is not stopped. And this tick will be used
  3960. * for idle load balancing. ilb owner will still be part of
  3961. * nohz.cpu_mask..
  3962. *
  3963. * While stopping the tick, this cpu will become the ilb owner if there
  3964. * is no other owner. And will be the owner till that cpu becomes busy
  3965. * or if all cpus in the system stop their ticks at which point
  3966. * there is no need for ilb owner.
  3967. *
  3968. * When the ilb owner becomes busy, it nominates another owner, during the
  3969. * next busy scheduler_tick()
  3970. */
  3971. int select_nohz_load_balancer(int stop_tick)
  3972. {
  3973. int cpu = smp_processor_id();
  3974. if (stop_tick) {
  3975. cpu_rq(cpu)->in_nohz_recently = 1;
  3976. if (!cpu_active(cpu)) {
  3977. if (atomic_read(&nohz.load_balancer) != cpu)
  3978. return 0;
  3979. /*
  3980. * If we are going offline and still the leader,
  3981. * give up!
  3982. */
  3983. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3984. BUG();
  3985. return 0;
  3986. }
  3987. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3988. /* time for ilb owner also to sleep */
  3989. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  3990. if (atomic_read(&nohz.load_balancer) == cpu)
  3991. atomic_set(&nohz.load_balancer, -1);
  3992. return 0;
  3993. }
  3994. if (atomic_read(&nohz.load_balancer) == -1) {
  3995. /* make me the ilb owner */
  3996. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3997. return 1;
  3998. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3999. int new_ilb;
  4000. if (!(sched_smt_power_savings ||
  4001. sched_mc_power_savings))
  4002. return 1;
  4003. /*
  4004. * Check to see if there is a more power-efficient
  4005. * ilb.
  4006. */
  4007. new_ilb = find_new_ilb(cpu);
  4008. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4009. atomic_set(&nohz.load_balancer, -1);
  4010. resched_cpu(new_ilb);
  4011. return 0;
  4012. }
  4013. return 1;
  4014. }
  4015. } else {
  4016. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4017. return 0;
  4018. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4019. if (atomic_read(&nohz.load_balancer) == cpu)
  4020. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4021. BUG();
  4022. }
  4023. return 0;
  4024. }
  4025. #endif
  4026. static DEFINE_SPINLOCK(balancing);
  4027. /*
  4028. * It checks each scheduling domain to see if it is due to be balanced,
  4029. * and initiates a balancing operation if so.
  4030. *
  4031. * Balancing parameters are set up in arch_init_sched_domains.
  4032. */
  4033. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4034. {
  4035. int balance = 1;
  4036. struct rq *rq = cpu_rq(cpu);
  4037. unsigned long interval;
  4038. struct sched_domain *sd;
  4039. /* Earliest time when we have to do rebalance again */
  4040. unsigned long next_balance = jiffies + 60*HZ;
  4041. int update_next_balance = 0;
  4042. int need_serialize;
  4043. for_each_domain(cpu, sd) {
  4044. if (!(sd->flags & SD_LOAD_BALANCE))
  4045. continue;
  4046. interval = sd->balance_interval;
  4047. if (idle != CPU_IDLE)
  4048. interval *= sd->busy_factor;
  4049. /* scale ms to jiffies */
  4050. interval = msecs_to_jiffies(interval);
  4051. if (unlikely(!interval))
  4052. interval = 1;
  4053. if (interval > HZ*NR_CPUS/10)
  4054. interval = HZ*NR_CPUS/10;
  4055. need_serialize = sd->flags & SD_SERIALIZE;
  4056. if (need_serialize) {
  4057. if (!spin_trylock(&balancing))
  4058. goto out;
  4059. }
  4060. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4061. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4062. /*
  4063. * We've pulled tasks over so either we're no
  4064. * longer idle, or one of our SMT siblings is
  4065. * not idle.
  4066. */
  4067. idle = CPU_NOT_IDLE;
  4068. }
  4069. sd->last_balance = jiffies;
  4070. }
  4071. if (need_serialize)
  4072. spin_unlock(&balancing);
  4073. out:
  4074. if (time_after(next_balance, sd->last_balance + interval)) {
  4075. next_balance = sd->last_balance + interval;
  4076. update_next_balance = 1;
  4077. }
  4078. /*
  4079. * Stop the load balance at this level. There is another
  4080. * CPU in our sched group which is doing load balancing more
  4081. * actively.
  4082. */
  4083. if (!balance)
  4084. break;
  4085. }
  4086. /*
  4087. * next_balance will be updated only when there is a need.
  4088. * When the cpu is attached to null domain for ex, it will not be
  4089. * updated.
  4090. */
  4091. if (likely(update_next_balance))
  4092. rq->next_balance = next_balance;
  4093. }
  4094. /*
  4095. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4096. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4097. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4098. */
  4099. static void run_rebalance_domains(struct softirq_action *h)
  4100. {
  4101. int this_cpu = smp_processor_id();
  4102. struct rq *this_rq = cpu_rq(this_cpu);
  4103. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4104. CPU_IDLE : CPU_NOT_IDLE;
  4105. rebalance_domains(this_cpu, idle);
  4106. #ifdef CONFIG_NO_HZ
  4107. /*
  4108. * If this cpu is the owner for idle load balancing, then do the
  4109. * balancing on behalf of the other idle cpus whose ticks are
  4110. * stopped.
  4111. */
  4112. if (this_rq->idle_at_tick &&
  4113. atomic_read(&nohz.load_balancer) == this_cpu) {
  4114. struct rq *rq;
  4115. int balance_cpu;
  4116. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4117. if (balance_cpu == this_cpu)
  4118. continue;
  4119. /*
  4120. * If this cpu gets work to do, stop the load balancing
  4121. * work being done for other cpus. Next load
  4122. * balancing owner will pick it up.
  4123. */
  4124. if (need_resched())
  4125. break;
  4126. rebalance_domains(balance_cpu, CPU_IDLE);
  4127. rq = cpu_rq(balance_cpu);
  4128. if (time_after(this_rq->next_balance, rq->next_balance))
  4129. this_rq->next_balance = rq->next_balance;
  4130. }
  4131. }
  4132. #endif
  4133. }
  4134. static inline int on_null_domain(int cpu)
  4135. {
  4136. return !rcu_dereference(cpu_rq(cpu)->sd);
  4137. }
  4138. /*
  4139. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4140. *
  4141. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4142. * idle load balancing owner or decide to stop the periodic load balancing,
  4143. * if the whole system is idle.
  4144. */
  4145. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4146. {
  4147. #ifdef CONFIG_NO_HZ
  4148. /*
  4149. * If we were in the nohz mode recently and busy at the current
  4150. * scheduler tick, then check if we need to nominate new idle
  4151. * load balancer.
  4152. */
  4153. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4154. rq->in_nohz_recently = 0;
  4155. if (atomic_read(&nohz.load_balancer) == cpu) {
  4156. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4157. atomic_set(&nohz.load_balancer, -1);
  4158. }
  4159. if (atomic_read(&nohz.load_balancer) == -1) {
  4160. int ilb = find_new_ilb(cpu);
  4161. if (ilb < nr_cpu_ids)
  4162. resched_cpu(ilb);
  4163. }
  4164. }
  4165. /*
  4166. * If this cpu is idle and doing idle load balancing for all the
  4167. * cpus with ticks stopped, is it time for that to stop?
  4168. */
  4169. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4170. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4171. resched_cpu(cpu);
  4172. return;
  4173. }
  4174. /*
  4175. * If this cpu is idle and the idle load balancing is done by
  4176. * someone else, then no need raise the SCHED_SOFTIRQ
  4177. */
  4178. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4179. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4180. return;
  4181. #endif
  4182. /* Don't need to rebalance while attached to NULL domain */
  4183. if (time_after_eq(jiffies, rq->next_balance) &&
  4184. likely(!on_null_domain(cpu)))
  4185. raise_softirq(SCHED_SOFTIRQ);
  4186. }
  4187. #else /* CONFIG_SMP */
  4188. /*
  4189. * on UP we do not need to balance between CPUs:
  4190. */
  4191. static inline void idle_balance(int cpu, struct rq *rq)
  4192. {
  4193. }
  4194. #endif
  4195. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4196. EXPORT_PER_CPU_SYMBOL(kstat);
  4197. /*
  4198. * Return any ns on the sched_clock that have not yet been accounted in
  4199. * @p in case that task is currently running.
  4200. *
  4201. * Called with task_rq_lock() held on @rq.
  4202. */
  4203. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4204. {
  4205. u64 ns = 0;
  4206. if (task_current(rq, p)) {
  4207. update_rq_clock(rq);
  4208. ns = rq->clock - p->se.exec_start;
  4209. if ((s64)ns < 0)
  4210. ns = 0;
  4211. }
  4212. return ns;
  4213. }
  4214. unsigned long long task_delta_exec(struct task_struct *p)
  4215. {
  4216. unsigned long flags;
  4217. struct rq *rq;
  4218. u64 ns = 0;
  4219. rq = task_rq_lock(p, &flags);
  4220. ns = do_task_delta_exec(p, rq);
  4221. task_rq_unlock(rq, &flags);
  4222. return ns;
  4223. }
  4224. /*
  4225. * Return accounted runtime for the task.
  4226. * In case the task is currently running, return the runtime plus current's
  4227. * pending runtime that have not been accounted yet.
  4228. */
  4229. unsigned long long task_sched_runtime(struct task_struct *p)
  4230. {
  4231. unsigned long flags;
  4232. struct rq *rq;
  4233. u64 ns = 0;
  4234. rq = task_rq_lock(p, &flags);
  4235. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4236. task_rq_unlock(rq, &flags);
  4237. return ns;
  4238. }
  4239. /*
  4240. * Return sum_exec_runtime for the thread group.
  4241. * In case the task is currently running, return the sum plus current's
  4242. * pending runtime that have not been accounted yet.
  4243. *
  4244. * Note that the thread group might have other running tasks as well,
  4245. * so the return value not includes other pending runtime that other
  4246. * running tasks might have.
  4247. */
  4248. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4249. {
  4250. struct task_cputime totals;
  4251. unsigned long flags;
  4252. struct rq *rq;
  4253. u64 ns;
  4254. rq = task_rq_lock(p, &flags);
  4255. thread_group_cputime(p, &totals);
  4256. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4257. task_rq_unlock(rq, &flags);
  4258. return ns;
  4259. }
  4260. /*
  4261. * Account user cpu time to a process.
  4262. * @p: the process that the cpu time gets accounted to
  4263. * @cputime: the cpu time spent in user space since the last update
  4264. * @cputime_scaled: cputime scaled by cpu frequency
  4265. */
  4266. void account_user_time(struct task_struct *p, cputime_t cputime,
  4267. cputime_t cputime_scaled)
  4268. {
  4269. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4270. cputime64_t tmp;
  4271. /* Add user time to process. */
  4272. p->utime = cputime_add(p->utime, cputime);
  4273. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4274. account_group_user_time(p, cputime);
  4275. /* Add user time to cpustat. */
  4276. tmp = cputime_to_cputime64(cputime);
  4277. if (TASK_NICE(p) > 0)
  4278. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4279. else
  4280. cpustat->user = cputime64_add(cpustat->user, tmp);
  4281. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4282. /* Account for user time used */
  4283. acct_update_integrals(p);
  4284. }
  4285. /*
  4286. * Account guest cpu time to a process.
  4287. * @p: the process that the cpu time gets accounted to
  4288. * @cputime: the cpu time spent in virtual machine since the last update
  4289. * @cputime_scaled: cputime scaled by cpu frequency
  4290. */
  4291. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4292. cputime_t cputime_scaled)
  4293. {
  4294. cputime64_t tmp;
  4295. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4296. tmp = cputime_to_cputime64(cputime);
  4297. /* Add guest time to process. */
  4298. p->utime = cputime_add(p->utime, cputime);
  4299. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4300. account_group_user_time(p, cputime);
  4301. p->gtime = cputime_add(p->gtime, cputime);
  4302. /* Add guest time to cpustat. */
  4303. if (TASK_NICE(p) > 0) {
  4304. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4305. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4306. } else {
  4307. cpustat->user = cputime64_add(cpustat->user, tmp);
  4308. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4309. }
  4310. }
  4311. /*
  4312. * Account system cpu time to a process.
  4313. * @p: the process that the cpu time gets accounted to
  4314. * @hardirq_offset: the offset to subtract from hardirq_count()
  4315. * @cputime: the cpu time spent in kernel space since the last update
  4316. * @cputime_scaled: cputime scaled by cpu frequency
  4317. */
  4318. void account_system_time(struct task_struct *p, int hardirq_offset,
  4319. cputime_t cputime, cputime_t cputime_scaled)
  4320. {
  4321. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4322. cputime64_t tmp;
  4323. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4324. account_guest_time(p, cputime, cputime_scaled);
  4325. return;
  4326. }
  4327. /* Add system time to process. */
  4328. p->stime = cputime_add(p->stime, cputime);
  4329. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4330. account_group_system_time(p, cputime);
  4331. /* Add system time to cpustat. */
  4332. tmp = cputime_to_cputime64(cputime);
  4333. if (hardirq_count() - hardirq_offset)
  4334. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4335. else if (softirq_count())
  4336. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4337. else
  4338. cpustat->system = cputime64_add(cpustat->system, tmp);
  4339. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4340. /* Account for system time used */
  4341. acct_update_integrals(p);
  4342. }
  4343. /*
  4344. * Account for involuntary wait time.
  4345. * @steal: the cpu time spent in involuntary wait
  4346. */
  4347. void account_steal_time(cputime_t cputime)
  4348. {
  4349. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4350. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4351. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4352. }
  4353. /*
  4354. * Account for idle time.
  4355. * @cputime: the cpu time spent in idle wait
  4356. */
  4357. void account_idle_time(cputime_t cputime)
  4358. {
  4359. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4360. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4361. struct rq *rq = this_rq();
  4362. if (atomic_read(&rq->nr_iowait) > 0)
  4363. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4364. else
  4365. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4366. }
  4367. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4368. /*
  4369. * Account a single tick of cpu time.
  4370. * @p: the process that the cpu time gets accounted to
  4371. * @user_tick: indicates if the tick is a user or a system tick
  4372. */
  4373. void account_process_tick(struct task_struct *p, int user_tick)
  4374. {
  4375. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4376. struct rq *rq = this_rq();
  4377. if (user_tick)
  4378. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4379. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4380. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4381. one_jiffy_scaled);
  4382. else
  4383. account_idle_time(cputime_one_jiffy);
  4384. }
  4385. /*
  4386. * Account multiple ticks of steal time.
  4387. * @p: the process from which the cpu time has been stolen
  4388. * @ticks: number of stolen ticks
  4389. */
  4390. void account_steal_ticks(unsigned long ticks)
  4391. {
  4392. account_steal_time(jiffies_to_cputime(ticks));
  4393. }
  4394. /*
  4395. * Account multiple ticks of idle time.
  4396. * @ticks: number of stolen ticks
  4397. */
  4398. void account_idle_ticks(unsigned long ticks)
  4399. {
  4400. account_idle_time(jiffies_to_cputime(ticks));
  4401. }
  4402. #endif
  4403. /*
  4404. * Use precise platform statistics if available:
  4405. */
  4406. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4407. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4408. {
  4409. *ut = p->utime;
  4410. *st = p->stime;
  4411. }
  4412. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4413. {
  4414. struct task_cputime cputime;
  4415. thread_group_cputime(p, &cputime);
  4416. *ut = cputime.utime;
  4417. *st = cputime.stime;
  4418. }
  4419. #else
  4420. #ifndef nsecs_to_cputime
  4421. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4422. #endif
  4423. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4424. {
  4425. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4426. /*
  4427. * Use CFS's precise accounting:
  4428. */
  4429. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4430. if (total) {
  4431. u64 temp;
  4432. temp = (u64)(rtime * utime);
  4433. do_div(temp, total);
  4434. utime = (cputime_t)temp;
  4435. } else
  4436. utime = rtime;
  4437. /*
  4438. * Compare with previous values, to keep monotonicity:
  4439. */
  4440. p->prev_utime = max(p->prev_utime, utime);
  4441. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4442. *ut = p->prev_utime;
  4443. *st = p->prev_stime;
  4444. }
  4445. /*
  4446. * Must be called with siglock held.
  4447. */
  4448. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4449. {
  4450. struct signal_struct *sig = p->signal;
  4451. struct task_cputime cputime;
  4452. cputime_t rtime, utime, total;
  4453. thread_group_cputime(p, &cputime);
  4454. total = cputime_add(cputime.utime, cputime.stime);
  4455. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4456. if (total) {
  4457. u64 temp;
  4458. temp = (u64)(rtime * cputime.utime);
  4459. do_div(temp, total);
  4460. utime = (cputime_t)temp;
  4461. } else
  4462. utime = rtime;
  4463. sig->prev_utime = max(sig->prev_utime, utime);
  4464. sig->prev_stime = max(sig->prev_stime,
  4465. cputime_sub(rtime, sig->prev_utime));
  4466. *ut = sig->prev_utime;
  4467. *st = sig->prev_stime;
  4468. }
  4469. #endif
  4470. /*
  4471. * This function gets called by the timer code, with HZ frequency.
  4472. * We call it with interrupts disabled.
  4473. *
  4474. * It also gets called by the fork code, when changing the parent's
  4475. * timeslices.
  4476. */
  4477. void scheduler_tick(void)
  4478. {
  4479. int cpu = smp_processor_id();
  4480. struct rq *rq = cpu_rq(cpu);
  4481. struct task_struct *curr = rq->curr;
  4482. sched_clock_tick();
  4483. spin_lock(&rq->lock);
  4484. update_rq_clock(rq);
  4485. update_cpu_load(rq);
  4486. curr->sched_class->task_tick(rq, curr, 0);
  4487. spin_unlock(&rq->lock);
  4488. perf_event_task_tick(curr, cpu);
  4489. #ifdef CONFIG_SMP
  4490. rq->idle_at_tick = idle_cpu(cpu);
  4491. trigger_load_balance(rq, cpu);
  4492. #endif
  4493. }
  4494. notrace unsigned long get_parent_ip(unsigned long addr)
  4495. {
  4496. if (in_lock_functions(addr)) {
  4497. addr = CALLER_ADDR2;
  4498. if (in_lock_functions(addr))
  4499. addr = CALLER_ADDR3;
  4500. }
  4501. return addr;
  4502. }
  4503. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4504. defined(CONFIG_PREEMPT_TRACER))
  4505. void __kprobes add_preempt_count(int val)
  4506. {
  4507. #ifdef CONFIG_DEBUG_PREEMPT
  4508. /*
  4509. * Underflow?
  4510. */
  4511. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4512. return;
  4513. #endif
  4514. preempt_count() += val;
  4515. #ifdef CONFIG_DEBUG_PREEMPT
  4516. /*
  4517. * Spinlock count overflowing soon?
  4518. */
  4519. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4520. PREEMPT_MASK - 10);
  4521. #endif
  4522. if (preempt_count() == val)
  4523. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4524. }
  4525. EXPORT_SYMBOL(add_preempt_count);
  4526. void __kprobes sub_preempt_count(int val)
  4527. {
  4528. #ifdef CONFIG_DEBUG_PREEMPT
  4529. /*
  4530. * Underflow?
  4531. */
  4532. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4533. return;
  4534. /*
  4535. * Is the spinlock portion underflowing?
  4536. */
  4537. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4538. !(preempt_count() & PREEMPT_MASK)))
  4539. return;
  4540. #endif
  4541. if (preempt_count() == val)
  4542. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4543. preempt_count() -= val;
  4544. }
  4545. EXPORT_SYMBOL(sub_preempt_count);
  4546. #endif
  4547. /*
  4548. * Print scheduling while atomic bug:
  4549. */
  4550. static noinline void __schedule_bug(struct task_struct *prev)
  4551. {
  4552. struct pt_regs *regs = get_irq_regs();
  4553. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4554. prev->comm, prev->pid, preempt_count());
  4555. debug_show_held_locks(prev);
  4556. print_modules();
  4557. if (irqs_disabled())
  4558. print_irqtrace_events(prev);
  4559. if (regs)
  4560. show_regs(regs);
  4561. else
  4562. dump_stack();
  4563. }
  4564. /*
  4565. * Various schedule()-time debugging checks and statistics:
  4566. */
  4567. static inline void schedule_debug(struct task_struct *prev)
  4568. {
  4569. /*
  4570. * Test if we are atomic. Since do_exit() needs to call into
  4571. * schedule() atomically, we ignore that path for now.
  4572. * Otherwise, whine if we are scheduling when we should not be.
  4573. */
  4574. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4575. __schedule_bug(prev);
  4576. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4577. schedstat_inc(this_rq(), sched_count);
  4578. #ifdef CONFIG_SCHEDSTATS
  4579. if (unlikely(prev->lock_depth >= 0)) {
  4580. schedstat_inc(this_rq(), bkl_count);
  4581. schedstat_inc(prev, sched_info.bkl_count);
  4582. }
  4583. #endif
  4584. }
  4585. static void put_prev_task(struct rq *rq, struct task_struct *p)
  4586. {
  4587. u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
  4588. update_avg(&p->se.avg_running, runtime);
  4589. if (p->state == TASK_RUNNING) {
  4590. /*
  4591. * In order to avoid avg_overlap growing stale when we are
  4592. * indeed overlapping and hence not getting put to sleep, grow
  4593. * the avg_overlap on preemption.
  4594. *
  4595. * We use the average preemption runtime because that
  4596. * correlates to the amount of cache footprint a task can
  4597. * build up.
  4598. */
  4599. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4600. update_avg(&p->se.avg_overlap, runtime);
  4601. } else {
  4602. update_avg(&p->se.avg_running, 0);
  4603. }
  4604. p->sched_class->put_prev_task(rq, p);
  4605. }
  4606. /*
  4607. * Pick up the highest-prio task:
  4608. */
  4609. static inline struct task_struct *
  4610. pick_next_task(struct rq *rq)
  4611. {
  4612. const struct sched_class *class;
  4613. struct task_struct *p;
  4614. /*
  4615. * Optimization: we know that if all tasks are in
  4616. * the fair class we can call that function directly:
  4617. */
  4618. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4619. p = fair_sched_class.pick_next_task(rq);
  4620. if (likely(p))
  4621. return p;
  4622. }
  4623. class = sched_class_highest;
  4624. for ( ; ; ) {
  4625. p = class->pick_next_task(rq);
  4626. if (p)
  4627. return p;
  4628. /*
  4629. * Will never be NULL as the idle class always
  4630. * returns a non-NULL p:
  4631. */
  4632. class = class->next;
  4633. }
  4634. }
  4635. /*
  4636. * schedule() is the main scheduler function.
