workqueue.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There is one worker pool for each CPU and
  20. * one extra for works which are better served by workers which are
  21. * not bound to any specific CPU.
  22. *
  23. * Please read Documentation/workqueue.txt for details.
  24. */
  25. #include <linux/export.h>
  26. #include <linux/kernel.h>
  27. #include <linux/sched.h>
  28. #include <linux/init.h>
  29. #include <linux/signal.h>
  30. #include <linux/completion.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/slab.h>
  33. #include <linux/cpu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/kthread.h>
  36. #include <linux/hardirq.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/freezer.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/lockdep.h>
  42. #include <linux/idr.h>
  43. #include "workqueue_sched.h"
  44. enum {
  45. /*
  46. * global_cwq flags
  47. *
  48. * A bound gcwq is either associated or disassociated with its CPU.
  49. * While associated (!DISASSOCIATED), all workers are bound to the
  50. * CPU and none has %WORKER_UNBOUND set and concurrency management
  51. * is in effect.
  52. *
  53. * While DISASSOCIATED, the cpu may be offline and all workers have
  54. * %WORKER_UNBOUND set and concurrency management disabled, and may
  55. * be executing on any CPU. The gcwq behaves as an unbound one.
  56. *
  57. * Note that DISASSOCIATED can be flipped only while holding
  58. * managership of all pools on the gcwq to avoid changing binding
  59. * state while create_worker() is in progress.
  60. */
  61. GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
  62. GCWQ_FREEZING = 1 << 1, /* freeze in progress */
  63. /* pool flags */
  64. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  65. /* worker flags */
  66. WORKER_STARTED = 1 << 0, /* started */
  67. WORKER_DIE = 1 << 1, /* die die die */
  68. WORKER_IDLE = 1 << 2, /* is idle */
  69. WORKER_PREP = 1 << 3, /* preparing to run works */
  70. WORKER_REBIND = 1 << 5, /* mom is home, come back */
  71. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  72. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  73. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
  74. WORKER_CPU_INTENSIVE,
  75. NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
  76. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  77. BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
  78. BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
  79. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  80. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  81. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  82. /* call for help after 10ms
  83. (min two ticks) */
  84. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  85. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  86. /*
  87. * Rescue workers are used only on emergencies and shared by
  88. * all cpus. Give -20.
  89. */
  90. RESCUER_NICE_LEVEL = -20,
  91. HIGHPRI_NICE_LEVEL = -20,
  92. };
  93. /*
  94. * Structure fields follow one of the following exclusion rules.
  95. *
  96. * I: Modifiable by initialization/destruction paths and read-only for
  97. * everyone else.
  98. *
  99. * P: Preemption protected. Disabling preemption is enough and should
  100. * only be modified and accessed from the local cpu.
  101. *
  102. * L: gcwq->lock protected. Access with gcwq->lock held.
  103. *
  104. * X: During normal operation, modification requires gcwq->lock and
  105. * should be done only from local cpu. Either disabling preemption
  106. * on local cpu or grabbing gcwq->lock is enough for read access.
  107. * If GCWQ_DISASSOCIATED is set, it's identical to L.
  108. *
  109. * F: wq->flush_mutex protected.
  110. *
  111. * W: workqueue_lock protected.
  112. */
  113. struct global_cwq;
  114. struct worker_pool;
  115. struct idle_rebind;
  116. /*
  117. * The poor guys doing the actual heavy lifting. All on-duty workers
  118. * are either serving the manager role, on idle list or on busy hash.
  119. */
  120. struct worker {
  121. /* on idle list while idle, on busy hash table while busy */
  122. union {
  123. struct list_head entry; /* L: while idle */
  124. struct hlist_node hentry; /* L: while busy */
  125. };
  126. struct work_struct *current_work; /* L: work being processed */
  127. struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
  128. struct list_head scheduled; /* L: scheduled works */
  129. struct task_struct *task; /* I: worker task */
  130. struct worker_pool *pool; /* I: the associated pool */
  131. /* 64 bytes boundary on 64bit, 32 on 32bit */
  132. unsigned long last_active; /* L: last active timestamp */
  133. unsigned int flags; /* X: flags */
  134. int id; /* I: worker id */
  135. /* for rebinding worker to CPU */
  136. struct idle_rebind *idle_rebind; /* L: for idle worker */
  137. struct work_struct rebind_work; /* L: for busy worker */
  138. };
  139. struct worker_pool {
  140. struct global_cwq *gcwq; /* I: the owning gcwq */
  141. unsigned int flags; /* X: flags */
  142. struct list_head worklist; /* L: list of pending works */
  143. int nr_workers; /* L: total number of workers */
  144. int nr_idle; /* L: currently idle ones */
  145. struct list_head idle_list; /* X: list of idle workers */
  146. struct timer_list idle_timer; /* L: worker idle timeout */
  147. struct timer_list mayday_timer; /* L: SOS timer for workers */
  148. struct mutex manager_mutex; /* mutex manager should hold */
  149. struct ida worker_ida; /* L: for worker IDs */
  150. };
  151. /*
  152. * Global per-cpu workqueue. There's one and only one for each cpu
  153. * and all works are queued and processed here regardless of their
  154. * target workqueues.
  155. */
  156. struct global_cwq {
  157. spinlock_t lock; /* the gcwq lock */
  158. unsigned int cpu; /* I: the associated cpu */
  159. unsigned int flags; /* L: GCWQ_* flags */
  160. /* workers are chained either in busy_hash or pool idle_list */
  161. struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
  162. /* L: hash of busy workers */
  163. struct worker_pool pools[2]; /* normal and highpri pools */
  164. wait_queue_head_t rebind_hold; /* rebind hold wait */
  165. } ____cacheline_aligned_in_smp;
  166. /*
  167. * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
  168. * work_struct->data are used for flags and thus cwqs need to be
  169. * aligned at two's power of the number of flag bits.
  170. */
  171. struct cpu_workqueue_struct {
  172. struct worker_pool *pool; /* I: the associated pool */
  173. struct workqueue_struct *wq; /* I: the owning workqueue */
  174. int work_color; /* L: current color */
  175. int flush_color; /* L: flushing color */
  176. int nr_in_flight[WORK_NR_COLORS];
  177. /* L: nr of in_flight works */
  178. int nr_active; /* L: nr of active works */
  179. int max_active; /* L: max active works */
  180. struct list_head delayed_works; /* L: delayed works */
  181. };
  182. /*
  183. * Structure used to wait for workqueue flush.
  184. */
  185. struct wq_flusher {
  186. struct list_head list; /* F: list of flushers */
  187. int flush_color; /* F: flush color waiting for */
  188. struct completion done; /* flush completion */
  189. };
  190. /*
  191. * All cpumasks are assumed to be always set on UP and thus can't be
  192. * used to determine whether there's something to be done.
  193. */
  194. #ifdef CONFIG_SMP
  195. typedef cpumask_var_t mayday_mask_t;
  196. #define mayday_test_and_set_cpu(cpu, mask) \
  197. cpumask_test_and_set_cpu((cpu), (mask))
  198. #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
  199. #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
  200. #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
  201. #define free_mayday_mask(mask) free_cpumask_var((mask))
  202. #else
  203. typedef unsigned long mayday_mask_t;
  204. #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
  205. #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
  206. #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
  207. #define alloc_mayday_mask(maskp, gfp) true
  208. #define free_mayday_mask(mask) do { } while (0)
  209. #endif
  210. /*
  211. * The externally visible workqueue abstraction is an array of
  212. * per-CPU workqueues:
  213. */
  214. struct workqueue_struct {
  215. unsigned int flags; /* W: WQ_* flags */
  216. union {
  217. struct cpu_workqueue_struct __percpu *pcpu;
  218. struct cpu_workqueue_struct *single;
  219. unsigned long v;
  220. } cpu_wq; /* I: cwq's */
  221. struct list_head list; /* W: list of all workqueues */
  222. struct mutex flush_mutex; /* protects wq flushing */
  223. int work_color; /* F: current work color */
  224. int flush_color; /* F: current flush color */
  225. atomic_t nr_cwqs_to_flush; /* flush in progress */
  226. struct wq_flusher *first_flusher; /* F: first flusher */
  227. struct list_head flusher_queue; /* F: flush waiters */
  228. struct list_head flusher_overflow; /* F: flush overflow list */
  229. mayday_mask_t mayday_mask; /* cpus requesting rescue */
  230. struct worker *rescuer; /* I: rescue worker */
  231. int nr_drainers; /* W: drain in progress */
  232. int saved_max_active; /* W: saved cwq max_active */
  233. #ifdef CONFIG_LOCKDEP
  234. struct lockdep_map lockdep_map;
  235. #endif
  236. char name[]; /* I: workqueue name */
  237. };
  238. struct workqueue_struct *system_wq __read_mostly;
  239. struct workqueue_struct *system_long_wq __read_mostly;
  240. struct workqueue_struct *system_nrt_wq __read_mostly;
  241. struct workqueue_struct *system_unbound_wq __read_mostly;
  242. struct workqueue_struct *system_freezable_wq __read_mostly;
  243. struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
  244. EXPORT_SYMBOL_GPL(system_wq);
  245. EXPORT_SYMBOL_GPL(system_long_wq);
  246. EXPORT_SYMBOL_GPL(system_nrt_wq);
  247. EXPORT_SYMBOL_GPL(system_unbound_wq);
  248. EXPORT_SYMBOL_GPL(system_freezable_wq);
  249. EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
  250. #define CREATE_TRACE_POINTS
  251. #include <trace/events/workqueue.h>
  252. #define for_each_worker_pool(pool, gcwq) \
  253. for ((pool) = &(gcwq)->pools[0]; \
  254. (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
  255. #define for_each_busy_worker(worker, i, pos, gcwq) \
  256. for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
  257. hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
  258. static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
  259. unsigned int sw)
  260. {
  261. if (cpu < nr_cpu_ids) {
  262. if (sw & 1) {
  263. cpu = cpumask_next(cpu, mask);
  264. if (cpu < nr_cpu_ids)
  265. return cpu;
  266. }
  267. if (sw & 2)
  268. return WORK_CPU_UNBOUND;
  269. }
  270. return WORK_CPU_NONE;
  271. }
  272. static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
  273. struct workqueue_struct *wq)
  274. {
  275. return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
  276. }
  277. /*
  278. * CPU iterators
  279. *
  280. * An extra gcwq is defined for an invalid cpu number
  281. * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
  282. * specific CPU. The following iterators are similar to
  283. * for_each_*_cpu() iterators but also considers the unbound gcwq.
  284. *
  285. * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
  286. * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
  287. * for_each_cwq_cpu() : possible CPUs for bound workqueues,
  288. * WORK_CPU_UNBOUND for unbound workqueues
  289. */
  290. #define for_each_gcwq_cpu(cpu) \
  291. for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
  292. (cpu) < WORK_CPU_NONE; \
  293. (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
  294. #define for_each_online_gcwq_cpu(cpu) \
  295. for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
  296. (cpu) < WORK_CPU_NONE; \
  297. (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
  298. #define for_each_cwq_cpu(cpu, wq) \
  299. for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
  300. (cpu) < WORK_CPU_NONE; \
  301. (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
  302. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  303. static struct debug_obj_descr work_debug_descr;
  304. static void *work_debug_hint(void *addr)
  305. {
  306. return ((struct work_struct *) addr)->func;
  307. }
  308. /*
  309. * fixup_init is called when:
  310. * - an active object is initialized
  311. */
  312. static int work_fixup_init(void *addr, enum debug_obj_state state)
  313. {
  314. struct work_struct *work = addr;
  315. switch (state) {
  316. case ODEBUG_STATE_ACTIVE:
  317. cancel_work_sync(work);
  318. debug_object_init(work, &work_debug_descr);
  319. return 1;
  320. default:
  321. return 0;
  322. }
  323. }
  324. /*
  325. * fixup_activate is called when:
  326. * - an active object is activated
  327. * - an unknown object is activated (might be a statically initialized object)
  328. */
  329. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  330. {
  331. struct work_struct *work = addr;
  332. switch (state) {
  333. case ODEBUG_STATE_NOTAVAILABLE:
  334. /*
  335. * This is not really a fixup. The work struct was
  336. * statically initialized. We just make sure that it
  337. * is tracked in the object tracker.
  338. */
  339. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  340. debug_object_init(work, &work_debug_descr);
  341. debug_object_activate(work, &work_debug_descr);
  342. return 0;
  343. }
  344. WARN_ON_ONCE(1);
  345. return 0;
  346. case ODEBUG_STATE_ACTIVE:
  347. WARN_ON(1);
  348. default:
  349. return 0;
  350. }
  351. }
  352. /*
  353. * fixup_free is called when:
  354. * - an active object is freed
  355. */
  356. static int work_fixup_free(void *addr, enum debug_obj_state state)
  357. {
  358. struct work_struct *work = addr;
  359. switch (state) {
  360. case ODEBUG_STATE_ACTIVE:
  361. cancel_work_sync(work);
  362. debug_object_free(work, &work_debug_descr);
  363. return 1;
  364. default:
  365. return 0;
  366. }
  367. }
  368. static struct debug_obj_descr work_debug_descr = {
  369. .name = "work_struct",
  370. .debug_hint = work_debug_hint,
  371. .fixup_init = work_fixup_init,
  372. .fixup_activate = work_fixup_activate,
  373. .fixup_free = work_fixup_free,
  374. };
  375. static inline void debug_work_activate(struct work_struct *work)
  376. {
  377. debug_object_activate(work, &work_debug_descr);
  378. }
  379. static inline void debug_work_deactivate(struct work_struct *work)
  380. {
  381. debug_object_deactivate(work, &work_debug_descr);
  382. }
  383. void __init_work(struct work_struct *work, int onstack)
  384. {
  385. if (onstack)
  386. debug_object_init_on_stack(work, &work_debug_descr);
  387. else
  388. debug_object_init(work, &work_debug_descr);
  389. }
  390. EXPORT_SYMBOL_GPL(__init_work);
  391. void destroy_work_on_stack(struct work_struct *work)
  392. {
  393. debug_object_free(work, &work_debug_descr);
  394. }
  395. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  396. #else
  397. static inline void debug_work_activate(struct work_struct *work) { }
  398. static inline void debug_work_deactivate(struct work_struct *work) { }
  399. #endif
  400. /* Serializes the accesses to the list of workqueues. */
  401. static DEFINE_SPINLOCK(workqueue_lock);
  402. static LIST_HEAD(workqueues);
  403. static bool workqueue_freezing; /* W: have wqs started freezing? */
  404. /*
  405. * The almighty global cpu workqueues. nr_running is the only field
  406. * which is expected to be used frequently by other cpus via
  407. * try_to_wake_up(). Put it in a separate cacheline.
  408. */
  409. static DEFINE_PER_CPU(struct global_cwq, global_cwq);
  410. static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
  411. /*
  412. * Global cpu workqueue and nr_running counter for unbound gcwq. The
  413. * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
  414. * workers have WORKER_UNBOUND set.
