intel_pm.c 268 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include <drm/drm_plane_helper.h>
  29. #include "i915_drv.h"
  30. #include "intel_drv.h"
  31. #include "../../../platform/x86/intel_ips.h"
  32. #include <linux/module.h>
  33. #include <drm/drm_atomic_helper.h>
  34. /**
  35. * DOC: RC6
  36. *
  37. * RC6 is a special power stage which allows the GPU to enter an very
  38. * low-voltage mode when idle, using down to 0V while at this stage. This
  39. * stage is entered automatically when the GPU is idle when RC6 support is
  40. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  41. *
  42. * There are different RC6 modes available in Intel GPU, which differentiate
  43. * among each other with the latency required to enter and leave RC6 and
  44. * voltage consumed by the GPU in different states.
  45. *
  46. * The combination of the following flags define which states GPU is allowed
  47. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  48. * RC6pp is deepest RC6. Their support by hardware varies according to the
  49. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  50. * which brings the most power savings; deeper states save more power, but
  51. * require higher latency to switch to and wake up.
  52. */
  53. #define INTEL_RC6_ENABLE (1<<0)
  54. #define INTEL_RC6p_ENABLE (1<<1)
  55. #define INTEL_RC6pp_ENABLE (1<<2)
  56. static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
  57. {
  58. if (HAS_LLC(dev_priv)) {
  59. /*
  60. * WaCompressedResourceDisplayNewHashMode:skl,kbl
  61. * Display WA#0390: skl,kbl
  62. *
  63. * Must match Sampler, Pixel Back End, and Media. See
  64. * WaCompressedResourceSamplerPbeMediaNewHashMode.
  65. */
  66. I915_WRITE(CHICKEN_PAR1_1,
  67. I915_READ(CHICKEN_PAR1_1) |
  68. SKL_DE_COMPRESSED_HASH_MODE);
  69. }
  70. /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
  71. I915_WRITE(CHICKEN_PAR1_1,
  72. I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
  73. I915_WRITE(GEN8_CONFIG0,
  74. I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
  75. /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
  76. I915_WRITE(GEN8_CHICKEN_DCPR_1,
  77. I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  78. /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
  79. /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
  80. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  81. DISP_FBC_WM_DIS |
  82. DISP_FBC_MEMORY_WAKE);
  83. /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
  84. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  85. ILK_DPFC_DISABLE_DUMMY0);
  86. if (IS_SKYLAKE(dev_priv)) {
  87. /* WaDisableDopClockGating */
  88. I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
  89. & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  90. }
  91. }
  92. static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
  93. {
  94. gen9_init_clock_gating(dev_priv);
  95. /* WaDisableSDEUnitClockGating:bxt */
  96. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  97. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  98. /*
  99. * FIXME:
  100. * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  101. */
  102. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  103. GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  104. /*
  105. * Wa: Backlight PWM may stop in the asserted state, causing backlight
  106. * to stay fully on.
  107. */
  108. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  109. PWM1_GATING_DIS | PWM2_GATING_DIS);
  110. }
  111. static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
  112. {
  113. gen9_init_clock_gating(dev_priv);
  114. /*
  115. * WaDisablePWMClockGating:glk
  116. * Backlight PWM may stop in the asserted state, causing backlight
  117. * to stay fully on.
  118. */
  119. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  120. PWM1_GATING_DIS | PWM2_GATING_DIS);
  121. /* WaDDIIOTimeout:glk */
  122. if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
  123. u32 val = I915_READ(CHICKEN_MISC_2);
  124. val &= ~(GLK_CL0_PWR_DOWN |
  125. GLK_CL1_PWR_DOWN |
  126. GLK_CL2_PWR_DOWN);
  127. I915_WRITE(CHICKEN_MISC_2, val);
  128. }
  129. }
  130. static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
  131. {
  132. u32 tmp;
  133. tmp = I915_READ(CLKCFG);
  134. switch (tmp & CLKCFG_FSB_MASK) {
  135. case CLKCFG_FSB_533:
  136. dev_priv->fsb_freq = 533; /* 133*4 */
  137. break;
  138. case CLKCFG_FSB_800:
  139. dev_priv->fsb_freq = 800; /* 200*4 */
  140. break;
  141. case CLKCFG_FSB_667:
  142. dev_priv->fsb_freq = 667; /* 167*4 */
  143. break;
  144. case CLKCFG_FSB_400:
  145. dev_priv->fsb_freq = 400; /* 100*4 */
  146. break;
  147. }
  148. switch (tmp & CLKCFG_MEM_MASK) {
  149. case CLKCFG_MEM_533:
  150. dev_priv->mem_freq = 533;
  151. break;
  152. case CLKCFG_MEM_667:
  153. dev_priv->mem_freq = 667;
  154. break;
  155. case CLKCFG_MEM_800:
  156. dev_priv->mem_freq = 800;
  157. break;
  158. }
  159. /* detect pineview DDR3 setting */
  160. tmp = I915_READ(CSHRDDR3CTL);
  161. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  162. }
  163. static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
  164. {
  165. u16 ddrpll, csipll;
  166. ddrpll = I915_READ16(DDRMPLL1);
  167. csipll = I915_READ16(CSIPLL0);
  168. switch (ddrpll & 0xff) {
  169. case 0xc:
  170. dev_priv->mem_freq = 800;
  171. break;
  172. case 0x10:
  173. dev_priv->mem_freq = 1066;
  174. break;
  175. case 0x14:
  176. dev_priv->mem_freq = 1333;
  177. break;
  178. case 0x18:
  179. dev_priv->mem_freq = 1600;
  180. break;
  181. default:
  182. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  183. ddrpll & 0xff);
  184. dev_priv->mem_freq = 0;
  185. break;
  186. }
  187. dev_priv->ips.r_t = dev_priv->mem_freq;
  188. switch (csipll & 0x3ff) {
  189. case 0x00c:
  190. dev_priv->fsb_freq = 3200;
  191. break;
  192. case 0x00e:
  193. dev_priv->fsb_freq = 3733;
  194. break;
  195. case 0x010:
  196. dev_priv->fsb_freq = 4266;
  197. break;
  198. case 0x012:
  199. dev_priv->fsb_freq = 4800;
  200. break;
  201. case 0x014:
  202. dev_priv->fsb_freq = 5333;
  203. break;
  204. case 0x016:
  205. dev_priv->fsb_freq = 5866;
  206. break;
  207. case 0x018:
  208. dev_priv->fsb_freq = 6400;
  209. break;
  210. default:
  211. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  212. csipll & 0x3ff);
  213. dev_priv->fsb_freq = 0;
  214. break;
  215. }
  216. if (dev_priv->fsb_freq == 3200) {
  217. dev_priv->ips.c_m = 0;
  218. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  219. dev_priv->ips.c_m = 1;
  220. } else {
  221. dev_priv->ips.c_m = 2;
  222. }
  223. }
  224. static const struct cxsr_latency cxsr_latency_table[] = {
  225. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  226. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  227. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  228. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  229. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  230. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  231. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  232. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  233. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  234. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  235. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  236. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  237. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  238. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  239. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  240. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  241. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  242. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  243. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  244. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  245. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  246. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  247. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  248. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  249. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  250. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  251. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  252. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  253. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  254. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  255. };