  4637. */
  4638. asmlinkage void __sched schedule(void)
  4639. {
  4640. struct task_struct *prev, *next;
  4641. unsigned long *switch_count;
  4642. struct rq *rq;
  4643. int cpu;
  4644. need_resched:
  4645. preempt_disable();
  4646. cpu = smp_processor_id();
  4647. rq = cpu_rq(cpu);
  4648. rcu_sched_qs(cpu);
  4649. prev = rq->curr;
  4650. switch_count = &prev->nivcsw;
  4651. release_kernel_lock(prev);
  4652. need_resched_nonpreemptible:
  4653. schedule_debug(prev);
  4654. if (sched_feat(HRTICK))
  4655. hrtick_clear(rq);
  4656. spin_lock_irq(&rq->lock);
  4657. update_rq_clock(rq);
  4658. clear_tsk_need_resched(prev);
  4659. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4660. if (unlikely(signal_pending_state(prev->state, prev)))
  4661. prev->state = TASK_RUNNING;
  4662. else
  4663. deactivate_task(rq, prev, 1);
  4664. switch_count = &prev->nvcsw;
  4665. }
  4666. pre_schedule(rq, prev);
  4667. if (unlikely(!rq->nr_running))
  4668. idle_balance(cpu, rq);
  4669. put_prev_task(rq, prev);
  4670. next = pick_next_task(rq);
  4671. if (likely(prev != next)) {
  4672. sched_info_switch(prev, next);
  4673. perf_event_task_sched_out(prev, next, cpu);
  4674. rq->nr_switches++;
  4675. rq->curr = next;
  4676. ++*switch_count;
  4677. context_switch(rq, prev, next); /* unlocks the rq */
  4678. /*
  4679. * the context switch might have flipped the stack from under
  4680. * us, hence refresh the local variables.
  4681. */
  4682. cpu = smp_processor_id();
  4683. rq = cpu_rq(cpu);
  4684. } else
  4685. spin_unlock_irq(&rq->lock);
  4686. post_schedule(rq);
  4687. if (unlikely(reacquire_kernel_lock(current) < 0))
  4688. goto need_resched_nonpreemptible;
  4689. preempt_enable_no_resched();
  4690. if (need_resched())
  4691. goto need_resched;
  4692. }
  4693. EXPORT_SYMBOL(schedule);
  4694. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4695. /*
  4696. * Look out! "owner" is an entirely speculative pointer
  4697. * access and not reliable.
  4698. */
  4699. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4700. {
  4701. unsigned int cpu;
  4702. struct rq *rq;
  4703. if (!sched_feat(OWNER_SPIN))
  4704. return 0;
  4705. #ifdef CONFIG_DEBUG_PAGEALLOC
  4706. /*
  4707. * Need to access the cpu field knowing that
  4708. * DEBUG_PAGEALLOC could have unmapped it if
  4709. * the mutex owner just released it and exited.
  4710. */
  4711. if (probe_kernel_address(&owner->cpu, cpu))
  4712. goto out;
  4713. #else
  4714. cpu = owner->cpu;
  4715. #endif
  4716. /*
  4717. * Even if the access succeeded (likely case),
  4718. * the cpu field may no longer be valid.
  4719. */
  4720. if (cpu >= nr_cpumask_bits)
  4721. goto out;
  4722. /*
  4723. * We need to validate that we can do a
  4724. * get_cpu() and that we have the percpu area.
  4725. */
  4726. if (!cpu_online(cpu))
  4727. goto out;
  4728. rq = cpu_rq(cpu);
  4729. for (;;) {
  4730. /*
  4731. * Owner changed, break to re-assess state.
  4732. */
  4733. if (lock->owner != owner)
  4734. break;
  4735. /*
  4736. * Is that owner really running on that cpu?
  4737. */
  4738. if (task_thread_info(rq->curr) != owner || need_resched())
  4739. return 0;
  4740. cpu_relax();
  4741. }
  4742. out:
  4743. return 1;
  4744. }
  4745. #endif
  4746. #ifdef CONFIG_PREEMPT
  4747. /*
  4748. * this is the entry point to schedule() from in-kernel preemption
  4749. * off of preempt_enable. Kernel preemptions off return from interrupt
  4750. * occur there and call schedule directly.
  4751. */
  4752. asmlinkage void __sched preempt_schedule(void)
  4753. {
  4754. struct thread_info *ti = current_thread_info();
  4755. /*
  4756. * If there is a non-zero preempt_count or interrupts are disabled,
  4757. * we do not want to preempt the current task. Just return..
  4758. */
  4759. if (likely(ti->preempt_count || irqs_disabled()))
  4760. return;
  4761. do {
  4762. add_preempt_count(PREEMPT_ACTIVE);
  4763. schedule();
  4764. sub_preempt_count(PREEMPT_ACTIVE);
  4765. /*
  4766. * Check again in case we missed a preemption opportunity
  4767. * between schedule and now.
  4768. */
  4769. barrier();
  4770. } while (need_resched());
  4771. }
  4772. EXPORT_SYMBOL(preempt_schedule);
  4773. /*
  4774. * this is the entry point to schedule() from kernel preemption
  4775. * off of irq context.
  4776. * Note, that this is called and return with irqs disabled. This will
  4777. * protect us against recursive calling from irq.
  4778. */
  4779. asmlinkage void __sched preempt_schedule_irq(void)
  4780. {
  4781. struct thread_info *ti = current_thread_info();
  4782. /* Catch callers which need to be fixed */
  4783. BUG_ON(ti->preempt_count || !irqs_disabled());
  4784. do {
  4785. add_preempt_count(PREEMPT_ACTIVE);
  4786. local_irq_enable();
  4787. schedule();
  4788. local_irq_disable();
  4789. sub_preempt_count(PREEMPT_ACTIVE);
  4790. /*
  4791. * Check again in case we missed a preemption opportunity
  4792. * between schedule and now.
  4793. */
  4794. barrier();
  4795. } while (need_resched());
  4796. }
  4797. #endif /* CONFIG_PREEMPT */
  4798. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4799. void *key)
  4800. {
  4801. return try_to_wake_up(curr->private, mode, wake_flags);
  4802. }
  4803. EXPORT_SYMBOL(default_wake_function);
  4804. /*
  4805. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4806. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4807. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4808. *
  4809. * There are circumstances in which we can try to wake a task which has already
  4810. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4811. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4812. */
  4813. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4814. int nr_exclusive, int wake_flags, void *key)
  4815. {
  4816. wait_queue_t *curr, *next;
  4817. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4818. unsigned flags = curr->flags;
  4819. if (curr->func(curr, mode, wake_flags, key) &&
  4820. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4821. break;
  4822. }
  4823. }
  4824. /**
  4825. * __wake_up - wake up threads blocked on a waitqueue.
  4826. * @q: the waitqueue
  4827. * @mode: which threads
  4828. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4829. * @key: is directly passed to the wakeup function
  4830. *
  4831. * It may be assumed that this function implies a write memory barrier before
  4832. * changing the task state if and only if any tasks are woken up.
  4833. */
  4834. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4835. int nr_exclusive, void *key)
  4836. {
  4837. unsigned long flags;
  4838. spin_lock_irqsave(&q->lock, flags);
  4839. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4840. spin_unlock_irqrestore(&q->lock, flags);
  4841. }
  4842. EXPORT_SYMBOL(__wake_up);
  4843. /*
  4844. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4845. */
  4846. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4847. {
  4848. __wake_up_common(q, mode, 1, 0, NULL);
  4849. }
  4850. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4851. {
  4852. __wake_up_common(q, mode, 1, 0, key);
  4853. }
  4854. /**
  4855. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4856. * @q: the waitqueue
  4857. * @mode: which threads
  4858. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4859. * @key: opaque value to be passed to wakeup targets
  4860. *
  4861. * The sync wakeup differs that the waker knows that it will schedule
  4862. * away soon, so while the target thread will be woken up, it will not
  4863. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4864. * with each other. This can prevent needless bouncing between CPUs.
  4865. *
  4866. * On UP it can prevent extra preemption.
  4867. *
  4868. * It may be assumed that this function implies a write memory barrier before
  4869. * changing the task state if and only if any tasks are woken up.
  4870. */
  4871. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4872. int nr_exclusive, void *key)
  4873. {
  4874. unsigned long flags;
  4875. int wake_flags = WF_SYNC;
  4876. if (unlikely(!q))
  4877. return;
  4878. if (unlikely(!nr_exclusive))
  4879. wake_flags = 0;
  4880. spin_lock_irqsave(&q->lock, flags);
  4881. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4882. spin_unlock_irqrestore(&q->lock, flags);
  4883. }
  4884. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4885. /*
  4886. * __wake_up_sync - see __wake_up_sync_key()
  4887. */
  4888. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4889. {
  4890. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4891. }
  4892. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4893. /**
  4894. * complete: - signals a single thread waiting on this completion
  4895. * @x: holds the state of this particular completion
  4896. *
  4897. * This will wake up a single thread waiting on this completion. Threads will be
  4898. * awakened in the same order in which they were queued.
  4899. *
  4900. * See also complete_all(), wait_for_completion() and related routines.
  4901. *
  4902. * It may be assumed that this function implies a write memory barrier before
  4903. * changing the task state if and only if any tasks are woken up.
  4904. */
  4905. void complete(struct completion *x)
  4906. {
  4907. unsigned long flags;
  4908. spin_lock_irqsave(&x->wait.lock, flags);
  4909. x->done++;
  4910. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4911. spin_unlock_irqrestore(&x->wait.lock, flags);
  4912. }
  4913. EXPORT_SYMBOL(complete);
  4914. /**
  4915. * complete_all: - signals all threads waiting on this completion
  4916. * @x: holds the state of this particular completion
  4917. *
  4918. * This will wake up all threads waiting on this particular completion event.
  4919. *
  4920. * It may be assumed that this function implies a write memory barrier before
  4921. * changing the task state if and only if any tasks are woken up.
  4922. */
  4923. void complete_all(struct completion *x)
  4924. {
  4925. unsigned long flags;
  4926. spin_lock_irqsave(&x->wait.lock, flags);
  4927. x->done += UINT_MAX/2;
  4928. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4929. spin_unlock_irqrestore(&x->wait.lock, flags);
  4930. }
  4931. EXPORT_SYMBOL(complete_all);
  4932. static inline long __sched
  4933. do_wait_for_common(struct completion *x, long timeout, int state)
  4934. {
  4935. if (!x->done) {
  4936. DECLARE_WAITQUEUE(wait, current);
  4937. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4938. __add_wait_queue_tail(&x->wait, &wait);
  4939. do {
  4940. if (signal_pending_state(state, current)) {
  4941. timeout = -ERESTARTSYS;
  4942. break;
  4943. }
  4944. __set_current_state(state);
  4945. spin_unlock_irq(&x->wait.lock);
  4946. timeout = schedule_timeout(timeout);
  4947. spin_lock_irq(&x->wait.lock);
  4948. } while (!x->done && timeout);
  4949. __remove_wait_queue(&x->wait, &wait);
  4950. if (!x->done)
  4951. return timeout;
  4952. }
  4953. x->done--;
  4954. return timeout ?: 1;
  4955. }
  4956. static long __sched
  4957. wait_for_common(struct completion *x, long timeout, int state)
  4958. {
  4959. might_sleep();
  4960. spin_lock_irq(&x->wait.lock);
  4961. timeout = do_wait_for_common(x, timeout, state);
  4962. spin_unlock_irq(&x->wait.lock);
  4963. return timeout;
  4964. }
  4965. /**
  4966. * wait_for_completion: - waits for completion of a task
  4967. * @x: holds the state of this particular completion
  4968. *
  4969. * This waits to be signaled for completion of a specific task. It is NOT
  4970. * interruptible and there is no timeout.
  4971. *
  4972. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4973. * and interrupt capability. Also see complete().
  4974. */
  4975. void __sched wait_for_completion(struct completion *x)
  4976. {
  4977. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4978. }
  4979. EXPORT_SYMBOL(wait_for_completion);
  4980. /**
  4981. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4982. * @x: holds the state of this particular completion
  4983. * @timeout: timeout value in jiffies
  4984. *
  4985. * This waits for either a completion of a specific task to be signaled or for a
  4986. * specified timeout to expire. The timeout is in jiffies. It is not
  4987. * interruptible.
  4988. */
  4989. unsigned long __sched
  4990. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4991. {
  4992. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4993. }
  4994. EXPORT_SYMBOL(wait_for_completion_timeout);
  4995. /**
  4996. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4997. * @x: holds the state of this particular completion
  4998. *
  4999. * This waits for completion of a specific task to be signaled. It is
  5000. * interruptible.
  5001. */
  5002. int __sched wait_for_completion_interruptible(struct completion *x)
  5003. {
  5004. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  5005. if (t == -ERESTARTSYS)
  5006. return t;
  5007. return 0;
  5008. }
  5009. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5010. /**
  5011. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5012. * @x: holds the state of this particular completion
  5013. * @timeout: timeout value in jiffies
  5014. *
  5015. * This waits for either a completion of a specific task to be signaled or for a
  5016. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5017. */
  5018. unsigned long __sched
  5019. wait_for_completion_interruptible_timeout(struct completion *x,
  5020. unsigned long timeout)
  5021. {
  5022. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5023. }
  5024. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5025. /**
  5026. * wait_for_completion_killable: - waits for completion of a task (killable)
  5027. * @x: holds the state of this particular completion
  5028. *
  5029. * This waits to be signaled for completion of a specific task. It can be
  5030. * interrupted by a kill signal.
  5031. */
  5032. int __sched wait_for_completion_killable(struct completion *x)
  5033. {
  5034. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5035. if (t == -ERESTARTSYS)
  5036. return t;
  5037. return 0;
  5038. }
  5039. EXPORT_SYMBOL(wait_for_completion_killable);
  5040. /**
  5041. * try_wait_for_completion - try to decrement a completion without blocking
  5042. * @x: completion structure
  5043. *
  5044. * Returns: 0 if a decrement cannot be done without blocking
  5045. * 1 if a decrement succeeded.
  5046. *
  5047. * If a completion is being used as a counting completion,
  5048. * attempt to decrement the counter without blocking. This
  5049. * enables us to avoid waiting if the resource the completion
  5050. * is protecting is not available.
  5051. */
  5052. bool try_wait_for_completion(struct completion *x)
  5053. {
  5054. int ret = 1;
  5055. spin_lock_irq(&x->wait.lock);
  5056. if (!x->done)
  5057. ret = 0;
  5058. else
  5059. x->done--;
  5060. spin_unlock_irq(&x->wait.lock);
  5061. return ret;
  5062. }
  5063. EXPORT_SYMBOL(try_wait_for_completion);
  5064. /**
  5065. * completion_done - Test to see if a completion has any waiters
  5066. * @x: completion structure
  5067. *
  5068. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5069. * 1 if there are no waiters.
  5070. *
  5071. */
  5072. bool completion_done(struct completion *x)
  5073. {
  5074. int ret = 1;
  5075. spin_lock_irq(&x->wait.lock);
  5076. if (!x->done)
  5077. ret = 0;
  5078. spin_unlock_irq(&x->wait.lock);
  5079. return ret;
  5080. }
  5081. EXPORT_SYMBOL(completion_done);
  5082. static long __sched
  5083. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5084. {
  5085. unsigned long flags;
  5086. wait_queue_t wait;
  5087. init_waitqueue_entry(&wait, current);
  5088. __set_current_state(state);
  5089. spin_lock_irqsave(&q->lock, flags);
  5090. __add_wait_queue(q, &wait);
  5091. spin_unlock(&q->lock);
  5092. timeout = schedule_timeout(timeout);
  5093. spin_lock_irq(&q->lock);
  5094. __remove_wait_queue(q, &wait);
  5095. spin_unlock_irqrestore(&q->lock, flags);
  5096. return timeout;
  5097. }
  5098. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5099. {
  5100. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5101. }
  5102. EXPORT_SYMBOL(interruptible_sleep_on);
  5103. long __sched
  5104. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5105. {
  5106. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5107. }
  5108. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5109. void __sched sleep_on(wait_queue_head_t *q)
  5110. {
  5111. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5112. }
  5113. EXPORT_SYMBOL(sleep_on);
  5114. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5115. {
  5116. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5117. }
  5118. EXPORT_SYMBOL(sleep_on_timeout);
  5119. #ifdef CONFIG_RT_MUTEXES
  5120. /*
  5121. * rt_mutex_setprio - set the current priority of a task
  5122. * @p: task
  5123. * @prio: prio value (kernel-internal form)
  5124. *
  5125. * This function changes the 'effective' priority of a task. It does
  5126. * not touch ->normal_prio like __setscheduler().
  5127. *
  5128. * Used by the rt_mutex code to implement priority inheritance logic.
  5129. */
  5130. void rt_mutex_setprio(struct task_struct *p, int prio)
  5131. {
  5132. unsigned long flags;
  5133. int oldprio, on_rq, running;
  5134. struct rq *rq;
  5135. const struct sched_class *prev_class = p->sched_class;
  5136. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5137. rq = task_rq_lock(p, &flags);
  5138. update_rq_clock(rq);
  5139. oldprio = p->prio;
  5140. on_rq = p->se.on_rq;
  5141. running = task_current(rq, p);
  5142. if (on_rq)
  5143. dequeue_task(rq, p, 0);
  5144. if (running)
  5145. p->sched_class->put_prev_task(rq, p);
  5146. if (rt_prio(prio))
  5147. p->sched_class = &rt_sched_class;
  5148. else
  5149. p->sched_class = &fair_sched_class;
  5150. p->prio = prio;
  5151. if (running)
  5152. p->sched_class->set_curr_task(rq);
  5153. if (on_rq) {
  5154. enqueue_task(rq, p, 0);
  5155. check_class_changed(rq, p, prev_class, oldprio, running);
  5156. }
  5157. task_rq_unlock(rq, &flags);
  5158. }
  5159. #endif
  5160. void set_user_nice(struct task_struct *p, long nice)
  5161. {
  5162. int old_prio, delta, on_rq;
  5163. unsigned long flags;
  5164. struct rq *rq;
  5165. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5166. return;
  5167. /*
  5168. * We have to be careful, if called from sys_setpriority(),
  5169. * the task might be in the middle of scheduling on another CPU.
  5170. */
  5171. rq = task_rq_lock(p, &flags);
  5172. update_rq_clock(rq);
  5173. /*
  5174. * The RT priorities are set via sched_setscheduler(), but we still
  5175. * allow the 'normal' nice value to be set - but as expected
  5176. * it wont have any effect on scheduling until the task is
  5177. * SCHED_FIFO/SCHED_RR:
  5178. */
  5179. if (task_has_rt_policy(p)) {
  5180. p->static_prio = NICE_TO_PRIO(nice);
  5181. goto out_unlock;
  5182. }
  5183. on_rq = p->se.on_rq;
  5184. if (on_rq)
  5185. dequeue_task(rq, p, 0);
  5186. p->static_prio = NICE_TO_PRIO(nice);
  5187. set_load_weight(p);
  5188. old_prio = p->prio;
  5189. p->prio = effective_prio(p);
  5190. delta = p->prio - old_prio;
  5191. if (on_rq) {
  5192. enqueue_task(rq, p, 0);
  5193. /*
  5194. * If the task increased its priority or is running and
  5195. * lowered its priority, then reschedule its CPU:
  5196. */
  5197. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5198. resched_task(rq->curr);
  5199. }
  5200. out_unlock:
  5201. task_rq_unlock(rq, &flags);
  5202. }
  5203. EXPORT_SYMBOL(set_user_nice);
  5204. /*
  5205. * can_nice - check if a task can reduce its nice value
  5206. * @p: task
  5207. * @nice: nice value
  5208. */
  5209. int can_nice(const struct task_struct *p, const int nice)
  5210. {
  5211. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5212. int nice_rlim = 20 - nice;
  5213. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5214. capable(CAP_SYS_NICE));
  5215. }
  5216. #ifdef __ARCH_WANT_SYS_NICE
  5217. /*
  5218. * sys_nice - change the priority of the current process.
  5219. * @increment: priority increment
  5220. *
  5221. * sys_setpriority is a more generic, but much slower function that
  5222. * does similar things.
  5223. */
  5224. SYSCALL_DEFINE1(nice, int, increment)
  5225. {
  5226. long nice, retval;
  5227. /*
  5228. * Setpriority might change our priority at the same moment.
  5229. * We don't have to worry. Conceptually one call occurs first
  5230. * and we have a single winner.
  5231. */
  5232. if (increment < -40)
  5233. increment = -40;
  5234. if (increment > 40)
  5235. increment = 40;
  5236. nice = TASK_NICE(current) + increment;
  5237. if (nice < -20)
  5238. nice = -20;
  5239. if (nice > 19)
  5240. nice = 19;
  5241. if (increment < 0 && !can_nice(current, nice))
  5242. return -EPERM;
  5243. retval = security_task_setnice(current, nice);
  5244. if (retval)
  5245. return retval;
  5246. set_user_nice(current, nice);
  5247. return 0;
  5248. }
  5249. #endif
  5250. /**
  5251. * task_prio - return the priority value of a given task.
  5252. * @p: the task in question.
  5253. *
  5254. * This is the priority value as seen by users in /proc.
  5255. * RT tasks are offset by -200. Normal tasks are centered
  5256. * around 0, value goes from -16 to +15.
  5257. */
  5258. int task_prio(const struct task_struct *p)
  5259. {
  5260. return p->prio - MAX_RT_PRIO;
  5261. }
  5262. /**
  5263. * task_nice - return the nice value of a given task.
  5264. * @p: the task in question.
  5265. */
  5266. int task_nice(const struct task_struct *p)
  5267. {
  5268. return TASK_NICE(p);
  5269. }
  5270. EXPORT_SYMBOL(task_nice);
  5271. /**
  5272. * idle_cpu - is a given cpu idle currently?
  5273. * @cpu: the processor in question.
  5274. */
  5275. int idle_cpu(int cpu)
  5276. {
  5277. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5278. }
  5279. /**
  5280. * idle_task - return the idle task for a given cpu.
  5281. * @cpu: the processor in question.
  5282. */
  5283. struct task_struct *idle_task(int cpu)
  5284. {
  5285. return cpu_rq(cpu)->idle;
  5286. }
  5287. /**
  5288. * find_process_by_pid - find a process with a matching PID value.
  5289. * @pid: the pid in question.
  5290. */
  5291. static struct task_struct *find_process_by_pid(pid_t pid)
  5292. {
  5293. return pid ? find_task_by_vpid(pid) : current;
  5294. }
  5295. /* Actually do priority change: must hold rq lock. */
  5296. static void
  5297. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5298. {
  5299. BUG_ON(p->se.on_rq);
  5300. p->policy = policy;
  5301. p->rt_priority = prio;
  5302. p->normal_prio = normal_prio(p);
  5303. /* we are holding p->pi_lock already */
  5304. p->prio = rt_mutex_getprio(p);
  5305. if (rt_prio(p->prio))
  5306. p->sched_class = &rt_sched_class;
  5307. else
  5308. p->sched_class = &fair_sched_class;
  5309. set_load_weight(p);
  5310. }
  5311. /*
  5312. * check the target process has a UID that matches the current process's
  5313. */
  5314. static bool check_same_owner(struct task_struct *p)
  5315. {
  5316. const struct cred *cred = current_cred(), *pcred;
  5317. bool match;
  5318. rcu_read_lock();
  5319. pcred = __task_cred(p);
  5320. match = (cred->euid == pcred->euid ||
  5321. cred->euid == pcred->uid);
  5322. rcu_read_unlock();
  5323. return match;
  5324. }
  5325. static int __sched_setscheduler(struct task_struct *p, int policy,
  5326. struct sched_param *param, bool user)
  5327. {
  5328. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5329. unsigned long flags;
  5330. const struct sched_class *prev_class = p->sched_class;
  5331. struct rq *rq;
  5332. int reset_on_fork;
  5333. /* may grab non-irq protected spin_locks */
  5334. BUG_ON(in_interrupt());
  5335. recheck:
  5336. /* double check policy once rq lock held */
  5337. if (policy < 0) {
  5338. reset_on_fork = p->sched_reset_on_fork;
  5339. policy = oldpolicy = p->policy;
  5340. } else {
  5341. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5342. policy &= ~SCHED_RESET_ON_FORK;
  5343. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5344. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5345. policy != SCHED_IDLE)
  5346. return -EINVAL;
  5347. }
  5348. /*
  5349. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5350. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5351. * SCHED_BATCH and SCHED_IDLE is 0.