  415. */
  416. static struct global_cwq unbound_global_cwq;
  417. static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
  418. [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
  419. };
  420. static int worker_thread(void *__worker);
  421. static int worker_pool_pri(struct worker_pool *pool)
  422. {
  423. return pool - pool->gcwq->pools;
  424. }
  425. static struct global_cwq *get_gcwq(unsigned int cpu)
  426. {
  427. if (cpu != WORK_CPU_UNBOUND)
  428. return &per_cpu(global_cwq, cpu);
  429. else
  430. return &unbound_global_cwq;
  431. }
  432. static atomic_t *get_pool_nr_running(struct worker_pool *pool)
  433. {
  434. int cpu = pool->gcwq->cpu;
  435. int idx = worker_pool_pri(pool);
  436. if (cpu != WORK_CPU_UNBOUND)
  437. return &per_cpu(pool_nr_running, cpu)[idx];
  438. else
  439. return &unbound_pool_nr_running[idx];
  440. }
  441. static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
  442. struct workqueue_struct *wq)
  443. {
  444. if (!(wq->flags & WQ_UNBOUND)) {
  445. if (likely(cpu < nr_cpu_ids))
  446. return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
  447. } else if (likely(cpu == WORK_CPU_UNBOUND))
  448. return wq->cpu_wq.single;
  449. return NULL;
  450. }
  451. static unsigned int work_color_to_flags(int color)
  452. {
  453. return color << WORK_STRUCT_COLOR_SHIFT;
  454. }
  455. static int get_work_color(struct work_struct *work)
  456. {
  457. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  458. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  459. }
  460. static int work_next_color(int color)
  461. {
  462. return (color + 1) % WORK_NR_COLORS;
  463. }
  464. /*
  465. * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
  466. * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
  467. * cleared and the work data contains the cpu number it was last on.
  468. *
  469. * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
  470. * cwq, cpu or clear work->data. These functions should only be
  471. * called while the work is owned - ie. while the PENDING bit is set.
  472. *
  473. * get_work_[g]cwq() can be used to obtain the gcwq or cwq
  474. * corresponding to a work. gcwq is available once the work has been
  475. * queued anywhere after initialization. cwq is available only from
  476. * queueing until execution starts.
  477. */
  478. static inline void set_work_data(struct work_struct *work, unsigned long data,
  479. unsigned long flags)
  480. {
  481. BUG_ON(!work_pending(work));
  482. atomic_long_set(&work->data, data | flags | work_static(work));
  483. }
  484. static void set_work_cwq(struct work_struct *work,
  485. struct cpu_workqueue_struct *cwq,
  486. unsigned long extra_flags)
  487. {
  488. set_work_data(work, (unsigned long)cwq,
  489. WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
  490. }
  491. static void set_work_cpu(struct work_struct *work, unsigned int cpu)
  492. {
  493. set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
  494. }
  495. static void clear_work_data(struct work_struct *work)
  496. {
  497. set_work_data(work, WORK_STRUCT_NO_CPU, 0);
  498. }
  499. static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
  500. {
  501. unsigned long data = atomic_long_read(&work->data);
  502. if (data & WORK_STRUCT_CWQ)
  503. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  504. else
  505. return NULL;
  506. }
  507. static struct global_cwq *get_work_gcwq(struct work_struct *work)
  508. {
  509. unsigned long data = atomic_long_read(&work->data);
  510. unsigned int cpu;
  511. if (data & WORK_STRUCT_CWQ)
  512. return ((struct cpu_workqueue_struct *)
  513. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
  514. cpu = data >> WORK_STRUCT_FLAG_BITS;
  515. if (cpu == WORK_CPU_NONE)
  516. return NULL;
  517. BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
  518. return get_gcwq(cpu);
  519. }
  520. /*
  521. * Policy functions. These define the policies on how the global worker
  522. * pools are managed. Unless noted otherwise, these functions assume that
  523. * they're being called with gcwq->lock held.
  524. */
  525. static bool __need_more_worker(struct worker_pool *pool)
  526. {
  527. return !atomic_read(get_pool_nr_running(pool));
  528. }
  529. /*
  530. * Need to wake up a worker? Called from anything but currently
  531. * running workers.
  532. *
  533. * Note that, because unbound workers never contribute to nr_running, this
  534. * function will always return %true for unbound gcwq as long as the
  535. * worklist isn't empty.
  536. */
  537. static bool need_more_worker(struct worker_pool *pool)
  538. {
  539. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  540. }
  541. /* Can I start working? Called from busy but !running workers. */
  542. static bool may_start_working(struct worker_pool *pool)
  543. {
  544. return pool->nr_idle;
  545. }
  546. /* Do I need to keep working? Called from currently running workers. */
  547. static bool keep_working(struct worker_pool *pool)
  548. {
  549. atomic_t *nr_running = get_pool_nr_running(pool);
  550. return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
  551. }
  552. /* Do we need a new worker? Called from manager. */
  553. static bool need_to_create_worker(struct worker_pool *pool)
  554. {
  555. return need_more_worker(pool) && !may_start_working(pool);
  556. }
  557. /* Do I need to be the manager? */
  558. static bool need_to_manage_workers(struct worker_pool *pool)
  559. {
  560. return need_to_create_worker(pool) ||
  561. (pool->flags & POOL_MANAGE_WORKERS);
  562. }
  563. /* Do we have too many workers and should some go away? */
  564. static bool too_many_workers(struct worker_pool *pool)
  565. {
  566. bool managing = mutex_is_locked(&pool->manager_mutex);
  567. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  568. int nr_busy = pool->nr_workers - nr_idle;
  569. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  570. }
  571. /*
  572. * Wake up functions.
  573. */
  574. /* Return the first worker. Safe with preemption disabled */
  575. static struct worker *first_worker(struct worker_pool *pool)
  576. {
  577. if (unlikely(list_empty(&pool->idle_list)))
  578. return NULL;
  579. return list_first_entry(&pool->idle_list, struct worker, entry);
  580. }
  581. /**
  582. * wake_up_worker - wake up an idle worker
  583. * @pool: worker pool to wake worker from
  584. *
  585. * Wake up the first idle worker of @pool.
  586. *
  587. * CONTEXT:
  588. * spin_lock_irq(gcwq->lock).
  589. */
  590. static void wake_up_worker(struct worker_pool *pool)
  591. {
  592. struct worker *worker = first_worker(pool);
  593. if (likely(worker))
  594. wake_up_process(worker->task);
  595. }
  596. /**
  597. * wq_worker_waking_up - a worker is waking up
  598. * @task: task waking up
  599. * @cpu: CPU @task is waking up to
  600. *
  601. * This function is called during try_to_wake_up() when a worker is
  602. * being awoken.
  603. *
  604. * CONTEXT:
  605. * spin_lock_irq(rq->lock)
  606. */
  607. void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
  608. {
  609. struct worker *worker = kthread_data(task);
  610. if (!(worker->flags & WORKER_NOT_RUNNING))
  611. atomic_inc(get_pool_nr_running(worker->pool));
  612. }
  613. /**
  614. * wq_worker_sleeping - a worker is going to sleep
  615. * @task: task going to sleep
  616. * @cpu: CPU in question, must be the current CPU number
  617. *
  618. * This function is called during schedule() when a busy worker is
  619. * going to sleep. Worker on the same cpu can be woken up by
  620. * returning pointer to its task.
  621. *
  622. * CONTEXT:
  623. * spin_lock_irq(rq->lock)
  624. *
  625. * RETURNS:
  626. * Worker task on @cpu to wake up, %NULL if none.
  627. */
  628. struct task_struct *wq_worker_sleeping(struct task_struct *task,
  629. unsigned int cpu)
  630. {
  631. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  632. struct worker_pool *pool = worker->pool;
  633. atomic_t *nr_running = get_pool_nr_running(pool);
  634. if (worker->flags & WORKER_NOT_RUNNING)
  635. return NULL;
  636. /* this can only happen on the local cpu */
  637. BUG_ON(cpu != raw_smp_processor_id());
  638. /*
  639. * The counterpart of the following dec_and_test, implied mb,
  640. * worklist not empty test sequence is in insert_work().
  641. * Please read comment there.
  642. *
  643. * NOT_RUNNING is clear. This means that we're bound to and
  644. * running on the local cpu w/ rq lock held and preemption
  645. * disabled, which in turn means that none else could be
  646. * manipulating idle_list, so dereferencing idle_list without gcwq
  647. * lock is safe.
  648. */
  649. if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
  650. to_wakeup = first_worker(pool);
  651. return to_wakeup ? to_wakeup->task : NULL;
  652. }
  653. /**
  654. * worker_set_flags - set worker flags and adjust nr_running accordingly
  655. * @worker: self
  656. * @flags: flags to set
  657. * @wakeup: wakeup an idle worker if necessary
  658. *
  659. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  660. * nr_running becomes zero and @wakeup is %true, an idle worker is
  661. * woken up.
  662. *
  663. * CONTEXT:
  664. * spin_lock_irq(gcwq->lock)
  665. */
  666. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  667. bool wakeup)
  668. {
  669. struct worker_pool *pool = worker->pool;
  670. WARN_ON_ONCE(worker->task != current);
  671. /*
  672. * If transitioning into NOT_RUNNING, adjust nr_running and
  673. * wake up an idle worker as necessary if requested by
  674. * @wakeup.
  675. */
  676. if ((flags & WORKER_NOT_RUNNING) &&
  677. !(worker->flags & WORKER_NOT_RUNNING)) {
  678. atomic_t *nr_running = get_pool_nr_running(pool);
  679. if (wakeup) {
  680. if (atomic_dec_and_test(nr_running) &&
  681. !list_empty(&pool->worklist))
  682. wake_up_worker(pool);
  683. } else
  684. atomic_dec(nr_running);
  685. }
  686. worker->flags |= flags;
  687. }
  688. /**
  689. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  690. * @worker: self
  691. * @flags: flags to clear
  692. *
  693. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  694. *
  695. * CONTEXT:
  696. * spin_lock_irq(gcwq->lock)
  697. */
  698. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  699. {
  700. struct worker_pool *pool = worker->pool;
  701. unsigned int oflags = worker->flags;
  702. WARN_ON_ONCE(worker->task != current);
  703. worker->flags &= ~flags;
  704. /*
  705. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  706. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  707. * of multiple flags, not a single flag.
  708. */
  709. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  710. if (!(worker->flags & WORKER_NOT_RUNNING))
  711. atomic_inc(get_pool_nr_running(pool));
  712. }
  713. /**
  714. * busy_worker_head - return the busy hash head for a work
  715. * @gcwq: gcwq of interest
  716. * @work: work to be hashed
  717. *
  718. * Return hash head of @gcwq for @work.
  719. *
  720. * CONTEXT:
  721. * spin_lock_irq(gcwq->lock).
  722. *
  723. * RETURNS:
  724. * Pointer to the hash head.
  725. */
  726. static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
  727. struct work_struct *work)
  728. {
  729. const int base_shift = ilog2(sizeof(struct work_struct));
  730. unsigned long v = (unsigned long)work;
  731. /* simple shift and fold hash, do we need something better? */
  732. v >>= base_shift;
  733. v += v >> BUSY_WORKER_HASH_ORDER;
  734. v &= BUSY_WORKER_HASH_MASK;
  735. return &gcwq->busy_hash[v];
  736. }
  737. /**
  738. * __find_worker_executing_work - find worker which is executing a work
  739. * @gcwq: gcwq of interest
  740. * @bwh: hash head as returned by busy_worker_head()
  741. * @work: work to find worker for
  742. *
  743. * Find a worker which is executing @work on @gcwq. @bwh should be
  744. * the hash head obtained by calling busy_worker_head() with the same
  745. * work.
  746. *
  747. * CONTEXT:
  748. * spin_lock_irq(gcwq->lock).
  749. *
  750. * RETURNS:
  751. * Pointer to worker which is executing @work if found, NULL
  752. * otherwise.
  753. */
  754. static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
  755. struct hlist_head *bwh,
  756. struct work_struct *work)
  757. {
  758. struct worker *worker;
  759. struct hlist_node *tmp;
  760. hlist_for_each_entry(worker, tmp, bwh, hentry)
  761. if (worker->current_work == work)
  762. return worker;
  763. return NULL;
  764. }
  765. /**
  766. * find_worker_executing_work - find worker which is executing a work
  767. * @gcwq: gcwq of interest
  768. * @work: work to find worker for
  769. *
  770. * Find a worker which is executing @work on @gcwq. This function is
  771. * identical to __find_worker_executing_work() except that this
  772. * function calculates @bwh itself.
  773. *
  774. * CONTEXT:
  775. * spin_lock_irq(gcwq->lock).
  776. *
  777. * RETURNS:
  778. * Pointer to worker which is executing @work if found, NULL
  779. * otherwise.
  780. */
  781. static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
  782. struct work_struct *work)
  783. {
  784. return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
  785. work);
  786. }
  787. /**
  788. * insert_work - insert a work into gcwq
  789. * @cwq: cwq @work belongs to
  790. * @work: work to insert
  791. * @head: insertion point
  792. * @extra_flags: extra WORK_STRUCT_* flags to set
  793. *
  794. * Insert @work which belongs to @cwq into @gcwq after @head.
  795. * @extra_flags is or'd to work_struct flags.
  796. *
  797. * CONTEXT:
  798. * spin_lock_irq(gcwq->lock).
  799. */
  800. static void insert_work(struct cpu_workqueue_struct *cwq,
  801. struct work_struct *work, struct list_head *head,
  802. unsigned int extra_flags)
  803. {
  804. struct worker_pool *pool = cwq->pool;
  805. /* we own @work, set data and link */
  806. set_work_cwq(work, cwq, extra_flags);
  807. /*
  808. * Ensure that we get the right work->data if we see the
  809. * result of list_add() below, see try_to_grab_pending().
  810. */
  811. smp_wmb();
  812. list_add_tail(&work->entry, head);
  813. /*
  814. * Ensure either worker_sched_deactivated() sees the above
  815. * list_add_tail() or we see zero nr_running to avoid workers
  816. * lying around lazily while there are works to be processed.
  817. */
  818. smp_mb();
  819. if (__need_more_worker(pool))
  820. wake_up_worker(pool);
  821. }
  822. /*
  823. * Test whether @work is being queued from another work executing on the
  824. * same workqueue. This is rather expensive and should only be used from
  825. * cold paths.
  826. */
  827. static bool is_chained_work(struct workqueue_struct *wq)
  828. {
  829. unsigned long flags;
  830. unsigned int cpu;
  831. for_each_gcwq_cpu(cpu) {
  832. struct global_cwq *gcwq = get_gcwq(cpu);
  833. struct worker *worker;
  834. struct hlist_node *pos;
  835. int i;
  836. spin_lock_irqsave(&gcwq->lock, flags);
  837. for_each_busy_worker(worker, i, pos, gcwq) {
  838. if (worker->task != current)
  839. continue;
  840. spin_unlock_irqrestore(&gcwq->lock, flags);
  841. /*
  842. * I'm @worker, no locking necessary. See if @work
  843. * is headed to the same workqueue.
  844. */
  845. return worker->current_cwq->wq == wq;
  846. }
  847. spin_unlock_irqrestore(&gcwq->lock, flags);
  848. }
  849. return false;
  850. }
  851. static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
  852. struct work_struct *work)
  853. {
  854. struct global_cwq *gcwq;
  855. struct cpu_workqueue_struct *cwq;
  856. struct list_head *worklist;
  857. unsigned int work_flags;
  858. unsigned long flags;
  859. debug_work_activate(work);
  860. /* if dying, only works from the same workqueue are allowed */
  861. if (unlikely(wq->flags & WQ_DRAINING) &&
  862. WARN_ON_ONCE(!is_chained_work(wq)))
  863. return;
  864. /* determine gcwq to use */
  865. if (!(wq->flags & WQ_UNBOUND)) {
  866. struct global_cwq *last_gcwq;
  867. if (unlikely(cpu == WORK_CPU_UNBOUND))
  868. cpu = raw_smp_processor_id();
  869. /*
  870. * It's multi cpu. If @wq is non-reentrant and @work
  871. * was previously on a different cpu, it might still
  872. * be running there, in which case the work needs to
  873. * be queued on that cpu to guarantee non-reentrance.