  256. static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
  257. bool is_ddr3,
  258. int fsb,
  259. int mem)
  260. {
  261. const struct cxsr_latency *latency;
  262. int i;
  263. if (fsb == 0 || mem == 0)
  264. return NULL;
  265. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  266. latency = &cxsr_latency_table[i];
  267. if (is_desktop == latency->is_desktop &&
  268. is_ddr3 == latency->is_ddr3 &&
  269. fsb == latency->fsb_freq && mem == latency->mem_freq)
  270. return latency;
  271. }
  272. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  273. return NULL;
  274. }
  275. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  276. {
  277. u32 val;
  278. mutex_lock(&dev_priv->pcu_lock);
  279. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  280. if (enable)
  281. val &= ~FORCE_DDR_HIGH_FREQ;
  282. else
  283. val |= FORCE_DDR_HIGH_FREQ;
  284. val &= ~FORCE_DDR_LOW_FREQ;
  285. val |= FORCE_DDR_FREQ_REQ_ACK;
  286. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  287. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  288. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  289. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  290. mutex_unlock(&dev_priv->pcu_lock);
  291. }
  292. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  293. {
  294. u32 val;
  295. mutex_lock(&dev_priv->pcu_lock);
  296. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  297. if (enable)
  298. val |= DSP_MAXFIFO_PM5_ENABLE;
  299. else
  300. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  301. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  302. mutex_unlock(&dev_priv->pcu_lock);
  303. }
  304. #define FW_WM(value, plane) \
  305. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  306. static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  307. {
  308. bool was_enabled;
  309. u32 val;
  310. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  311. was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  312. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  313. POSTING_READ(FW_BLC_SELF_VLV);
  314. } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
  315. was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  316. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  317. POSTING_READ(FW_BLC_SELF);
  318. } else if (IS_PINEVIEW(dev_priv)) {
  319. val = I915_READ(DSPFW3);
  320. was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
  321. if (enable)
  322. val |= PINEVIEW_SELF_REFRESH_EN;
  323. else
  324. val &= ~PINEVIEW_SELF_REFRESH_EN;
  325. I915_WRITE(DSPFW3, val);
  326. POSTING_READ(DSPFW3);
  327. } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
  328. was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  329. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  330. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  331. I915_WRITE(FW_BLC_SELF, val);
  332. POSTING_READ(FW_BLC_SELF);
  333. } else if (IS_I915GM(dev_priv)) {
  334. /*
  335. * FIXME can't find a bit like this for 915G, and
  336. * and yet it does have the related watermark in
  337. * FW_BLC_SELF. What's going on?
  338. */
  339. was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  340. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  341. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  342. I915_WRITE(INSTPM, val);
  343. POSTING_READ(INSTPM);
  344. } else {
  345. return false;
  346. }
  347. trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
  348. DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
  349. enableddisabled(enable),
  350. enableddisabled(was_enabled));
  351. return was_enabled;
  352. }
  353. /**
  354. * intel_set_memory_cxsr - Configure CxSR state
  355. * @dev_priv: i915 device
  356. * @enable: Allow vs. disallow CxSR
  357. *
  358. * Allow or disallow the system to enter a special CxSR
  359. * (C-state self refresh) state. What typically happens in CxSR mode
  360. * is that several display FIFOs may get combined into a single larger
  361. * FIFO for a particular plane (so called max FIFO mode) to allow the
  362. * system to defer memory fetches longer, and the memory will enter
  363. * self refresh.
  364. *
  365. * Note that enabling CxSR does not guarantee that the system enter
  366. * this special mode, nor does it guarantee that the system stays
  367. * in that mode once entered. So this just allows/disallows the system
  368. * to autonomously utilize the CxSR mode. Other factors such as core
  369. * C-states will affect when/if the system actually enters/exits the
  370. * CxSR mode.
  371. *
  372. * Note that on VLV/CHV this actually only controls the max FIFO mode,
  373. * and the system is free to enter/exit memory self refresh at any time
  374. * even when the use of CxSR has been disallowed.
  375. *
  376. * While the system is actually in the CxSR/max FIFO mode, some plane
  377. * control registers will not get latched on vblank. Thus in order to
  378. * guarantee the system will respond to changes in the plane registers
  379. * we must always disallow CxSR prior to making changes to those registers.
  380. * Unfortunately the system will re-evaluate the CxSR conditions at
  381. * frame start which happens after vblank start (which is when the plane
  382. * registers would get latched), so we can't proceed with the plane update
  383. * during the same frame where we disallowed CxSR.
  384. *
  385. * Certain platforms also have a deeper HPLL SR mode. Fortunately the
  386. * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
  387. * the hardware w.r.t. HPLL SR when writing to plane registers.
  388. * Disallowing just CxSR is sufficient.
  389. */
  390. bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  391. {
  392. bool ret;
  393. mutex_lock(&dev_priv->wm.wm_mutex);
  394. ret = _intel_set_memory_cxsr(dev_priv, enable);
  395. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  396. dev_priv->wm.vlv.cxsr = enable;
  397. else if (IS_G4X(dev_priv))
  398. dev_priv->wm.g4x.cxsr = enable;
  399. mutex_unlock(&dev_priv->wm.wm_mutex);
  400. return ret;
  401. }
  402. /*
  403. * Latency for FIFO fetches is dependent on several factors:
  404. * - memory configuration (speed, channels)
  405. * - chipset
  406. * - current MCH state
  407. * It can be fairly high in some situations, so here we assume a fairly
  408. * pessimal value. It's a tradeoff between extra memory fetches (if we
  409. * set this value too high, the FIFO will fetch frequently to stay full)
  410. * and power consumption (set it too low to save power and we might see
  411. * FIFO underruns and display "flicker").
  412. *
  413. * A value of 5us seems to be a good balance; safe for very low end
  414. * platforms but not overly aggressive on lower latency configs.