  5352. */
  5353. if (param->sched_priority < 0 ||
  5354. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5355. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5356. return -EINVAL;
  5357. if (rt_policy(policy) != (param->sched_priority != 0))
  5358. return -EINVAL;
  5359. /*
  5360. * Allow unprivileged RT tasks to decrease priority:
  5361. */
  5362. if (user && !capable(CAP_SYS_NICE)) {
  5363. if (rt_policy(policy)) {
  5364. unsigned long rlim_rtprio;
  5365. if (!lock_task_sighand(p, &flags))
  5366. return -ESRCH;
  5367. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5368. unlock_task_sighand(p, &flags);
  5369. /* can't set/change the rt policy */
  5370. if (policy != p->policy && !rlim_rtprio)
  5371. return -EPERM;
  5372. /* can't increase priority */
  5373. if (param->sched_priority > p->rt_priority &&
  5374. param->sched_priority > rlim_rtprio)
  5375. return -EPERM;
  5376. }
  5377. /*
  5378. * Like positive nice levels, dont allow tasks to
  5379. * move out of SCHED_IDLE either:
  5380. */
  5381. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5382. return -EPERM;
  5383. /* can't change other user's priorities */
  5384. if (!check_same_owner(p))
  5385. return -EPERM;
  5386. /* Normal users shall not reset the sched_reset_on_fork flag */
  5387. if (p->sched_reset_on_fork && !reset_on_fork)
  5388. return -EPERM;
  5389. }
  5390. if (user) {
  5391. #ifdef CONFIG_RT_GROUP_SCHED
  5392. /*
  5393. * Do not allow realtime tasks into groups that have no runtime
  5394. * assigned.
  5395. */
  5396. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5397. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5398. return -EPERM;
  5399. #endif
  5400. retval = security_task_setscheduler(p, policy, param);
  5401. if (retval)
  5402. return retval;
  5403. }
  5404. /*
  5405. * make sure no PI-waiters arrive (or leave) while we are
  5406. * changing the priority of the task:
  5407. */
  5408. spin_lock_irqsave(&p->pi_lock, flags);
  5409. /*
  5410. * To be able to change p->policy safely, the apropriate
  5411. * runqueue lock must be held.
  5412. */
  5413. rq = __task_rq_lock(p);
  5414. /* recheck policy now with rq lock held */
  5415. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5416. policy = oldpolicy = -1;
  5417. __task_rq_unlock(rq);
  5418. spin_unlock_irqrestore(&p->pi_lock, flags);
  5419. goto recheck;
  5420. }
  5421. update_rq_clock(rq);
  5422. on_rq = p->se.on_rq;
  5423. running = task_current(rq, p);
  5424. if (on_rq)
  5425. deactivate_task(rq, p, 0);
  5426. if (running)
  5427. p->sched_class->put_prev_task(rq, p);
  5428. p->sched_reset_on_fork = reset_on_fork;
  5429. oldprio = p->prio;
  5430. __setscheduler(rq, p, policy, param->sched_priority);
  5431. if (running)
  5432. p->sched_class->set_curr_task(rq);
  5433. if (on_rq) {
  5434. activate_task(rq, p, 0);
  5435. check_class_changed(rq, p, prev_class, oldprio, running);
  5436. }
  5437. __task_rq_unlock(rq);
  5438. spin_unlock_irqrestore(&p->pi_lock, flags);
  5439. rt_mutex_adjust_pi(p);
  5440. return 0;
  5441. }
  5442. /**
  5443. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5444. * @p: the task in question.
  5445. * @policy: new policy.
  5446. * @param: structure containing the new RT priority.
  5447. *
  5448. * NOTE that the task may be already dead.
  5449. */
  5450. int sched_setscheduler(struct task_struct *p, int policy,
  5451. struct sched_param *param)
  5452. {
  5453. return __sched_setscheduler(p, policy, param, true);
  5454. }
  5455. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5456. /**
  5457. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5458. * @p: the task in question.
  5459. * @policy: new policy.
  5460. * @param: structure containing the new RT priority.
  5461. *
  5462. * Just like sched_setscheduler, only don't bother checking if the
  5463. * current context has permission. For example, this is needed in
  5464. * stop_machine(): we create temporary high priority worker threads,
  5465. * but our caller might not have that capability.
  5466. */
  5467. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5468. struct sched_param *param)
  5469. {
  5470. return __sched_setscheduler(p, policy, param, false);
  5471. }
  5472. static int
  5473. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5474. {
  5475. struct sched_param lparam;
  5476. struct task_struct *p;
  5477. int retval;
  5478. if (!param || pid < 0)
  5479. return -EINVAL;
  5480. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5481. return -EFAULT;
  5482. rcu_read_lock();
  5483. retval = -ESRCH;
  5484. p = find_process_by_pid(pid);
  5485. if (p != NULL)
  5486. retval = sched_setscheduler(p, policy, &lparam);
  5487. rcu_read_unlock();
  5488. return retval;
  5489. }
  5490. /**
  5491. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5492. * @pid: the pid in question.
  5493. * @policy: new policy.
  5494. * @param: structure containing the new RT priority.
  5495. */
  5496. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5497. struct sched_param __user *, param)
  5498. {
  5499. /* negative values for policy are not valid */
  5500. if (policy < 0)
  5501. return -EINVAL;
  5502. return do_sched_setscheduler(pid, policy, param);
  5503. }
  5504. /**
  5505. * sys_sched_setparam - set/change the RT priority of a thread
  5506. * @pid: the pid in question.
  5507. * @param: structure containing the new RT priority.
  5508. */
  5509. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5510. {
  5511. return do_sched_setscheduler(pid, -1, param);
  5512. }
  5513. /**
  5514. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5515. * @pid: the pid in question.
  5516. */
  5517. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5518. {
  5519. struct task_struct *p;
  5520. int retval;
  5521. if (pid < 0)
  5522. return -EINVAL;
  5523. retval = -ESRCH;
  5524. read_lock(&tasklist_lock);
  5525. p = find_process_by_pid(pid);
  5526. if (p) {
  5527. retval = security_task_getscheduler(p);
  5528. if (!retval)
  5529. retval = p->policy
  5530. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5531. }
  5532. read_unlock(&tasklist_lock);
  5533. return retval;
  5534. }
  5535. /**
  5536. * sys_sched_getparam - get the RT priority of a thread
  5537. * @pid: the pid in question.
  5538. * @param: structure containing the RT priority.
  5539. */
  5540. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5541. {
  5542. struct sched_param lp;
  5543. struct task_struct *p;
  5544. int retval;
  5545. if (!param || pid < 0)
  5546. return -EINVAL;
  5547. read_lock(&tasklist_lock);
  5548. p = find_process_by_pid(pid);
  5549. retval = -ESRCH;
  5550. if (!p)
  5551. goto out_unlock;
  5552. retval = security_task_getscheduler(p);
  5553. if (retval)
  5554. goto out_unlock;
  5555. lp.sched_priority = p->rt_priority;
  5556. read_unlock(&tasklist_lock);
  5557. /*
  5558. * This one might sleep, we cannot do it with a spinlock held ...
  5559. */
  5560. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5561. return retval;
  5562. out_unlock:
  5563. read_unlock(&tasklist_lock);
  5564. return retval;
  5565. }
  5566. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5567. {
  5568. cpumask_var_t cpus_allowed, new_mask;
  5569. struct task_struct *p;
  5570. int retval;
  5571. get_online_cpus();
  5572. read_lock(&tasklist_lock);
  5573. p = find_process_by_pid(pid);
  5574. if (!p) {
  5575. read_unlock(&tasklist_lock);
  5576. put_online_cpus();
  5577. return -ESRCH;
  5578. }
  5579. /*
  5580. * It is not safe to call set_cpus_allowed with the
  5581. * tasklist_lock held. We will bump the task_struct's
  5582. * usage count and then drop tasklist_lock.
  5583. */
  5584. get_task_struct(p);
  5585. read_unlock(&tasklist_lock);
  5586. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5587. retval = -ENOMEM;
  5588. goto out_put_task;
  5589. }
  5590. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5591. retval = -ENOMEM;
  5592. goto out_free_cpus_allowed;
  5593. }
  5594. retval = -EPERM;
  5595. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5596. goto out_unlock;
  5597. retval = security_task_setscheduler(p, 0, NULL);
  5598. if (retval)
  5599. goto out_unlock;
  5600. cpuset_cpus_allowed(p, cpus_allowed);
  5601. cpumask_and(new_mask, in_mask, cpus_allowed);
  5602. again:
  5603. retval = set_cpus_allowed_ptr(p, new_mask);
  5604. if (!retval) {
  5605. cpuset_cpus_allowed(p, cpus_allowed);
  5606. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5607. /*
  5608. * We must have raced with a concurrent cpuset
  5609. * update. Just reset the cpus_allowed to the
  5610. * cpuset's cpus_allowed
  5611. */
  5612. cpumask_copy(new_mask, cpus_allowed);
  5613. goto again;
  5614. }
  5615. }
  5616. out_unlock:
  5617. free_cpumask_var(new_mask);
  5618. out_free_cpus_allowed:
  5619. free_cpumask_var(cpus_allowed);
  5620. out_put_task:
  5621. put_task_struct(p);
  5622. put_online_cpus();
  5623. return retval;
  5624. }
  5625. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5626. struct cpumask *new_mask)
  5627. {
  5628. if (len < cpumask_size())
  5629. cpumask_clear(new_mask);
  5630. else if (len > cpumask_size())
  5631. len = cpumask_size();
  5632. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5633. }
  5634. /**
  5635. * sys_sched_setaffinity - set the cpu affinity of a process
  5636. * @pid: pid of the process
  5637. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5638. * @user_mask_ptr: user-space pointer to the new cpu mask
  5639. */
  5640. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5641. unsigned long __user *, user_mask_ptr)
  5642. {
  5643. cpumask_var_t new_mask;
  5644. int retval;
  5645. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5646. return -ENOMEM;
  5647. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5648. if (retval == 0)
  5649. retval = sched_setaffinity(pid, new_mask);
  5650. free_cpumask_var(new_mask);
  5651. return retval;
  5652. }
  5653. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5654. {
  5655. struct task_struct *p;
  5656. unsigned long flags;
  5657. struct rq *rq;
  5658. int retval;
  5659. get_online_cpus();
  5660. read_lock(&tasklist_lock);
  5661. retval = -ESRCH;
  5662. p = find_process_by_pid(pid);
  5663. if (!p)
  5664. goto out_unlock;
  5665. retval = security_task_getscheduler(p);
  5666. if (retval)
  5667. goto out_unlock;
  5668. rq = task_rq_lock(p, &flags);
  5669. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5670. task_rq_unlock(rq, &flags);
  5671. out_unlock:
  5672. read_unlock(&tasklist_lock);
  5673. put_online_cpus();
  5674. return retval;
  5675. }
  5676. /**
  5677. * sys_sched_getaffinity - get the cpu affinity of a process
  5678. * @pid: pid of the process
  5679. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5680. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5681. */
  5682. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5683. unsigned long __user *, user_mask_ptr)
  5684. {
  5685. int ret;
  5686. cpumask_var_t mask;
  5687. if (len < cpumask_size())
  5688. return -EINVAL;
  5689. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5690. return -ENOMEM;
  5691. ret = sched_getaffinity(pid, mask);
  5692. if (ret == 0) {
  5693. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5694. ret = -EFAULT;
  5695. else
  5696. ret = cpumask_size();
  5697. }
  5698. free_cpumask_var(mask);
  5699. return ret;
  5700. }
  5701. /**
  5702. * sys_sched_yield - yield the current processor to other threads.
  5703. *
  5704. * This function yields the current CPU to other tasks. If there are no
  5705. * other threads running on this CPU then this function will return.
  5706. */
  5707. SYSCALL_DEFINE0(sched_yield)
  5708. {
  5709. struct rq *rq = this_rq_lock();
  5710. schedstat_inc(rq, yld_count);
  5711. current->sched_class->yield_task(rq);
  5712. /*
  5713. * Since we are going to call schedule() anyway, there's
  5714. * no need to preempt or enable interrupts:
  5715. */
  5716. __release(rq->lock);
  5717. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5718. _raw_spin_unlock(&rq->lock);
  5719. preempt_enable_no_resched();
  5720. schedule();
  5721. return 0;
  5722. }
  5723. static inline int should_resched(void)
  5724. {
  5725. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5726. }
  5727. static void __cond_resched(void)
  5728. {
  5729. add_preempt_count(PREEMPT_ACTIVE);
  5730. schedule();
  5731. sub_preempt_count(PREEMPT_ACTIVE);
  5732. }
  5733. int __sched _cond_resched(void)
  5734. {
  5735. if (should_resched()) {
  5736. __cond_resched();
  5737. return 1;
  5738. }
  5739. return 0;
  5740. }
  5741. EXPORT_SYMBOL(_cond_resched);
  5742. /*
  5743. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5744. * call schedule, and on return reacquire the lock.
  5745. *
  5746. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5747. * operations here to prevent schedule() from being called twice (once via
  5748. * spin_unlock(), once by hand).
  5749. */
  5750. int __cond_resched_lock(spinlock_t *lock)
  5751. {
  5752. int resched = should_resched();
  5753. int ret = 0;
  5754. lockdep_assert_held(lock);
  5755. if (spin_needbreak(lock) || resched) {
  5756. spin_unlock(lock);
  5757. if (resched)
  5758. __cond_resched();
  5759. else
  5760. cpu_relax();
  5761. ret = 1;
  5762. spin_lock(lock);
  5763. }
  5764. return ret;
  5765. }
  5766. EXPORT_SYMBOL(__cond_resched_lock);
  5767. int __sched __cond_resched_softirq(void)
  5768. {
  5769. BUG_ON(!in_softirq());
  5770. if (should_resched()) {
  5771. local_bh_enable();
  5772. __cond_resched();
  5773. local_bh_disable();
  5774. return 1;
  5775. }
  5776. return 0;
  5777. }
  5778. EXPORT_SYMBOL(__cond_resched_softirq);
  5779. /**
  5780. * yield - yield the current processor to other threads.
  5781. *
  5782. * This is a shortcut for kernel-space yielding - it marks the
  5783. * thread runnable and calls sys_sched_yield().
  5784. */
  5785. void __sched yield(void)
  5786. {
  5787. set_current_state(TASK_RUNNING);
  5788. sys_sched_yield();
  5789. }
  5790. EXPORT_SYMBOL(yield);
  5791. /*
  5792. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5793. * that process accounting knows that this is a task in IO wait state.
  5794. */
  5795. void __sched io_schedule(void)
  5796. {
  5797. struct rq *rq = raw_rq();
  5798. delayacct_blkio_start();
  5799. atomic_inc(&rq->nr_iowait);
  5800. current->in_iowait = 1;
  5801. schedule();
  5802. current->in_iowait = 0;
  5803. atomic_dec(&rq->nr_iowait);
  5804. delayacct_blkio_end();
  5805. }
  5806. EXPORT_SYMBOL(io_schedule);
  5807. long __sched io_schedule_timeout(long timeout)
  5808. {
  5809. struct rq *rq = raw_rq();
  5810. long ret;
  5811. delayacct_blkio_start();
  5812. atomic_inc(&rq->nr_iowait);
  5813. current->in_iowait = 1;
  5814. ret = schedule_timeout(timeout);
  5815. current->in_iowait = 0;
  5816. atomic_dec(&rq->nr_iowait);
  5817. delayacct_blkio_end();
  5818. return ret;
  5819. }
  5820. /**
  5821. * sys_sched_get_priority_max - return maximum RT priority.
  5822. * @policy: scheduling class.
  5823. *
  5824. * this syscall returns the maximum rt_priority that can be used
  5825. * by a given scheduling class.
  5826. */
  5827. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5828. {
  5829. int ret = -EINVAL;
  5830. switch (policy) {
  5831. case SCHED_FIFO:
  5832. case SCHED_RR:
  5833. ret = MAX_USER_RT_PRIO-1;
  5834. break;
  5835. case SCHED_NORMAL:
  5836. case SCHED_BATCH:
  5837. case SCHED_IDLE:
  5838. ret = 0;
  5839. break;
  5840. }
  5841. return ret;
  5842. }
  5843. /**
  5844. * sys_sched_get_priority_min - return minimum RT priority.
  5845. * @policy: scheduling class.
  5846. *
  5847. * this syscall returns the minimum rt_priority that can be used
  5848. * by a given scheduling class.
  5849. */
  5850. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5851. {
  5852. int ret = -EINVAL;
  5853. switch (policy) {
  5854. case SCHED_FIFO:
  5855. case SCHED_RR:
  5856. ret = 1;
  5857. break;
  5858. case SCHED_NORMAL:
  5859. case SCHED_BATCH:
  5860. case SCHED_IDLE:
  5861. ret = 0;
  5862. }
  5863. return ret;
  5864. }
  5865. /**
  5866. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5867. * @pid: pid of the process.
  5868. * @interval: userspace pointer to the timeslice value.
  5869. *
  5870. * this syscall writes the default timeslice value of a given process
  5871. * into the user-space timespec buffer. A value of '0' means infinity.
  5872. */
  5873. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5874. struct timespec __user *, interval)
  5875. {
  5876. struct task_struct *p;
  5877. unsigned int time_slice;
  5878. unsigned long flags;
  5879. struct rq *rq;
  5880. int retval;
  5881. struct timespec t;
  5882. if (pid < 0)
  5883. return -EINVAL;
  5884. retval = -ESRCH;
  5885. read_lock(&tasklist_lock);
  5886. p = find_process_by_pid(pid);
  5887. if (!p)
  5888. goto out_unlock;
  5889. retval = security_task_getscheduler(p);
  5890. if (retval)
  5891. goto out_unlock;
  5892. rq = task_rq_lock(p, &flags);
  5893. time_slice = p->sched_class->get_rr_interval(rq, p);
  5894. task_rq_unlock(rq, &flags);
  5895. read_unlock(&tasklist_lock);
  5896. jiffies_to_timespec(time_slice, &t);
  5897. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5898. return retval;
  5899. out_unlock:
  5900. read_unlock(&tasklist_lock);
  5901. return retval;
  5902. }
  5903. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5904. void sched_show_task(struct task_struct *p)
  5905. {
  5906. unsigned long free = 0;
  5907. unsigned state;
  5908. state = p->state ? __ffs(p->state) + 1 : 0;
  5909. printk(KERN_INFO "%-13.13s %c", p->comm,
  5910. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5911. #if BITS_PER_LONG == 32
  5912. if (state == TASK_RUNNING)
  5913. printk(KERN_CONT " running ");
  5914. else
  5915. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5916. #else
  5917. if (state == TASK_RUNNING)
  5918. printk(KERN_CONT " running task ");
  5919. else
  5920. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5921. #endif
  5922. #ifdef CONFIG_DEBUG_STACK_USAGE
  5923. free = stack_not_used(p);
  5924. #endif
  5925. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5926. task_pid_nr(p), task_pid_nr(p->real_parent),
  5927. (unsigned long)task_thread_info(p)->flags);
  5928. show_stack(p, NULL);
  5929. }
  5930. void show_state_filter(unsigned long state_filter)
  5931. {
  5932. struct task_struct *g, *p;
  5933. #if BITS_PER_LONG == 32
  5934. printk(KERN_INFO
  5935. " task PC stack pid father\n");
  5936. #else
  5937. printk(KERN_INFO
  5938. " task PC stack pid father\n");
  5939. #endif
  5940. read_lock(&tasklist_lock);
  5941. do_each_thread(g, p) {
  5942. /*
  5943. * reset the NMI-timeout, listing all files on a slow
  5944. * console might take alot of time:
  5945. */
  5946. touch_nmi_watchdog();
  5947. if (!state_filter || (p->state & state_filter))
  5948. sched_show_task(p);
  5949. } while_each_thread(g, p);
  5950. touch_all_softlockup_watchdogs();
  5951. #ifdef CONFIG_SCHED_DEBUG
  5952. sysrq_sched_debug_show();
  5953. #endif
  5954. read_unlock(&tasklist_lock);
  5955. /*
  5956. * Only show locks if all tasks are dumped:
  5957. */
  5958. if (!state_filter)
  5959. debug_show_all_locks();
  5960. }
  5961. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5962. {
  5963. idle->sched_class = &idle_sched_class;
  5964. }
  5965. /**
  5966. * init_idle - set up an idle thread for a given CPU
  5967. * @idle: task in question
  5968. * @cpu: cpu the idle task belongs to
  5969. *
  5970. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5971. * flag, to make booting more robust.
  5972. */
  5973. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5974. {
  5975. struct rq *rq = cpu_rq(cpu);
  5976. unsigned long flags;
  5977. spin_lock_irqsave(&rq->lock, flags);
  5978. __sched_fork(idle);
  5979. idle->se.exec_start = sched_clock();
  5980. idle->prio = idle->normal_prio = MAX_PRIO;
  5981. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5982. __set_task_cpu(idle, cpu);
  5983. rq->curr = rq->idle = idle;
  5984. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5985. idle->oncpu = 1;
  5986. #endif
  5987. spin_unlock_irqrestore(&rq->lock, flags);
  5988. /* Set the preempt count _outside_ the spinlocks! */
  5989. #if defined(CONFIG_PREEMPT)
  5990. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5991. #else
  5992. task_thread_info(idle)->preempt_count = 0;
  5993. #endif
  5994. /*
  5995. * The idle tasks have their own, simple scheduling class:
  5996. */
  5997. idle->sched_class = &idle_sched_class;
  5998. ftrace_graph_init_task(idle);
  5999. }
  6000. /*
  6001. * In a system that switches off the HZ timer nohz_cpu_mask
  6002. * indicates which cpus entered this state. This is used
  6003. * in the rcu update to wait only for active cpus. For system
  6004. * which do not switch off the HZ timer nohz_cpu_mask should
  6005. * always be CPU_BITS_NONE.
  6006. */
  6007. cpumask_var_t nohz_cpu_mask;
  6008. /*
  6009. * Increase the granularity value when there are more CPUs,
  6010. * because with more CPUs the 'effective latency' as visible
  6011. * to users decreases. But the relationship is not linear,
  6012. * so pick a second-best guess by going with the log2 of the
  6013. * number of CPUs.