  874. */
  875. gcwq = get_gcwq(cpu);
  876. if (wq->flags & WQ_NON_REENTRANT &&
  877. (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
  878. struct worker *worker;
  879. spin_lock_irqsave(&last_gcwq->lock, flags);
  880. worker = find_worker_executing_work(last_gcwq, work);
  881. if (worker && worker->current_cwq->wq == wq)
  882. gcwq = last_gcwq;
  883. else {
  884. /* meh... not running there, queue here */
  885. spin_unlock_irqrestore(&last_gcwq->lock, flags);
  886. spin_lock_irqsave(&gcwq->lock, flags);
  887. }
  888. } else
  889. spin_lock_irqsave(&gcwq->lock, flags);
  890. } else {
  891. gcwq = get_gcwq(WORK_CPU_UNBOUND);
  892. spin_lock_irqsave(&gcwq->lock, flags);
  893. }
  894. /* gcwq determined, get cwq and queue */
  895. cwq = get_cwq(gcwq->cpu, wq);
  896. trace_workqueue_queue_work(cpu, cwq, work);
  897. if (WARN_ON(!list_empty(&work->entry))) {
  898. spin_unlock_irqrestore(&gcwq->lock, flags);
  899. return;
  900. }
  901. cwq->nr_in_flight[cwq->work_color]++;
  902. work_flags = work_color_to_flags(cwq->work_color);
  903. if (likely(cwq->nr_active < cwq->max_active)) {
  904. trace_workqueue_activate_work(work);
  905. cwq->nr_active++;
  906. worklist = &cwq->pool->worklist;
  907. } else {
  908. work_flags |= WORK_STRUCT_DELAYED;
  909. worklist = &cwq->delayed_works;
  910. }
  911. insert_work(cwq, work, worklist, work_flags);
  912. spin_unlock_irqrestore(&gcwq->lock, flags);
  913. }
  914. /**
  915. * queue_work - queue work on a workqueue
  916. * @wq: workqueue to use
  917. * @work: work to queue
  918. *
  919. * Returns 0 if @work was already on a queue, non-zero otherwise.
  920. *
  921. * We queue the work to the CPU on which it was submitted, but if the CPU dies
  922. * it can be processed by another CPU.
  923. */
  924. int queue_work(struct workqueue_struct *wq, struct work_struct *work)
  925. {
  926. int ret;
  927. ret = queue_work_on(get_cpu(), wq, work);
  928. put_cpu();
  929. return ret;
  930. }
  931. EXPORT_SYMBOL_GPL(queue_work);
  932. /**
  933. * queue_work_on - queue work on specific cpu
  934. * @cpu: CPU number to execute work on
  935. * @wq: workqueue to use
  936. * @work: work to queue
  937. *
  938. * Returns 0 if @work was already on a queue, non-zero otherwise.
  939. *
  940. * We queue the work to a specific CPU, the caller must ensure it
  941. * can't go away.
  942. */
  943. int
  944. queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
  945. {
  946. int ret = 0;
  947. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  948. __queue_work(cpu, wq, work);
  949. ret = 1;
  950. }
  951. return ret;
  952. }
  953. EXPORT_SYMBOL_GPL(queue_work_on);
  954. static void delayed_work_timer_fn(unsigned long __data)
  955. {
  956. struct delayed_work *dwork = (struct delayed_work *)__data;
  957. struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
  958. __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
  959. }
  960. /**
  961. * queue_delayed_work - queue work on a workqueue after delay
  962. * @wq: workqueue to use
  963. * @dwork: delayable work to queue
  964. * @delay: number of jiffies to wait before queueing
  965. *
  966. * Returns 0 if @work was already on a queue, non-zero otherwise.
  967. */
  968. int queue_delayed_work(struct workqueue_struct *wq,
  969. struct delayed_work *dwork, unsigned long delay)
  970. {
  971. if (delay == 0)
  972. return queue_work(wq, &dwork->work);
  973. return queue_delayed_work_on(-1, wq, dwork, delay);
  974. }
  975. EXPORT_SYMBOL_GPL(queue_delayed_work);
  976. /**
  977. * queue_delayed_work_on - queue work on specific CPU after delay
  978. * @cpu: CPU number to execute work on
  979. * @wq: workqueue to use
  980. * @dwork: work to queue
  981. * @delay: number of jiffies to wait before queueing
  982. *
  983. * Returns 0 if @work was already on a queue, non-zero otherwise.
  984. */
  985. int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  986. struct delayed_work *dwork, unsigned long delay)
  987. {
  988. int ret = 0;
  989. struct timer_list *timer = &dwork->timer;
  990. struct work_struct *work = &dwork->work;
  991. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  992. unsigned int lcpu;
  993. BUG_ON(timer_pending(timer));
  994. BUG_ON(!list_empty(&work->entry));
  995. timer_stats_timer_set_start_info(&dwork->timer);
  996. /*
  997. * This stores cwq for the moment, for the timer_fn.
  998. * Note that the work's gcwq is preserved to allow
  999. * reentrance detection for delayed works.
  1000. */
  1001. if (!(wq->flags & WQ_UNBOUND)) {
  1002. struct global_cwq *gcwq = get_work_gcwq(work);
  1003. if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
  1004. lcpu = gcwq->cpu;
  1005. else
  1006. lcpu = raw_smp_processor_id();
  1007. } else
  1008. lcpu = WORK_CPU_UNBOUND;
  1009. set_work_cwq(work, get_cwq(lcpu, wq), 0);
  1010. timer->expires = jiffies + delay;
  1011. timer->data = (unsigned long)dwork;
  1012. timer->function = delayed_work_timer_fn;
  1013. if (unlikely(cpu >= 0))
  1014. add_timer_on(timer, cpu);
  1015. else
  1016. add_timer(timer);
  1017. ret = 1;
  1018. }
  1019. return ret;
  1020. }
  1021. EXPORT_SYMBOL_GPL(queue_delayed_work_on);
  1022. /**
  1023. * worker_enter_idle - enter idle state
  1024. * @worker: worker which is entering idle state
  1025. *
  1026. * @worker is entering idle state. Update stats and idle timer if
  1027. * necessary.
  1028. *
  1029. * LOCKING:
  1030. * spin_lock_irq(gcwq->lock).
  1031. */
  1032. static void worker_enter_idle(struct worker *worker)
  1033. {
  1034. struct worker_pool *pool = worker->pool;
  1035. struct global_cwq *gcwq = pool->gcwq;
  1036. BUG_ON(worker->flags & WORKER_IDLE);
  1037. BUG_ON(!list_empty(&worker->entry) &&
  1038. (worker->hentry.next || worker->hentry.pprev));
  1039. /* can't use worker_set_flags(), also called from start_worker() */
  1040. worker->flags |= WORKER_IDLE;
  1041. pool->nr_idle++;
  1042. worker->last_active = jiffies;
  1043. /* idle_list is LIFO */
  1044. list_add(&worker->entry, &pool->idle_list);
  1045. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1046. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1047. /*
  1048. * Sanity check nr_running. Because gcwq_unbind_fn() releases
  1049. * gcwq->lock between setting %WORKER_UNBOUND and zapping
  1050. * nr_running, the warning may trigger spuriously. Check iff
  1051. * unbind is not in progress.
  1052. */
  1053. WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
  1054. pool->nr_workers == pool->nr_idle &&
  1055. atomic_read(get_pool_nr_running(pool)));
  1056. }
  1057. /**
  1058. * worker_leave_idle - leave idle state
  1059. * @worker: worker which is leaving idle state
  1060. *
  1061. * @worker is leaving idle state. Update stats.
  1062. *
  1063. * LOCKING:
  1064. * spin_lock_irq(gcwq->lock).
  1065. */
  1066. static void worker_leave_idle(struct worker *worker)
  1067. {
  1068. struct worker_pool *pool = worker->pool;
  1069. BUG_ON(!(worker->flags & WORKER_IDLE));
  1070. worker_clr_flags(worker, WORKER_IDLE);
  1071. pool->nr_idle--;
  1072. list_del_init(&worker->entry);
  1073. }
  1074. /**
  1075. * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
  1076. * @worker: self
  1077. *
  1078. * Works which are scheduled while the cpu is online must at least be
  1079. * scheduled to a worker which is bound to the cpu so that if they are
  1080. * flushed from cpu callbacks while cpu is going down, they are
  1081. * guaranteed to execute on the cpu.
  1082. *
  1083. * This function is to be used by rogue workers and rescuers to bind
  1084. * themselves to the target cpu and may race with cpu going down or
  1085. * coming online. kthread_bind() can't be used because it may put the
  1086. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1087. * verbatim as it's best effort and blocking and gcwq may be
  1088. * [dis]associated in the meantime.
  1089. *
  1090. * This function tries set_cpus_allowed() and locks gcwq and verifies the
  1091. * binding against %GCWQ_DISASSOCIATED which is set during
  1092. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1093. * enters idle state or fetches works without dropping lock, it can
  1094. * guarantee the scheduling requirement described in the first paragraph.
  1095. *
  1096. * CONTEXT:
  1097. * Might sleep. Called without any lock but returns with gcwq->lock
  1098. * held.
  1099. *
  1100. * RETURNS:
  1101. * %true if the associated gcwq is online (@worker is successfully
  1102. * bound), %false if offline.
  1103. */
  1104. static bool worker_maybe_bind_and_lock(struct worker *worker)
  1105. __acquires(&gcwq->lock)
  1106. {
  1107. struct global_cwq *gcwq = worker->pool->gcwq;
  1108. struct task_struct *task = worker->task;
  1109. while (true) {
  1110. /*
  1111. * The following call may fail, succeed or succeed
  1112. * without actually migrating the task to the cpu if
  1113. * it races with cpu hotunplug operation. Verify
  1114. * against GCWQ_DISASSOCIATED.
  1115. */
  1116. if (!(gcwq->flags & GCWQ_DISASSOCIATED))
  1117. set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
  1118. spin_lock_irq(&gcwq->lock);
  1119. if (gcwq->flags & GCWQ_DISASSOCIATED)
  1120. return false;
  1121. if (task_cpu(task) == gcwq->cpu &&
  1122. cpumask_equal(&current->cpus_allowed,
  1123. get_cpu_mask(gcwq->cpu)))
  1124. return true;
  1125. spin_unlock_irq(&gcwq->lock);
  1126. /*
  1127. * We've raced with CPU hot[un]plug. Give it a breather
  1128. * and retry migration. cond_resched() is required here;
  1129. * otherwise, we might deadlock against cpu_stop trying to
  1130. * bring down the CPU on non-preemptive kernel.
  1131. */
  1132. cpu_relax();
  1133. cond_resched();
  1134. }
  1135. }
  1136. struct idle_rebind {
  1137. int cnt; /* # workers to be rebound */
  1138. struct completion done; /* all workers rebound */
  1139. };
  1140. /*
  1141. * Rebind an idle @worker to its CPU. During CPU onlining, this has to
  1142. * happen synchronously for idle workers. worker_thread() will test
  1143. * %WORKER_REBIND before leaving idle and call this function.
  1144. */
  1145. static void idle_worker_rebind(struct worker *worker)
  1146. {
  1147. struct global_cwq *gcwq = worker->pool->gcwq;
  1148. /* CPU must be online at this point */
  1149. WARN_ON(!worker_maybe_bind_and_lock(worker));
  1150. if (!--worker->idle_rebind->cnt)
  1151. complete(&worker->idle_rebind->done);
  1152. spin_unlock_irq(&worker->pool->gcwq->lock);
  1153. /* we did our part, wait for rebind_workers() to finish up */
  1154. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
  1155. }
  1156. /*
  1157. * Function for @worker->rebind.work used to rebind unbound busy workers to
  1158. * the associated cpu which is coming back online. This is scheduled by
  1159. * cpu up but can race with other cpu hotplug operations and may be
  1160. * executed twice without intervening cpu down.
  1161. */
  1162. static void busy_worker_rebind_fn(struct work_struct *work)
  1163. {
  1164. struct worker *worker = container_of(work, struct worker, rebind_work);
  1165. struct global_cwq *gcwq = worker->pool->gcwq;
  1166. if (worker_maybe_bind_and_lock(worker))
  1167. worker_clr_flags(worker, WORKER_REBIND);
  1168. spin_unlock_irq(&gcwq->lock);
  1169. }
  1170. /**
  1171. * rebind_workers - rebind all workers of a gcwq to the associated CPU
  1172. * @gcwq: gcwq of interest
  1173. *
  1174. * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
  1175. * is different for idle and busy ones.
  1176. *
  1177. * The idle ones should be rebound synchronously and idle rebinding should
  1178. * be complete before any worker starts executing work items with
  1179. * concurrency management enabled; otherwise, scheduler may oops trying to
  1180. * wake up non-local idle worker from wq_worker_sleeping().
  1181. *
  1182. * This is achieved by repeatedly requesting rebinding until all idle
  1183. * workers are known to have been rebound under @gcwq->lock and holding all
  1184. * idle workers from becoming busy until idle rebinding is complete.
  1185. *
  1186. * Once idle workers are rebound, busy workers can be rebound as they
  1187. * finish executing their current work items. Queueing the rebind work at
  1188. * the head of their scheduled lists is enough. Note that nr_running will
  1189. * be properbly bumped as busy workers rebind.
  1190. *
  1191. * On return, all workers are guaranteed to either be bound or have rebind
  1192. * work item scheduled.
  1193. */
  1194. static void rebind_workers(struct global_cwq *gcwq)
  1195. __releases(&gcwq->lock) __acquires(&gcwq->lock)
  1196. {
  1197. struct idle_rebind idle_rebind;
  1198. struct worker_pool *pool;
  1199. struct worker *worker;
  1200. struct hlist_node *pos;
  1201. int i;
  1202. lockdep_assert_held(&gcwq->lock);
  1203. for_each_worker_pool(pool, gcwq)
  1204. lockdep_assert_held(&pool->manager_mutex);
  1205. /*
  1206. * Rebind idle workers. Interlocked both ways. We wait for
  1207. * workers to rebind via @idle_rebind.done. Workers will wait for
  1208. * us to finish up by watching %WORKER_REBIND.
  1209. */
  1210. init_completion(&idle_rebind.done);
  1211. retry:
  1212. idle_rebind.cnt = 1;
  1213. INIT_COMPLETION(idle_rebind.done);
  1214. /* set REBIND and kick idle ones, we'll wait for these later */
  1215. for_each_worker_pool(pool, gcwq) {
  1216. list_for_each_entry(worker, &pool->idle_list, entry) {
  1217. unsigned long worker_flags = worker->flags;
  1218. if (worker->flags & WORKER_REBIND)
  1219. continue;
  1220. /* morph UNBOUND to REBIND atomically */
  1221. worker_flags &= ~WORKER_UNBOUND;
  1222. worker_flags |= WORKER_REBIND;
  1223. ACCESS_ONCE(worker->flags) = worker_flags;
  1224. idle_rebind.cnt++;
  1225. worker->idle_rebind = &idle_rebind;
  1226. /* worker_thread() will call idle_worker_rebind() */
  1227. wake_up_process(worker->task);
  1228. }
  1229. }
  1230. if (--idle_rebind.cnt) {
  1231. spin_unlock_irq(&gcwq->lock);
  1232. wait_for_completion(&idle_rebind.done);
  1233. spin_lock_irq(&gcwq->lock);
  1234. /* busy ones might have become idle while waiting, retry */
  1235. goto retry;
  1236. }
  1237. /*
  1238. * All idle workers are rebound and waiting for %WORKER_REBIND to
  1239. * be cleared inside idle_worker_rebind(). Clear and release.
  1240. * Clearing %WORKER_REBIND from this foreign context is safe
  1241. * because these workers are still guaranteed to be idle.