  415. */
  416. static const int pessimal_latency_ns = 5000;
  417. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  418. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  419. static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
  420. {
  421. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  422. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  423. struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
  424. enum pipe pipe = crtc->pipe;
  425. int sprite0_start, sprite1_start;
  426. switch (pipe) {
  427. uint32_t dsparb, dsparb2, dsparb3;
  428. case PIPE_A:
  429. dsparb = I915_READ(DSPARB);
  430. dsparb2 = I915_READ(DSPARB2);
  431. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  432. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  433. break;
  434. case PIPE_B:
  435. dsparb = I915_READ(DSPARB);
  436. dsparb2 = I915_READ(DSPARB2);
  437. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  438. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  439. break;
  440. case PIPE_C:
  441. dsparb2 = I915_READ(DSPARB2);
  442. dsparb3 = I915_READ(DSPARB3);
  443. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  444. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  445. break;
  446. default:
  447. MISSING_CASE(pipe);
  448. return;
  449. }
  450. fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
  451. fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
  452. fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
  453. fifo_state->plane[PLANE_CURSOR] = 63;
  454. }
  455. static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  456. {
  457. uint32_t dsparb = I915_READ(DSPARB);
  458. int size;
  459. size = dsparb & 0x7f;
  460. if (plane)
  461. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  462. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  463. plane ? "B" : "A", size);
  464. return size;
  465. }
  466. static int i830_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  467. {
  468. uint32_t dsparb = I915_READ(DSPARB);
  469. int size;
  470. size = dsparb & 0x1ff;
  471. if (plane)
  472. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  473. size >>= 1; /* Convert to cachelines */
  474. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  475. plane ? "B" : "A", size);
  476. return size;
  477. }
  478. static int i845_get_fifo_size(struct drm_i915_private *dev_priv, int plane)
  479. {
  480. uint32_t dsparb = I915_READ(DSPARB);
  481. int size;
  482. size = dsparb & 0x7f;
  483. size >>= 2; /* Convert to cachelines */
  484. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  485. plane ? "B" : "A",
  486. size);
  487. return size;
  488. }
  489. /* Pineview has different values for various configs */
  490. static const struct intel_watermark_params pineview_display_wm = {
  491. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  492. .max_wm = PINEVIEW_MAX_WM,
  493. .default_wm = PINEVIEW_DFT_WM,
  494. .guard_size = PINEVIEW_GUARD_WM,
  495. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  496. };
  497. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  498. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  499. .max_wm = PINEVIEW_MAX_WM,
  500. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  501. .guard_size = PINEVIEW_GUARD_WM,
  502. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  503. };
  504. static const struct intel_watermark_params pineview_cursor_wm = {
  505. .fifo_size = PINEVIEW_CURSOR_FIFO,
  506. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  507. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  508. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  509. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  510. };
  511. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  512. .fifo_size = PINEVIEW_CURSOR_FIFO,
  513. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  514. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  515. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  516. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  517. };
  518. static const struct intel_watermark_params i965_cursor_wm_info = {
  519. .fifo_size = I965_CURSOR_FIFO,
  520. .max_wm = I965_CURSOR_MAX_WM,
  521. .default_wm = I965_CURSOR_DFT_WM,
  522. .guard_size = 2,
  523. .cacheline_size = I915_FIFO_LINE_SIZE,
  524. };
  525. static const struct intel_watermark_params i945_wm_info = {
  526. .fifo_size = I945_FIFO_SIZE,
  527. .max_wm = I915_MAX_WM,
  528. .default_wm = 1,
  529. .guard_size = 2,
  530. .cacheline_size = I915_FIFO_LINE_SIZE,
  531. };
  532. static const struct intel_watermark_params i915_wm_info = {
  533. .fifo_size = I915_FIFO_SIZE,
  534. .max_wm = I915_MAX_WM,
  535. .default_wm = 1,
  536. .guard_size = 2,
  537. .cacheline_size = I915_FIFO_LINE_SIZE,
  538. };
  539. static const struct intel_watermark_params i830_a_wm_info = {
  540. .fifo_size = I855GM_FIFO_SIZE,
  541. .max_wm = I915_MAX_WM,
  542. .default_wm = 1,
  543. .guard_size = 2,
  544. .cacheline_size = I830_FIFO_LINE_SIZE,
  545. };
  546. static const struct intel_watermark_params i830_bc_wm_info = {
  547. .fifo_size = I855GM_FIFO_SIZE,
  548. .max_wm = I915_MAX_WM/2,
  549. .default_wm = 1,
  550. .guard_size = 2,
  551. .cacheline_size = I830_FIFO_LINE_SIZE,
  552. };
  553. static const struct intel_watermark_params i845_wm_info = {
  554. .fifo_size = I830_FIFO_SIZE,
  555. .max_wm = I915_MAX_WM,
  556. .default_wm = 1,
  557. .guard_size = 2,
  558. .cacheline_size = I830_FIFO_LINE_SIZE,
  559. };
  560. /**
  561. * intel_wm_method1 - Method 1 / "small buffer" watermark formula
  562. * @pixel_rate: Pipe pixel rate in kHz
  563. * @cpp: Plane bytes per pixel
  564. * @latency: Memory wakeup latency in 0.1us units
  565. *
  566. * Compute the watermark using the method 1 or "small buffer"
  567. * formula. The caller may additonally add extra cachelines
  568. * to account for TLB misses and clock crossings.
  569. *
  570. * This method is concerned with the short term drain rate
  571. * of the FIFO, ie. it does not account for blanking periods
  572. * which would effectively reduce the average drain rate across
  573. * a longer period. The name "small" refers to the fact the
  574. * FIFO is relatively small compared to the amount of data
  575. * fetched.
  576. *
  577. * The FIFO level vs. time graph might look something like:
  578. *
  579. * |\ |\
  580. * | \ | \
  581. * __---__---__ (- plane active, _ blanking)
  582. * -> time
  583. *
  584. * or perhaps like this:
  585. *
  586. * |\|\ |\|\
  587. * __----__----__ (- plane active, _ blanking)
  588. * -> time
  589. *
  590. * Returns:
  591. * The watermark in bytes
  592. */
  593. static unsigned int intel_wm_method1(unsigned int pixel_rate,
  594. unsigned int cpp,
  595. unsigned int latency)
  596. {
  597. uint64_t ret;
  598. ret = (uint64_t) pixel_rate * cpp * latency;
  599. ret = DIV_ROUND_UP_ULL(ret, 10000);
  600. return ret;
  601. }
  602. /**
  603. * intel_wm_method2 - Method 2 / "large buffer" watermark formula
  604. * @pixel_rate: Pipe pixel rate in kHz
  605. * @htotal: Pipe horizontal total
  606. * @width: Plane width in pixels
  607. * @cpp: Plane bytes per pixel
  608. * @latency: Memory wakeup latency in 0.1us units
  609. *
  610. * Compute the watermark using the method 2 or "large buffer"
  611. * formula. The caller may additonally add extra cachelines
  612. * to account for TLB misses and clock crossings.