  6014. *
  6015. * This idea comes from the SD scheduler of Con Kolivas:
  6016. */
  6017. static inline void sched_init_granularity(void)
  6018. {
  6019. unsigned int factor = 1 + ilog2(num_online_cpus());
  6020. const unsigned long limit = 200000000;
  6021. sysctl_sched_min_granularity *= factor;
  6022. if (sysctl_sched_min_granularity > limit)
  6023. sysctl_sched_min_granularity = limit;
  6024. sysctl_sched_latency *= factor;
  6025. if (sysctl_sched_latency > limit)
  6026. sysctl_sched_latency = limit;
  6027. sysctl_sched_wakeup_granularity *= factor;
  6028. sysctl_sched_shares_ratelimit *= factor;
  6029. }
  6030. #ifdef CONFIG_SMP
  6031. /*
  6032. * This is how migration works:
  6033. *
  6034. * 1) we queue a struct migration_req structure in the source CPU's
  6035. * runqueue and wake up that CPU's migration thread.
  6036. * 2) we down() the locked semaphore => thread blocks.
  6037. * 3) migration thread wakes up (implicitly it forces the migrated
  6038. * thread off the CPU)
  6039. * 4) it gets the migration request and checks whether the migrated
  6040. * task is still in the wrong runqueue.
  6041. * 5) if it's in the wrong runqueue then the migration thread removes
  6042. * it and puts it into the right queue.
  6043. * 6) migration thread up()s the semaphore.
  6044. * 7) we wake up and the migration is done.
  6045. */
  6046. /*
  6047. * Change a given task's CPU affinity. Migrate the thread to a
  6048. * proper CPU and schedule it away if the CPU it's executing on
  6049. * is removed from the allowed bitmask.
  6050. *
  6051. * NOTE: the caller must have a valid reference to the task, the
  6052. * task must not exit() & deallocate itself prematurely. The
  6053. * call is not atomic; no spinlocks may be held.
  6054. */
  6055. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6056. {
  6057. struct migration_req req;
  6058. unsigned long flags;
  6059. struct rq *rq;
  6060. int ret = 0;
  6061. rq = task_rq_lock(p, &flags);
  6062. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6063. ret = -EINVAL;
  6064. goto out;
  6065. }
  6066. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6067. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6068. ret = -EINVAL;
  6069. goto out;
  6070. }
  6071. if (p->sched_class->set_cpus_allowed)
  6072. p->sched_class->set_cpus_allowed(p, new_mask);
  6073. else {
  6074. cpumask_copy(&p->cpus_allowed, new_mask);
  6075. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6076. }
  6077. /* Can the task run on the task's current CPU? If so, we're done */
  6078. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6079. goto out;
  6080. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6081. /* Need help from migration thread: drop lock and wait. */
  6082. struct task_struct *mt = rq->migration_thread;
  6083. get_task_struct(mt);
  6084. task_rq_unlock(rq, &flags);
  6085. wake_up_process(rq->migration_thread);
  6086. put_task_struct(mt);
  6087. wait_for_completion(&req.done);
  6088. tlb_migrate_finish(p->mm);
  6089. return 0;
  6090. }
  6091. out:
  6092. task_rq_unlock(rq, &flags);
  6093. return ret;
  6094. }
  6095. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6096. /*
  6097. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6098. * this because either it can't run here any more (set_cpus_allowed()
  6099. * away from this CPU, or CPU going down), or because we're
  6100. * attempting to rebalance this task on exec (sched_exec).
  6101. *
  6102. * So we race with normal scheduler movements, but that's OK, as long
  6103. * as the task is no longer on this CPU.
  6104. *
  6105. * Returns non-zero if task was successfully migrated.
  6106. */
  6107. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6108. {
  6109. struct rq *rq_dest, *rq_src;
  6110. int ret = 0, on_rq;
  6111. if (unlikely(!cpu_active(dest_cpu)))
  6112. return ret;
  6113. rq_src = cpu_rq(src_cpu);
  6114. rq_dest = cpu_rq(dest_cpu);
  6115. double_rq_lock(rq_src, rq_dest);
  6116. /* Already moved. */
  6117. if (task_cpu(p) != src_cpu)
  6118. goto done;
  6119. /* Affinity changed (again). */
  6120. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6121. goto fail;
  6122. on_rq = p->se.on_rq;
  6123. if (on_rq)
  6124. deactivate_task(rq_src, p, 0);
  6125. set_task_cpu(p, dest_cpu);
  6126. if (on_rq) {
  6127. activate_task(rq_dest, p, 0);
  6128. check_preempt_curr(rq_dest, p, 0);
  6129. }
  6130. done:
  6131. ret = 1;
  6132. fail:
  6133. double_rq_unlock(rq_src, rq_dest);
  6134. return ret;
  6135. }
  6136. #define RCU_MIGRATION_IDLE 0
  6137. #define RCU_MIGRATION_NEED_QS 1
  6138. #define RCU_MIGRATION_GOT_QS 2
  6139. #define RCU_MIGRATION_MUST_SYNC 3
  6140. /*
  6141. * migration_thread - this is a highprio system thread that performs
  6142. * thread migration by bumping thread off CPU then 'pushing' onto
  6143. * another runqueue.
  6144. */
  6145. static int migration_thread(void *data)
  6146. {
  6147. int badcpu;
  6148. int cpu = (long)data;
  6149. struct rq *rq;
  6150. rq = cpu_rq(cpu);
  6151. BUG_ON(rq->migration_thread != current);
  6152. set_current_state(TASK_INTERRUPTIBLE);
  6153. while (!kthread_should_stop()) {
  6154. struct migration_req *req;
  6155. struct list_head *head;
  6156. spin_lock_irq(&rq->lock);
  6157. if (cpu_is_offline(cpu)) {
  6158. spin_unlock_irq(&rq->lock);
  6159. break;
  6160. }
  6161. if (rq->active_balance) {
  6162. active_load_balance(rq, cpu);
  6163. rq->active_balance = 0;
  6164. }
  6165. head = &rq->migration_queue;
  6166. if (list_empty(head)) {
  6167. spin_unlock_irq(&rq->lock);
  6168. schedule();
  6169. set_current_state(TASK_INTERRUPTIBLE);
  6170. continue;
  6171. }
  6172. req = list_entry(head->next, struct migration_req, list);
  6173. list_del_init(head->next);
  6174. if (req->task != NULL) {
  6175. spin_unlock(&rq->lock);
  6176. __migrate_task(req->task, cpu, req->dest_cpu);
  6177. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6178. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6179. spin_unlock(&rq->lock);
  6180. } else {
  6181. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6182. spin_unlock(&rq->lock);
  6183. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6184. }
  6185. local_irq_enable();
  6186. complete(&req->done);
  6187. }
  6188. __set_current_state(TASK_RUNNING);
  6189. return 0;
  6190. }
  6191. #ifdef CONFIG_HOTPLUG_CPU
  6192. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6193. {
  6194. int ret;
  6195. local_irq_disable();
  6196. ret = __migrate_task(p, src_cpu, dest_cpu);
  6197. local_irq_enable();
  6198. return ret;
  6199. }
  6200. /*
  6201. * Figure out where task on dead CPU should go, use force if necessary.
  6202. */
  6203. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6204. {
  6205. int dest_cpu;
  6206. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6207. again:
  6208. /* Look for allowed, online CPU in same node. */
  6209. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  6210. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6211. goto move;
  6212. /* Any allowed, online CPU? */
  6213. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  6214. if (dest_cpu < nr_cpu_ids)
  6215. goto move;
  6216. /* No more Mr. Nice Guy. */
  6217. if (dest_cpu >= nr_cpu_ids) {
  6218. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6219. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  6220. /*
  6221. * Don't tell them about moving exiting tasks or
  6222. * kernel threads (both mm NULL), since they never
  6223. * leave kernel.
  6224. */
  6225. if (p->mm && printk_ratelimit()) {
  6226. printk(KERN_INFO "process %d (%s) no "
  6227. "longer affine to cpu%d\n",
  6228. task_pid_nr(p), p->comm, dead_cpu);
  6229. }
  6230. }
  6231. move:
  6232. /* It can have affinity changed while we were choosing. */
  6233. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6234. goto again;
  6235. }
  6236. /*
  6237. * While a dead CPU has no uninterruptible tasks queued at this point,
  6238. * it might still have a nonzero ->nr_uninterruptible counter, because
  6239. * for performance reasons the counter is not stricly tracking tasks to
  6240. * their home CPUs. So we just add the counter to another CPU's counter,
  6241. * to keep the global sum constant after CPU-down:
  6242. */
  6243. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6244. {
  6245. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6246. unsigned long flags;
  6247. local_irq_save(flags);
  6248. double_rq_lock(rq_src, rq_dest);
  6249. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6250. rq_src->nr_uninterruptible = 0;
  6251. double_rq_unlock(rq_src, rq_dest);
  6252. local_irq_restore(flags);
  6253. }
  6254. /* Run through task list and migrate tasks from the dead cpu. */
  6255. static void migrate_live_tasks(int src_cpu)
  6256. {
  6257. struct task_struct *p, *t;
  6258. read_lock(&tasklist_lock);
  6259. do_each_thread(t, p) {
  6260. if (p == current)
  6261. continue;
  6262. if (task_cpu(p) == src_cpu)
  6263. move_task_off_dead_cpu(src_cpu, p);
  6264. } while_each_thread(t, p);
  6265. read_unlock(&tasklist_lock);
  6266. }
  6267. /*
  6268. * Schedules idle task to be the next runnable task on current CPU.
  6269. * It does so by boosting its priority to highest possible.
  6270. * Used by CPU offline code.
  6271. */
  6272. void sched_idle_next(void)
  6273. {
  6274. int this_cpu = smp_processor_id();
  6275. struct rq *rq = cpu_rq(this_cpu);
  6276. struct task_struct *p = rq->idle;
  6277. unsigned long flags;
  6278. /* cpu has to be offline */
  6279. BUG_ON(cpu_online(this_cpu));
  6280. /*
  6281. * Strictly not necessary since rest of the CPUs are stopped by now
  6282. * and interrupts disabled on the current cpu.
  6283. */
  6284. spin_lock_irqsave(&rq->lock, flags);
  6285. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6286. update_rq_clock(rq);
  6287. activate_task(rq, p, 0);
  6288. spin_unlock_irqrestore(&rq->lock, flags);
  6289. }
  6290. /*
  6291. * Ensures that the idle task is using init_mm right before its cpu goes
  6292. * offline.
  6293. */
  6294. void idle_task_exit(void)
  6295. {
  6296. struct mm_struct *mm = current->active_mm;
  6297. BUG_ON(cpu_online(smp_processor_id()));
  6298. if (mm != &init_mm)
  6299. switch_mm(mm, &init_mm, current);
  6300. mmdrop(mm);
  6301. }
  6302. /* called under rq->lock with disabled interrupts */
  6303. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6304. {
  6305. struct rq *rq = cpu_rq(dead_cpu);
  6306. /* Must be exiting, otherwise would be on tasklist. */
  6307. BUG_ON(!p->exit_state);
  6308. /* Cannot have done final schedule yet: would have vanished. */
  6309. BUG_ON(p->state == TASK_DEAD);
  6310. get_task_struct(p);
  6311. /*
  6312. * Drop lock around migration; if someone else moves it,
  6313. * that's OK. No task can be added to this CPU, so iteration is
  6314. * fine.
  6315. */
  6316. spin_unlock_irq(&rq->lock);
  6317. move_task_off_dead_cpu(dead_cpu, p);
  6318. spin_lock_irq(&rq->lock);
  6319. put_task_struct(p);
  6320. }
  6321. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6322. static void migrate_dead_tasks(unsigned int dead_cpu)
  6323. {
  6324. struct rq *rq = cpu_rq(dead_cpu);
  6325. struct task_struct *next;
  6326. for ( ; ; ) {
  6327. if (!rq->nr_running)
  6328. break;
  6329. update_rq_clock(rq);
  6330. next = pick_next_task(rq);
  6331. if (!next)
  6332. break;
  6333. next->sched_class->put_prev_task(rq, next);
  6334. migrate_dead(dead_cpu, next);
  6335. }
  6336. }
  6337. /*
  6338. * remove the tasks which were accounted by rq from calc_load_tasks.
  6339. */
  6340. static void calc_global_load_remove(struct rq *rq)
  6341. {
  6342. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6343. rq->calc_load_active = 0;
  6344. }
  6345. #endif /* CONFIG_HOTPLUG_CPU */
  6346. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6347. static struct ctl_table sd_ctl_dir[] = {
  6348. {
  6349. .procname = "sched_domain",
  6350. .mode = 0555,
  6351. },
  6352. {0, },
  6353. };
  6354. static struct ctl_table sd_ctl_root[] = {
  6355. {
  6356. .ctl_name = CTL_KERN,
  6357. .procname = "kernel",
  6358. .mode = 0555,
  6359. .child = sd_ctl_dir,
  6360. },
  6361. {0, },
  6362. };
  6363. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6364. {
  6365. struct ctl_table *entry =
  6366. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6367. return entry;
  6368. }
  6369. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6370. {
  6371. struct ctl_table *entry;
  6372. /*
  6373. * In the intermediate directories, both the child directory and
  6374. * procname are dynamically allocated and could fail but the mode
  6375. * will always be set. In the lowest directory the names are
  6376. * static strings and all have proc handlers.
  6377. */
  6378. for (entry = *tablep; entry->mode; entry++) {
  6379. if (entry->child)
  6380. sd_free_ctl_entry(&entry->child);
  6381. if (entry->proc_handler == NULL)
  6382. kfree(entry->procname);
  6383. }
  6384. kfree(*tablep);
  6385. *tablep = NULL;
  6386. }
  6387. static void
  6388. set_table_entry(struct ctl_table *entry,
  6389. const char *procname, void *data, int maxlen,
  6390. mode_t mode, proc_handler *proc_handler)
  6391. {
  6392. entry->procname = procname;
  6393. entry->data = data;
  6394. entry->maxlen = maxlen;
  6395. entry->mode = mode;
  6396. entry->proc_handler = proc_handler;
  6397. }
  6398. static struct ctl_table *
  6399. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6400. {
  6401. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6402. if (table == NULL)
  6403. return NULL;
  6404. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6405. sizeof(long), 0644, proc_doulongvec_minmax);
  6406. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6407. sizeof(long), 0644, proc_doulongvec_minmax);
  6408. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6409. sizeof(int), 0644, proc_dointvec_minmax);
  6410. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6411. sizeof(int), 0644, proc_dointvec_minmax);
  6412. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6413. sizeof(int), 0644, proc_dointvec_minmax);
  6414. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6415. sizeof(int), 0644, proc_dointvec_minmax);
  6416. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6417. sizeof(int), 0644, proc_dointvec_minmax);
  6418. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6419. sizeof(int), 0644, proc_dointvec_minmax);
  6420. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6421. sizeof(int), 0644, proc_dointvec_minmax);
  6422. set_table_entry(&table[9], "cache_nice_tries",
  6423. &sd->cache_nice_tries,
  6424. sizeof(int), 0644, proc_dointvec_minmax);
  6425. set_table_entry(&table[10], "flags", &sd->flags,
  6426. sizeof(int), 0644, proc_dointvec_minmax);
  6427. set_table_entry(&table[11], "name", sd->name,
  6428. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6429. /* &table[12] is terminator */
  6430. return table;
  6431. }
  6432. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6433. {
  6434. struct ctl_table *entry, *table;
  6435. struct sched_domain *sd;
  6436. int domain_num = 0, i;
  6437. char buf[32];
  6438. for_each_domain(cpu, sd)
  6439. domain_num++;
  6440. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6441. if (table == NULL)
  6442. return NULL;
  6443. i = 0;
  6444. for_each_domain(cpu, sd) {
  6445. snprintf(buf, 32, "domain%d", i);
  6446. entry->procname = kstrdup(buf, GFP_KERNEL);
  6447. entry->mode = 0555;
  6448. entry->child = sd_alloc_ctl_domain_table(sd);
  6449. entry++;
  6450. i++;
  6451. }
  6452. return table;
  6453. }
  6454. static struct ctl_table_header *sd_sysctl_header;
  6455. static void register_sched_domain_sysctl(void)
  6456. {
  6457. int i, cpu_num = num_possible_cpus();
  6458. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6459. char buf[32];
  6460. WARN_ON(sd_ctl_dir[0].child);
  6461. sd_ctl_dir[0].child = entry;
  6462. if (entry == NULL)
  6463. return;
  6464. for_each_possible_cpu(i) {
  6465. snprintf(buf, 32, "cpu%d", i);
  6466. entry->procname = kstrdup(buf, GFP_KERNEL);
  6467. entry->mode = 0555;
  6468. entry->child = sd_alloc_ctl_cpu_table(i);
  6469. entry++;
  6470. }
  6471. WARN_ON(sd_sysctl_header);
  6472. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6473. }
  6474. /* may be called multiple times per register */
  6475. static void unregister_sched_domain_sysctl(void)
  6476. {
  6477. if (sd_sysctl_header)
  6478. unregister_sysctl_table(sd_sysctl_header);
  6479. sd_sysctl_header = NULL;
  6480. if (sd_ctl_dir[0].child)
  6481. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6482. }
  6483. #else
  6484. static void register_sched_domain_sysctl(void)
  6485. {
  6486. }
  6487. static void unregister_sched_domain_sysctl(void)
  6488. {
  6489. }
  6490. #endif
  6491. static void set_rq_online(struct rq *rq)
  6492. {
  6493. if (!rq->online) {
  6494. const struct sched_class *class;
  6495. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6496. rq->online = 1;
  6497. for_each_class(class) {
  6498. if (class->rq_online)
  6499. class->rq_online(rq);
  6500. }
  6501. }
  6502. }
  6503. static void set_rq_offline(struct rq *rq)
  6504. {
  6505. if (rq->online) {
  6506. const struct sched_class *class;
  6507. for_each_class(class) {
  6508. if (class->rq_offline)
  6509. class->rq_offline(rq);
  6510. }
  6511. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6512. rq->online = 0;
  6513. }
  6514. }
  6515. /*
  6516. * migration_call - callback that gets triggered when a CPU is added.
  6517. * Here we can start up the necessary migration thread for the new CPU.
  6518. */
  6519. static int __cpuinit
  6520. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6521. {
  6522. struct task_struct *p;
  6523. int cpu = (long)hcpu;
  6524. unsigned long flags;
  6525. struct rq *rq;
  6526. switch (action) {
  6527. case CPU_UP_PREPARE:
  6528. case CPU_UP_PREPARE_FROZEN:
  6529. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6530. if (IS_ERR(p))
  6531. return NOTIFY_BAD;
  6532. kthread_bind(p, cpu);
  6533. /* Must be high prio: stop_machine expects to yield to it. */
  6534. rq = task_rq_lock(p, &flags);
  6535. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6536. task_rq_unlock(rq, &flags);
  6537. get_task_struct(p);
  6538. cpu_rq(cpu)->migration_thread = p;
  6539. rq->calc_load_update = calc_load_update;
  6540. break;
  6541. case CPU_ONLINE:
  6542. case CPU_ONLINE_FROZEN:
  6543. /* Strictly unnecessary, as first user will wake it. */
  6544. wake_up_process(cpu_rq(cpu)->migration_thread);
  6545. /* Update our root-domain */
  6546. rq = cpu_rq(cpu);
  6547. spin_lock_irqsave(&rq->lock, flags);
  6548. if (rq->rd) {
  6549. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6550. set_rq_online(rq);
  6551. }
  6552. spin_unlock_irqrestore(&rq->lock, flags);
  6553. break;
  6554. #ifdef CONFIG_HOTPLUG_CPU
  6555. case CPU_UP_CANCELED:
  6556. case CPU_UP_CANCELED_FROZEN:
  6557. if (!cpu_rq(cpu)->migration_thread)
  6558. break;
  6559. /* Unbind it from offline cpu so it can run. Fall thru. */
  6560. kthread_bind(cpu_rq(cpu)->migration_thread,
  6561. cpumask_any(cpu_online_mask));
  6562. kthread_stop(cpu_rq(cpu)->migration_thread);
  6563. put_task_struct(cpu_rq(cpu)->migration_thread);
  6564. cpu_rq(cpu)->migration_thread = NULL;
  6565. break;
  6566. case CPU_DEAD:
  6567. case CPU_DEAD_FROZEN:
  6568. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6569. migrate_live_tasks(cpu);
  6570. rq = cpu_rq(cpu);
  6571. kthread_stop(rq->migration_thread);
  6572. put_task_struct(rq->migration_thread);
  6573. rq->migration_thread = NULL;
  6574. /* Idle task back to normal (off runqueue, low prio) */
  6575. spin_lock_irq(&rq->lock);
  6576. update_rq_clock(rq);
  6577. deactivate_task(rq, rq->idle, 0);
  6578. rq->idle->static_prio = MAX_PRIO;
  6579. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6580. rq->idle->sched_class = &idle_sched_class;
  6581. migrate_dead_tasks(cpu);
  6582. spin_unlock_irq(&rq->lock);
  6583. cpuset_unlock();
  6584. migrate_nr_uninterruptible(rq);
  6585. BUG_ON(rq->nr_running != 0);
  6586. calc_global_load_remove(rq);
  6587. /*
  6588. * No need to migrate the tasks: it was best-effort if
  6589. * they didn't take sched_hotcpu_mutex. Just wake up
  6590. * the requestors.
  6591. */
  6592. spin_lock_irq(&rq->lock);
  6593. while (!list_empty(&rq->migration_queue)) {
  6594. struct migration_req *req;
  6595. req = list_entry(rq->migration_queue.next,
  6596. struct migration_req, list);
  6597. list_del_init(&req->list);
  6598. spin_unlock_irq(&rq->lock);
  6599. complete(&req->done);
  6600. spin_lock_irq(&rq->lock);
  6601. }
  6602. spin_unlock_irq(&rq->lock);
  6603. break;
  6604. case CPU_DYING:
  6605. case CPU_DYING_FROZEN:
  6606. /* Update our root-domain */
  6607. rq = cpu_rq(cpu);
  6608. spin_lock_irqsave(&rq->lock, flags);
  6609. if (rq->rd) {
  6610. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6611. set_rq_offline(rq);
  6612. }
  6613. spin_unlock_irqrestore(&rq->lock, flags);
  6614. break;
  6615. #endif
  6616. }
  6617. return NOTIFY_OK;
  6618. }
  6619. /*
  6620. * Register at high priority so that task migration (migrate_all_tasks)
  6621. * happens before everything else. This has to be lower priority than
  6622. * the notifier in the perf_event subsystem, though.