  1242. */
  1243. for_each_worker_pool(pool, gcwq)
  1244. list_for_each_entry(worker, &pool->idle_list, entry)
  1245. worker->flags &= ~WORKER_REBIND;
  1246. wake_up_all(&gcwq->rebind_hold);
  1247. /* rebind busy workers */
  1248. for_each_busy_worker(worker, i, pos, gcwq) {
  1249. struct work_struct *rebind_work = &worker->rebind_work;
  1250. unsigned long worker_flags = worker->flags;
  1251. /* morph UNBOUND to REBIND atomically */
  1252. worker_flags &= ~WORKER_UNBOUND;
  1253. worker_flags |= WORKER_REBIND;
  1254. ACCESS_ONCE(worker->flags) = worker_flags;
  1255. if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
  1256. work_data_bits(rebind_work)))
  1257. continue;
  1258. /* wq doesn't matter, use the default one */
  1259. debug_work_activate(rebind_work);
  1260. insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
  1261. worker->scheduled.next,
  1262. work_color_to_flags(WORK_NO_COLOR));
  1263. }
  1264. }
  1265. static struct worker *alloc_worker(void)
  1266. {
  1267. struct worker *worker;
  1268. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1269. if (worker) {
  1270. INIT_LIST_HEAD(&worker->entry);
  1271. INIT_LIST_HEAD(&worker->scheduled);
  1272. INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
  1273. /* on creation a worker is in !idle && prep state */
  1274. worker->flags = WORKER_PREP;
  1275. }
  1276. return worker;
  1277. }
  1278. /**
  1279. * create_worker - create a new workqueue worker
  1280. * @pool: pool the new worker will belong to
  1281. *
  1282. * Create a new worker which is bound to @pool. The returned worker
  1283. * can be started by calling start_worker() or destroyed using
  1284. * destroy_worker().
  1285. *
  1286. * CONTEXT:
  1287. * Might sleep. Does GFP_KERNEL allocations.
  1288. *
  1289. * RETURNS:
  1290. * Pointer to the newly created worker.
  1291. */
  1292. static struct worker *create_worker(struct worker_pool *pool)
  1293. {
  1294. struct global_cwq *gcwq = pool->gcwq;
  1295. const char *pri = worker_pool_pri(pool) ? "H" : "";
  1296. struct worker *worker = NULL;
  1297. int id = -1;
  1298. spin_lock_irq(&gcwq->lock);
  1299. while (ida_get_new(&pool->worker_ida, &id)) {
  1300. spin_unlock_irq(&gcwq->lock);
  1301. if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
  1302. goto fail;
  1303. spin_lock_irq(&gcwq->lock);
  1304. }
  1305. spin_unlock_irq(&gcwq->lock);
  1306. worker = alloc_worker();
  1307. if (!worker)
  1308. goto fail;
  1309. worker->pool = pool;
  1310. worker->id = id;
  1311. if (gcwq->cpu != WORK_CPU_UNBOUND)
  1312. worker->task = kthread_create_on_node(worker_thread,
  1313. worker, cpu_to_node(gcwq->cpu),
  1314. "kworker/%u:%d%s", gcwq->cpu, id, pri);
  1315. else
  1316. worker->task = kthread_create(worker_thread, worker,
  1317. "kworker/u:%d%s", id, pri);
  1318. if (IS_ERR(worker->task))
  1319. goto fail;
  1320. if (worker_pool_pri(pool))
  1321. set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
  1322. /*
  1323. * Determine CPU binding of the new worker depending on
  1324. * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
  1325. * flag remains stable across this function. See the comments
  1326. * above the flag definition for details.
  1327. *
  1328. * As an unbound worker may later become a regular one if CPU comes
  1329. * online, make sure every worker has %PF_THREAD_BOUND set.
  1330. */
  1331. if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
  1332. kthread_bind(worker->task, gcwq->cpu);
  1333. } else {
  1334. worker->task->flags |= PF_THREAD_BOUND;
  1335. worker->flags |= WORKER_UNBOUND;
  1336. }
  1337. return worker;
  1338. fail:
  1339. if (id >= 0) {
  1340. spin_lock_irq(&gcwq->lock);
  1341. ida_remove(&pool->worker_ida, id);
  1342. spin_unlock_irq(&gcwq->lock);
  1343. }
  1344. kfree(worker);
  1345. return NULL;
  1346. }
  1347. /**
  1348. * start_worker - start a newly created worker
  1349. * @worker: worker to start
  1350. *
  1351. * Make the gcwq aware of @worker and start it.
  1352. *
  1353. * CONTEXT:
  1354. * spin_lock_irq(gcwq->lock).
  1355. */
  1356. static void start_worker(struct worker *worker)
  1357. {
  1358. worker->flags |= WORKER_STARTED;
  1359. worker->pool->nr_workers++;
  1360. worker_enter_idle(worker);
  1361. wake_up_process(worker->task);
  1362. }
  1363. /**
  1364. * destroy_worker - destroy a workqueue worker
  1365. * @worker: worker to be destroyed
  1366. *
  1367. * Destroy @worker and adjust @gcwq stats accordingly.
  1368. *
  1369. * CONTEXT:
  1370. * spin_lock_irq(gcwq->lock) which is released and regrabbed.
  1371. */
  1372. static void destroy_worker(struct worker *worker)
  1373. {
  1374. struct worker_pool *pool = worker->pool;
  1375. struct global_cwq *gcwq = pool->gcwq;
  1376. int id = worker->id;
  1377. /* sanity check frenzy */
  1378. BUG_ON(worker->current_work);
  1379. BUG_ON(!list_empty(&worker->scheduled));
  1380. if (worker->flags & WORKER_STARTED)
  1381. pool->nr_workers--;
  1382. if (worker->flags & WORKER_IDLE)
  1383. pool->nr_idle--;
  1384. list_del_init(&worker->entry);
  1385. worker->flags |= WORKER_DIE;
  1386. spin_unlock_irq(&gcwq->lock);
  1387. kthread_stop(worker->task);
  1388. kfree(worker);
  1389. spin_lock_irq(&gcwq->lock);
  1390. ida_remove(&pool->worker_ida, id);
  1391. }
  1392. static void idle_worker_timeout(unsigned long __pool)
  1393. {
  1394. struct worker_pool *pool = (void *)__pool;
  1395. struct global_cwq *gcwq = pool->gcwq;
  1396. spin_lock_irq(&gcwq->lock);
  1397. if (too_many_workers(pool)) {
  1398. struct worker *worker;
  1399. unsigned long expires;
  1400. /* idle_list is kept in LIFO order, check the last one */
  1401. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1402. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1403. if (time_before(jiffies, expires))
  1404. mod_timer(&pool->idle_timer, expires);
  1405. else {
  1406. /* it's been idle for too long, wake up manager */
  1407. pool->flags |= POOL_MANAGE_WORKERS;
  1408. wake_up_worker(pool);
  1409. }
  1410. }
  1411. spin_unlock_irq(&gcwq->lock);
  1412. }
  1413. static bool send_mayday(struct work_struct *work)
  1414. {
  1415. struct cpu_workqueue_struct *cwq = get_work_cwq(work);
  1416. struct workqueue_struct *wq = cwq->wq;
  1417. unsigned int cpu;
  1418. if (!(wq->flags & WQ_RESCUER))
  1419. return false;
  1420. /* mayday mayday mayday */
  1421. cpu = cwq->pool->gcwq->cpu;
  1422. /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
  1423. if (cpu == WORK_CPU_UNBOUND)
  1424. cpu = 0;
  1425. if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
  1426. wake_up_process(wq->rescuer->task);
  1427. return true;
  1428. }
  1429. static void gcwq_mayday_timeout(unsigned long __pool)
  1430. {
  1431. struct worker_pool *pool = (void *)__pool;
  1432. struct global_cwq *gcwq = pool->gcwq;
  1433. struct work_struct *work;
  1434. spin_lock_irq(&gcwq->lock);
  1435. if (need_to_create_worker(pool)) {
  1436. /*
  1437. * We've been trying to create a new worker but
  1438. * haven't been successful. We might be hitting an
  1439. * allocation deadlock. Send distress signals to
  1440. * rescuers.
  1441. */
  1442. list_for_each_entry(work, &pool->worklist, entry)
  1443. send_mayday(work);
  1444. }
  1445. spin_unlock_irq(&gcwq->lock);
  1446. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1447. }
  1448. /**
  1449. * maybe_create_worker - create a new worker if necessary
  1450. * @pool: pool to create a new worker for
  1451. *
  1452. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1453. * have at least one idle worker on return from this function. If
  1454. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1455. * sent to all rescuers with works scheduled on @pool to resolve
  1456. * possible allocation deadlock.
  1457. *
  1458. * On return, need_to_create_worker() is guaranteed to be false and
  1459. * may_start_working() true.
  1460. *
  1461. * LOCKING:
  1462. * spin_lock_irq(gcwq->lock) which may be released and regrabbed
  1463. * multiple times. Does GFP_KERNEL allocations. Called only from
  1464. * manager.
  1465. *
  1466. * RETURNS:
  1467. * false if no action was taken and gcwq->lock stayed locked, true
  1468. * otherwise.
  1469. */
  1470. static bool maybe_create_worker(struct worker_pool *pool)
  1471. __releases(&gcwq->lock)
  1472. __acquires(&gcwq->lock)
  1473. {
  1474. struct global_cwq *gcwq = pool->gcwq;
  1475. if (!need_to_create_worker(pool))
  1476. return false;
  1477. restart:
  1478. spin_unlock_irq(&gcwq->lock);
  1479. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1480. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1481. while (true) {
  1482. struct worker *worker;
  1483. worker = create_worker(pool);
  1484. if (worker) {
  1485. del_timer_sync(&pool->mayday_timer);
  1486. spin_lock_irq(&gcwq->lock);
  1487. start_worker(worker);
  1488. BUG_ON(need_to_create_worker(pool));
  1489. return true;
  1490. }
  1491. if (!need_to_create_worker(pool))
  1492. break;
  1493. __set_current_state(TASK_INTERRUPTIBLE);
  1494. schedule_timeout(CREATE_COOLDOWN);
  1495. if (!need_to_create_worker(pool))
  1496. break;
  1497. }
  1498. del_timer_sync(&pool->mayday_timer);
  1499. spin_lock_irq(&gcwq->lock);
  1500. if (need_to_create_worker(pool))
  1501. goto restart;
  1502. return true;
  1503. }
  1504. /**
  1505. * maybe_destroy_worker - destroy workers which have been idle for a while
  1506. * @pool: pool to destroy workers for
  1507. *
  1508. * Destroy @pool workers which have been idle for longer than
  1509. * IDLE_WORKER_TIMEOUT.
  1510. *
  1511. * LOCKING:
  1512. * spin_lock_irq(gcwq->lock) which may be released and regrabbed
  1513. * multiple times. Called only from manager.
  1514. *
  1515. * RETURNS:
  1516. * false if no action was taken and gcwq->lock stayed locked, true
  1517. * otherwise.
  1518. */
  1519. static bool maybe_destroy_workers(struct worker_pool *pool)
  1520. {
  1521. bool ret = false;
  1522. while (too_many_workers(pool)) {
  1523. struct worker *worker;
  1524. unsigned long expires;
  1525. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1526. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1527. if (time_before(jiffies, expires)) {
  1528. mod_timer(&pool->idle_timer, expires);
  1529. break;
  1530. }
  1531. destroy_worker(worker);
  1532. ret = true;
  1533. }
  1534. return ret;
  1535. }
  1536. /**
  1537. * manage_workers - manage worker pool
  1538. * @worker: self
  1539. *
  1540. * Assume the manager role and manage gcwq worker pool @worker belongs
  1541. * to. At any given time, there can be only zero or one manager per
  1542. * gcwq. The exclusion is handled automatically by this function.
  1543. *
  1544. * The caller can safely start processing works on false return. On
  1545. * true return, it's guaranteed that need_to_create_worker() is false
  1546. * and may_start_working() is true.
  1547. *
  1548. * CONTEXT:
  1549. * spin_lock_irq(gcwq->lock) which may be released and regrabbed
  1550. * multiple times. Does GFP_KERNEL allocations.
  1551. *
  1552. * RETURNS:
  1553. * false if no action was taken and gcwq->lock stayed locked, true if
  1554. * some action was taken.
  1555. */
  1556. static bool manage_workers(struct worker *worker)
  1557. {
  1558. struct worker_pool *pool = worker->pool;
  1559. bool ret = false;
  1560. if (!mutex_trylock(&pool->manager_mutex))
  1561. return ret;
  1562. pool->flags &= ~POOL_MANAGE_WORKERS;
  1563. /*
  1564. * Destroy and then create so that may_start_working() is true
  1565. * on return.
  1566. */
  1567. ret |= maybe_destroy_workers(pool);
  1568. ret |= maybe_create_worker(pool);
  1569. mutex_unlock(&pool->manager_mutex);
  1570. return ret;
  1571. }
  1572. /**
  1573. * move_linked_works - move linked works to a list
  1574. * @work: start of series of works to be scheduled
  1575. * @head: target list to append @work to
  1576. * @nextp: out paramter for nested worklist walking
  1577. *
  1578. * Schedule linked works starting from @work to @head. Work series to
  1579. * be scheduled starts at @work and includes any consecutive work with
  1580. * WORK_STRUCT_LINKED set in its predecessor.
  1581. *
  1582. * If @nextp is not NULL, it's updated to point to the next work of
  1583. * the last scheduled work. This allows move_linked_works() to be
  1584. * nested inside outer list_for_each_entry_safe().
  1585. *
  1586. * CONTEXT:
  1587. * spin_lock_irq(gcwq->lock).
  1588. */
  1589. static void move_linked_works(struct work_struct *work, struct list_head *head,
  1590. struct work_struct **nextp)
  1591. {
  1592. struct work_struct *n;
  1593. /*
  1594. * Linked worklist will always end before the end of the list,
  1595. * use NULL for list head.
  1596. */
  1597. list_for_each_entry_safe_from(work, n, NULL, entry) {
  1598. list_move_tail(&work->entry, head);
  1599. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  1600. break;
  1601. }
  1602. /*
  1603. * If we're already inside safe list traversal and have moved
  1604. * multiple works to the scheduled queue, the next position
  1605. * needs to be updated.
  1606. */
  1607. if (nextp)
  1608. *nextp = n;
  1609. }
  1610. static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
  1611. {
  1612. struct work_struct *work = list_first_entry(&cwq->delayed_works,
  1613. struct work_struct, entry);
  1614. trace_workqueue_activate_work(work);
  1615. move_linked_works(work, &cwq->pool->worklist, NULL);
  1616. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  1617. cwq->nr_active++;
  1618. }
  1619. /**
  1620. * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
  1621. * @cwq: cwq of interest
  1622. * @color: color of work which left the queue
  1623. * @delayed: for a delayed work
  1624. *
  1625. * A work either has completed or is removed from pending queue,
  1626. * decrement nr_in_flight of its cwq and handle workqueue flushing.
  1627. *
  1628. * CONTEXT:
  1629. * spin_lock_irq(gcwq->lock).
  1630. */
  1631. static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
  1632. bool delayed)
  1633. {
  1634. /* ignore uncolored works */
  1635. if (color == WORK_NO_COLOR)
  1636. return;
  1637. cwq->nr_in_flight[color]--;
  1638. if (!delayed) {
  1639. cwq->nr_active--;
  1640. if (!list_empty(&cwq->delayed_works)) {
  1641. /* one down, submit a delayed one */
  1642. if (cwq->nr_active < cwq->max_active)
  1643. cwq_activate_first_delayed(cwq);
  1644. }
  1645. }
  1646. /* is flush in progress and are we at the flushing tip? */
  1647. if (likely(cwq->flush_color != color))
  1648. return;
  1649. /* are there still in-flight works? */
  1650. if (cwq->nr_in_flight[color])
  1651. return;
  1652. /* this cwq is done, clear flush_color */
  1653. cwq->flush_color = -1;
  1654. /*
  1655. * If this was the last cwq, wake up the first flusher. It
  1656. * will handle the rest.