  613. *
  614. * This method is concerned with the long term drain rate
  615. * of the FIFO, ie. it does account for blanking periods
  616. * which effectively reduce the average drain rate across
  617. * a longer period. The name "large" refers to the fact the
  618. * FIFO is relatively large compared to the amount of data
  619. * fetched.
  620. *
  621. * The FIFO level vs. time graph might look something like:
  622. *
  623. * |\___ |\___
  624. * | \___ | \___
  625. * | \ | \
  626. * __ --__--__--__--__--__--__ (- plane active, _ blanking)
  627. * -> time
  628. *
  629. * Returns:
  630. * The watermark in bytes
  631. */
  632. static unsigned int intel_wm_method2(unsigned int pixel_rate,
  633. unsigned int htotal,
  634. unsigned int width,
  635. unsigned int cpp,
  636. unsigned int latency)
  637. {
  638. unsigned int ret;
  639. /*
  640. * FIXME remove once all users are computing
  641. * watermarks in the correct place.
  642. */
  643. if (WARN_ON_ONCE(htotal == 0))
  644. htotal = 1;
  645. ret = (latency * pixel_rate) / (htotal * 10000);
  646. ret = (ret + 1) * width * cpp;
  647. return ret;
  648. }
  649. /**
  650. * intel_calculate_wm - calculate watermark level
  651. * @pixel_rate: pixel clock
  652. * @wm: chip FIFO params
  653. * @cpp: bytes per pixel
  654. * @latency_ns: memory latency for the platform
  655. *
  656. * Calculate the watermark level (the level at which the display plane will
  657. * start fetching from memory again). Each chip has a different display
  658. * FIFO size and allocation, so the caller needs to figure that out and pass
  659. * in the correct intel_watermark_params structure.
  660. *
  661. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  662. * on the pixel size. When it reaches the watermark level, it'll start
  663. * fetching FIFO line sized based chunks from memory until the FIFO fills
  664. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  665. * will occur, and a display engine hang could result.
  666. */
  667. static unsigned int intel_calculate_wm(int pixel_rate,
  668. const struct intel_watermark_params *wm,
  669. int fifo_size, int cpp,
  670. unsigned int latency_ns)
  671. {
  672. int entries, wm_size;
  673. /*
  674. * Note: we need to make sure we don't overflow for various clock &
  675. * latency values.
  676. * clocks go from a few thousand to several hundred thousand.
  677. * latency is usually a few thousand
  678. */
  679. entries = intel_wm_method1(pixel_rate, cpp,
  680. latency_ns / 100);
  681. entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
  682. wm->guard_size;
  683. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
  684. wm_size = fifo_size - entries;
  685. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  686. /* Don't promote wm_size to unsigned... */
  687. if (wm_size > wm->max_wm)
  688. wm_size = wm->max_wm;
  689. if (wm_size <= 0)
  690. wm_size = wm->default_wm;
  691. /*
  692. * Bspec seems to indicate that the value shouldn't be lower than
  693. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  694. * Lets go for 8 which is the burst size since certain platforms
  695. * already use a hardcoded 8 (which is what the spec says should be
  696. * done).
  697. */
  698. if (wm_size <= 8)
  699. wm_size = 8;
  700. return wm_size;
  701. }
  702. static bool is_disabling(int old, int new, int threshold)
  703. {
  704. return old >= threshold && new < threshold;
  705. }
  706. static bool is_enabling(int old, int new, int threshold)
  707. {
  708. return old < threshold && new >= threshold;
  709. }
  710. static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
  711. {
  712. return dev_priv->wm.max_level + 1;
  713. }
  714. static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
  715. const struct intel_plane_state *plane_state)
  716. {
  717. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  718. /* FIXME check the 'enable' instead */
  719. if (!crtc_state->base.active)
  720. return false;
  721. /*
  722. * Treat cursor with fb as always visible since cursor updates
  723. * can happen faster than the vrefresh rate, and the current
  724. * watermark code doesn't handle that correctly. Cursor updates
  725. * which set/clear the fb or change the cursor size are going
  726. * to get throttled by intel_legacy_cursor_update() to work
  727. * around this problem with the watermark code.
  728. */
  729. if (plane->id == PLANE_CURSOR)
  730. return plane_state->base.fb != NULL;
  731. else
  732. return plane_state->base.visible;
  733. }
  734. static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
  735. {
  736. struct intel_crtc *crtc, *enabled = NULL;
  737. for_each_intel_crtc(&dev_priv->drm, crtc) {
  738. if (intel_crtc_active(crtc)) {
  739. if (enabled)
  740. return NULL;
  741. enabled = crtc;
  742. }
  743. }
  744. return enabled;
  745. }
  746. static void pineview_update_wm(struct intel_crtc *unused_crtc)
  747. {
  748. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  749. struct intel_crtc *crtc;
  750. const struct cxsr_latency *latency;
  751. u32 reg;
  752. unsigned int wm;
  753. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
  754. dev_priv->is_ddr3,
  755. dev_priv->fsb_freq,
  756. dev_priv->mem_freq);
  757. if (!latency) {
  758. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  759. intel_set_memory_cxsr(dev_priv, false);
  760. return;
  761. }
  762. crtc = single_enabled_crtc(dev_priv);
  763. if (crtc) {
  764. const struct drm_display_mode *adjusted_mode =
  765. &crtc->config->base.adjusted_mode;
  766. const struct drm_framebuffer *fb =
  767. crtc->base.primary->state->fb;
  768. int cpp = fb->format->cpp[0];
  769. int clock = adjusted_mode->crtc_clock;
  770. /* Display SR */
  771. wm = intel_calculate_wm(clock, &pineview_display_wm,
  772. pineview_display_wm.fifo_size,
  773. cpp, latency->display_sr);
  774. reg = I915_READ(DSPFW1);
  775. reg &= ~DSPFW_SR_MASK;
  776. reg |= FW_WM(wm, SR);
  777. I915_WRITE(DSPFW1, reg);
  778. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  779. /* cursor SR */
  780. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  781. pineview_display_wm.fifo_size,
  782. 4, latency->cursor_sr);
  783. reg = I915_READ(DSPFW3);
  784. reg &= ~DSPFW_CURSOR_SR_MASK;
  785. reg |= FW_WM(wm, CURSOR_SR);
  786. I915_WRITE(DSPFW3, reg);
  787. /* Display HPLL off SR */
  788. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  789. pineview_display_hplloff_wm.fifo_size,
  790. cpp, latency->display_hpll_disable);
  791. reg = I915_READ(DSPFW3);
  792. reg &= ~DSPFW_HPLL_SR_MASK;
  793. reg |= FW_WM(wm, HPLL_SR);
  794. I915_WRITE(DSPFW3, reg);
  795. /* cursor HPLL off SR */
  796. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  797. pineview_display_hplloff_wm.fifo_size,
  798. 4, latency->cursor_hpll_disable);
  799. reg = I915_READ(DSPFW3);
  800. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  801. reg |= FW_WM(wm, HPLL_CURSOR);
  802. I915_WRITE(DSPFW3, reg);
  803. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  804. intel_set_memory_cxsr(dev_priv, true);
  805. } else {
  806. intel_set_memory_cxsr(dev_priv, false);
  807. }
  808. }
  809. /*
  810. * Documentation says:
  811. * "If the line size is small, the TLB fetches can get in the way of the
  812. * data fetches, causing some lag in the pixel data return which is not
  813. * accounted for in the above formulas. The following adjustment only
  814. * needs to be applied if eight whole lines fit in the buffer at once.