  6623. */
  6624. static struct notifier_block __cpuinitdata migration_notifier = {
  6625. .notifier_call = migration_call,
  6626. .priority = 10
  6627. };
  6628. static int __init migration_init(void)
  6629. {
  6630. void *cpu = (void *)(long)smp_processor_id();
  6631. int err;
  6632. /* Start one for the boot CPU: */
  6633. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6634. BUG_ON(err == NOTIFY_BAD);
  6635. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6636. register_cpu_notifier(&migration_notifier);
  6637. return 0;
  6638. }
  6639. early_initcall(migration_init);
  6640. #endif
  6641. #ifdef CONFIG_SMP
  6642. #ifdef CONFIG_SCHED_DEBUG
  6643. static __read_mostly int sched_domain_debug_enabled;
  6644. static int __init sched_domain_debug_setup(char *str)
  6645. {
  6646. sched_domain_debug_enabled = 1;
  6647. return 0;
  6648. }
  6649. early_param("sched_debug", sched_domain_debug_setup);
  6650. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6651. struct cpumask *groupmask)
  6652. {
  6653. struct sched_group *group = sd->groups;
  6654. char str[256];
  6655. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6656. cpumask_clear(groupmask);
  6657. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6658. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6659. printk("does not load-balance\n");
  6660. if (sd->parent)
  6661. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6662. " has parent");
  6663. return -1;
  6664. }
  6665. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6666. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6667. printk(KERN_ERR "ERROR: domain->span does not contain "
  6668. "CPU%d\n", cpu);
  6669. }
  6670. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6671. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6672. " CPU%d\n", cpu);
  6673. }
  6674. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6675. do {
  6676. if (!group) {
  6677. printk("\n");
  6678. printk(KERN_ERR "ERROR: group is NULL\n");
  6679. break;
  6680. }
  6681. if (!group->cpu_power) {
  6682. printk(KERN_CONT "\n");
  6683. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6684. "set\n");
  6685. break;
  6686. }
  6687. if (!cpumask_weight(sched_group_cpus(group))) {
  6688. printk(KERN_CONT "\n");
  6689. printk(KERN_ERR "ERROR: empty group\n");
  6690. break;
  6691. }
  6692. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6693. printk(KERN_CONT "\n");
  6694. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6695. break;
  6696. }
  6697. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6698. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6699. printk(KERN_CONT " %s", str);
  6700. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6701. printk(KERN_CONT " (cpu_power = %d)",
  6702. group->cpu_power);
  6703. }
  6704. group = group->next;
  6705. } while (group != sd->groups);
  6706. printk(KERN_CONT "\n");
  6707. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6708. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6709. if (sd->parent &&
  6710. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6711. printk(KERN_ERR "ERROR: parent span is not a superset "
  6712. "of domain->span\n");
  6713. return 0;
  6714. }
  6715. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6716. {
  6717. cpumask_var_t groupmask;
  6718. int level = 0;
  6719. if (!sched_domain_debug_enabled)
  6720. return;
  6721. if (!sd) {
  6722. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6723. return;
  6724. }
  6725. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6726. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6727. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6728. return;
  6729. }
  6730. for (;;) {
  6731. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6732. break;
  6733. level++;
  6734. sd = sd->parent;
  6735. if (!sd)
  6736. break;
  6737. }
  6738. free_cpumask_var(groupmask);
  6739. }
  6740. #else /* !CONFIG_SCHED_DEBUG */
  6741. # define sched_domain_debug(sd, cpu) do { } while (0)
  6742. #endif /* CONFIG_SCHED_DEBUG */
  6743. static int sd_degenerate(struct sched_domain *sd)
  6744. {
  6745. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6746. return 1;
  6747. /* Following flags need at least 2 groups */
  6748. if (sd->flags & (SD_LOAD_BALANCE |
  6749. SD_BALANCE_NEWIDLE |
  6750. SD_BALANCE_FORK |
  6751. SD_BALANCE_EXEC |
  6752. SD_SHARE_CPUPOWER |
  6753. SD_SHARE_PKG_RESOURCES)) {
  6754. if (sd->groups != sd->groups->next)
  6755. return 0;
  6756. }
  6757. /* Following flags don't use groups */
  6758. if (sd->flags & (SD_WAKE_AFFINE))
  6759. return 0;
  6760. return 1;
  6761. }
  6762. static int
  6763. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6764. {
  6765. unsigned long cflags = sd->flags, pflags = parent->flags;
  6766. if (sd_degenerate(parent))
  6767. return 1;
  6768. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6769. return 0;
  6770. /* Flags needing groups don't count if only 1 group in parent */
  6771. if (parent->groups == parent->groups->next) {
  6772. pflags &= ~(SD_LOAD_BALANCE |
  6773. SD_BALANCE_NEWIDLE |
  6774. SD_BALANCE_FORK |
  6775. SD_BALANCE_EXEC |
  6776. SD_SHARE_CPUPOWER |
  6777. SD_SHARE_PKG_RESOURCES);
  6778. if (nr_node_ids == 1)
  6779. pflags &= ~SD_SERIALIZE;
  6780. }
  6781. if (~cflags & pflags)
  6782. return 0;
  6783. return 1;
  6784. }
  6785. static void free_rootdomain(struct root_domain *rd)
  6786. {
  6787. synchronize_sched();
  6788. cpupri_cleanup(&rd->cpupri);
  6789. free_cpumask_var(rd->rto_mask);
  6790. free_cpumask_var(rd->online);
  6791. free_cpumask_var(rd->span);
  6792. kfree(rd);
  6793. }
  6794. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6795. {
  6796. struct root_domain *old_rd = NULL;
  6797. unsigned long flags;
  6798. spin_lock_irqsave(&rq->lock, flags);
  6799. if (rq->rd) {
  6800. old_rd = rq->rd;
  6801. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6802. set_rq_offline(rq);
  6803. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6804. /*
  6805. * If we dont want to free the old_rt yet then
  6806. * set old_rd to NULL to skip the freeing later
  6807. * in this function:
  6808. */
  6809. if (!atomic_dec_and_test(&old_rd->refcount))
  6810. old_rd = NULL;
  6811. }
  6812. atomic_inc(&rd->refcount);
  6813. rq->rd = rd;
  6814. cpumask_set_cpu(rq->cpu, rd->span);
  6815. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6816. set_rq_online(rq);
  6817. spin_unlock_irqrestore(&rq->lock, flags);
  6818. if (old_rd)
  6819. free_rootdomain(old_rd);
  6820. }
  6821. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6822. {
  6823. gfp_t gfp = GFP_KERNEL;
  6824. memset(rd, 0, sizeof(*rd));
  6825. if (bootmem)
  6826. gfp = GFP_NOWAIT;
  6827. if (!alloc_cpumask_var(&rd->span, gfp))
  6828. goto out;
  6829. if (!alloc_cpumask_var(&rd->online, gfp))
  6830. goto free_span;
  6831. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6832. goto free_online;
  6833. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6834. goto free_rto_mask;
  6835. return 0;
  6836. free_rto_mask:
  6837. free_cpumask_var(rd->rto_mask);
  6838. free_online:
  6839. free_cpumask_var(rd->online);
  6840. free_span:
  6841. free_cpumask_var(rd->span);
  6842. out:
  6843. return -ENOMEM;
  6844. }
  6845. static void init_defrootdomain(void)
  6846. {
  6847. init_rootdomain(&def_root_domain, true);
  6848. atomic_set(&def_root_domain.refcount, 1);
  6849. }
  6850. static struct root_domain *alloc_rootdomain(void)
  6851. {
  6852. struct root_domain *rd;
  6853. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6854. if (!rd)
  6855. return NULL;
  6856. if (init_rootdomain(rd, false) != 0) {
  6857. kfree(rd);
  6858. return NULL;
  6859. }
  6860. return rd;
  6861. }
  6862. /*
  6863. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6864. * hold the hotplug lock.
  6865. */
  6866. static void
  6867. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6868. {
  6869. struct rq *rq = cpu_rq(cpu);
  6870. struct sched_domain *tmp;
  6871. /* Remove the sched domains which do not contribute to scheduling. */
  6872. for (tmp = sd; tmp; ) {
  6873. struct sched_domain *parent = tmp->parent;
  6874. if (!parent)
  6875. break;
  6876. if (sd_parent_degenerate(tmp, parent)) {
  6877. tmp->parent = parent->parent;
  6878. if (parent->parent)
  6879. parent->parent->child = tmp;
  6880. } else
  6881. tmp = tmp->parent;
  6882. }
  6883. if (sd && sd_degenerate(sd)) {
  6884. sd = sd->parent;
  6885. if (sd)
  6886. sd->child = NULL;
  6887. }
  6888. sched_domain_debug(sd, cpu);
  6889. rq_attach_root(rq, rd);
  6890. rcu_assign_pointer(rq->sd, sd);
  6891. }
  6892. /* cpus with isolated domains */
  6893. static cpumask_var_t cpu_isolated_map;
  6894. /* Setup the mask of cpus configured for isolated domains */
  6895. static int __init isolated_cpu_setup(char *str)
  6896. {
  6897. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6898. cpulist_parse(str, cpu_isolated_map);
  6899. return 1;
  6900. }
  6901. __setup("isolcpus=", isolated_cpu_setup);
  6902. /*
  6903. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6904. * to a function which identifies what group(along with sched group) a CPU
  6905. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6906. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6907. *
  6908. * init_sched_build_groups will build a circular linked list of the groups
  6909. * covered by the given span, and will set each group's ->cpumask correctly,
  6910. * and ->cpu_power to 0.
  6911. */
  6912. static void
  6913. init_sched_build_groups(const struct cpumask *span,
  6914. const struct cpumask *cpu_map,
  6915. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6916. struct sched_group **sg,
  6917. struct cpumask *tmpmask),
  6918. struct cpumask *covered, struct cpumask *tmpmask)
  6919. {
  6920. struct sched_group *first = NULL, *last = NULL;
  6921. int i;
  6922. cpumask_clear(covered);
  6923. for_each_cpu(i, span) {
  6924. struct sched_group *sg;
  6925. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6926. int j;
  6927. if (cpumask_test_cpu(i, covered))
  6928. continue;
  6929. cpumask_clear(sched_group_cpus(sg));
  6930. sg->cpu_power = 0;
  6931. for_each_cpu(j, span) {
  6932. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6933. continue;
  6934. cpumask_set_cpu(j, covered);
  6935. cpumask_set_cpu(j, sched_group_cpus(sg));
  6936. }
  6937. if (!first)
  6938. first = sg;
  6939. if (last)
  6940. last->next = sg;
  6941. last = sg;
  6942. }
  6943. last->next = first;
  6944. }
  6945. #define SD_NODES_PER_DOMAIN 16
  6946. #ifdef CONFIG_NUMA
  6947. /**
  6948. * find_next_best_node - find the next node to include in a sched_domain
  6949. * @node: node whose sched_domain we're building
  6950. * @used_nodes: nodes already in the sched_domain
  6951. *
  6952. * Find the next node to include in a given scheduling domain. Simply
  6953. * finds the closest node not already in the @used_nodes map.
  6954. *
  6955. * Should use nodemask_t.
  6956. */
  6957. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6958. {
  6959. int i, n, val, min_val, best_node = 0;
  6960. min_val = INT_MAX;
  6961. for (i = 0; i < nr_node_ids; i++) {
  6962. /* Start at @node */
  6963. n = (node + i) % nr_node_ids;
  6964. if (!nr_cpus_node(n))
  6965. continue;
  6966. /* Skip already used nodes */
  6967. if (node_isset(n, *used_nodes))
  6968. continue;
  6969. /* Simple min distance search */
  6970. val = node_distance(node, n);
  6971. if (val < min_val) {
  6972. min_val = val;
  6973. best_node = n;
  6974. }
  6975. }
  6976. node_set(best_node, *used_nodes);
  6977. return best_node;
  6978. }
  6979. /**
  6980. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6981. * @node: node whose cpumask we're constructing
  6982. * @span: resulting cpumask
  6983. *
  6984. * Given a node, construct a good cpumask for its sched_domain to span. It
  6985. * should be one that prevents unnecessary balancing, but also spreads tasks
  6986. * out optimally.
  6987. */
  6988. static void sched_domain_node_span(int node, struct cpumask *span)
  6989. {
  6990. nodemask_t used_nodes;
  6991. int i;
  6992. cpumask_clear(span);
  6993. nodes_clear(used_nodes);
  6994. cpumask_or(span, span, cpumask_of_node(node));
  6995. node_set(node, used_nodes);
  6996. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6997. int next_node = find_next_best_node(node, &used_nodes);
  6998. cpumask_or(span, span, cpumask_of_node(next_node));
  6999. }
  7000. }
  7001. #endif /* CONFIG_NUMA */
  7002. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  7003. /*
  7004. * The cpus mask in sched_group and sched_domain hangs off the end.
  7005. *
  7006. * ( See the the comments in include/linux/sched.h:struct sched_group
  7007. * and struct sched_domain. )
  7008. */
  7009. struct static_sched_group {
  7010. struct sched_group sg;
  7011. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7012. };
  7013. struct static_sched_domain {
  7014. struct sched_domain sd;
  7015. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7016. };
  7017. struct s_data {
  7018. #ifdef CONFIG_NUMA
  7019. int sd_allnodes;
  7020. cpumask_var_t domainspan;
  7021. cpumask_var_t covered;
  7022. cpumask_var_t notcovered;
  7023. #endif
  7024. cpumask_var_t nodemask;
  7025. cpumask_var_t this_sibling_map;
  7026. cpumask_var_t this_core_map;
  7027. cpumask_var_t send_covered;
  7028. cpumask_var_t tmpmask;
  7029. struct sched_group **sched_group_nodes;
  7030. struct root_domain *rd;
  7031. };
  7032. enum s_alloc {
  7033. sa_sched_groups = 0,
  7034. sa_rootdomain,
  7035. sa_tmpmask,
  7036. sa_send_covered,
  7037. sa_this_core_map,
  7038. sa_this_sibling_map,
  7039. sa_nodemask,
  7040. sa_sched_group_nodes,
  7041. #ifdef CONFIG_NUMA
  7042. sa_notcovered,
  7043. sa_covered,
  7044. sa_domainspan,
  7045. #endif
  7046. sa_none,
  7047. };
  7048. /*
  7049. * SMT sched-domains:
  7050. */
  7051. #ifdef CONFIG_SCHED_SMT
  7052. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7053. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  7054. static int
  7055. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7056. struct sched_group **sg, struct cpumask *unused)
  7057. {
  7058. if (sg)
  7059. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  7060. return cpu;
  7061. }
  7062. #endif /* CONFIG_SCHED_SMT */
  7063. /*
  7064. * multi-core sched-domains:
  7065. */
  7066. #ifdef CONFIG_SCHED_MC
  7067. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7068. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7069. #endif /* CONFIG_SCHED_MC */
  7070. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7071. static int
  7072. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7073. struct sched_group **sg, struct cpumask *mask)
  7074. {
  7075. int group;
  7076. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7077. group = cpumask_first(mask);
  7078. if (sg)
  7079. *sg = &per_cpu(sched_group_core, group).sg;
  7080. return group;
  7081. }
  7082. #elif defined(CONFIG_SCHED_MC)
  7083. static int
  7084. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7085. struct sched_group **sg, struct cpumask *unused)
  7086. {
  7087. if (sg)
  7088. *sg = &per_cpu(sched_group_core, cpu).sg;
  7089. return cpu;
  7090. }
  7091. #endif
  7092. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7093. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7094. static int
  7095. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7096. struct sched_group **sg, struct cpumask *mask)
  7097. {
  7098. int group;
  7099. #ifdef CONFIG_SCHED_MC
  7100. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7101. group = cpumask_first(mask);
  7102. #elif defined(CONFIG_SCHED_SMT)
  7103. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7104. group = cpumask_first(mask);
  7105. #else
  7106. group = cpu;
  7107. #endif
  7108. if (sg)
  7109. *sg = &per_cpu(sched_group_phys, group).sg;
  7110. return group;
  7111. }
  7112. #ifdef CONFIG_NUMA
  7113. /*
  7114. * The init_sched_build_groups can't handle what we want to do with node
  7115. * groups, so roll our own. Now each node has its own list of groups which
  7116. * gets dynamically allocated.
  7117. */
  7118. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7119. static struct sched_group ***sched_group_nodes_bycpu;
  7120. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7121. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7122. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7123. struct sched_group **sg,
  7124. struct cpumask *nodemask)
  7125. {
  7126. int group;
  7127. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7128. group = cpumask_first(nodemask);
  7129. if (sg)
  7130. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7131. return group;
  7132. }
  7133. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7134. {
  7135. struct sched_group *sg = group_head;
  7136. int j;
  7137. if (!sg)
  7138. return;
  7139. do {
  7140. for_each_cpu(j, sched_group_cpus(sg)) {
  7141. struct sched_domain *sd;
  7142. sd = &per_cpu(phys_domains, j).sd;
  7143. if (j != group_first_cpu(sd->groups)) {
  7144. /*
  7145. * Only add "power" once for each
  7146. * physical package.
  7147. */
  7148. continue;
  7149. }
  7150. sg->cpu_power += sd->groups->cpu_power;
  7151. }
  7152. sg = sg->next;
  7153. } while (sg != group_head);
  7154. }
  7155. static int build_numa_sched_groups(struct s_data *d,
  7156. const struct cpumask *cpu_map, int num)
  7157. {
  7158. struct sched_domain *sd;
  7159. struct sched_group *sg, *prev;
  7160. int n, j;
  7161. cpumask_clear(d->covered);
  7162. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7163. if (cpumask_empty(d->nodemask)) {
  7164. d->sched_group_nodes[num] = NULL;
  7165. goto out;
  7166. }
  7167. sched_domain_node_span(num, d->domainspan);
  7168. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7169. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7170. GFP_KERNEL, num);
  7171. if (!sg) {
  7172. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7173. num);
  7174. return -ENOMEM;
  7175. }
  7176. d->sched_group_nodes[num] = sg;
  7177. for_each_cpu(j, d->nodemask) {
  7178. sd = &per_cpu(node_domains, j).sd;
  7179. sd->groups = sg;
  7180. }
  7181. sg->cpu_power = 0;
  7182. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7183. sg->next = sg;
  7184. cpumask_or(d->covered, d->covered, d->nodemask);
  7185. prev = sg;
  7186. for (j = 0; j < nr_node_ids; j++) {
  7187. n = (num + j) % nr_node_ids;
  7188. cpumask_complement(d->notcovered, d->covered);
  7189. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7190. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7191. if (cpumask_empty(d->tmpmask))
  7192. break;
  7193. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7194. if (cpumask_empty(d->tmpmask))
  7195. continue;
  7196. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7197. GFP_KERNEL, num);
  7198. if (!sg) {
  7199. printk(KERN_WARNING
  7200. "Can not alloc domain group for node %d\n", j);
  7201. return -ENOMEM;
  7202. }
  7203. sg->cpu_power = 0;
  7204. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7205. sg->next = prev->next;
  7206. cpumask_or(d->covered, d->covered, d->tmpmask);
  7207. prev->next = sg;
  7208. prev = sg;
  7209. }
  7210. out:
  7211. return 0;
  7212. }
  7213. #endif /* CONFIG_NUMA */
  7214. #ifdef CONFIG_NUMA
  7215. /* Free memory allocated for various sched_group structures */
  7216. static void free_sched_groups(const struct cpumask *cpu_map,
  7217. struct cpumask *nodemask)
  7218. {
  7219. int cpu, i;
  7220. for_each_cpu(cpu, cpu_map) {
  7221. struct sched_group **sched_group_nodes
  7222. = sched_group_nodes_bycpu[cpu];
  7223. if (!sched_group_nodes)
  7224. continue;
  7225. for (i = 0; i < nr_node_ids; i++) {
  7226. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7227. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7228. if (cpumask_empty(nodemask))
  7229. continue;
  7230. if (sg == NULL)
  7231. continue;
  7232. sg = sg->next;
  7233. next_sg:
  7234. oldsg = sg;
  7235. sg = sg->next;
  7236. kfree(oldsg);
  7237. if (oldsg != sched_group_nodes[i])
  7238. goto next_sg;
  7239. }
  7240. kfree(sched_group_nodes);
  7241. sched_group_nodes_bycpu[cpu] = NULL;
  7242. }
  7243. }
  7244. #else /* !CONFIG_NUMA */
  7245. static void free_sched_groups(const struct cpumask *cpu_map,
  7246. struct cpumask *nodemask)
  7247. {
  7248. }
  7249. #endif /* CONFIG_NUMA */
  7250. /*
  7251. * Initialize sched groups cpu_power.
  7252. *
  7253. * cpu_power indicates the capacity of sched group, which is used while
  7254. * distributing the load between different sched groups in a sched domain.
  7255. * Typically cpu_power for all the groups in a sched domain will be same unless
  7256. * there are asymmetries in the topology. If there are asymmetries, group
  7257. * having more cpu_power will pickup more load compared to the group having
  7258. * less cpu_power.
  7259. */
  7260. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7261. {
  7262. struct sched_domain *child;
  7263. struct sched_group *group;
  7264. long power;
  7265. int weight;
  7266. WARN_ON(!sd || !sd->groups);
  7267. if (cpu != group_first_cpu(sd->groups))
  7268. return;
  7269. child = sd->child;
  7270. sd->groups->cpu_power = 0;
  7271. if (!child) {
  7272. power = SCHED_LOAD_SCALE;
  7273. weight = cpumask_weight(sched_domain_span(sd));
  7274. /*
  7275. * SMT siblings share the power of a single core.
  7276. * Usually multiple threads get a better yield out of
  7277. * that one core than a single thread would have,
  7278. * reflect that in sd->smt_gain.
  7279. */
  7280. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7281. power *= sd->smt_gain;
  7282. power /= weight;
  7283. power >>= SCHED_LOAD_SHIFT;
  7284. }
  7285. sd->groups->cpu_power += power;
  7286. return;
  7287. }
  7288. /*
  7289. * Add cpu_power of each child group to this groups cpu_power.