  1657. */
  1658. if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
  1659. complete(&cwq->wq->first_flusher->done);
  1660. }
  1661. /**
  1662. * process_one_work - process single work
  1663. * @worker: self
  1664. * @work: work to process
  1665. *
  1666. * Process @work. This function contains all the logics necessary to
  1667. * process a single work including synchronization against and
  1668. * interaction with other workers on the same cpu, queueing and
  1669. * flushing. As long as context requirement is met, any worker can
  1670. * call this function to process a work.
  1671. *
  1672. * CONTEXT:
  1673. * spin_lock_irq(gcwq->lock) which is released and regrabbed.
  1674. */
  1675. static void process_one_work(struct worker *worker, struct work_struct *work)
  1676. __releases(&gcwq->lock)
  1677. __acquires(&gcwq->lock)
  1678. {
  1679. struct cpu_workqueue_struct *cwq = get_work_cwq(work);
  1680. struct worker_pool *pool = worker->pool;
  1681. struct global_cwq *gcwq = pool->gcwq;
  1682. struct hlist_head *bwh = busy_worker_head(gcwq, work);
  1683. bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
  1684. work_func_t f = work->func;
  1685. int work_color;
  1686. struct worker *collision;
  1687. #ifdef CONFIG_LOCKDEP
  1688. /*
  1689. * It is permissible to free the struct work_struct from
  1690. * inside the function that is called from it, this we need to
  1691. * take into account for lockdep too. To avoid bogus "held
  1692. * lock freed" warnings as well as problems when looking into
  1693. * work->lockdep_map, make a copy and use that here.
  1694. */
  1695. struct lockdep_map lockdep_map;
  1696. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1697. #endif
  1698. /*
  1699. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1700. * necessary to avoid spurious warnings from rescuers servicing the
  1701. * unbound or a disassociated gcwq.
  1702. */
  1703. WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
  1704. !(gcwq->flags & GCWQ_DISASSOCIATED) &&
  1705. raw_smp_processor_id() != gcwq->cpu);
  1706. /*
  1707. * A single work shouldn't be executed concurrently by
  1708. * multiple workers on a single cpu. Check whether anyone is
  1709. * already processing the work. If so, defer the work to the
  1710. * currently executing one.
  1711. */
  1712. collision = __find_worker_executing_work(gcwq, bwh, work);
  1713. if (unlikely(collision)) {
  1714. move_linked_works(work, &collision->scheduled, NULL);
  1715. return;
  1716. }
  1717. /* claim and process */
  1718. debug_work_deactivate(work);
  1719. hlist_add_head(&worker->hentry, bwh);
  1720. worker->current_work = work;
  1721. worker->current_cwq = cwq;
  1722. work_color = get_work_color(work);
  1723. /* record the current cpu number in the work data and dequeue */
  1724. set_work_cpu(work, gcwq->cpu);
  1725. list_del_init(&work->entry);
  1726. /*
  1727. * CPU intensive works don't participate in concurrency
  1728. * management. They're the scheduler's responsibility.
  1729. */
  1730. if (unlikely(cpu_intensive))
  1731. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1732. /*
  1733. * Unbound gcwq isn't concurrency managed and work items should be
  1734. * executed ASAP. Wake up another worker if necessary.
  1735. */
  1736. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1737. wake_up_worker(pool);
  1738. spin_unlock_irq(&gcwq->lock);
  1739. work_clear_pending(work);
  1740. lock_map_acquire_read(&cwq->wq->lockdep_map);
  1741. lock_map_acquire(&lockdep_map);
  1742. trace_workqueue_execute_start(work);
  1743. f(work);
  1744. /*
  1745. * While we must be careful to not use "work" after this, the trace
  1746. * point will only record its address.
  1747. */
  1748. trace_workqueue_execute_end(work);
  1749. lock_map_release(&lockdep_map);
  1750. lock_map_release(&cwq->wq->lockdep_map);
  1751. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1752. printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
  1753. "%s/0x%08x/%d\n",
  1754. current->comm, preempt_count(), task_pid_nr(current));
  1755. printk(KERN_ERR " last function: ");
  1756. print_symbol("%s\n", (unsigned long)f);
  1757. debug_show_held_locks(current);
  1758. dump_stack();
  1759. }
  1760. spin_lock_irq(&gcwq->lock);
  1761. /* clear cpu intensive status */
  1762. if (unlikely(cpu_intensive))
  1763. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1764. /* we're done with it, release */
  1765. hlist_del_init(&worker->hentry);
  1766. worker->current_work = NULL;
  1767. worker->current_cwq = NULL;
  1768. cwq_dec_nr_in_flight(cwq, work_color, false);
  1769. }
  1770. /**
  1771. * process_scheduled_works - process scheduled works
  1772. * @worker: self
  1773. *
  1774. * Process all scheduled works. Please note that the scheduled list
  1775. * may change while processing a work, so this function repeatedly
  1776. * fetches a work from the top and executes it.
  1777. *
  1778. * CONTEXT:
  1779. * spin_lock_irq(gcwq->lock) which may be released and regrabbed
  1780. * multiple times.
  1781. */
  1782. static void process_scheduled_works(struct worker *worker)
  1783. {
  1784. while (!list_empty(&worker->scheduled)) {
  1785. struct work_struct *work = list_first_entry(&worker->scheduled,
  1786. struct work_struct, entry);
  1787. process_one_work(worker, work);
  1788. }
  1789. }
  1790. /**
  1791. * worker_thread - the worker thread function
  1792. * @__worker: self
  1793. *
  1794. * The gcwq worker thread function. There's a single dynamic pool of
  1795. * these per each cpu. These workers process all works regardless of
  1796. * their specific target workqueue. The only exception is works which
  1797. * belong to workqueues with a rescuer which will be explained in
  1798. * rescuer_thread().
  1799. */
  1800. static int worker_thread(void *__worker)
  1801. {
  1802. struct worker *worker = __worker;
  1803. struct worker_pool *pool = worker->pool;
  1804. struct global_cwq *gcwq = pool->gcwq;
  1805. /* tell the scheduler that this is a workqueue worker */
  1806. worker->task->flags |= PF_WQ_WORKER;
  1807. woke_up:
  1808. spin_lock_irq(&gcwq->lock);
  1809. /*
  1810. * DIE can be set only while idle and REBIND set while busy has
  1811. * @worker->rebind_work scheduled. Checking here is enough.
  1812. */
  1813. if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
  1814. spin_unlock_irq(&gcwq->lock);
  1815. if (worker->flags & WORKER_DIE) {
  1816. worker->task->flags &= ~PF_WQ_WORKER;
  1817. return 0;
  1818. }
  1819. idle_worker_rebind(worker);
  1820. goto woke_up;
  1821. }
  1822. worker_leave_idle(worker);
  1823. recheck:
  1824. /* no more worker necessary? */
  1825. if (!need_more_worker(pool))
  1826. goto sleep;
  1827. /* do we need to manage? */
  1828. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1829. goto recheck;
  1830. /*
  1831. * ->scheduled list can only be filled while a worker is
  1832. * preparing to process a work or actually processing it.
  1833. * Make sure nobody diddled with it while I was sleeping.
  1834. */
  1835. BUG_ON(!list_empty(&worker->scheduled));
  1836. /*
  1837. * When control reaches this point, we're guaranteed to have
  1838. * at least one idle worker or that someone else has already
  1839. * assumed the manager role.
  1840. */
  1841. worker_clr_flags(worker, WORKER_PREP);
  1842. do {
  1843. struct work_struct *work =
  1844. list_first_entry(&pool->worklist,
  1845. struct work_struct, entry);
  1846. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1847. /* optimization path, not strictly necessary */
  1848. process_one_work(worker, work);
  1849. if (unlikely(!list_empty(&worker->scheduled)))
  1850. process_scheduled_works(worker);
  1851. } else {
  1852. move_linked_works(work, &worker->scheduled, NULL);
  1853. process_scheduled_works(worker);
  1854. }
  1855. } while (keep_working(pool));
  1856. worker_set_flags(worker, WORKER_PREP, false);
  1857. sleep:
  1858. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  1859. goto recheck;
  1860. /*
  1861. * gcwq->lock is held and there's no work to process and no
  1862. * need to manage, sleep. Workers are woken up only while
  1863. * holding gcwq->lock or from local cpu, so setting the
  1864. * current state before releasing gcwq->lock is enough to
  1865. * prevent losing any event.
  1866. */
  1867. worker_enter_idle(worker);
  1868. __set_current_state(TASK_INTERRUPTIBLE);
  1869. spin_unlock_irq(&gcwq->lock);
  1870. schedule();
  1871. goto woke_up;
  1872. }
  1873. /**
  1874. * rescuer_thread - the rescuer thread function
  1875. * @__wq: the associated workqueue
  1876. *
  1877. * Workqueue rescuer thread function. There's one rescuer for each
  1878. * workqueue which has WQ_RESCUER set.
  1879. *
  1880. * Regular work processing on a gcwq may block trying to create a new
  1881. * worker which uses GFP_KERNEL allocation which has slight chance of
  1882. * developing into deadlock if some works currently on the same queue
  1883. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  1884. * the problem rescuer solves.
  1885. *
  1886. * When such condition is possible, the gcwq summons rescuers of all
  1887. * workqueues which have works queued on the gcwq and let them process
  1888. * those works so that forward progress can be guaranteed.
  1889. *
  1890. * This should happen rarely.
  1891. */
  1892. static int rescuer_thread(void *__wq)
  1893. {
  1894. struct workqueue_struct *wq = __wq;
  1895. struct worker *rescuer = wq->rescuer;
  1896. struct list_head *scheduled = &rescuer->scheduled;
  1897. bool is_unbound = wq->flags & WQ_UNBOUND;
  1898. unsigned int cpu;
  1899. set_user_nice(current, RESCUER_NICE_LEVEL);
  1900. repeat:
  1901. set_current_state(TASK_INTERRUPTIBLE);
  1902. if (kthread_should_stop())
  1903. return 0;
  1904. /*
  1905. * See whether any cpu is asking for help. Unbounded
  1906. * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
  1907. */
  1908. for_each_mayday_cpu(cpu, wq->mayday_mask) {
  1909. unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
  1910. struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
  1911. struct worker_pool *pool = cwq->pool;
  1912. struct global_cwq *gcwq = pool->gcwq;
  1913. struct work_struct *work, *n;
  1914. __set_current_state(TASK_RUNNING);
  1915. mayday_clear_cpu(cpu, wq->mayday_mask);
  1916. /* migrate to the target cpu if possible */
  1917. rescuer->pool = pool;
  1918. worker_maybe_bind_and_lock(rescuer);
  1919. /*
  1920. * Slurp in all works issued via this workqueue and
  1921. * process'em.
  1922. */
  1923. BUG_ON(!list_empty(&rescuer->scheduled));
  1924. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  1925. if (get_work_cwq(work) == cwq)
  1926. move_linked_works(work, scheduled, &n);
  1927. process_scheduled_works(rescuer);
  1928. /*
  1929. * Leave this gcwq. If keep_working() is %true, notify a
  1930. * regular worker; otherwise, we end up with 0 concurrency
  1931. * and stalling the execution.
  1932. */
  1933. if (keep_working(pool))
  1934. wake_up_worker(pool);
  1935. spin_unlock_irq(&gcwq->lock);
  1936. }
  1937. schedule();
  1938. goto repeat;
  1939. }
  1940. struct wq_barrier {
  1941. struct work_struct work;
  1942. struct completion done;
  1943. };
  1944. static void wq_barrier_func(struct work_struct *work)
  1945. {
  1946. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  1947. complete(&barr->done);
  1948. }
  1949. /**
  1950. * insert_wq_barrier - insert a barrier work
  1951. * @cwq: cwq to insert barrier into
  1952. * @barr: wq_barrier to insert
  1953. * @target: target work to attach @barr to
  1954. * @worker: worker currently executing @target, NULL if @target is not executing
  1955. *
  1956. * @barr is linked to @target such that @barr is completed only after
  1957. * @target finishes execution. Please note that the ordering
  1958. * guarantee is observed only with respect to @target and on the local
  1959. * cpu.
  1960. *
  1961. * Currently, a queued barrier can't be canceled. This is because
  1962. * try_to_grab_pending() can't determine whether the work to be
  1963. * grabbed is at the head of the queue and thus can't clear LINKED
  1964. * flag of the previous work while there must be a valid next work
  1965. * after a work with LINKED flag set.
  1966. *
  1967. * Note that when @worker is non-NULL, @target may be modified
  1968. * underneath us, so we can't reliably determine cwq from @target.
  1969. *
  1970. * CONTEXT:
  1971. * spin_lock_irq(gcwq->lock).
  1972. */
  1973. static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
  1974. struct wq_barrier *barr,
  1975. struct work_struct *target, struct worker *worker)
  1976. {
  1977. struct list_head *head;
  1978. unsigned int linked = 0;
  1979. /*
  1980. * debugobject calls are safe here even with gcwq->lock locked
  1981. * as we know for sure that this will not trigger any of the
  1982. * checks and call back into the fixup functions where we
  1983. * might deadlock.
  1984. */
  1985. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  1986. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  1987. init_completion(&barr->done);
  1988. /*
  1989. * If @target is currently being executed, schedule the
  1990. * barrier to the worker; otherwise, put it after @target.
  1991. */
  1992. if (worker)
  1993. head = worker->scheduled.next;
  1994. else {
  1995. unsigned long *bits = work_data_bits(target);
  1996. head = target->entry.next;
  1997. /* there can already be other linked works, inherit and set */
  1998. linked = *bits & WORK_STRUCT_LINKED;
  1999. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  2000. }
  2001. debug_work_activate(&barr->work);
  2002. insert_work(cwq, &barr->work, head,
  2003. work_color_to_flags(WORK_NO_COLOR) | linked);
  2004. }
  2005. /**
  2006. * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
  2007. * @wq: workqueue being flushed
  2008. * @flush_color: new flush color, < 0 for no-op
  2009. * @work_color: new work color, < 0 for no-op
  2010. *
  2011. * Prepare cwqs for workqueue flushing.
  2012. *
  2013. * If @flush_color is non-negative, flush_color on all cwqs should be
  2014. * -1. If no cwq has in-flight commands at the specified color, all
  2015. * cwq->flush_color's stay at -1 and %false is returned. If any cwq
  2016. * has in flight commands, its cwq->flush_color is set to
  2017. * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
  2018. * wakeup logic is armed and %true is returned.
  2019. *
  2020. * The caller should have initialized @wq->first_flusher prior to
  2021. * calling this function with non-negative @flush_color. If
  2022. * @flush_color is negative, no flush color update is done and %false
  2023. * is returned.
  2024. *
  2025. * If @work_color is non-negative, all cwqs should have the same
  2026. * work_color which is previous to @work_color and all will be
  2027. * advanced to @work_color.
  2028. *
  2029. * CONTEXT:
  2030. * mutex_lock(wq->flush_mutex).
  2031. *
  2032. * RETURNS:
  2033. * %true if @flush_color >= 0 and there's something to flush. %false
  2034. * otherwise.