  815. * The WM is adjusted upwards by the difference between the FIFO size
  816. * and the size of 8 whole lines. This adjustment is always performed
  817. * in the actual pixel depth regardless of whether FBC is enabled or not."
  818. */
  819. static int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
  820. {
  821. int tlb_miss = fifo_size * 64 - width * cpp * 8;
  822. return max(0, tlb_miss);
  823. }
  824. static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
  825. const struct g4x_wm_values *wm)
  826. {
  827. enum pipe pipe;
  828. for_each_pipe(dev_priv, pipe)
  829. trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
  830. I915_WRITE(DSPFW1,
  831. FW_WM(wm->sr.plane, SR) |
  832. FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
  833. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
  834. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
  835. I915_WRITE(DSPFW2,
  836. (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
  837. FW_WM(wm->sr.fbc, FBC_SR) |
  838. FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
  839. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
  840. FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
  841. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
  842. I915_WRITE(DSPFW3,
  843. (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
  844. FW_WM(wm->sr.cursor, CURSOR_SR) |
  845. FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
  846. FW_WM(wm->hpll.plane, HPLL_SR));
  847. POSTING_READ(DSPFW1);
  848. }
  849. #define FW_WM_VLV(value, plane) \
  850. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  851. static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
  852. const struct vlv_wm_values *wm)
  853. {
  854. enum pipe pipe;
  855. for_each_pipe(dev_priv, pipe) {
  856. trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
  857. I915_WRITE(VLV_DDL(pipe),
  858. (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
  859. (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
  860. (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
  861. (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
  862. }
  863. /*
  864. * Zero the (unused) WM1 watermarks, and also clear all the
  865. * high order bits so that there are no out of bounds values
  866. * present in the registers during the reprogramming.
  867. */
  868. I915_WRITE(DSPHOWM, 0);
  869. I915_WRITE(DSPHOWM1, 0);
  870. I915_WRITE(DSPFW4, 0);
  871. I915_WRITE(DSPFW5, 0);
  872. I915_WRITE(DSPFW6, 0);
  873. I915_WRITE(DSPFW1,
  874. FW_WM(wm->sr.plane, SR) |
  875. FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
  876. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
  877. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
  878. I915_WRITE(DSPFW2,
  879. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
  880. FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
  881. FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
  882. I915_WRITE(DSPFW3,
  883. FW_WM(wm->sr.cursor, CURSOR_SR));
  884. if (IS_CHERRYVIEW(dev_priv)) {
  885. I915_WRITE(DSPFW7_CHV,
  886. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
  887. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
  888. I915_WRITE(DSPFW8_CHV,
  889. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
  890. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
  891. I915_WRITE(DSPFW9_CHV,
  892. FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
  893. FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
  894. I915_WRITE(DSPHOWM,
  895. FW_WM(wm->sr.plane >> 9, SR_HI) |
  896. FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
  897. FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
  898. FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
  899. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
  900. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
  901. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
  902. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
  903. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
  904. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
  905. } else {
  906. I915_WRITE(DSPFW7,
  907. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
  908. FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
  909. I915_WRITE(DSPHOWM,
  910. FW_WM(wm->sr.plane >> 9, SR_HI) |
  911. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
  912. FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
  913. FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
  914. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
  915. FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
  916. FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
  917. }
  918. POSTING_READ(DSPFW1);
  919. }
  920. #undef FW_WM_VLV
  921. static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
  922. {
  923. /* all latencies in usec */
  924. dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
  925. dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
  926. dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
  927. dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
  928. }
  929. static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
  930. {
  931. /*
  932. * DSPCNTR[13] supposedly controls whether the
  933. * primary plane can use the FIFO space otherwise
  934. * reserved for the sprite plane. It's not 100% clear
  935. * what the actual FIFO size is, but it looks like we
  936. * can happily set both primary and sprite watermarks
  937. * up to 127 cachelines. So that would seem to mean
  938. * that either DSPCNTR[13] doesn't do anything, or that
  939. * the total FIFO is >= 256 cachelines in size. Either
  940. * way, we don't seem to have to worry about this
  941. * repartitioning as the maximum watermark value the
  942. * register can hold for each plane is lower than the
  943. * minimum FIFO size.
  944. */
  945. switch (plane_id) {
  946. case PLANE_CURSOR:
  947. return 63;
  948. case PLANE_PRIMARY:
  949. return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
  950. case PLANE_SPRITE0:
  951. return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
  952. default:
  953. MISSING_CASE(plane_id);
  954. return 0;
  955. }
  956. }
  957. static int g4x_fbc_fifo_size(int level)
  958. {
  959. switch (level) {
  960. case G4X_WM_LEVEL_SR:
  961. return 7;
  962. case G4X_WM_LEVEL_HPLL:
  963. return 15;
  964. default:
  965. MISSING_CASE(level);
  966. return 0;
  967. }
  968. }
  969. static uint16_t g4x_compute_wm(const struct intel_crtc_state *crtc_state,
  970. const struct intel_plane_state *plane_state,
  971. int level)
  972. {
  973. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  974. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  975. const struct drm_display_mode *adjusted_mode =
  976. &crtc_state->base.adjusted_mode;
  977. int clock, htotal, cpp, width, wm;
  978. int latency = dev_priv->wm.pri_latency[level] * 10;
  979. if (latency == 0)
  980. return USHRT_MAX;
  981. if (!intel_wm_plane_visible(crtc_state, plane_state))
  982. return 0;
  983. /*
  984. * Not 100% sure which way ELK should go here as the
  985. * spec only says CL/CTG should assume 32bpp and BW
  986. * doesn't need to. But as these things followed the
  987. * mobile vs. desktop lines on gen3 as well, let's
  988. * assume ELK doesn't need this.