  7290. */
  7291. group = child->groups;
  7292. do {
  7293. sd->groups->cpu_power += group->cpu_power;
  7294. group = group->next;
  7295. } while (group != child->groups);
  7296. }
  7297. /*
  7298. * Initializers for schedule domains
  7299. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7300. */
  7301. #ifdef CONFIG_SCHED_DEBUG
  7302. # define SD_INIT_NAME(sd, type) sd->name = #type
  7303. #else
  7304. # define SD_INIT_NAME(sd, type) do { } while (0)
  7305. #endif
  7306. #define SD_INIT(sd, type) sd_init_##type(sd)
  7307. #define SD_INIT_FUNC(type) \
  7308. static noinline void sd_init_##type(struct sched_domain *sd) \
  7309. { \
  7310. memset(sd, 0, sizeof(*sd)); \
  7311. *sd = SD_##type##_INIT; \
  7312. sd->level = SD_LV_##type; \
  7313. SD_INIT_NAME(sd, type); \
  7314. }
  7315. SD_INIT_FUNC(CPU)
  7316. #ifdef CONFIG_NUMA
  7317. SD_INIT_FUNC(ALLNODES)
  7318. SD_INIT_FUNC(NODE)
  7319. #endif
  7320. #ifdef CONFIG_SCHED_SMT
  7321. SD_INIT_FUNC(SIBLING)
  7322. #endif
  7323. #ifdef CONFIG_SCHED_MC
  7324. SD_INIT_FUNC(MC)
  7325. #endif
  7326. static int default_relax_domain_level = -1;
  7327. static int __init setup_relax_domain_level(char *str)
  7328. {
  7329. unsigned long val;
  7330. val = simple_strtoul(str, NULL, 0);
  7331. if (val < SD_LV_MAX)
  7332. default_relax_domain_level = val;
  7333. return 1;
  7334. }
  7335. __setup("relax_domain_level=", setup_relax_domain_level);
  7336. static void set_domain_attribute(struct sched_domain *sd,
  7337. struct sched_domain_attr *attr)
  7338. {
  7339. int request;
  7340. if (!attr || attr->relax_domain_level < 0) {
  7341. if (default_relax_domain_level < 0)
  7342. return;
  7343. else
  7344. request = default_relax_domain_level;
  7345. } else
  7346. request = attr->relax_domain_level;
  7347. if (request < sd->level) {
  7348. /* turn off idle balance on this domain */
  7349. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7350. } else {
  7351. /* turn on idle balance on this domain */
  7352. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7353. }
  7354. }
  7355. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7356. const struct cpumask *cpu_map)
  7357. {
  7358. switch (what) {
  7359. case sa_sched_groups:
  7360. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7361. d->sched_group_nodes = NULL;
  7362. case sa_rootdomain:
  7363. free_rootdomain(d->rd); /* fall through */
  7364. case sa_tmpmask:
  7365. free_cpumask_var(d->tmpmask); /* fall through */
  7366. case sa_send_covered:
  7367. free_cpumask_var(d->send_covered); /* fall through */
  7368. case sa_this_core_map:
  7369. free_cpumask_var(d->this_core_map); /* fall through */
  7370. case sa_this_sibling_map:
  7371. free_cpumask_var(d->this_sibling_map); /* fall through */
  7372. case sa_nodemask:
  7373. free_cpumask_var(d->nodemask); /* fall through */
  7374. case sa_sched_group_nodes:
  7375. #ifdef CONFIG_NUMA
  7376. kfree(d->sched_group_nodes); /* fall through */
  7377. case sa_notcovered:
  7378. free_cpumask_var(d->notcovered); /* fall through */
  7379. case sa_covered:
  7380. free_cpumask_var(d->covered); /* fall through */
  7381. case sa_domainspan:
  7382. free_cpumask_var(d->domainspan); /* fall through */
  7383. #endif
  7384. case sa_none:
  7385. break;
  7386. }
  7387. }
  7388. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7389. const struct cpumask *cpu_map)
  7390. {
  7391. #ifdef CONFIG_NUMA
  7392. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7393. return sa_none;
  7394. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7395. return sa_domainspan;
  7396. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7397. return sa_covered;
  7398. /* Allocate the per-node list of sched groups */
  7399. d->sched_group_nodes = kcalloc(nr_node_ids,
  7400. sizeof(struct sched_group *), GFP_KERNEL);
  7401. if (!d->sched_group_nodes) {
  7402. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7403. return sa_notcovered;
  7404. }
  7405. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7406. #endif
  7407. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7408. return sa_sched_group_nodes;
  7409. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7410. return sa_nodemask;
  7411. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7412. return sa_this_sibling_map;
  7413. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7414. return sa_this_core_map;
  7415. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7416. return sa_send_covered;
  7417. d->rd = alloc_rootdomain();
  7418. if (!d->rd) {
  7419. printk(KERN_WARNING "Cannot alloc root domain\n");
  7420. return sa_tmpmask;
  7421. }
  7422. return sa_rootdomain;
  7423. }
  7424. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7425. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7426. {
  7427. struct sched_domain *sd = NULL;
  7428. #ifdef CONFIG_NUMA
  7429. struct sched_domain *parent;
  7430. d->sd_allnodes = 0;
  7431. if (cpumask_weight(cpu_map) >
  7432. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7433. sd = &per_cpu(allnodes_domains, i).sd;
  7434. SD_INIT(sd, ALLNODES);
  7435. set_domain_attribute(sd, attr);
  7436. cpumask_copy(sched_domain_span(sd), cpu_map);
  7437. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7438. d->sd_allnodes = 1;
  7439. }
  7440. parent = sd;
  7441. sd = &per_cpu(node_domains, i).sd;
  7442. SD_INIT(sd, NODE);
  7443. set_domain_attribute(sd, attr);
  7444. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7445. sd->parent = parent;
  7446. if (parent)
  7447. parent->child = sd;
  7448. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7449. #endif
  7450. return sd;
  7451. }
  7452. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7453. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7454. struct sched_domain *parent, int i)
  7455. {
  7456. struct sched_domain *sd;
  7457. sd = &per_cpu(phys_domains, i).sd;
  7458. SD_INIT(sd, CPU);
  7459. set_domain_attribute(sd, attr);
  7460. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7461. sd->parent = parent;
  7462. if (parent)
  7463. parent->child = sd;
  7464. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7465. return sd;
  7466. }
  7467. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7468. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7469. struct sched_domain *parent, int i)
  7470. {
  7471. struct sched_domain *sd = parent;
  7472. #ifdef CONFIG_SCHED_MC
  7473. sd = &per_cpu(core_domains, i).sd;
  7474. SD_INIT(sd, MC);
  7475. set_domain_attribute(sd, attr);
  7476. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7477. sd->parent = parent;
  7478. parent->child = sd;
  7479. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7480. #endif
  7481. return sd;
  7482. }
  7483. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7484. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7485. struct sched_domain *parent, int i)
  7486. {
  7487. struct sched_domain *sd = parent;
  7488. #ifdef CONFIG_SCHED_SMT
  7489. sd = &per_cpu(cpu_domains, i).sd;
  7490. SD_INIT(sd, SIBLING);
  7491. set_domain_attribute(sd, attr);
  7492. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7493. sd->parent = parent;
  7494. parent->child = sd;
  7495. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7496. #endif
  7497. return sd;
  7498. }
  7499. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7500. const struct cpumask *cpu_map, int cpu)
  7501. {
  7502. switch (l) {
  7503. #ifdef CONFIG_SCHED_SMT
  7504. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7505. cpumask_and(d->this_sibling_map, cpu_map,
  7506. topology_thread_cpumask(cpu));
  7507. if (cpu == cpumask_first(d->this_sibling_map))
  7508. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7509. &cpu_to_cpu_group,
  7510. d->send_covered, d->tmpmask);
  7511. break;
  7512. #endif
  7513. #ifdef CONFIG_SCHED_MC
  7514. case SD_LV_MC: /* set up multi-core groups */
  7515. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7516. if (cpu == cpumask_first(d->this_core_map))
  7517. init_sched_build_groups(d->this_core_map, cpu_map,
  7518. &cpu_to_core_group,
  7519. d->send_covered, d->tmpmask);
  7520. break;
  7521. #endif
  7522. case SD_LV_CPU: /* set up physical groups */
  7523. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7524. if (!cpumask_empty(d->nodemask))
  7525. init_sched_build_groups(d->nodemask, cpu_map,
  7526. &cpu_to_phys_group,
  7527. d->send_covered, d->tmpmask);
  7528. break;
  7529. #ifdef CONFIG_NUMA
  7530. case SD_LV_ALLNODES:
  7531. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7532. d->send_covered, d->tmpmask);
  7533. break;
  7534. #endif
  7535. default:
  7536. break;
  7537. }
  7538. }
  7539. /*
  7540. * Build sched domains for a given set of cpus and attach the sched domains
  7541. * to the individual cpus
  7542. */
  7543. static int __build_sched_domains(const struct cpumask *cpu_map,
  7544. struct sched_domain_attr *attr)
  7545. {
  7546. enum s_alloc alloc_state = sa_none;
  7547. struct s_data d;
  7548. struct sched_domain *sd;
  7549. int i;
  7550. #ifdef CONFIG_NUMA
  7551. d.sd_allnodes = 0;
  7552. #endif
  7553. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7554. if (alloc_state != sa_rootdomain)
  7555. goto error;
  7556. alloc_state = sa_sched_groups;
  7557. /*
  7558. * Set up domains for cpus specified by the cpu_map.
  7559. */
  7560. for_each_cpu(i, cpu_map) {
  7561. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7562. cpu_map);
  7563. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7564. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7565. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7566. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7567. }
  7568. for_each_cpu(i, cpu_map) {
  7569. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7570. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7571. }
  7572. /* Set up physical groups */
  7573. for (i = 0; i < nr_node_ids; i++)
  7574. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7575. #ifdef CONFIG_NUMA
  7576. /* Set up node groups */
  7577. if (d.sd_allnodes)
  7578. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7579. for (i = 0; i < nr_node_ids; i++)
  7580. if (build_numa_sched_groups(&d, cpu_map, i))
  7581. goto error;
  7582. #endif
  7583. /* Calculate CPU power for physical packages and nodes */
  7584. #ifdef CONFIG_SCHED_SMT
  7585. for_each_cpu(i, cpu_map) {
  7586. sd = &per_cpu(cpu_domains, i).sd;
  7587. init_sched_groups_power(i, sd);
  7588. }
  7589. #endif
  7590. #ifdef CONFIG_SCHED_MC
  7591. for_each_cpu(i, cpu_map) {
  7592. sd = &per_cpu(core_domains, i).sd;
  7593. init_sched_groups_power(i, sd);
  7594. }
  7595. #endif
  7596. for_each_cpu(i, cpu_map) {
  7597. sd = &per_cpu(phys_domains, i).sd;
  7598. init_sched_groups_power(i, sd);
  7599. }
  7600. #ifdef CONFIG_NUMA
  7601. for (i = 0; i < nr_node_ids; i++)
  7602. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7603. if (d.sd_allnodes) {
  7604. struct sched_group *sg;
  7605. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7606. d.tmpmask);
  7607. init_numa_sched_groups_power(sg);
  7608. }
  7609. #endif
  7610. /* Attach the domains */
  7611. for_each_cpu(i, cpu_map) {
  7612. #ifdef CONFIG_SCHED_SMT
  7613. sd = &per_cpu(cpu_domains, i).sd;
  7614. #elif defined(CONFIG_SCHED_MC)
  7615. sd = &per_cpu(core_domains, i).sd;
  7616. #else
  7617. sd = &per_cpu(phys_domains, i).sd;
  7618. #endif
  7619. cpu_attach_domain(sd, d.rd, i);
  7620. }
  7621. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7622. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7623. return 0;
  7624. error:
  7625. __free_domain_allocs(&d, alloc_state, cpu_map);
  7626. return -ENOMEM;
  7627. }
  7628. static int build_sched_domains(const struct cpumask *cpu_map)
  7629. {
  7630. return __build_sched_domains(cpu_map, NULL);
  7631. }
  7632. static cpumask_var_t *doms_cur; /* current sched domains */
  7633. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7634. static struct sched_domain_attr *dattr_cur;
  7635. /* attribues of custom domains in 'doms_cur' */
  7636. /*
  7637. * Special case: If a kmalloc of a doms_cur partition (array of
  7638. * cpumask) fails, then fallback to a single sched domain,
  7639. * as determined by the single cpumask fallback_doms.
  7640. */
  7641. static cpumask_var_t fallback_doms;
  7642. /*
  7643. * arch_update_cpu_topology lets virtualized architectures update the
  7644. * cpu core maps. It is supposed to return 1 if the topology changed
  7645. * or 0 if it stayed the same.
  7646. */
  7647. int __attribute__((weak)) arch_update_cpu_topology(void)
  7648. {
  7649. return 0;
  7650. }
  7651. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7652. {
  7653. int i;
  7654. cpumask_var_t *doms;
  7655. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7656. if (!doms)
  7657. return NULL;
  7658. for (i = 0; i < ndoms; i++) {
  7659. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7660. free_sched_domains(doms, i);
  7661. return NULL;
  7662. }
  7663. }
  7664. return doms;
  7665. }
  7666. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7667. {
  7668. unsigned int i;
  7669. for (i = 0; i < ndoms; i++)
  7670. free_cpumask_var(doms[i]);
  7671. kfree(doms);
  7672. }
  7673. /*
  7674. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7675. * For now this just excludes isolated cpus, but could be used to
  7676. * exclude other special cases in the future.
  7677. */
  7678. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7679. {
  7680. int err;
  7681. arch_update_cpu_topology();
  7682. ndoms_cur = 1;
  7683. doms_cur = alloc_sched_domains(ndoms_cur);
  7684. if (!doms_cur)
  7685. doms_cur = &fallback_doms;
  7686. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7687. dattr_cur = NULL;
  7688. err = build_sched_domains(doms_cur[0]);
  7689. register_sched_domain_sysctl();
  7690. return err;
  7691. }
  7692. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7693. struct cpumask *tmpmask)
  7694. {
  7695. free_sched_groups(cpu_map, tmpmask);
  7696. }
  7697. /*
  7698. * Detach sched domains from a group of cpus specified in cpu_map
  7699. * These cpus will now be attached to the NULL domain
  7700. */
  7701. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7702. {
  7703. /* Save because hotplug lock held. */
  7704. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7705. int i;
  7706. for_each_cpu(i, cpu_map)
  7707. cpu_attach_domain(NULL, &def_root_domain, i);
  7708. synchronize_sched();
  7709. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7710. }
  7711. /* handle null as "default" */
  7712. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7713. struct sched_domain_attr *new, int idx_new)
  7714. {
  7715. struct sched_domain_attr tmp;
  7716. /* fast path */
  7717. if (!new && !cur)
  7718. return 1;
  7719. tmp = SD_ATTR_INIT;
  7720. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7721. new ? (new + idx_new) : &tmp,
  7722. sizeof(struct sched_domain_attr));
  7723. }
  7724. /*
  7725. * Partition sched domains as specified by the 'ndoms_new'
  7726. * cpumasks in the array doms_new[] of cpumasks. This compares
  7727. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7728. * It destroys each deleted domain and builds each new domain.
  7729. *
  7730. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7731. * The masks don't intersect (don't overlap.) We should setup one
  7732. * sched domain for each mask. CPUs not in any of the cpumasks will
  7733. * not be load balanced. If the same cpumask appears both in the
  7734. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7735. * it as it is.
  7736. *
  7737. * The passed in 'doms_new' should be allocated using
  7738. * alloc_sched_domains. This routine takes ownership of it and will
  7739. * free_sched_domains it when done with it. If the caller failed the
  7740. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7741. * and partition_sched_domains() will fallback to the single partition
  7742. * 'fallback_doms', it also forces the domains to be rebuilt.
  7743. *
  7744. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7745. * ndoms_new == 0 is a special case for destroying existing domains,
  7746. * and it will not create the default domain.
  7747. *
  7748. * Call with hotplug lock held
  7749. */
  7750. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7751. struct sched_domain_attr *dattr_new)
  7752. {
  7753. int i, j, n;
  7754. int new_topology;
  7755. mutex_lock(&sched_domains_mutex);
  7756. /* always unregister in case we don't destroy any domains */
  7757. unregister_sched_domain_sysctl();
  7758. /* Let architecture update cpu core mappings. */
  7759. new_topology = arch_update_cpu_topology();
  7760. n = doms_new ? ndoms_new : 0;
  7761. /* Destroy deleted domains */
  7762. for (i = 0; i < ndoms_cur; i++) {
  7763. for (j = 0; j < n && !new_topology; j++) {
  7764. if (cpumask_equal(doms_cur[i], doms_new[j])
  7765. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7766. goto match1;
  7767. }
  7768. /* no match - a current sched domain not in new doms_new[] */
  7769. detach_destroy_domains(doms_cur[i]);
  7770. match1:
  7771. ;
  7772. }
  7773. if (doms_new == NULL) {
  7774. ndoms_cur = 0;
  7775. doms_new = &fallback_doms;
  7776. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7777. WARN_ON_ONCE(dattr_new);
  7778. }
  7779. /* Build new domains */
  7780. for (i = 0; i < ndoms_new; i++) {
  7781. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7782. if (cpumask_equal(doms_new[i], doms_cur[j])
  7783. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7784. goto match2;
  7785. }
  7786. /* no match - add a new doms_new */
  7787. __build_sched_domains(doms_new[i],
  7788. dattr_new ? dattr_new + i : NULL);
  7789. match2:
  7790. ;
  7791. }
  7792. /* Remember the new sched domains */
  7793. if (doms_cur != &fallback_doms)
  7794. free_sched_domains(doms_cur, ndoms_cur);
  7795. kfree(dattr_cur); /* kfree(NULL) is safe */
  7796. doms_cur = doms_new;
  7797. dattr_cur = dattr_new;
  7798. ndoms_cur = ndoms_new;
  7799. register_sched_domain_sysctl();
  7800. mutex_unlock(&sched_domains_mutex);
  7801. }
  7802. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7803. static void arch_reinit_sched_domains(void)
  7804. {
  7805. get_online_cpus();
  7806. /* Destroy domains first to force the rebuild */
  7807. partition_sched_domains(0, NULL, NULL);
  7808. rebuild_sched_domains();
  7809. put_online_cpus();
  7810. }
  7811. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7812. {
  7813. unsigned int level = 0;
  7814. if (sscanf(buf, "%u", &level) != 1)
  7815. return -EINVAL;
  7816. /*
  7817. * level is always be positive so don't check for
  7818. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7819. * What happens on 0 or 1 byte write,
  7820. * need to check for count as well?
  7821. */
  7822. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7823. return -EINVAL;
  7824. if (smt)
  7825. sched_smt_power_savings = level;
  7826. else
  7827. sched_mc_power_savings = level;
  7828. arch_reinit_sched_domains();
  7829. return count;
  7830. }
  7831. #ifdef CONFIG_SCHED_MC
  7832. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7833. char *page)
  7834. {
  7835. return sprintf(page, "%u\n", sched_mc_power_savings);
  7836. }
  7837. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7838. const char *buf, size_t count)
  7839. {
  7840. return sched_power_savings_store(buf, count, 0);
  7841. }
  7842. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7843. sched_mc_power_savings_show,
  7844. sched_mc_power_savings_store);
  7845. #endif
  7846. #ifdef CONFIG_SCHED_SMT
  7847. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7848. char *page)
  7849. {
  7850. return sprintf(page, "%u\n", sched_smt_power_savings);
  7851. }
  7852. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7853. const char *buf, size_t count)
  7854. {
  7855. return sched_power_savings_store(buf, count, 1);
  7856. }
  7857. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7858. sched_smt_power_savings_show,
  7859. sched_smt_power_savings_store);
  7860. #endif
  7861. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7862. {
  7863. int err = 0;
  7864. #ifdef CONFIG_SCHED_SMT
  7865. if (smt_capable())
  7866. err = sysfs_create_file(&cls->kset.kobj,
  7867. &attr_sched_smt_power_savings.attr);
  7868. #endif
  7869. #ifdef CONFIG_SCHED_MC
  7870. if (!err && mc_capable())
  7871. err = sysfs_create_file(&cls->kset.kobj,
  7872. &attr_sched_mc_power_savings.attr);
  7873. #endif
  7874. return err;
  7875. }
  7876. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7877. #ifndef CONFIG_CPUSETS
  7878. /*
  7879. * Add online and remove offline CPUs from the scheduler domains.
  7880. * When cpusets are enabled they take over this function.