  2035. */
  2036. static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
  2037. int flush_color, int work_color)
  2038. {
  2039. bool wait = false;
  2040. unsigned int cpu;
  2041. if (flush_color >= 0) {
  2042. BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
  2043. atomic_set(&wq->nr_cwqs_to_flush, 1);
  2044. }
  2045. for_each_cwq_cpu(cpu, wq) {
  2046. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  2047. struct global_cwq *gcwq = cwq->pool->gcwq;
  2048. spin_lock_irq(&gcwq->lock);
  2049. if (flush_color >= 0) {
  2050. BUG_ON(cwq->flush_color != -1);
  2051. if (cwq->nr_in_flight[flush_color]) {
  2052. cwq->flush_color = flush_color;
  2053. atomic_inc(&wq->nr_cwqs_to_flush);
  2054. wait = true;
  2055. }
  2056. }
  2057. if (work_color >= 0) {
  2058. BUG_ON(work_color != work_next_color(cwq->work_color));
  2059. cwq->work_color = work_color;
  2060. }
  2061. spin_unlock_irq(&gcwq->lock);
  2062. }
  2063. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
  2064. complete(&wq->first_flusher->done);
  2065. return wait;
  2066. }
  2067. /**
  2068. * flush_workqueue - ensure that any scheduled work has run to completion.
  2069. * @wq: workqueue to flush
  2070. *
  2071. * Forces execution of the workqueue and blocks until its completion.
  2072. * This is typically used in driver shutdown handlers.
  2073. *
  2074. * We sleep until all works which were queued on entry have been handled,
  2075. * but we are not livelocked by new incoming ones.
  2076. */
  2077. void flush_workqueue(struct workqueue_struct *wq)
  2078. {
  2079. struct wq_flusher this_flusher = {
  2080. .list = LIST_HEAD_INIT(this_flusher.list),
  2081. .flush_color = -1,
  2082. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2083. };
  2084. int next_color;
  2085. lock_map_acquire(&wq->lockdep_map);
  2086. lock_map_release(&wq->lockdep_map);
  2087. mutex_lock(&wq->flush_mutex);
  2088. /*
  2089. * Start-to-wait phase
  2090. */
  2091. next_color = work_next_color(wq->work_color);
  2092. if (next_color != wq->flush_color) {
  2093. /*
  2094. * Color space is not full. The current work_color
  2095. * becomes our flush_color and work_color is advanced
  2096. * by one.
  2097. */
  2098. BUG_ON(!list_empty(&wq->flusher_overflow));
  2099. this_flusher.flush_color = wq->work_color;
  2100. wq->work_color = next_color;
  2101. if (!wq->first_flusher) {
  2102. /* no flush in progress, become the first flusher */
  2103. BUG_ON(wq->flush_color != this_flusher.flush_color);
  2104. wq->first_flusher = &this_flusher;
  2105. if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
  2106. wq->work_color)) {
  2107. /* nothing to flush, done */
  2108. wq->flush_color = next_color;
  2109. wq->first_flusher = NULL;
  2110. goto out_unlock;
  2111. }
  2112. } else {
  2113. /* wait in queue */
  2114. BUG_ON(wq->flush_color == this_flusher.flush_color);
  2115. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2116. flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
  2117. }
  2118. } else {
  2119. /*
  2120. * Oops, color space is full, wait on overflow queue.
  2121. * The next flush completion will assign us
  2122. * flush_color and transfer to flusher_queue.
  2123. */
  2124. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2125. }
  2126. mutex_unlock(&wq->flush_mutex);
  2127. wait_for_completion(&this_flusher.done);
  2128. /*
  2129. * Wake-up-and-cascade phase
  2130. *
  2131. * First flushers are responsible for cascading flushes and
  2132. * handling overflow. Non-first flushers can simply return.
  2133. */
  2134. if (wq->first_flusher != &this_flusher)
  2135. return;
  2136. mutex_lock(&wq->flush_mutex);
  2137. /* we might have raced, check again with mutex held */
  2138. if (wq->first_flusher != &this_flusher)
  2139. goto out_unlock;
  2140. wq->first_flusher = NULL;
  2141. BUG_ON(!list_empty(&this_flusher.list));
  2142. BUG_ON(wq->flush_color != this_flusher.flush_color);
  2143. while (true) {
  2144. struct wq_flusher *next, *tmp;
  2145. /* complete all the flushers sharing the current flush color */
  2146. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2147. if (next->flush_color != wq->flush_color)
  2148. break;
  2149. list_del_init(&next->list);
  2150. complete(&next->done);
  2151. }
  2152. BUG_ON(!list_empty(&wq->flusher_overflow) &&
  2153. wq->flush_color != work_next_color(wq->work_color));
  2154. /* this flush_color is finished, advance by one */
  2155. wq->flush_color = work_next_color(wq->flush_color);
  2156. /* one color has been freed, handle overflow queue */
  2157. if (!list_empty(&wq->flusher_overflow)) {
  2158. /*
  2159. * Assign the same color to all overflowed
  2160. * flushers, advance work_color and append to
  2161. * flusher_queue. This is the start-to-wait
  2162. * phase for these overflowed flushers.
  2163. */
  2164. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2165. tmp->flush_color = wq->work_color;
  2166. wq->work_color = work_next_color(wq->work_color);
  2167. list_splice_tail_init(&wq->flusher_overflow,
  2168. &wq->flusher_queue);
  2169. flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
  2170. }
  2171. if (list_empty(&wq->flusher_queue)) {
  2172. BUG_ON(wq->flush_color != wq->work_color);
  2173. break;
  2174. }
  2175. /*
  2176. * Need to flush more colors. Make the next flusher
  2177. * the new first flusher and arm cwqs.
  2178. */
  2179. BUG_ON(wq->flush_color == wq->work_color);
  2180. BUG_ON(wq->flush_color != next->flush_color);
  2181. list_del_init(&next->list);
  2182. wq->first_flusher = next;
  2183. if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
  2184. break;
  2185. /*
  2186. * Meh... this color is already done, clear first
  2187. * flusher and repeat cascading.
  2188. */
  2189. wq->first_flusher = NULL;
  2190. }
  2191. out_unlock:
  2192. mutex_unlock(&wq->flush_mutex);
  2193. }
  2194. EXPORT_SYMBOL_GPL(flush_workqueue);
  2195. /**
  2196. * drain_workqueue - drain a workqueue
  2197. * @wq: workqueue to drain
  2198. *
  2199. * Wait until the workqueue becomes empty. While draining is in progress,
  2200. * only chain queueing is allowed. IOW, only currently pending or running
  2201. * work items on @wq can queue further work items on it. @wq is flushed
  2202. * repeatedly until it becomes empty. The number of flushing is detemined
  2203. * by the depth of chaining and should be relatively short. Whine if it
  2204. * takes too long.
  2205. */
  2206. void drain_workqueue(struct workqueue_struct *wq)
  2207. {
  2208. unsigned int flush_cnt = 0;
  2209. unsigned int cpu;
  2210. /*
  2211. * __queue_work() needs to test whether there are drainers, is much
  2212. * hotter than drain_workqueue() and already looks at @wq->flags.
  2213. * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2214. */
  2215. spin_lock(&workqueue_lock);
  2216. if (!wq->nr_drainers++)
  2217. wq->flags |= WQ_DRAINING;
  2218. spin_unlock(&workqueue_lock);
  2219. reflush:
  2220. flush_workqueue(wq);
  2221. for_each_cwq_cpu(cpu, wq) {
  2222. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  2223. bool drained;
  2224. spin_lock_irq(&cwq->pool->gcwq->lock);
  2225. drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
  2226. spin_unlock_irq(&cwq->pool->gcwq->lock);
  2227. if (drained)
  2228. continue;
  2229. if (++flush_cnt == 10 ||
  2230. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2231. pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
  2232. wq->name, flush_cnt);
  2233. goto reflush;
  2234. }
  2235. spin_lock(&workqueue_lock);
  2236. if (!--wq->nr_drainers)
  2237. wq->flags &= ~WQ_DRAINING;
  2238. spin_unlock(&workqueue_lock);
  2239. }
  2240. EXPORT_SYMBOL_GPL(drain_workqueue);
  2241. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
  2242. bool wait_executing)
  2243. {
  2244. struct worker *worker = NULL;
  2245. struct global_cwq *gcwq;
  2246. struct cpu_workqueue_struct *cwq;
  2247. might_sleep();
  2248. gcwq = get_work_gcwq(work);
  2249. if (!gcwq)
  2250. return false;
  2251. spin_lock_irq(&gcwq->lock);
  2252. if (!list_empty(&work->entry)) {
  2253. /*
  2254. * See the comment near try_to_grab_pending()->smp_rmb().
  2255. * If it was re-queued to a different gcwq under us, we
  2256. * are not going to wait.
  2257. */
  2258. smp_rmb();
  2259. cwq = get_work_cwq(work);
  2260. if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
  2261. goto already_gone;
  2262. } else if (wait_executing) {
  2263. worker = find_worker_executing_work(gcwq, work);
  2264. if (!worker)
  2265. goto already_gone;
  2266. cwq = worker->current_cwq;
  2267. } else
  2268. goto already_gone;
  2269. insert_wq_barrier(cwq, barr, work, worker);
  2270. spin_unlock_irq(&gcwq->lock);
  2271. /*
  2272. * If @max_active is 1 or rescuer is in use, flushing another work
  2273. * item on the same workqueue may lead to deadlock. Make sure the
  2274. * flusher is not running on the same workqueue by verifying write
  2275. * access.
  2276. */
  2277. if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
  2278. lock_map_acquire(&cwq->wq->lockdep_map);
  2279. else
  2280. lock_map_acquire_read(&cwq->wq->lockdep_map);
  2281. lock_map_release(&cwq->wq->lockdep_map);
  2282. return true;
  2283. already_gone:
  2284. spin_unlock_irq(&gcwq->lock);
  2285. return false;
  2286. }
  2287. /**
  2288. * flush_work - wait for a work to finish executing the last queueing instance
  2289. * @work: the work to flush
  2290. *
  2291. * Wait until @work has finished execution. This function considers
  2292. * only the last queueing instance of @work. If @work has been
  2293. * enqueued across different CPUs on a non-reentrant workqueue or on
  2294. * multiple workqueues, @work might still be executing on return on
  2295. * some of the CPUs from earlier queueing.
  2296. *
  2297. * If @work was queued only on a non-reentrant, ordered or unbound
  2298. * workqueue, @work is guaranteed to be idle on return if it hasn't
  2299. * been requeued since flush started.
  2300. *
  2301. * RETURNS:
  2302. * %true if flush_work() waited for the work to finish execution,
  2303. * %false if it was already idle.
  2304. */
  2305. bool flush_work(struct work_struct *work)
  2306. {
  2307. struct wq_barrier barr;
  2308. lock_map_acquire(&work->lockdep_map);
  2309. lock_map_release(&work->lockdep_map);
  2310. if (start_flush_work(work, &barr, true)) {
  2311. wait_for_completion(&barr.done);
  2312. destroy_work_on_stack(&barr.work);
  2313. return true;
  2314. } else
  2315. return false;
  2316. }
  2317. EXPORT_SYMBOL_GPL(flush_work);
  2318. static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
  2319. {
  2320. struct wq_barrier barr;
  2321. struct worker *worker;
  2322. spin_lock_irq(&gcwq->lock);
  2323. worker = find_worker_executing_work(gcwq, work);
  2324. if (unlikely(worker))
  2325. insert_wq_barrier(worker->current_cwq, &barr, work, worker);
  2326. spin_unlock_irq(&gcwq->lock);
  2327. if (unlikely(worker)) {
  2328. wait_for_completion(&barr.done);
  2329. destroy_work_on_stack(&barr.work);
  2330. return true;
  2331. } else
  2332. return false;
  2333. }
  2334. static bool wait_on_work(struct work_struct *work)
  2335. {
  2336. bool ret = false;
  2337. int cpu;
  2338. might_sleep();
  2339. lock_map_acquire(&work->lockdep_map);
  2340. lock_map_release(&work->lockdep_map);
  2341. for_each_gcwq_cpu(cpu)
  2342. ret |= wait_on_cpu_work(get_gcwq(cpu), work);
  2343. return ret;
  2344. }
  2345. /**
  2346. * flush_work_sync - wait until a work has finished execution
  2347. * @work: the work to flush
  2348. *
  2349. * Wait until @work has finished execution. On return, it's
  2350. * guaranteed that all queueing instances of @work which happened
  2351. * before this function is called are finished. In other words, if
  2352. * @work hasn't been requeued since this function was called, @work is
  2353. * guaranteed to be idle on return.
  2354. *
  2355. * RETURNS:
  2356. * %true if flush_work_sync() waited for the work to finish execution,
  2357. * %false if it was already idle.
  2358. */
  2359. bool flush_work_sync(struct work_struct *work)
  2360. {
  2361. struct wq_barrier barr;
  2362. bool pending, waited;
  2363. /* we'll wait for executions separately, queue barr only if pending */
  2364. pending = start_flush_work(work, &barr, false);
  2365. /* wait for executions to finish */
  2366. waited = wait_on_work(work);
  2367. /* wait for the pending one */
  2368. if (pending) {
  2369. wait_for_completion(&barr.done);
  2370. destroy_work_on_stack(&barr.work);
  2371. }
  2372. return pending || waited;
  2373. }
  2374. EXPORT_SYMBOL_GPL(flush_work_sync);
  2375. /*
  2376. * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
  2377. * so this work can't be re-armed in any way.
  2378. */
  2379. static int try_to_grab_pending(struct work_struct *work)
  2380. {
  2381. struct global_cwq *gcwq;
  2382. int ret = -1;
  2383. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  2384. return 0;
  2385. /*
  2386. * The queueing is in progress, or it is already queued. Try to
  2387. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  2388. */
  2389. gcwq = get_work_gcwq(work);
  2390. if (!gcwq)
  2391. return ret;
  2392. spin_lock_irq(&gcwq->lock);
  2393. if (!list_empty(&work->entry)) {
  2394. /*
  2395. * This work is queued, but perhaps we locked the wrong gcwq.
  2396. * In that case we must see the new value after rmb(), see
  2397. * insert_work()->wmb().
  2398. */
  2399. smp_rmb();
  2400. if (gcwq == get_work_gcwq(work)) {
  2401. debug_work_deactivate(work);
  2402. list_del_init(&work->entry);
  2403. cwq_dec_nr_in_flight(get_work_cwq(work),
  2404. get_work_color(work),
  2405. *work_data_bits(work) & WORK_STRUCT_DELAYED);
  2406. ret = 1;
  2407. }
  2408. }
  2409. spin_unlock_irq(&gcwq->lock);
  2410. return ret;
  2411. }
  2412. static bool __cancel_work_timer(struct work_struct *work,
  2413. struct timer_list* timer)
  2414. {
  2415. int ret;
  2416. do {
  2417. ret = (timer && likely(del_timer(timer)));
  2418. if (!ret)
  2419. ret = try_to_grab_pending(work);
  2420. wait_on_work(work);
  2421. } while (unlikely(ret < 0));
  2422. clear_work_data(work);
  2423. return ret;
  2424. }
  2425. /**
  2426. * cancel_work_sync - cancel a work and wait for it to finish
  2427. * @work: the work to cancel
  2428. *
  2429. * Cancel @work and wait for its execution to finish. This function
  2430. * can be used even if the work re-queues itself or migrates to
  2431. * another workqueue. On return from this function, @work is
  2432. * guaranteed to be not pending or executing on any CPU.
  2433. *
  2434. * cancel_work_sync(&delayed_work->work) must not be used for
  2435. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2436. *
  2437. * The caller must ensure that the workqueue on which @work was last
  2438. * queued can't be destroyed before this function returns.
  2439. *
  2440. * RETURNS:
  2441. * %true if @work was pending, %false otherwise.
  2442. */
  2443. bool cancel_work_sync(struct work_struct *work)
  2444. {
  2445. return __cancel_work_timer(work, NULL);
  2446. }
  2447. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2448. /**
  2449. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2450. * @dwork: the delayed work to flush
  2451. *
  2452. * Delayed timer is cancelled and the pending work is queued for
  2453. * immediate execution. Like flush_work(), this function only
  2454. * considers the last queueing instance of @dwork.