  989. *
  990. * The spec also fails to list such a restriction for
  991. * the HPLL watermark, which seems a little strange.
  992. * Let's use 32bpp for the HPLL watermark as well.
  993. */
  994. if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
  995. level != G4X_WM_LEVEL_NORMAL)
  996. cpp = 4;
  997. else
  998. cpp = plane_state->base.fb->format->cpp[0];
  999. clock = adjusted_mode->crtc_clock;
  1000. htotal = adjusted_mode->crtc_htotal;
  1001. if (plane->id == PLANE_CURSOR)
  1002. width = plane_state->base.crtc_w;
  1003. else
  1004. width = drm_rect_width(&plane_state->base.dst);
  1005. if (plane->id == PLANE_CURSOR) {
  1006. wm = intel_wm_method2(clock, htotal, width, cpp, latency);
  1007. } else if (plane->id == PLANE_PRIMARY &&
  1008. level == G4X_WM_LEVEL_NORMAL) {
  1009. wm = intel_wm_method1(clock, cpp, latency);
  1010. } else {
  1011. int small, large;
  1012. small = intel_wm_method1(clock, cpp, latency);
  1013. large = intel_wm_method2(clock, htotal, width, cpp, latency);
  1014. wm = min(small, large);
  1015. }
  1016. wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
  1017. width, cpp);
  1018. wm = DIV_ROUND_UP(wm, 64) + 2;
  1019. return min_t(int, wm, USHRT_MAX);
  1020. }
  1021. static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
  1022. int level, enum plane_id plane_id, u16 value)
  1023. {
  1024. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1025. bool dirty = false;
  1026. for (; level < intel_wm_num_levels(dev_priv); level++) {
  1027. struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1028. dirty |= raw->plane[plane_id] != value;
  1029. raw->plane[plane_id] = value;
  1030. }
  1031. return dirty;
  1032. }
  1033. static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
  1034. int level, u16 value)
  1035. {
  1036. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1037. bool dirty = false;
  1038. /* NORMAL level doesn't have an FBC watermark */
  1039. level = max(level, G4X_WM_LEVEL_SR);
  1040. for (; level < intel_wm_num_levels(dev_priv); level++) {
  1041. struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1042. dirty |= raw->fbc != value;
  1043. raw->fbc = value;
  1044. }
  1045. return dirty;
  1046. }
  1047. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  1048. const struct intel_plane_state *pstate,
  1049. uint32_t pri_val);
  1050. static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
  1051. const struct intel_plane_state *plane_state)
  1052. {
  1053. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  1054. int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
  1055. enum plane_id plane_id = plane->id;
  1056. bool dirty = false;
  1057. int level;
  1058. if (!intel_wm_plane_visible(crtc_state, plane_state)) {
  1059. dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
  1060. if (plane_id == PLANE_PRIMARY)
  1061. dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
  1062. goto out;
  1063. }
  1064. for (level = 0; level < num_levels; level++) {
  1065. struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1066. int wm, max_wm;
  1067. wm = g4x_compute_wm(crtc_state, plane_state, level);
  1068. max_wm = g4x_plane_fifo_size(plane_id, level);
  1069. if (wm > max_wm)
  1070. break;
  1071. dirty |= raw->plane[plane_id] != wm;
  1072. raw->plane[plane_id] = wm;
  1073. if (plane_id != PLANE_PRIMARY ||
  1074. level == G4X_WM_LEVEL_NORMAL)
  1075. continue;
  1076. wm = ilk_compute_fbc_wm(crtc_state, plane_state,
  1077. raw->plane[plane_id]);
  1078. max_wm = g4x_fbc_fifo_size(level);
  1079. /*
  1080. * FBC wm is not mandatory as we
  1081. * can always just disable its use.
  1082. */
  1083. if (wm > max_wm)
  1084. wm = USHRT_MAX;
  1085. dirty |= raw->fbc != wm;
  1086. raw->fbc = wm;
  1087. }
  1088. /* mark watermarks as invalid */
  1089. dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
  1090. if (plane_id == PLANE_PRIMARY)
  1091. dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
  1092. out:
  1093. if (dirty) {
  1094. DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
  1095. plane->base.name,
  1096. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
  1097. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
  1098. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
  1099. if (plane_id == PLANE_PRIMARY)
  1100. DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
  1101. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
  1102. crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
  1103. }
  1104. return dirty;
  1105. }
  1106. static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
  1107. enum plane_id plane_id, int level)
  1108. {
  1109. const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
  1110. return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
  1111. }
  1112. static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
  1113. int level)
  1114. {
  1115. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1116. if (level > dev_priv->wm.max_level)
  1117. return false;
  1118. return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
  1119. g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
  1120. g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
  1121. }
  1122. /* mark all levels starting from 'level' as invalid */
  1123. static void g4x_invalidate_wms(struct intel_crtc *crtc,
  1124. struct g4x_wm_state *wm_state, int level)
  1125. {
  1126. if (level <= G4X_WM_LEVEL_NORMAL) {
  1127. enum plane_id plane_id;
  1128. for_each_plane_id_on_crtc(crtc, plane_id)
  1129. wm_state->wm.plane[plane_id] = USHRT_MAX;
  1130. }
  1131. if (level <= G4X_WM_LEVEL_SR) {
  1132. wm_state->cxsr = false;
  1133. wm_state->sr.cursor = USHRT_MAX;
  1134. wm_state->sr.plane = USHRT_MAX;
  1135. wm_state->sr.fbc = USHRT_MAX;
  1136. }
  1137. if (level <= G4X_WM_LEVEL_HPLL) {
  1138. wm_state->hpll_en = false;
  1139. wm_state->hpll.cursor = USHRT_MAX;
  1140. wm_state->hpll.plane = USHRT_MAX;
  1141. wm_state->hpll.fbc = USHRT_MAX;
  1142. }
  1143. }
  1144. static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
  1145. {
  1146. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1147. struct intel_atomic_state *state =
  1148. to_intel_atomic_state(crtc_state->base.state);
  1149. struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
  1150. int num_active_planes = hweight32(crtc_state->active_planes &
  1151. ~BIT(PLANE_CURSOR));
  1152. const struct g4x_pipe_wm *raw;
  1153. const struct intel_plane_state *old_plane_state;
  1154. const struct intel_plane_state *new_plane_state;
  1155. struct intel_plane *plane;
  1156. enum plane_id plane_id;
  1157. int i, level;
  1158. unsigned int dirty = 0;
  1159. for_each_oldnew_intel_plane_in_state(state, plane,
  1160. old_plane_state,
  1161. new_plane_state, i) {
  1162. if (new_plane_state->base.crtc != &crtc->base &&
  1163. old_plane_state->base.crtc != &crtc->base)
  1164. continue;
  1165. if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
  1166. dirty |= BIT(plane->id);
  1167. }
  1168. if (!dirty)
  1169. return 0;
  1170. level = G4X_WM_LEVEL_NORMAL;
  1171. if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
  1172. goto out;
  1173. raw = &crtc_state->wm.g4x.raw[level];
  1174. for_each_plane_id_on_crtc(crtc, plane_id)
  1175. wm_state->wm.plane[plane_id] = raw->plane[plane_id];
  1176. level = G4X_WM_LEVEL_SR;
  1177. if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
  1178. goto out;
  1179. raw = &crtc_state->wm.g4x.raw[level];
  1180. wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
  1181. wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
  1182. wm_state->sr.fbc = raw->fbc;
  1183. wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
  1184. level = G4X_WM_LEVEL_HPLL;
  1185. if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
  1186. goto out;
  1187. raw = &crtc_state->wm.g4x.raw[level];
  1188. wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
  1189. wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
  1190. wm_state->hpll.fbc = raw->fbc;
  1191. wm_state->hpll_en = wm_state->cxsr;
  1192. level++;
  1193. out:
  1194. if (level == G4X_WM_LEVEL_NORMAL)
  1195. return -EINVAL;
  1196. /* invalidate the higher levels */
  1197. g4x_invalidate_wms(crtc, wm_state, level);
  1198. /*
  1199. * Determine if the FBC watermark(s) can be used. IF
  1200. * this isn't the case we prefer to disable the FBC
  1201. ( watermark(s) rather than disable the SR/HPLL
  1202. * level(s) entirely.