  7881. */
  7882. static int update_sched_domains(struct notifier_block *nfb,
  7883. unsigned long action, void *hcpu)
  7884. {
  7885. switch (action) {
  7886. case CPU_ONLINE:
  7887. case CPU_ONLINE_FROZEN:
  7888. case CPU_DOWN_PREPARE:
  7889. case CPU_DOWN_PREPARE_FROZEN:
  7890. case CPU_DOWN_FAILED:
  7891. case CPU_DOWN_FAILED_FROZEN:
  7892. partition_sched_domains(1, NULL, NULL);
  7893. return NOTIFY_OK;
  7894. default:
  7895. return NOTIFY_DONE;
  7896. }
  7897. }
  7898. #endif
  7899. static int update_runtime(struct notifier_block *nfb,
  7900. unsigned long action, void *hcpu)
  7901. {
  7902. int cpu = (int)(long)hcpu;
  7903. switch (action) {
  7904. case CPU_DOWN_PREPARE:
  7905. case CPU_DOWN_PREPARE_FROZEN:
  7906. disable_runtime(cpu_rq(cpu));
  7907. return NOTIFY_OK;
  7908. case CPU_DOWN_FAILED:
  7909. case CPU_DOWN_FAILED_FROZEN:
  7910. case CPU_ONLINE:
  7911. case CPU_ONLINE_FROZEN:
  7912. enable_runtime(cpu_rq(cpu));
  7913. return NOTIFY_OK;
  7914. default:
  7915. return NOTIFY_DONE;
  7916. }
  7917. }
  7918. void __init sched_init_smp(void)
  7919. {
  7920. cpumask_var_t non_isolated_cpus;
  7921. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7922. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7923. #if defined(CONFIG_NUMA)
  7924. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7925. GFP_KERNEL);
  7926. BUG_ON(sched_group_nodes_bycpu == NULL);
  7927. #endif
  7928. get_online_cpus();
  7929. mutex_lock(&sched_domains_mutex);
  7930. arch_init_sched_domains(cpu_active_mask);
  7931. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7932. if (cpumask_empty(non_isolated_cpus))
  7933. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7934. mutex_unlock(&sched_domains_mutex);
  7935. put_online_cpus();
  7936. #ifndef CONFIG_CPUSETS
  7937. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7938. hotcpu_notifier(update_sched_domains, 0);
  7939. #endif
  7940. /* RT runtime code needs to handle some hotplug events */
  7941. hotcpu_notifier(update_runtime, 0);
  7942. init_hrtick();
  7943. /* Move init over to a non-isolated CPU */
  7944. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7945. BUG();
  7946. sched_init_granularity();
  7947. free_cpumask_var(non_isolated_cpus);
  7948. init_sched_rt_class();
  7949. }
  7950. #else
  7951. void __init sched_init_smp(void)
  7952. {
  7953. sched_init_granularity();
  7954. }
  7955. #endif /* CONFIG_SMP */
  7956. const_debug unsigned int sysctl_timer_migration = 1;
  7957. int in_sched_functions(unsigned long addr)
  7958. {
  7959. return in_lock_functions(addr) ||
  7960. (addr >= (unsigned long)__sched_text_start
  7961. && addr < (unsigned long)__sched_text_end);
  7962. }
  7963. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7964. {
  7965. cfs_rq->tasks_timeline = RB_ROOT;
  7966. INIT_LIST_HEAD(&cfs_rq->tasks);
  7967. #ifdef CONFIG_FAIR_GROUP_SCHED
  7968. cfs_rq->rq = rq;
  7969. #endif
  7970. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7971. }
  7972. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7973. {
  7974. struct rt_prio_array *array;
  7975. int i;
  7976. array = &rt_rq->active;
  7977. for (i = 0; i < MAX_RT_PRIO; i++) {
  7978. INIT_LIST_HEAD(array->queue + i);
  7979. __clear_bit(i, array->bitmap);
  7980. }
  7981. /* delimiter for bitsearch: */
  7982. __set_bit(MAX_RT_PRIO, array->bitmap);
  7983. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7984. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7985. #ifdef CONFIG_SMP
  7986. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7987. #endif
  7988. #endif
  7989. #ifdef CONFIG_SMP
  7990. rt_rq->rt_nr_migratory = 0;
  7991. rt_rq->overloaded = 0;
  7992. plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
  7993. #endif
  7994. rt_rq->rt_time = 0;
  7995. rt_rq->rt_throttled = 0;
  7996. rt_rq->rt_runtime = 0;
  7997. spin_lock_init(&rt_rq->rt_runtime_lock);
  7998. #ifdef CONFIG_RT_GROUP_SCHED
  7999. rt_rq->rt_nr_boosted = 0;
  8000. rt_rq->rq = rq;
  8001. #endif
  8002. }
  8003. #ifdef CONFIG_FAIR_GROUP_SCHED
  8004. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  8005. struct sched_entity *se, int cpu, int add,
  8006. struct sched_entity *parent)
  8007. {
  8008. struct rq *rq = cpu_rq(cpu);
  8009. tg->cfs_rq[cpu] = cfs_rq;
  8010. init_cfs_rq(cfs_rq, rq);
  8011. cfs_rq->tg = tg;
  8012. if (add)
  8013. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  8014. tg->se[cpu] = se;
  8015. /* se could be NULL for init_task_group */
  8016. if (!se)
  8017. return;
  8018. if (!parent)
  8019. se->cfs_rq = &rq->cfs;
  8020. else
  8021. se->cfs_rq = parent->my_q;
  8022. se->my_q = cfs_rq;
  8023. se->load.weight = tg->shares;
  8024. se->load.inv_weight = 0;
  8025. se->parent = parent;
  8026. }
  8027. #endif
  8028. #ifdef CONFIG_RT_GROUP_SCHED
  8029. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8030. struct sched_rt_entity *rt_se, int cpu, int add,
  8031. struct sched_rt_entity *parent)
  8032. {
  8033. struct rq *rq = cpu_rq(cpu);
  8034. tg->rt_rq[cpu] = rt_rq;
  8035. init_rt_rq(rt_rq, rq);
  8036. rt_rq->tg = tg;
  8037. rt_rq->rt_se = rt_se;
  8038. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8039. if (add)
  8040. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8041. tg->rt_se[cpu] = rt_se;
  8042. if (!rt_se)
  8043. return;
  8044. if (!parent)
  8045. rt_se->rt_rq = &rq->rt;
  8046. else
  8047. rt_se->rt_rq = parent->my_q;
  8048. rt_se->my_q = rt_rq;
  8049. rt_se->parent = parent;
  8050. INIT_LIST_HEAD(&rt_se->run_list);
  8051. }
  8052. #endif
  8053. void __init sched_init(void)
  8054. {
  8055. int i, j;
  8056. unsigned long alloc_size = 0, ptr;
  8057. #ifdef CONFIG_FAIR_GROUP_SCHED
  8058. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8059. #endif
  8060. #ifdef CONFIG_RT_GROUP_SCHED
  8061. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8062. #endif
  8063. #ifdef CONFIG_USER_SCHED
  8064. alloc_size *= 2;
  8065. #endif
  8066. #ifdef CONFIG_CPUMASK_OFFSTACK
  8067. alloc_size += num_possible_cpus() * cpumask_size();
  8068. #endif
  8069. if (alloc_size) {
  8070. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8071. #ifdef CONFIG_FAIR_GROUP_SCHED
  8072. init_task_group.se = (struct sched_entity **)ptr;
  8073. ptr += nr_cpu_ids * sizeof(void **);
  8074. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8075. ptr += nr_cpu_ids * sizeof(void **);
  8076. #ifdef CONFIG_USER_SCHED
  8077. root_task_group.se = (struct sched_entity **)ptr;
  8078. ptr += nr_cpu_ids * sizeof(void **);
  8079. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8080. ptr += nr_cpu_ids * sizeof(void **);
  8081. #endif /* CONFIG_USER_SCHED */
  8082. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8083. #ifdef CONFIG_RT_GROUP_SCHED
  8084. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8085. ptr += nr_cpu_ids * sizeof(void **);
  8086. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8087. ptr += nr_cpu_ids * sizeof(void **);
  8088. #ifdef CONFIG_USER_SCHED
  8089. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8090. ptr += nr_cpu_ids * sizeof(void **);
  8091. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8092. ptr += nr_cpu_ids * sizeof(void **);
  8093. #endif /* CONFIG_USER_SCHED */
  8094. #endif /* CONFIG_RT_GROUP_SCHED */
  8095. #ifdef CONFIG_CPUMASK_OFFSTACK
  8096. for_each_possible_cpu(i) {
  8097. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8098. ptr += cpumask_size();
  8099. }
  8100. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8101. }
  8102. #ifdef CONFIG_SMP
  8103. init_defrootdomain();
  8104. #endif
  8105. init_rt_bandwidth(&def_rt_bandwidth,
  8106. global_rt_period(), global_rt_runtime());
  8107. #ifdef CONFIG_RT_GROUP_SCHED
  8108. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8109. global_rt_period(), global_rt_runtime());
  8110. #ifdef CONFIG_USER_SCHED
  8111. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8112. global_rt_period(), RUNTIME_INF);
  8113. #endif /* CONFIG_USER_SCHED */
  8114. #endif /* CONFIG_RT_GROUP_SCHED */
  8115. #ifdef CONFIG_GROUP_SCHED
  8116. list_add(&init_task_group.list, &task_groups);
  8117. INIT_LIST_HEAD(&init_task_group.children);
  8118. #ifdef CONFIG_USER_SCHED
  8119. INIT_LIST_HEAD(&root_task_group.children);
  8120. init_task_group.parent = &root_task_group;
  8121. list_add(&init_task_group.siblings, &root_task_group.children);
  8122. #endif /* CONFIG_USER_SCHED */
  8123. #endif /* CONFIG_GROUP_SCHED */
  8124. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8125. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8126. __alignof__(unsigned long));
  8127. #endif
  8128. for_each_possible_cpu(i) {
  8129. struct rq *rq;
  8130. rq = cpu_rq(i);
  8131. spin_lock_init(&rq->lock);
  8132. rq->nr_running = 0;
  8133. rq->calc_load_active = 0;
  8134. rq->calc_load_update = jiffies + LOAD_FREQ;
  8135. init_cfs_rq(&rq->cfs, rq);
  8136. init_rt_rq(&rq->rt, rq);
  8137. #ifdef CONFIG_FAIR_GROUP_SCHED
  8138. init_task_group.shares = init_task_group_load;
  8139. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8140. #ifdef CONFIG_CGROUP_SCHED
  8141. /*
  8142. * How much cpu bandwidth does init_task_group get?
  8143. *
  8144. * In case of task-groups formed thr' the cgroup filesystem, it
  8145. * gets 100% of the cpu resources in the system. This overall
  8146. * system cpu resource is divided among the tasks of
  8147. * init_task_group and its child task-groups in a fair manner,
  8148. * based on each entity's (task or task-group's) weight
  8149. * (se->load.weight).
  8150. *
  8151. * In other words, if init_task_group has 10 tasks of weight
  8152. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8153. * then A0's share of the cpu resource is:
  8154. *
  8155. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8156. *
  8157. * We achieve this by letting init_task_group's tasks sit
  8158. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8159. */
  8160. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8161. #elif defined CONFIG_USER_SCHED
  8162. root_task_group.shares = NICE_0_LOAD;
  8163. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8164. /*
  8165. * In case of task-groups formed thr' the user id of tasks,
  8166. * init_task_group represents tasks belonging to root user.
  8167. * Hence it forms a sibling of all subsequent groups formed.
  8168. * In this case, init_task_group gets only a fraction of overall
  8169. * system cpu resource, based on the weight assigned to root
  8170. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8171. * by letting tasks of init_task_group sit in a separate cfs_rq
  8172. * (init_tg_cfs_rq) and having one entity represent this group of
  8173. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8174. */
  8175. init_tg_cfs_entry(&init_task_group,
  8176. &per_cpu(init_tg_cfs_rq, i),
  8177. &per_cpu(init_sched_entity, i), i, 1,
  8178. root_task_group.se[i]);
  8179. #endif
  8180. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8181. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8182. #ifdef CONFIG_RT_GROUP_SCHED
  8183. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8184. #ifdef CONFIG_CGROUP_SCHED
  8185. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8186. #elif defined CONFIG_USER_SCHED
  8187. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8188. init_tg_rt_entry(&init_task_group,
  8189. &per_cpu(init_rt_rq, i),
  8190. &per_cpu(init_sched_rt_entity, i), i, 1,
  8191. root_task_group.rt_se[i]);
  8192. #endif
  8193. #endif
  8194. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8195. rq->cpu_load[j] = 0;
  8196. #ifdef CONFIG_SMP
  8197. rq->sd = NULL;
  8198. rq->rd = NULL;
  8199. rq->post_schedule = 0;
  8200. rq->active_balance = 0;
  8201. rq->next_balance = jiffies;
  8202. rq->push_cpu = 0;
  8203. rq->cpu = i;
  8204. rq->online = 0;
  8205. rq->migration_thread = NULL;
  8206. rq->idle_stamp = 0;
  8207. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8208. INIT_LIST_HEAD(&rq->migration_queue);
  8209. rq_attach_root(rq, &def_root_domain);
  8210. #endif
  8211. init_rq_hrtick(rq);
  8212. atomic_set(&rq->nr_iowait, 0);
  8213. }
  8214. set_load_weight(&init_task);
  8215. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8216. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8217. #endif
  8218. #ifdef CONFIG_SMP
  8219. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8220. #endif
  8221. #ifdef CONFIG_RT_MUTEXES
  8222. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8223. #endif
  8224. /*
  8225. * The boot idle thread does lazy MMU switching as well:
  8226. */
  8227. atomic_inc(&init_mm.mm_count);
  8228. enter_lazy_tlb(&init_mm, current);
  8229. /*
  8230. * Make us the idle thread. Technically, schedule() should not be
  8231. * called from this thread, however somewhere below it might be,
  8232. * but because we are the idle thread, we just pick up running again
  8233. * when this runqueue becomes "idle".
  8234. */
  8235. init_idle(current, smp_processor_id());
  8236. calc_load_update = jiffies + LOAD_FREQ;
  8237. /*
  8238. * During early bootup we pretend to be a normal task:
  8239. */
  8240. current->sched_class = &fair_sched_class;
  8241. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8242. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8243. #ifdef CONFIG_SMP
  8244. #ifdef CONFIG_NO_HZ
  8245. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8246. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8247. #endif
  8248. /* May be allocated at isolcpus cmdline parse time */
  8249. if (cpu_isolated_map == NULL)
  8250. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8251. #endif /* SMP */
  8252. perf_event_init();
  8253. scheduler_running = 1;
  8254. }
  8255. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8256. static inline int preempt_count_equals(int preempt_offset)
  8257. {
  8258. int nested = preempt_count() & ~PREEMPT_ACTIVE;
  8259. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8260. }
  8261. void __might_sleep(char *file, int line, int preempt_offset)
  8262. {
  8263. #ifdef in_atomic
  8264. static unsigned long prev_jiffy; /* ratelimiting */
  8265. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8266. system_state != SYSTEM_RUNNING || oops_in_progress)
  8267. return;
  8268. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8269. return;
  8270. prev_jiffy = jiffies;
  8271. printk(KERN_ERR
  8272. "BUG: sleeping function called from invalid context at %s:%d\n",
  8273. file, line);
  8274. printk(KERN_ERR
  8275. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8276. in_atomic(), irqs_disabled(),
  8277. current->pid, current->comm);
  8278. debug_show_held_locks(current);
  8279. if (irqs_disabled())
  8280. print_irqtrace_events(current);
  8281. dump_stack();
  8282. #endif
  8283. }
  8284. EXPORT_SYMBOL(__might_sleep);
  8285. #endif
  8286. #ifdef CONFIG_MAGIC_SYSRQ
  8287. static void normalize_task(struct rq *rq, struct task_struct *p)
  8288. {
  8289. int on_rq;
  8290. update_rq_clock(rq);
  8291. on_rq = p->se.on_rq;
  8292. if (on_rq)
  8293. deactivate_task(rq, p, 0);
  8294. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8295. if (on_rq) {
  8296. activate_task(rq, p, 0);
  8297. resched_task(rq->curr);
  8298. }
  8299. }
  8300. void normalize_rt_tasks(void)
  8301. {
  8302. struct task_struct *g, *p;
  8303. unsigned long flags;
  8304. struct rq *rq;
  8305. read_lock_irqsave(&tasklist_lock, flags);
  8306. do_each_thread(g, p) {
  8307. /*
  8308. * Only normalize user tasks:
  8309. */
  8310. if (!p->mm)
  8311. continue;
  8312. p->se.exec_start = 0;
  8313. #ifdef CONFIG_SCHEDSTATS
  8314. p->se.wait_start = 0;
  8315. p->se.sleep_start = 0;
  8316. p->se.block_start = 0;
  8317. #endif
  8318. if (!rt_task(p)) {
  8319. /*
  8320. * Renice negative nice level userspace
  8321. * tasks back to 0:
  8322. */
  8323. if (TASK_NICE(p) < 0 && p->mm)
  8324. set_user_nice(p, 0);
  8325. continue;
  8326. }
  8327. spin_lock(&p->pi_lock);
  8328. rq = __task_rq_lock(p);
  8329. normalize_task(rq, p);
  8330. __task_rq_unlock(rq);
  8331. spin_unlock(&p->pi_lock);
  8332. } while_each_thread(g, p);
  8333. read_unlock_irqrestore(&tasklist_lock, flags);
  8334. }
  8335. #endif /* CONFIG_MAGIC_SYSRQ */
  8336. #ifdef CONFIG_IA64
  8337. /*
  8338. * These functions are only useful for the IA64 MCA handling.
  8339. *
  8340. * They can only be called when the whole system has been
  8341. * stopped - every CPU needs to be quiescent, and no scheduling
  8342. * activity can take place. Using them for anything else would
  8343. * be a serious bug, and as a result, they aren't even visible
  8344. * under any other configuration.
  8345. */
  8346. /**
  8347. * curr_task - return the current task for a given cpu.
  8348. * @cpu: the processor in question.
  8349. *
  8350. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8351. */
  8352. struct task_struct *curr_task(int cpu)
  8353. {
  8354. return cpu_curr(cpu);
  8355. }
  8356. /**
  8357. * set_curr_task - set the current task for a given cpu.
  8358. * @cpu: the processor in question.
  8359. * @p: the task pointer to set.
  8360. *
  8361. * Description: This function must only be used when non-maskable interrupts
  8362. * are serviced on a separate stack. It allows the architecture to switch the
  8363. * notion of the current task on a cpu in a non-blocking manner. This function
  8364. * must be called with all CPU's synchronized, and interrupts disabled, the
  8365. * and caller must save the original value of the current task (see
  8366. * curr_task() above) and restore that value before reenabling interrupts and
  8367. * re-starting the system.
  8368. *
  8369. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8370. */
  8371. void set_curr_task(int cpu, struct task_struct *p)
  8372. {
  8373. cpu_curr(cpu) = p;
  8374. }
  8375. #endif
  8376. #ifdef CONFIG_FAIR_GROUP_SCHED
  8377. static void free_fair_sched_group(struct task_group *tg)
  8378. {
  8379. int i;
  8380. for_each_possible_cpu(i) {
  8381. if (tg->cfs_rq)
  8382. kfree(tg->cfs_rq[i]);
  8383. if (tg->se)
  8384. kfree(tg->se[i]);
  8385. }
  8386. kfree(tg->cfs_rq);
  8387. kfree(tg->se);
  8388. }
  8389. static
  8390. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8391. {
  8392. struct cfs_rq *cfs_rq;
  8393. struct sched_entity *se;
  8394. struct rq *rq;
  8395. int i;
  8396. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8397. if (!tg->cfs_rq)
  8398. goto err;
  8399. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8400. if (!tg->se)
  8401. goto err;
  8402. tg->shares = NICE_0_LOAD;
  8403. for_each_possible_cpu(i) {
  8404. rq = cpu_rq(i);
  8405. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8406. GFP_KERNEL, cpu_to_node(i));
  8407. if (!cfs_rq)
  8408. goto err;
  8409. se = kzalloc_node(sizeof(struct sched_entity),
  8410. GFP_KERNEL, cpu_to_node(i));
  8411. if (!se)
  8412. goto err;
  8413. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8414. }
  8415. return 1;
  8416. err:
  8417. return 0;
  8418. }
  8419. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8420. {
  8421. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8422. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8423. }
  8424. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8425. {
  8426. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8427. }
  8428. #else /* !CONFG_FAIR_GROUP_SCHED */
  8429. static inline void free_fair_sched_group(struct task_group *tg)
  8430. {
  8431. }
  8432. static inline
  8433. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8434. {
  8435. return 1;
  8436. }
  8437. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8438. {
  8439. }
  8440. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8441. {
  8442. }
  8443. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8444. #ifdef CONFIG_RT_GROUP_SCHED
  8445. static void free_rt_sched_group(struct task_group *tg)
  8446. {
  8447. int i;
  8448. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8449. for_each_possible_cpu(i) {
  8450. if (tg->rt_rq)
  8451. kfree(tg->rt_rq[i]);
  8452. if (tg->rt_se)
  8453. kfree(tg->rt_se[i]);
  8454. }
  8455. kfree(tg->rt_rq);
  8456. kfree(tg->rt_se);
  8457. }
  8458. static
  8459. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8460. {
  8461. struct rt_rq *rt_rq;
  8462. struct sched_rt_entity *rt_se;
  8463. struct rq *rq;
  8464. int i;
  8465. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8466. if (!tg->rt_rq)
  8467. goto err;
  8468. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8469. if (!tg->rt_se)
  8470. goto err;
  8471. init_rt_bandwidth(&tg->rt_bandwidth,
  8472. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8473. for_each_possible_cpu(i) {
  8474. rq = cpu_rq(i);
  8475. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8476. GFP_KERNEL, cpu_to_node(i));
  8477. if (!rt_rq)
  8478. goto err;
  8479. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8480. GFP_KERNEL, cpu_to_node(i));
  8481. if (!rt_se)
  8482. goto err;
  8483. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8484. }
  8485. return 1;
  8486. err:
  8487. return 0;
  8488. }
  8489. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8490. {
  8491. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8492. &cpu_rq(cpu)->leaf_rt_rq_list);
  8493. }
  8494. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8495. {
  8496. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8497. }
  8498. #else /* !CONFIG_RT_GROUP_SCHED */
  8499. static inline void free_rt_sched_group(struct task_group *tg)
  8500. {
  8501. }
  8502. static inline
  8503. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8504. {
  8505. return 1;
  8506. }
  8507. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8508. {
  8509. }
  8510. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8511. {
  8512. }
  8513. #endif /* CONFIG_RT_GROUP_SCHED */
  8514. #ifdef CONFIG_GROUP_SCHED
  8515. static void free_sched_group(struct task_group *tg)
  8516. {
  8517. free_fair_sched_group(tg);
  8518. free_rt_sched_group(tg);
  8519. kfree(tg);
  8520. }
  8521. /* allocate runqueue etc for a new task group */
  8522. struct task_group *sched_create_group(struct task_group *parent)
  8523. {
  8524. struct task_group *tg;
  8525. unsigned long flags;
  8526. int i;
  8527. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8528. if (!tg)
  8529. return ERR_PTR(-ENOMEM);
  8530. if (!alloc_fair_sched_group(tg, parent))
  8531. goto err;
  8532. if (!alloc_rt_sched_group(tg, parent))
  8533. goto err;
  8534. spin_lock_irqsave(&task_group_lock, flags);
  8535. for_each_possible_cpu(i) {
  8536. register_fair_sched_group(tg, i);
  8537. register_rt_sched_group(tg, i);
  8538. }
  8539. list_add_rcu(&tg->list, &task_groups);
  8540. WARN_ON(!parent); /* root should already exist */
  8541. tg->parent = parent;
  8542. INIT_LIST_HEAD(&tg->children);
  8543. list_add_rcu(&tg->siblings, &parent->children);
  8544. spin_unlock_irqrestore(&task_group_lock, flags);
  8545. return tg;
  8546. err:
  8547. free_sched_group(tg);
  8548. return ERR_PTR(-ENOMEM);
  8549. }
  8550. /* rcu callback to free various structures associated with a task group */
  8551. static void free_sched_group_rcu(struct rcu_head *rhp)
  8552. {
  8553. /* now it should be safe to free those cfs_rqs */
  8554. free_sched_group(container_of(rhp, struct task_group, rcu));
  8555. }
  8556. /* Destroy runqueue etc associated with a task group */
  8557. void sched_destroy_group(struct task_group *tg)
  8558. {
  8559. unsigned long flags;
  8560. int i;
  8561. spin_lock_irqsave(&task_group_lock, flags);
  8562. for_each_possible_cpu(i) {
  8563. unregister_fair_sched_group(tg, i);
  8564. unregister_rt_sched_group(tg, i);
  8565. }
  8566. list_del_rcu(&tg->list);
  8567. list_del_rcu(&tg->siblings);
  8568. spin_unlock_irqrestore(&task_group_lock, flags);
  8569. /* wait for possible concurrent references to cfs_rqs complete */
  8570. call_rcu(&tg->rcu, free_sched_group_rcu);
  8571. }
  8572. /* change task's runqueue when it moves between groups.
  8573. * The caller of this function should have put the task in its new group
  8574. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8575. * reflect its new group.
  8576. */
  8577. void sched_move_task(struct task_struct *tsk)
  8578. {
  8579. int on_rq, running;
  8580. unsigned long flags;
  8581. struct rq *rq;
  8582. rq = task_rq_lock(tsk, &flags);
  8583. update_rq_clock(rq);
  8584. running = task_current(rq, tsk);
  8585. on_rq = tsk->se.on_rq;
  8586. if (on_rq)
  8587. dequeue_task(rq, tsk, 0);
  8588. if (unlikely(running))
  8589. tsk->sched_class->put_prev_task(rq, tsk);
  8590. set_task_rq(tsk, task_cpu(tsk));
  8591. #ifdef CONFIG_FAIR_GROUP_SCHED
  8592. if (tsk->sched_class->moved_group)
  8593. tsk->sched_class->moved_group(tsk);
  8594. #endif
  8595. if (unlikely(running))
  8596. tsk->sched_class->set_curr_task(rq);
  8597. if (on_rq)
  8598. enqueue_task(rq, tsk, 0);
  8599. task_rq_unlock(rq, &flags);
  8600. }
  8601. #endif /* CONFIG_GROUP_SCHED */
  8602. #ifdef CONFIG_FAIR_GROUP_SCHED
  8603. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8604. {
  8605. struct cfs_rq *cfs_rq = se->cfs_rq;
  8606. int on_rq;
  8607. on_rq = se->on_rq;
  8608. if (on_rq)
  8609. dequeue_entity(cfs_rq, se, 0);
  8610. se->load.weight = shares;
  8611. se->load.inv_weight = 0;
  8612. if (on_rq)
  8613. enqueue_entity(cfs_rq, se, 0);
  8614. }
  8615. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8616. {
  8617. struct cfs_rq *cfs_rq = se->cfs_rq;
  8618. struct rq *rq = cfs_rq->rq;
  8619. unsigned long flags;
  8620. spin_lock_irqsave(&rq->lock, flags);
  8621. __set_se_shares(se, shares);
  8622. spin_unlock_irqrestore(&rq->lock, flags);
  8623. }
  8624. static DEFINE_MUTEX(shares_mutex);
  8625. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8626. {
  8627. int i;
  8628. unsigned long flags;
  8629. /*
  8630. * We can't change the weight of the root cgroup.