  2455. *
  2456. * RETURNS:
  2457. * %true if flush_work() waited for the work to finish execution,
  2458. * %false if it was already idle.
  2459. */
  2460. bool flush_delayed_work(struct delayed_work *dwork)
  2461. {
  2462. if (del_timer_sync(&dwork->timer))
  2463. __queue_work(raw_smp_processor_id(),
  2464. get_work_cwq(&dwork->work)->wq, &dwork->work);
  2465. return flush_work(&dwork->work);
  2466. }
  2467. EXPORT_SYMBOL(flush_delayed_work);
  2468. /**
  2469. * flush_delayed_work_sync - wait for a dwork to finish
  2470. * @dwork: the delayed work to flush
  2471. *
  2472. * Delayed timer is cancelled and the pending work is queued for
  2473. * execution immediately. Other than timer handling, its behavior
  2474. * is identical to flush_work_sync().
  2475. *
  2476. * RETURNS:
  2477. * %true if flush_work_sync() waited for the work to finish execution,
  2478. * %false if it was already idle.
  2479. */
  2480. bool flush_delayed_work_sync(struct delayed_work *dwork)
  2481. {
  2482. if (del_timer_sync(&dwork->timer))
  2483. __queue_work(raw_smp_processor_id(),
  2484. get_work_cwq(&dwork->work)->wq, &dwork->work);
  2485. return flush_work_sync(&dwork->work);
  2486. }
  2487. EXPORT_SYMBOL(flush_delayed_work_sync);
  2488. /**
  2489. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2490. * @dwork: the delayed work cancel
  2491. *
  2492. * This is cancel_work_sync() for delayed works.
  2493. *
  2494. * RETURNS:
  2495. * %true if @dwork was pending, %false otherwise.
  2496. */
  2497. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2498. {
  2499. return __cancel_work_timer(&dwork->work, &dwork->timer);
  2500. }
  2501. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2502. /**
  2503. * schedule_work - put work task in global workqueue
  2504. * @work: job to be done
  2505. *
  2506. * Returns zero if @work was already on the kernel-global workqueue and
  2507. * non-zero otherwise.
  2508. *
  2509. * This puts a job in the kernel-global workqueue if it was not already
  2510. * queued and leaves it in the same position on the kernel-global
  2511. * workqueue otherwise.
  2512. */
  2513. int schedule_work(struct work_struct *work)
  2514. {
  2515. return queue_work(system_wq, work);
  2516. }
  2517. EXPORT_SYMBOL(schedule_work);
  2518. /*
  2519. * schedule_work_on - put work task on a specific cpu
  2520. * @cpu: cpu to put the work task on
  2521. * @work: job to be done
  2522. *
  2523. * This puts a job on a specific cpu
  2524. */
  2525. int schedule_work_on(int cpu, struct work_struct *work)
  2526. {
  2527. return queue_work_on(cpu, system_wq, work);
  2528. }
  2529. EXPORT_SYMBOL(schedule_work_on);
  2530. /**
  2531. * schedule_delayed_work - put work task in global workqueue after delay
  2532. * @dwork: job to be done
  2533. * @delay: number of jiffies to wait or 0 for immediate execution
  2534. *
  2535. * After waiting for a given time this puts a job in the kernel-global
  2536. * workqueue.
  2537. */
  2538. int schedule_delayed_work(struct delayed_work *dwork,
  2539. unsigned long delay)
  2540. {
  2541. return queue_delayed_work(system_wq, dwork, delay);
  2542. }
  2543. EXPORT_SYMBOL(schedule_delayed_work);
  2544. /**
  2545. * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
  2546. * @cpu: cpu to use
  2547. * @dwork: job to be done
  2548. * @delay: number of jiffies to wait
  2549. *
  2550. * After waiting for a given time this puts a job in the kernel-global
  2551. * workqueue on the specified CPU.
  2552. */
  2553. int schedule_delayed_work_on(int cpu,
  2554. struct delayed_work *dwork, unsigned long delay)
  2555. {
  2556. return queue_delayed_work_on(cpu, system_wq, dwork, delay);
  2557. }
  2558. EXPORT_SYMBOL(schedule_delayed_work_on);
  2559. /**
  2560. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2561. * @func: the function to call
  2562. *
  2563. * schedule_on_each_cpu() executes @func on each online CPU using the
  2564. * system workqueue and blocks until all CPUs have completed.
  2565. * schedule_on_each_cpu() is very slow.
  2566. *
  2567. * RETURNS:
  2568. * 0 on success, -errno on failure.
  2569. */
  2570. int schedule_on_each_cpu(work_func_t func)
  2571. {
  2572. int cpu;
  2573. struct work_struct __percpu *works;
  2574. works = alloc_percpu(struct work_struct);
  2575. if (!works)
  2576. return -ENOMEM;
  2577. get_online_cpus();
  2578. for_each_online_cpu(cpu) {
  2579. struct work_struct *work = per_cpu_ptr(works, cpu);
  2580. INIT_WORK(work, func);
  2581. schedule_work_on(cpu, work);
  2582. }
  2583. for_each_online_cpu(cpu)
  2584. flush_work(per_cpu_ptr(works, cpu));
  2585. put_online_cpus();
  2586. free_percpu(works);
  2587. return 0;
  2588. }
  2589. /**
  2590. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2591. *
  2592. * Forces execution of the kernel-global workqueue and blocks until its
  2593. * completion.
  2594. *
  2595. * Think twice before calling this function! It's very easy to get into
  2596. * trouble if you don't take great care. Either of the following situations
  2597. * will lead to deadlock:
  2598. *
  2599. * One of the work items currently on the workqueue needs to acquire
  2600. * a lock held by your code or its caller.
  2601. *
  2602. * Your code is running in the context of a work routine.
  2603. *
  2604. * They will be detected by lockdep when they occur, but the first might not
  2605. * occur very often. It depends on what work items are on the workqueue and
  2606. * what locks they need, which you have no control over.
  2607. *
  2608. * In most situations flushing the entire workqueue is overkill; you merely
  2609. * need to know that a particular work item isn't queued and isn't running.
  2610. * In such cases you should use cancel_delayed_work_sync() or
  2611. * cancel_work_sync() instead.
  2612. */
  2613. void flush_scheduled_work(void)
  2614. {
  2615. flush_workqueue(system_wq);
  2616. }
  2617. EXPORT_SYMBOL(flush_scheduled_work);
  2618. /**
  2619. * execute_in_process_context - reliably execute the routine with user context
  2620. * @fn: the function to execute
  2621. * @ew: guaranteed storage for the execute work structure (must
  2622. * be available when the work executes)
  2623. *
  2624. * Executes the function immediately if process context is available,
  2625. * otherwise schedules the function for delayed execution.
  2626. *
  2627. * Returns: 0 - function was executed
  2628. * 1 - function was scheduled for execution
  2629. */
  2630. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2631. {
  2632. if (!in_interrupt()) {
  2633. fn(&ew->work);
  2634. return 0;
  2635. }
  2636. INIT_WORK(&ew->work, fn);
  2637. schedule_work(&ew->work);
  2638. return 1;
  2639. }
  2640. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2641. int keventd_up(void)
  2642. {
  2643. return system_wq != NULL;
  2644. }
  2645. static int alloc_cwqs(struct workqueue_struct *wq)
  2646. {
  2647. /*
  2648. * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
  2649. * Make sure that the alignment isn't lower than that of
  2650. * unsigned long long.
  2651. */
  2652. const size_t size = sizeof(struct cpu_workqueue_struct);
  2653. const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
  2654. __alignof__(unsigned long long));
  2655. if (!(wq->flags & WQ_UNBOUND))
  2656. wq->cpu_wq.pcpu = __alloc_percpu(size, align);
  2657. else {
  2658. void *ptr;
  2659. /*
  2660. * Allocate enough room to align cwq and put an extra
  2661. * pointer at the end pointing back to the originally
  2662. * allocated pointer which will be used for free.
  2663. */
  2664. ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
  2665. if (ptr) {
  2666. wq->cpu_wq.single = PTR_ALIGN(ptr, align);
  2667. *(void **)(wq->cpu_wq.single + 1) = ptr;
  2668. }
  2669. }
  2670. /* just in case, make sure it's actually aligned */
  2671. BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
  2672. return wq->cpu_wq.v ? 0 : -ENOMEM;
  2673. }
  2674. static void free_cwqs(struct workqueue_struct *wq)
  2675. {
  2676. if (!(wq->flags & WQ_UNBOUND))
  2677. free_percpu(wq->cpu_wq.pcpu);
  2678. else if (wq->cpu_wq.single) {
  2679. /* the pointer to free is stored right after the cwq */
  2680. kfree(*(void **)(wq->cpu_wq.single + 1));
  2681. }
  2682. }
  2683. static int wq_clamp_max_active(int max_active, unsigned int flags,
  2684. const char *name)
  2685. {
  2686. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  2687. if (max_active < 1 || max_active > lim)
  2688. printk(KERN_WARNING "workqueue: max_active %d requested for %s "
  2689. "is out of range, clamping between %d and %d\n",
  2690. max_active, name, 1, lim);
  2691. return clamp_val(max_active, 1, lim);
  2692. }
  2693. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  2694. unsigned int flags,
  2695. int max_active,
  2696. struct lock_class_key *key,
  2697. const char *lock_name, ...)
  2698. {
  2699. va_list args, args1;
  2700. struct workqueue_struct *wq;
  2701. unsigned int cpu;
  2702. size_t namelen;
  2703. /* determine namelen, allocate wq and format name */
  2704. va_start(args, lock_name);
  2705. va_copy(args1, args);
  2706. namelen = vsnprintf(NULL, 0, fmt, args) + 1;
  2707. wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
  2708. if (!wq)
  2709. goto err;
  2710. vsnprintf(wq->name, namelen, fmt, args1);
  2711. va_end(args);
  2712. va_end(args1);
  2713. /*
  2714. * Workqueues which may be used during memory reclaim should
  2715. * have a rescuer to guarantee forward progress.
  2716. */
  2717. if (flags & WQ_MEM_RECLAIM)
  2718. flags |= WQ_RESCUER;
  2719. max_active = max_active ?: WQ_DFL_ACTIVE;
  2720. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  2721. /* init wq */
  2722. wq->flags = flags;
  2723. wq->saved_max_active = max_active;
  2724. mutex_init(&wq->flush_mutex);
  2725. atomic_set(&wq->nr_cwqs_to_flush, 0);
  2726. INIT_LIST_HEAD(&wq->flusher_queue);
  2727. INIT_LIST_HEAD(&wq->flusher_overflow);
  2728. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  2729. INIT_LIST_HEAD(&wq->list);
  2730. if (alloc_cwqs(wq) < 0)
  2731. goto err;
  2732. for_each_cwq_cpu(cpu, wq) {
  2733. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  2734. struct global_cwq *gcwq = get_gcwq(cpu);
  2735. int pool_idx = (bool)(flags & WQ_HIGHPRI);
  2736. BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
  2737. cwq->pool = &gcwq->pools[pool_idx];
  2738. cwq->wq = wq;
  2739. cwq->flush_color = -1;
  2740. cwq->max_active = max_active;
  2741. INIT_LIST_HEAD(&cwq->delayed_works);
  2742. }
  2743. if (flags & WQ_RESCUER) {
  2744. struct worker *rescuer;
  2745. if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
  2746. goto err;
  2747. wq->rescuer = rescuer = alloc_worker();
  2748. if (!rescuer)
  2749. goto err;
  2750. rescuer->task = kthread_create(rescuer_thread, wq, "%s",
  2751. wq->name);
  2752. if (IS_ERR(rescuer->task))
  2753. goto err;
  2754. rescuer->task->flags |= PF_THREAD_BOUND;
  2755. wake_up_process(rescuer->task);
  2756. }
  2757. /*
  2758. * workqueue_lock protects global freeze state and workqueues
  2759. * list. Grab it, set max_active accordingly and add the new
  2760. * workqueue to workqueues list.
  2761. */
  2762. spin_lock(&workqueue_lock);
  2763. if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
  2764. for_each_cwq_cpu(cpu, wq)
  2765. get_cwq(cpu, wq)->max_active = 0;
  2766. list_add(&wq->list, &workqueues);
  2767. spin_unlock(&workqueue_lock);
  2768. return wq;
  2769. err:
  2770. if (wq) {
  2771. free_cwqs(wq);
  2772. free_mayday_mask(wq->mayday_mask);
  2773. kfree(wq->rescuer);
  2774. kfree(wq);
  2775. }
  2776. return NULL;
  2777. }
  2778. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  2779. /**
  2780. * destroy_workqueue - safely terminate a workqueue
  2781. * @wq: target workqueue
  2782. *
  2783. * Safely destroy a workqueue. All work currently pending will be done first.
  2784. */
  2785. void destroy_workqueue(struct workqueue_struct *wq)
  2786. {
  2787. unsigned int cpu;
  2788. /* drain it before proceeding with destruction */
  2789. drain_workqueue(wq);
  2790. /*
  2791. * wq list is used to freeze wq, remove from list after
  2792. * flushing is complete in case freeze races us.
  2793. */
  2794. spin_lock(&workqueue_lock);
  2795. list_del(&wq->list);
  2796. spin_unlock(&workqueue_lock);
  2797. /* sanity check */
  2798. for_each_cwq_cpu(cpu, wq) {
  2799. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  2800. int i;
  2801. for (i = 0; i < WORK_NR_COLORS; i++)
  2802. BUG_ON(cwq->nr_in_flight[i]);
  2803. BUG_ON(cwq->nr_active);
  2804. BUG_ON(!list_empty(&cwq->delayed_works));
  2805. }
  2806. if (wq->flags & WQ_RESCUER) {
  2807. kthread_stop(wq->rescuer->task);
  2808. free_mayday_mask(wq->mayday_mask);
  2809. kfree(wq->rescuer);
  2810. }
  2811. free_cwqs(wq);
  2812. kfree(wq);
  2813. }
  2814. EXPORT_SYMBOL_GPL(destroy_workqueue);
  2815. /**
  2816. * workqueue_set_max_active - adjust max_active of a workqueue
  2817. * @wq: target workqueue
  2818. * @max_active: new max_active value.
  2819. *
  2820. * Set max_active of @wq to @max_active.
  2821. *
  2822. * CONTEXT:
  2823. * Don't call from IRQ context.
  2824. */
  2825. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  2826. {
  2827. unsigned int cpu;
  2828. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  2829. spin_lock(&workqueue_lock);
  2830. wq->saved_max_active = max_active;
  2831. for_each_cwq_cpu(cpu, wq) {
  2832. struct global_cwq *gcwq = get_gcwq(cpu);
  2833. spin_lock_irq(&gcwq->lock);
  2834. if (!(wq->flags & WQ_FREEZABLE) ||
  2835. !(gcwq->flags & GCWQ_FREEZING))
  2836. get_cwq(gcwq->cpu, wq)->max_active = max_active;
  2837. spin_unlock_irq(&gcwq->lock);
  2838. }
  2839. spin_unlock(&workqueue_lock);
  2840. }
  2841. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  2842. /**
  2843. * workqueue_congested - test whether a workqueue is congested
  2844. * @cpu: CPU in question
  2845. * @wq: target workqueue
  2846. *
  2847. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  2848. * no synchronization around this function and the test result is
  2849. * unreliable and only useful as advisory hints or for debugging.
  2850. *
  2851. * RETURNS:
  2852. * %true if congested, %false otherwise.