  1203. */
  1204. wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
  1205. if (level >= G4X_WM_LEVEL_SR &&
  1206. wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
  1207. wm_state->fbc_en = false;
  1208. else if (level >= G4X_WM_LEVEL_HPLL &&
  1209. wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
  1210. wm_state->fbc_en = false;
  1211. return 0;
  1212. }
  1213. static int g4x_compute_intermediate_wm(struct drm_device *dev,
  1214. struct intel_crtc *crtc,
  1215. struct intel_crtc_state *crtc_state)
  1216. {
  1217. struct g4x_wm_state *intermediate = &crtc_state->wm.g4x.intermediate;
  1218. const struct g4x_wm_state *optimal = &crtc_state->wm.g4x.optimal;
  1219. const struct g4x_wm_state *active = &crtc->wm.active.g4x;
  1220. enum plane_id plane_id;
  1221. intermediate->cxsr = optimal->cxsr && active->cxsr &&
  1222. !crtc_state->disable_cxsr;
  1223. intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
  1224. !crtc_state->disable_cxsr;
  1225. intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
  1226. for_each_plane_id_on_crtc(crtc, plane_id) {
  1227. intermediate->wm.plane[plane_id] =
  1228. max(optimal->wm.plane[plane_id],
  1229. active->wm.plane[plane_id]);
  1230. WARN_ON(intermediate->wm.plane[plane_id] >
  1231. g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
  1232. }
  1233. intermediate->sr.plane = max(optimal->sr.plane,
  1234. active->sr.plane);
  1235. intermediate->sr.cursor = max(optimal->sr.cursor,
  1236. active->sr.cursor);
  1237. intermediate->sr.fbc = max(optimal->sr.fbc,
  1238. active->sr.fbc);
  1239. intermediate->hpll.plane = max(optimal->hpll.plane,
  1240. active->hpll.plane);
  1241. intermediate->hpll.cursor = max(optimal->hpll.cursor,
  1242. active->hpll.cursor);
  1243. intermediate->hpll.fbc = max(optimal->hpll.fbc,
  1244. active->hpll.fbc);
  1245. WARN_ON((intermediate->sr.plane >
  1246. g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
  1247. intermediate->sr.cursor >
  1248. g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
  1249. intermediate->cxsr);
  1250. WARN_ON((intermediate->sr.plane >
  1251. g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
  1252. intermediate->sr.cursor >
  1253. g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
  1254. intermediate->hpll_en);
  1255. WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
  1256. intermediate->fbc_en && intermediate->cxsr);
  1257. WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
  1258. intermediate->fbc_en && intermediate->hpll_en);
  1259. /*
  1260. * If our intermediate WM are identical to the final WM, then we can
  1261. * omit the post-vblank programming; only update if it's different.
  1262. */
  1263. if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
  1264. crtc_state->wm.need_postvbl_update = true;
  1265. return 0;
  1266. }
  1267. static void g4x_merge_wm(struct drm_i915_private *dev_priv,
  1268. struct g4x_wm_values *wm)
  1269. {
  1270. struct intel_crtc *crtc;
  1271. int num_active_crtcs = 0;
  1272. wm->cxsr = true;
  1273. wm->hpll_en = true;
  1274. wm->fbc_en = true;
  1275. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1276. const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
  1277. if (!crtc->active)
  1278. continue;
  1279. if (!wm_state->cxsr)
  1280. wm->cxsr = false;
  1281. if (!wm_state->hpll_en)
  1282. wm->hpll_en = false;
  1283. if (!wm_state->fbc_en)
  1284. wm->fbc_en = false;
  1285. num_active_crtcs++;
  1286. }
  1287. if (num_active_crtcs != 1) {
  1288. wm->cxsr = false;
  1289. wm->hpll_en = false;
  1290. wm->fbc_en = false;
  1291. }
  1292. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1293. const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
  1294. enum pipe pipe = crtc->pipe;
  1295. wm->pipe[pipe] = wm_state->wm;
  1296. if (crtc->active && wm->cxsr)
  1297. wm->sr = wm_state->sr;
  1298. if (crtc->active && wm->hpll_en)
  1299. wm->hpll = wm_state->hpll;
  1300. }
  1301. }
  1302. static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
  1303. {
  1304. struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
  1305. struct g4x_wm_values new_wm = {};
  1306. g4x_merge_wm(dev_priv, &new_wm);
  1307. if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
  1308. return;
  1309. if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
  1310. _intel_set_memory_cxsr(dev_priv, false);
  1311. g4x_write_wm_values(dev_priv, &new_wm);
  1312. if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
  1313. _intel_set_memory_cxsr(dev_priv, true);
  1314. *old_wm = new_wm;
  1315. }
  1316. static void g4x_initial_watermarks(struct intel_atomic_state *state,
  1317. struct intel_crtc_state *crtc_state)
  1318. {
  1319. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1320. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1321. mutex_lock(&dev_priv->wm.wm_mutex);
  1322. crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
  1323. g4x_program_watermarks(dev_priv);
  1324. mutex_unlock(&dev_priv->wm.wm_mutex);
  1325. }
  1326. static void g4x_optimize_watermarks(struct intel_atomic_state *state,
  1327. struct intel_crtc_state *crtc_state)
  1328. {
  1329. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1330. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  1331. if (!crtc_state->wm.need_postvbl_update)
  1332. return;
  1333. mutex_lock(&dev_priv->wm.wm_mutex);
  1334. intel_crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
  1335. g4x_program_watermarks(dev_priv);
  1336. mutex_unlock(&dev_priv->wm.wm_mutex);
  1337. }
  1338. /* latency must be in 0.1us units. */
  1339. static unsigned int vlv_wm_method2(unsigned int pixel_rate,
  1340. unsigned int htotal,
  1341. unsigned int width,
  1342. unsigned int cpp,