  8631. */
  8632. if (!tg->se[0])
  8633. return -EINVAL;
  8634. if (shares < MIN_SHARES)
  8635. shares = MIN_SHARES;
  8636. else if (shares > MAX_SHARES)
  8637. shares = MAX_SHARES;
  8638. mutex_lock(&shares_mutex);
  8639. if (tg->shares == shares)
  8640. goto done;
  8641. spin_lock_irqsave(&task_group_lock, flags);
  8642. for_each_possible_cpu(i)
  8643. unregister_fair_sched_group(tg, i);
  8644. list_del_rcu(&tg->siblings);
  8645. spin_unlock_irqrestore(&task_group_lock, flags);
  8646. /* wait for any ongoing reference to this group to finish */
  8647. synchronize_sched();
  8648. /*
  8649. * Now we are free to modify the group's share on each cpu
  8650. * w/o tripping rebalance_share or load_balance_fair.
  8651. */
  8652. tg->shares = shares;
  8653. for_each_possible_cpu(i) {
  8654. /*
  8655. * force a rebalance
  8656. */
  8657. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8658. set_se_shares(tg->se[i], shares);
  8659. }
  8660. /*
  8661. * Enable load balance activity on this group, by inserting it back on
  8662. * each cpu's rq->leaf_cfs_rq_list.
  8663. */
  8664. spin_lock_irqsave(&task_group_lock, flags);
  8665. for_each_possible_cpu(i)
  8666. register_fair_sched_group(tg, i);
  8667. list_add_rcu(&tg->siblings, &tg->parent->children);
  8668. spin_unlock_irqrestore(&task_group_lock, flags);
  8669. done:
  8670. mutex_unlock(&shares_mutex);
  8671. return 0;
  8672. }
  8673. unsigned long sched_group_shares(struct task_group *tg)
  8674. {
  8675. return tg->shares;
  8676. }
  8677. #endif
  8678. #ifdef CONFIG_RT_GROUP_SCHED
  8679. /*
  8680. * Ensure that the real time constraints are schedulable.
  8681. */
  8682. static DEFINE_MUTEX(rt_constraints_mutex);
  8683. static unsigned long to_ratio(u64 period, u64 runtime)
  8684. {
  8685. if (runtime == RUNTIME_INF)
  8686. return 1ULL << 20;
  8687. return div64_u64(runtime << 20, period);
  8688. }
  8689. /* Must be called with tasklist_lock held */
  8690. static inline int tg_has_rt_tasks(struct task_group *tg)
  8691. {
  8692. struct task_struct *g, *p;
  8693. do_each_thread(g, p) {
  8694. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8695. return 1;
  8696. } while_each_thread(g, p);
  8697. return 0;
  8698. }
  8699. struct rt_schedulable_data {
  8700. struct task_group *tg;
  8701. u64 rt_period;
  8702. u64 rt_runtime;
  8703. };
  8704. static int tg_schedulable(struct task_group *tg, void *data)
  8705. {
  8706. struct rt_schedulable_data *d = data;
  8707. struct task_group *child;
  8708. unsigned long total, sum = 0;
  8709. u64 period, runtime;
  8710. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8711. runtime = tg->rt_bandwidth.rt_runtime;
  8712. if (tg == d->tg) {
  8713. period = d->rt_period;
  8714. runtime = d->rt_runtime;
  8715. }
  8716. #ifdef CONFIG_USER_SCHED
  8717. if (tg == &root_task_group) {
  8718. period = global_rt_period();
  8719. runtime = global_rt_runtime();
  8720. }
  8721. #endif
  8722. /*
  8723. * Cannot have more runtime than the period.
  8724. */
  8725. if (runtime > period && runtime != RUNTIME_INF)
  8726. return -EINVAL;
  8727. /*
  8728. * Ensure we don't starve existing RT tasks.
  8729. */
  8730. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8731. return -EBUSY;
  8732. total = to_ratio(period, runtime);
  8733. /*
  8734. * Nobody can have more than the global setting allows.
  8735. */
  8736. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8737. return -EINVAL;
  8738. /*
  8739. * The sum of our children's runtime should not exceed our own.
  8740. */
  8741. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8742. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8743. runtime = child->rt_bandwidth.rt_runtime;
  8744. if (child == d->tg) {
  8745. period = d->rt_period;
  8746. runtime = d->rt_runtime;
  8747. }
  8748. sum += to_ratio(period, runtime);
  8749. }
  8750. if (sum > total)
  8751. return -EINVAL;
  8752. return 0;
  8753. }
  8754. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8755. {
  8756. struct rt_schedulable_data data = {
  8757. .tg = tg,
  8758. .rt_period = period,
  8759. .rt_runtime = runtime,
  8760. };
  8761. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8762. }
  8763. static int tg_set_bandwidth(struct task_group *tg,
  8764. u64 rt_period, u64 rt_runtime)
  8765. {
  8766. int i, err = 0;
  8767. mutex_lock(&rt_constraints_mutex);
  8768. read_lock(&tasklist_lock);
  8769. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8770. if (err)
  8771. goto unlock;
  8772. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8773. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8774. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8775. for_each_possible_cpu(i) {
  8776. struct rt_rq *rt_rq = tg->rt_rq[i];
  8777. spin_lock(&rt_rq->rt_runtime_lock);
  8778. rt_rq->rt_runtime = rt_runtime;
  8779. spin_unlock(&rt_rq->rt_runtime_lock);
  8780. }
  8781. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8782. unlock:
  8783. read_unlock(&tasklist_lock);
  8784. mutex_unlock(&rt_constraints_mutex);
  8785. return err;
  8786. }
  8787. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8788. {
  8789. u64 rt_runtime, rt_period;
  8790. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8791. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8792. if (rt_runtime_us < 0)
  8793. rt_runtime = RUNTIME_INF;
  8794. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8795. }
  8796. long sched_group_rt_runtime(struct task_group *tg)
  8797. {
  8798. u64 rt_runtime_us;
  8799. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8800. return -1;
  8801. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8802. do_div(rt_runtime_us, NSEC_PER_USEC);
  8803. return rt_runtime_us;
  8804. }
  8805. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8806. {
  8807. u64 rt_runtime, rt_period;
  8808. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8809. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8810. if (rt_period == 0)
  8811. return -EINVAL;
  8812. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8813. }
  8814. long sched_group_rt_period(struct task_group *tg)
  8815. {
  8816. u64 rt_period_us;
  8817. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8818. do_div(rt_period_us, NSEC_PER_USEC);
  8819. return rt_period_us;
  8820. }
  8821. static int sched_rt_global_constraints(void)
  8822. {
  8823. u64 runtime, period;
  8824. int ret = 0;
  8825. if (sysctl_sched_rt_period <= 0)
  8826. return -EINVAL;
  8827. runtime = global_rt_runtime();
  8828. period = global_rt_period();
  8829. /*
  8830. * Sanity check on the sysctl variables.
  8831. */
  8832. if (runtime > period && runtime != RUNTIME_INF)
  8833. return -EINVAL;
  8834. mutex_lock(&rt_constraints_mutex);
  8835. read_lock(&tasklist_lock);
  8836. ret = __rt_schedulable(NULL, 0, 0);
  8837. read_unlock(&tasklist_lock);
  8838. mutex_unlock(&rt_constraints_mutex);
  8839. return ret;
  8840. }
  8841. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8842. {
  8843. /* Don't accept realtime tasks when there is no way for them to run */
  8844. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8845. return 0;
  8846. return 1;
  8847. }
  8848. #else /* !CONFIG_RT_GROUP_SCHED */
  8849. static int sched_rt_global_constraints(void)
  8850. {
  8851. unsigned long flags;
  8852. int i;
  8853. if (sysctl_sched_rt_period <= 0)
  8854. return -EINVAL;
  8855. /*
  8856. * There's always some RT tasks in the root group
  8857. * -- migration, kstopmachine etc..
  8858. */
  8859. if (sysctl_sched_rt_runtime == 0)
  8860. return -EBUSY;
  8861. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8862. for_each_possible_cpu(i) {
  8863. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8864. spin_lock(&rt_rq->rt_runtime_lock);
  8865. rt_rq->rt_runtime = global_rt_runtime();
  8866. spin_unlock(&rt_rq->rt_runtime_lock);
  8867. }
  8868. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8869. return 0;
  8870. }
  8871. #endif /* CONFIG_RT_GROUP_SCHED */
  8872. int sched_rt_handler(struct ctl_table *table, int write,
  8873. void __user *buffer, size_t *lenp,
  8874. loff_t *ppos)
  8875. {
  8876. int ret;
  8877. int old_period, old_runtime;
  8878. static DEFINE_MUTEX(mutex);
  8879. mutex_lock(&mutex);
  8880. old_period = sysctl_sched_rt_period;
  8881. old_runtime = sysctl_sched_rt_runtime;
  8882. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8883. if (!ret && write) {
  8884. ret = sched_rt_global_constraints();
  8885. if (ret) {
  8886. sysctl_sched_rt_period = old_period;
  8887. sysctl_sched_rt_runtime = old_runtime;
  8888. } else {
  8889. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8890. def_rt_bandwidth.rt_period =
  8891. ns_to_ktime(global_rt_period());
  8892. }
  8893. }
  8894. mutex_unlock(&mutex);
  8895. return ret;
  8896. }
  8897. #ifdef CONFIG_CGROUP_SCHED
  8898. /* return corresponding task_group object of a cgroup */
  8899. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8900. {
  8901. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8902. struct task_group, css);
  8903. }
  8904. static struct cgroup_subsys_state *
  8905. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8906. {
  8907. struct task_group *tg, *parent;
  8908. if (!cgrp->parent) {
  8909. /* This is early initialization for the top cgroup */
  8910. return &init_task_group.css;
  8911. }
  8912. parent = cgroup_tg(cgrp->parent);
  8913. tg = sched_create_group(parent);
  8914. if (IS_ERR(tg))
  8915. return ERR_PTR(-ENOMEM);
  8916. return &tg->css;
  8917. }
  8918. static void
  8919. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8920. {
  8921. struct task_group *tg = cgroup_tg(cgrp);
  8922. sched_destroy_group(tg);
  8923. }
  8924. static int
  8925. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8926. {
  8927. #ifdef CONFIG_RT_GROUP_SCHED
  8928. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8929. return -EINVAL;
  8930. #else
  8931. /* We don't support RT-tasks being in separate groups */
  8932. if (tsk->sched_class != &fair_sched_class)
  8933. return -EINVAL;
  8934. #endif
  8935. return 0;
  8936. }
  8937. static int
  8938. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8939. struct task_struct *tsk, bool threadgroup)
  8940. {
  8941. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8942. if (retval)
  8943. return retval;
  8944. if (threadgroup) {
  8945. struct task_struct *c;
  8946. rcu_read_lock();
  8947. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8948. retval = cpu_cgroup_can_attach_task(cgrp, c);
  8949. if (retval) {
  8950. rcu_read_unlock();
  8951. return retval;
  8952. }
  8953. }
  8954. rcu_read_unlock();
  8955. }
  8956. return 0;
  8957. }
  8958. static void
  8959. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8960. struct cgroup *old_cont, struct task_struct *tsk,
  8961. bool threadgroup)
  8962. {
  8963. sched_move_task(tsk);
  8964. if (threadgroup) {
  8965. struct task_struct *c;
  8966. rcu_read_lock();
  8967. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  8968. sched_move_task(c);
  8969. }
  8970. rcu_read_unlock();
  8971. }
  8972. }
  8973. #ifdef CONFIG_FAIR_GROUP_SCHED
  8974. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8975. u64 shareval)
  8976. {
  8977. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8978. }
  8979. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8980. {
  8981. struct task_group *tg = cgroup_tg(cgrp);
  8982. return (u64) tg->shares;
  8983. }
  8984. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8985. #ifdef CONFIG_RT_GROUP_SCHED
  8986. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8987. s64 val)
  8988. {
  8989. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8990. }
  8991. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8992. {
  8993. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8994. }
  8995. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8996. u64 rt_period_us)
  8997. {
  8998. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8999. }
  9000. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  9001. {
  9002. return sched_group_rt_period(cgroup_tg(cgrp));
  9003. }
  9004. #endif /* CONFIG_RT_GROUP_SCHED */
  9005. static struct cftype cpu_files[] = {
  9006. #ifdef CONFIG_FAIR_GROUP_SCHED
  9007. {
  9008. .name = "shares",
  9009. .read_u64 = cpu_shares_read_u64,
  9010. .write_u64 = cpu_shares_write_u64,
  9011. },
  9012. #endif
  9013. #ifdef CONFIG_RT_GROUP_SCHED
  9014. {
  9015. .name = "rt_runtime_us",
  9016. .read_s64 = cpu_rt_runtime_read,
  9017. .write_s64 = cpu_rt_runtime_write,
  9018. },
  9019. {
  9020. .name = "rt_period_us",
  9021. .read_u64 = cpu_rt_period_read_uint,
  9022. .write_u64 = cpu_rt_period_write_uint,
  9023. },
  9024. #endif
  9025. };
  9026. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9027. {
  9028. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9029. }
  9030. struct cgroup_subsys cpu_cgroup_subsys = {
  9031. .name = "cpu",
  9032. .create = cpu_cgroup_create,
  9033. .destroy = cpu_cgroup_destroy,
  9034. .can_attach = cpu_cgroup_can_attach,
  9035. .attach = cpu_cgroup_attach,
  9036. .populate = cpu_cgroup_populate,
  9037. .subsys_id = cpu_cgroup_subsys_id,
  9038. .early_init = 1,
  9039. };
  9040. #endif /* CONFIG_CGROUP_SCHED */
  9041. #ifdef CONFIG_CGROUP_CPUACCT
  9042. /*
  9043. * CPU accounting code for task groups.
  9044. *
  9045. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9046. * (balbir@in.ibm.com).
  9047. */
  9048. /* track cpu usage of a group of tasks and its child groups */
  9049. struct cpuacct {
  9050. struct cgroup_subsys_state css;
  9051. /* cpuusage holds pointer to a u64-type object on every cpu */
  9052. u64 *cpuusage;
  9053. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9054. struct cpuacct *parent;
  9055. };
  9056. struct cgroup_subsys cpuacct_subsys;
  9057. /* return cpu accounting group corresponding to this container */
  9058. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9059. {
  9060. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9061. struct cpuacct, css);
  9062. }
  9063. /* return cpu accounting group to which this task belongs */
  9064. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9065. {
  9066. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9067. struct cpuacct, css);
  9068. }
  9069. /* create a new cpu accounting group */
  9070. static struct cgroup_subsys_state *cpuacct_create(
  9071. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9072. {
  9073. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9074. int i;
  9075. if (!ca)
  9076. goto out;
  9077. ca->cpuusage = alloc_percpu(u64);
  9078. if (!ca->cpuusage)
  9079. goto out_free_ca;
  9080. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9081. if (percpu_counter_init(&ca->cpustat[i], 0))
  9082. goto out_free_counters;
  9083. if (cgrp->parent)
  9084. ca->parent = cgroup_ca(cgrp->parent);
  9085. return &ca->css;
  9086. out_free_counters:
  9087. while (--i >= 0)
  9088. percpu_counter_destroy(&ca->cpustat[i]);
  9089. free_percpu(ca->cpuusage);
  9090. out_free_ca:
  9091. kfree(ca);
  9092. out:
  9093. return ERR_PTR(-ENOMEM);
  9094. }
  9095. /* destroy an existing cpu accounting group */
  9096. static void
  9097. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9098. {
  9099. struct cpuacct *ca = cgroup_ca(cgrp);
  9100. int i;
  9101. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9102. percpu_counter_destroy(&ca->cpustat[i]);
  9103. free_percpu(ca->cpuusage);
  9104. kfree(ca);
  9105. }
  9106. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9107. {
  9108. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9109. u64 data;
  9110. #ifndef CONFIG_64BIT
  9111. /*
  9112. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9113. */
  9114. spin_lock_irq(&cpu_rq(cpu)->lock);
  9115. data = *cpuusage;
  9116. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9117. #else
  9118. data = *cpuusage;
  9119. #endif
  9120. return data;
  9121. }
  9122. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9123. {
  9124. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9125. #ifndef CONFIG_64BIT
  9126. /*
  9127. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9128. */
  9129. spin_lock_irq(&cpu_rq(cpu)->lock);
  9130. *cpuusage = val;
  9131. spin_unlock_irq(&cpu_rq(cpu)->lock);
  9132. #else
  9133. *cpuusage = val;
  9134. #endif
  9135. }
  9136. /* return total cpu usage (in nanoseconds) of a group */
  9137. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9138. {
  9139. struct cpuacct *ca = cgroup_ca(cgrp);
  9140. u64 totalcpuusage = 0;
  9141. int i;
  9142. for_each_present_cpu(i)
  9143. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9144. return totalcpuusage;
  9145. }
  9146. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9147. u64 reset)
  9148. {
  9149. struct cpuacct *ca = cgroup_ca(cgrp);
  9150. int err = 0;
  9151. int i;
  9152. if (reset) {
  9153. err = -EINVAL;
  9154. goto out;
  9155. }
  9156. for_each_present_cpu(i)
  9157. cpuacct_cpuusage_write(ca, i, 0);
  9158. out:
  9159. return err;
  9160. }
  9161. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9162. struct seq_file *m)
  9163. {
  9164. struct cpuacct *ca = cgroup_ca(cgroup);
  9165. u64 percpu;
  9166. int i;
  9167. for_each_present_cpu(i) {
  9168. percpu = cpuacct_cpuusage_read(ca, i);
  9169. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9170. }
  9171. seq_printf(m, "\n");
  9172. return 0;
  9173. }
  9174. static const char *cpuacct_stat_desc[] = {
  9175. [CPUACCT_STAT_USER] = "user",
  9176. [CPUACCT_STAT_SYSTEM] = "system",
  9177. };
  9178. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9179. struct cgroup_map_cb *cb)
  9180. {
  9181. struct cpuacct *ca = cgroup_ca(cgrp);
  9182. int i;
  9183. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9184. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9185. val = cputime64_to_clock_t(val);
  9186. cb->fill(cb, cpuacct_stat_desc[i], val);
  9187. }
  9188. return 0;
  9189. }
  9190. static struct cftype files[] = {
  9191. {
  9192. .name = "usage",
  9193. .read_u64 = cpuusage_read,
  9194. .write_u64 = cpuusage_write,
  9195. },
  9196. {
  9197. .name = "usage_percpu",
  9198. .read_seq_string = cpuacct_percpu_seq_read,
  9199. },
  9200. {
  9201. .name = "stat",
  9202. .read_map = cpuacct_stats_show,
  9203. },
  9204. };
  9205. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9206. {
  9207. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9208. }
  9209. /*
  9210. * charge this task's execution time to its accounting group.
  9211. *
  9212. * called with rq->lock held.
  9213. */
  9214. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9215. {
  9216. struct cpuacct *ca;
  9217. int cpu;
  9218. if (unlikely(!cpuacct_subsys.active))
  9219. return;
  9220. cpu = task_cpu(tsk);
  9221. rcu_read_lock();
  9222. ca = task_ca(tsk);
  9223. for (; ca; ca = ca->parent) {
  9224. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9225. *cpuusage += cputime;
  9226. }
  9227. rcu_read_unlock();
  9228. }
  9229. /*
  9230. * Charge the system/user time to the task's accounting group.
  9231. */
  9232. static void cpuacct_update_stats(struct task_struct *tsk,
  9233. enum cpuacct_stat_index idx, cputime_t val)
  9234. {
  9235. struct cpuacct *ca;
  9236. if (unlikely(!cpuacct_subsys.active))
  9237. return;
  9238. rcu_read_lock();
  9239. ca = task_ca(tsk);
  9240. do {
  9241. percpu_counter_add(&ca->cpustat[idx], val);
  9242. ca = ca->parent;
  9243. } while (ca);
  9244. rcu_read_unlock();
  9245. }
  9246. struct cgroup_subsys cpuacct_subsys = {
  9247. .name = "cpuacct",
  9248. .create = cpuacct_create,
  9249. .destroy = cpuacct_destroy,
  9250. .populate = cpuacct_populate,
  9251. .subsys_id = cpuacct_subsys_id,
  9252. };
  9253. #endif /* CONFIG_CGROUP_CPUACCT */
  9254. #ifndef CONFIG_SMP
  9255. int rcu_expedited_torture_stats(char *page)
  9256. {
  9257. return 0;
  9258. }
  9259. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9260. void synchronize_sched_expedited(void)
  9261. {
  9262. }
  9263. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9264. #else /* #ifndef CONFIG_SMP */
  9265. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9266. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9267. #define RCU_EXPEDITED_STATE_POST -2
  9268. #define RCU_EXPEDITED_STATE_IDLE -1
  9269. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9270. int rcu_expedited_torture_stats(char *page)
  9271. {
  9272. int cnt = 0;
  9273. int cpu;
  9274. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9275. for_each_online_cpu(cpu) {
  9276. cnt += sprintf(&page[cnt], " %d:%d",
  9277. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9278. }
  9279. cnt += sprintf(&page[cnt], "\n");
  9280. return cnt;
  9281. }
  9282. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9283. static long synchronize_sched_expedited_count;
  9284. /*
  9285. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9286. * approach to force grace period to end quickly. This consumes
  9287. * significant time on all CPUs, and is thus not recommended for
  9288. * any sort of common-case code.
  9289. *
  9290. * Note that it is illegal to call this function while holding any
  9291. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9292. * observe this restriction will result in deadlock.
  9293. */
  9294. void synchronize_sched_expedited(void)
  9295. {
  9296. int cpu;
  9297. unsigned long flags;
  9298. bool need_full_sync = 0;
  9299. struct rq *rq;
  9300. struct migration_req *req;
  9301. long snap;
  9302. int trycount = 0;
  9303. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9304. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9305. get_online_cpus();
  9306. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9307. put_online_cpus();
  9308. if (trycount++ < 10)
  9309. udelay(trycount * num_online_cpus());
  9310. else {
  9311. synchronize_sched();
  9312. return;
  9313. }
  9314. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9315. smp_mb(); /* ensure test happens before caller kfree */
  9316. return;
  9317. }
  9318. get_online_cpus();
  9319. }
  9320. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9321. for_each_online_cpu(cpu) {
  9322. rq = cpu_rq(cpu);
  9323. req = &per_cpu(rcu_migration_req, cpu);
  9324. init_completion(&req->done);
  9325. req->task = NULL;
  9326. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9327. spin_lock_irqsave(&rq->lock, flags);
  9328. list_add(&req->list, &rq->migration_queue);
  9329. spin_unlock_irqrestore(&rq->lock, flags);
  9330. wake_up_process(rq->migration_thread);
  9331. }
  9332. for_each_online_cpu(cpu) {
  9333. rcu_expedited_state = cpu;
  9334. req = &per_cpu(rcu_migration_req, cpu);
  9335. rq = cpu_rq(cpu);
  9336. wait_for_completion(&req->done);
  9337. spin_lock_irqsave(&rq->lock, flags);
  9338. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9339. need_full_sync = 1;
  9340. req->dest_cpu = RCU_MIGRATION_IDLE;
  9341. spin_unlock_irqrestore(&rq->lock, flags);
  9342. }
  9343. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9344. synchronize_sched_expedited_count++;
  9345. mutex_unlock(&rcu_sched_expedited_mutex);
  9346. put_online_cpus();
  9347. if (need_full_sync)
  9348. synchronize_sched();
  9349. }
  9350. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9351. #endif /* #else #ifndef CONFIG_SMP */