  2853. */
  2854. bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
  2855. {
  2856. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  2857. return !list_empty(&cwq->delayed_works);
  2858. }
  2859. EXPORT_SYMBOL_GPL(workqueue_congested);
  2860. /**
  2861. * work_cpu - return the last known associated cpu for @work
  2862. * @work: the work of interest
  2863. *
  2864. * RETURNS:
  2865. * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
  2866. */
  2867. unsigned int work_cpu(struct work_struct *work)
  2868. {
  2869. struct global_cwq *gcwq = get_work_gcwq(work);
  2870. return gcwq ? gcwq->cpu : WORK_CPU_NONE;
  2871. }
  2872. EXPORT_SYMBOL_GPL(work_cpu);
  2873. /**
  2874. * work_busy - test whether a work is currently pending or running
  2875. * @work: the work to be tested
  2876. *
  2877. * Test whether @work is currently pending or running. There is no
  2878. * synchronization around this function and the test result is
  2879. * unreliable and only useful as advisory hints or for debugging.
  2880. * Especially for reentrant wqs, the pending state might hide the
  2881. * running state.
  2882. *
  2883. * RETURNS:
  2884. * OR'd bitmask of WORK_BUSY_* bits.
  2885. */
  2886. unsigned int work_busy(struct work_struct *work)
  2887. {
  2888. struct global_cwq *gcwq = get_work_gcwq(work);
  2889. unsigned long flags;
  2890. unsigned int ret = 0;
  2891. if (!gcwq)
  2892. return false;
  2893. spin_lock_irqsave(&gcwq->lock, flags);
  2894. if (work_pending(work))
  2895. ret |= WORK_BUSY_PENDING;
  2896. if (find_worker_executing_work(gcwq, work))
  2897. ret |= WORK_BUSY_RUNNING;
  2898. spin_unlock_irqrestore(&gcwq->lock, flags);
  2899. return ret;
  2900. }
  2901. EXPORT_SYMBOL_GPL(work_busy);
  2902. /*
  2903. * CPU hotplug.
  2904. *
  2905. * There are two challenges in supporting CPU hotplug. Firstly, there
  2906. * are a lot of assumptions on strong associations among work, cwq and
  2907. * gcwq which make migrating pending and scheduled works very
  2908. * difficult to implement without impacting hot paths. Secondly,
  2909. * gcwqs serve mix of short, long and very long running works making
  2910. * blocked draining impractical.
  2911. *
  2912. * This is solved by allowing a gcwq to be disassociated from the CPU
  2913. * running as an unbound one and allowing it to be reattached later if the
  2914. * cpu comes back online.
  2915. */
  2916. /* claim manager positions of all pools */
  2917. static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
  2918. {
  2919. struct worker_pool *pool;
  2920. for_each_worker_pool(pool, gcwq)
  2921. mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
  2922. spin_lock_irq(&gcwq->lock);
  2923. }
  2924. /* release manager positions */
  2925. static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
  2926. {
  2927. struct worker_pool *pool;
  2928. spin_unlock_irq(&gcwq->lock);
  2929. for_each_worker_pool(pool, gcwq)
  2930. mutex_unlock(&pool->manager_mutex);
  2931. }
  2932. static void gcwq_unbind_fn(struct work_struct *work)
  2933. {
  2934. struct global_cwq *gcwq = get_gcwq(smp_processor_id());
  2935. struct worker_pool *pool;
  2936. struct worker *worker;
  2937. struct hlist_node *pos;
  2938. int i;
  2939. BUG_ON(gcwq->cpu != smp_processor_id());
  2940. gcwq_claim_management_and_lock(gcwq);
  2941. /*
  2942. * We've claimed all manager positions. Make all workers unbound
  2943. * and set DISASSOCIATED. Before this, all workers except for the
  2944. * ones which are still executing works from before the last CPU
  2945. * down must be on the cpu. After this, they may become diasporas.
  2946. */
  2947. for_each_worker_pool(pool, gcwq)
  2948. list_for_each_entry(worker, &pool->idle_list, entry)
  2949. worker->flags |= WORKER_UNBOUND;
  2950. for_each_busy_worker(worker, i, pos, gcwq)
  2951. worker->flags |= WORKER_UNBOUND;
  2952. gcwq->flags |= GCWQ_DISASSOCIATED;
  2953. gcwq_release_management_and_unlock(gcwq);
  2954. /*
  2955. * Call schedule() so that we cross rq->lock and thus can guarantee
  2956. * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
  2957. * as scheduler callbacks may be invoked from other cpus.
  2958. */
  2959. schedule();
  2960. /*
  2961. * Sched callbacks are disabled now. Zap nr_running. After this,
  2962. * nr_running stays zero and need_more_worker() and keep_working()
  2963. * are always true as long as the worklist is not empty. @gcwq now
  2964. * behaves as unbound (in terms of concurrency management) gcwq
  2965. * which is served by workers tied to the CPU.
  2966. *
  2967. * On return from this function, the current worker would trigger
  2968. * unbound chain execution of pending work items if other workers
  2969. * didn't already.
  2970. */
  2971. for_each_worker_pool(pool, gcwq)
  2972. atomic_set(get_pool_nr_running(pool), 0);
  2973. }
  2974. /*
  2975. * Workqueues should be brought up before normal priority CPU notifiers.
  2976. * This will be registered high priority CPU notifier.
  2977. */
  2978. static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
  2979. unsigned long action,
  2980. void *hcpu)
  2981. {
  2982. unsigned int cpu = (unsigned long)hcpu;
  2983. struct global_cwq *gcwq = get_gcwq(cpu);
  2984. struct worker_pool *pool;
  2985. switch (action & ~CPU_TASKS_FROZEN) {
  2986. case CPU_UP_PREPARE:
  2987. for_each_worker_pool(pool, gcwq) {
  2988. struct worker *worker;
  2989. if (pool->nr_workers)
  2990. continue;
  2991. worker = create_worker(pool);
  2992. if (!worker)
  2993. return NOTIFY_BAD;
  2994. spin_lock_irq(&gcwq->lock);
  2995. start_worker(worker);
  2996. spin_unlock_irq(&gcwq->lock);
  2997. }
  2998. break;
  2999. case CPU_DOWN_FAILED:
  3000. case CPU_ONLINE:
  3001. gcwq_claim_management_and_lock(gcwq);
  3002. gcwq->flags &= ~GCWQ_DISASSOCIATED;
  3003. rebind_workers(gcwq);
  3004. gcwq_release_management_and_unlock(gcwq);
  3005. break;
  3006. }
  3007. return NOTIFY_OK;
  3008. }
  3009. /*
  3010. * Workqueues should be brought down after normal priority CPU notifiers.
  3011. * This will be registered as low priority CPU notifier.
  3012. */
  3013. static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
  3014. unsigned long action,
  3015. void *hcpu)
  3016. {
  3017. unsigned int cpu = (unsigned long)hcpu;
  3018. struct work_struct unbind_work;
  3019. switch (action & ~CPU_TASKS_FROZEN) {
  3020. case CPU_DOWN_PREPARE:
  3021. /* unbinding should happen on the local CPU */
  3022. INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
  3023. schedule_work_on(cpu, &unbind_work);
  3024. flush_work(&unbind_work);
  3025. break;
  3026. }
  3027. return NOTIFY_OK;
  3028. }
  3029. #ifdef CONFIG_SMP
  3030. struct work_for_cpu {
  3031. struct completion completion;
  3032. long (*fn)(void *);
  3033. void *arg;
  3034. long ret;
  3035. };
  3036. static int do_work_for_cpu(void *_wfc)
  3037. {
  3038. struct work_for_cpu *wfc = _wfc;
  3039. wfc->ret = wfc->fn(wfc->arg);
  3040. complete(&wfc->completion);
  3041. return 0;
  3042. }
  3043. /**
  3044. * work_on_cpu - run a function in user context on a particular cpu
  3045. * @cpu: the cpu to run on
  3046. * @fn: the function to run
  3047. * @arg: the function arg
  3048. *
  3049. * This will return the value @fn returns.
  3050. * It is up to the caller to ensure that the cpu doesn't go offline.
  3051. * The caller must not hold any locks which would prevent @fn from completing.
  3052. */
  3053. long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
  3054. {
  3055. struct task_struct *sub_thread;
  3056. struct work_for_cpu wfc = {
  3057. .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
  3058. .fn = fn,
  3059. .arg = arg,
  3060. };
  3061. sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
  3062. if (IS_ERR(sub_thread))
  3063. return PTR_ERR(sub_thread);
  3064. kthread_bind(sub_thread, cpu);
  3065. wake_up_process(sub_thread);
  3066. wait_for_completion(&wfc.completion);
  3067. return wfc.ret;
  3068. }
  3069. EXPORT_SYMBOL_GPL(work_on_cpu);
  3070. #endif /* CONFIG_SMP */
  3071. #ifdef CONFIG_FREEZER
  3072. /**
  3073. * freeze_workqueues_begin - begin freezing workqueues
  3074. *
  3075. * Start freezing workqueues. After this function returns, all freezable
  3076. * workqueues will queue new works to their frozen_works list instead of
  3077. * gcwq->worklist.
  3078. *
  3079. * CONTEXT:
  3080. * Grabs and releases workqueue_lock and gcwq->lock's.
  3081. */
  3082. void freeze_workqueues_begin(void)
  3083. {
  3084. unsigned int cpu;
  3085. spin_lock(&workqueue_lock);
  3086. BUG_ON(workqueue_freezing);
  3087. workqueue_freezing = true;
  3088. for_each_gcwq_cpu(cpu) {
  3089. struct global_cwq *gcwq = get_gcwq(cpu);
  3090. struct workqueue_struct *wq;
  3091. spin_lock_irq(&gcwq->lock);
  3092. BUG_ON(gcwq->flags & GCWQ_FREEZING);
  3093. gcwq->flags |= GCWQ_FREEZING;
  3094. list_for_each_entry(wq, &workqueues, list) {
  3095. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  3096. if (cwq && wq->flags & WQ_FREEZABLE)
  3097. cwq->max_active = 0;
  3098. }
  3099. spin_unlock_irq(&gcwq->lock);
  3100. }
  3101. spin_unlock(&workqueue_lock);
  3102. }
  3103. /**
  3104. * freeze_workqueues_busy - are freezable workqueues still busy?
  3105. *
  3106. * Check whether freezing is complete. This function must be called
  3107. * between freeze_workqueues_begin() and thaw_workqueues().
  3108. *
  3109. * CONTEXT:
  3110. * Grabs and releases workqueue_lock.
  3111. *
  3112. * RETURNS:
  3113. * %true if some freezable workqueues are still busy. %false if freezing
  3114. * is complete.
  3115. */
  3116. bool freeze_workqueues_busy(void)
  3117. {
  3118. unsigned int cpu;
  3119. bool busy = false;
  3120. spin_lock(&workqueue_lock);
  3121. BUG_ON(!workqueue_freezing);
  3122. for_each_gcwq_cpu(cpu) {
  3123. struct workqueue_struct *wq;
  3124. /*
  3125. * nr_active is monotonically decreasing. It's safe
  3126. * to peek without lock.
  3127. */
  3128. list_for_each_entry(wq, &workqueues, list) {
  3129. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  3130. if (!cwq || !(wq->flags & WQ_FREEZABLE))
  3131. continue;
  3132. BUG_ON(cwq->nr_active < 0);
  3133. if (cwq->nr_active) {
  3134. busy = true;
  3135. goto out_unlock;
  3136. }
  3137. }
  3138. }
  3139. out_unlock:
  3140. spin_unlock(&workqueue_lock);
  3141. return busy;
  3142. }
  3143. /**
  3144. * thaw_workqueues - thaw workqueues
  3145. *
  3146. * Thaw workqueues. Normal queueing is restored and all collected
  3147. * frozen works are transferred to their respective gcwq worklists.
  3148. *
  3149. * CONTEXT:
  3150. * Grabs and releases workqueue_lock and gcwq->lock's.
  3151. */
  3152. void thaw_workqueues(void)
  3153. {
  3154. unsigned int cpu;
  3155. spin_lock(&workqueue_lock);
  3156. if (!workqueue_freezing)
  3157. goto out_unlock;
  3158. for_each_gcwq_cpu(cpu) {
  3159. struct global_cwq *gcwq = get_gcwq(cpu);
  3160. struct worker_pool *pool;
  3161. struct workqueue_struct *wq;
  3162. spin_lock_irq(&gcwq->lock);
  3163. BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
  3164. gcwq->flags &= ~GCWQ_FREEZING;
  3165. list_for_each_entry(wq, &workqueues, list) {
  3166. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  3167. if (!cwq || !(wq->flags & WQ_FREEZABLE))
  3168. continue;
  3169. /* restore max_active and repopulate worklist */
  3170. cwq->max_active = wq->saved_max_active;
  3171. while (!list_empty(&cwq->delayed_works) &&
  3172. cwq->nr_active < cwq->max_active)
  3173. cwq_activate_first_delayed(cwq);
  3174. }
  3175. for_each_worker_pool(pool, gcwq)
  3176. wake_up_worker(pool);
  3177. spin_unlock_irq(&gcwq->lock);
  3178. }
  3179. workqueue_freezing = false;
  3180. out_unlock:
  3181. spin_unlock(&workqueue_lock);
  3182. }
  3183. #endif /* CONFIG_FREEZER */
  3184. static int __init init_workqueues(void)
  3185. {
  3186. unsigned int cpu;
  3187. int i;
  3188. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  3189. cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  3190. /* initialize gcwqs */
  3191. for_each_gcwq_cpu(cpu) {
  3192. struct global_cwq *gcwq = get_gcwq(cpu);
  3193. struct worker_pool *pool;
  3194. spin_lock_init(&gcwq->lock);
  3195. gcwq->cpu = cpu;
  3196. gcwq->flags |= GCWQ_DISASSOCIATED;
  3197. for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
  3198. INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
  3199. for_each_worker_pool(pool, gcwq) {
  3200. pool->gcwq = gcwq;
  3201. INIT_LIST_HEAD(&pool->worklist);
  3202. INIT_LIST_HEAD(&pool->idle_list);
  3203. init_timer_deferrable(&pool->idle_timer);
  3204. pool->idle_timer.function = idle_worker_timeout;
  3205. pool->idle_timer.data = (unsigned long)pool;
  3206. setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
  3207. (unsigned long)pool);
  3208. mutex_init(&pool->manager_mutex);
  3209. ida_init(&pool->worker_ida);
  3210. }
  3211. init_waitqueue_head(&gcwq->rebind_hold);
  3212. }
  3213. /* create the initial worker */
  3214. for_each_online_gcwq_cpu(cpu) {
  3215. struct global_cwq *gcwq = get_gcwq(cpu);
  3216. struct worker_pool *pool;
  3217. if (cpu != WORK_CPU_UNBOUND)
  3218. gcwq->flags &= ~GCWQ_DISASSOCIATED;
  3219. for_each_worker_pool(pool, gcwq) {
  3220. struct worker *worker;
  3221. worker = create_worker(pool);
  3222. BUG_ON(!worker);
  3223. spin_lock_irq(&gcwq->lock);
  3224. start_worker(worker);
  3225. spin_unlock_irq(&gcwq->lock);
  3226. }
  3227. }
  3228. system_wq = alloc_workqueue("events", 0, 0);
  3229. system_long_wq = alloc_workqueue("events_long", 0, 0);
  3230. system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
  3231. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  3232. WQ_UNBOUND_MAX_ACTIVE);
  3233. system_freezable_wq = alloc_workqueue("events_freezable",
  3234. WQ_FREEZABLE, 0);
  3235. system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
  3236. WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
  3237. BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
  3238. !system_unbound_wq || !system_freezable_wq ||
  3239. !system_nrt_freezable_wq);
  3240. return 0;
  3241. }
  3242. early_initcall(init_workqueues);