  1343. unsigned int latency)
  1344. {
  1345. unsigned int ret;
  1346. ret = intel_wm_method2(pixel_rate, htotal,
  1347. width, cpp, latency);
  1348. ret = DIV_ROUND_UP(ret, 64);
  1349. return ret;
  1350. }
  1351. static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
  1352. {
  1353. /* all latencies in usec */
  1354. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
  1355. dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
  1356. if (IS_CHERRYVIEW(dev_priv)) {
  1357. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
  1358. dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
  1359. dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
  1360. }
  1361. }
  1362. static uint16_t vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
  1363. const struct intel_plane_state *plane_state,
  1364. int level)
  1365. {
  1366. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  1367. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  1368. const struct drm_display_mode *adjusted_mode =
  1369. &crtc_state->base.adjusted_mode;
  1370. int clock, htotal, cpp, width, wm;
  1371. if (dev_priv->wm.pri_latency[level] == 0)
  1372. return USHRT_MAX;
  1373. if (!intel_wm_plane_visible(crtc_state, plane_state))
  1374. return 0;
  1375. cpp = plane_state->base.fb->format->cpp[0];
  1376. clock = adjusted_mode->crtc_clock;
  1377. htotal = adjusted_mode->crtc_htotal;
  1378. width = crtc_state->pipe_src_w;
  1379. if (plane->id == PLANE_CURSOR) {
  1380. /*
  1381. * FIXME the formula gives values that are
  1382. * too big for the cursor FIFO, and hence we
  1383. * would never be able to use cursors. For
  1384. * now just hardcode the watermark.
  1385. */
  1386. wm = 63;
  1387. } else {
  1388. wm = vlv_wm_method2(clock, htotal, width, cpp,
  1389. dev_priv->wm.pri_latency[level] * 10);
  1390. }
  1391. return min_t(int, wm, USHRT_MAX);
  1392. }
  1393. static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
  1394. {
  1395. return (active_planes & (BIT(PLANE_SPRITE0) |
  1396. BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
  1397. }
  1398. static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
  1399. {
  1400. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1401. const struct g4x_pipe_wm *raw =
  1402. &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
  1403. struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
  1404. unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
  1405. int num_active_planes = hweight32(active_planes);
  1406. const int fifo_size = 511;
  1407. int fifo_extra, fifo_left = fifo_size;
  1408. int sprite0_fifo_extra = 0;
  1409. unsigned int total_rate;
  1410. enum plane_id plane_id;
  1411. /*
  1412. * When enabling sprite0 after sprite1 has already been enabled
  1413. * we tend to get an underrun unless sprite0 already has some
  1414. * FIFO space allcoated. Hence we always allocate at least one
  1415. * cacheline for sprite0 whenever sprite1 is enabled.
  1416. *
  1417. * All other plane enable sequences appear immune to this problem.
  1418. */
  1419. if (vlv_need_sprite0_fifo_workaround(active_planes))
  1420. sprite0_fifo_extra = 1;
  1421. total_rate = raw->plane[PLANE_PRIMARY] +
  1422. raw->plane[PLANE_SPRITE0] +
  1423. raw->plane[PLANE_SPRITE1] +
  1424. sprite0_fifo_extra;
  1425. if (total_rate > fifo_size)
  1426. return -EINVAL;
  1427. if (total_rate == 0)
  1428. total_rate = 1;
  1429. for_each_plane_id_on_crtc(crtc, plane_id) {
  1430. unsigned int rate;
  1431. if ((active_planes & BIT(plane_id)) == 0) {
  1432. fifo_state->plane[plane_id] = 0;
  1433. continue;
  1434. }
  1435. rate = raw->plane[plane_id];
  1436. fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
  1437. fifo_left -= fifo_state->plane[plane_id];
  1438. }
  1439. fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
  1440. fifo_left -= sprite0_fifo_extra;
  1441. fifo_state->plane[PLANE_CURSOR] = 63;
  1442. fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
  1443. /* spread the remainder evenly */
  1444. for_each_plane_id_on_crtc(crtc, plane_id) {
  1445. int plane_extra;
  1446. if (fifo_left == 0)
  1447. break;
  1448. if ((active_planes & BIT(plane_id)) == 0)
  1449. continue;
  1450. plane_extra = min(fifo_extra, fifo_left);
  1451. fifo_state->plane[plane_id] += plane_extra;
  1452. fifo_left -= plane_extra;
  1453. }
  1454. WARN_ON(active_planes != 0 && fifo_left != 0);
  1455. /* give it all to the first plane if none are active */
  1456. if (active_planes == 0) {
  1457. WARN_ON(fifo_left != fifo_size);
  1458. fifo_state->plane[PLANE_PRIMARY] = fifo_left;
  1459. }
  1460. return 0;
  1461. }
  1462. /* mark all levels starting from 'level' as invalid */
  1463. static void vlv_invalidate_wms(struct intel_crtc *crtc,
  1464. struct vlv_wm_state *wm_state, int level)
  1465. {
  1466. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1467. for (; level < intel_wm_num_levels(dev_priv); level++) {
  1468. enum plane_id plane_id;
  1469. for_each_plane_id_on_crtc(crtc, plane_id)
  1470. wm_state->wm[level].plane[plane_id] = USHRT_MAX;
  1471. wm_state->sr[level].cursor = USHRT_MAX;
  1472. wm_state->sr[level].plane = USHRT_MAX;
  1473. }
  1474. }
  1475. static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
  1476. {
  1477. if (wm > fifo_size)
  1478. return USHRT_MAX;
  1479. else
  1480. return fifo_size - wm;
  1481. }
  1482. /*
  1483. * Starting from 'level' set all higher
  1484. * levels to 'value' in the "raw" watermarks.
  1485. */
  1486. static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
  1487. int level, enum plane_id plane_id, u16 value)
  1488. {
  1489. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1490. int num_levels = intel_wm_num_levels(dev_priv);
  1491. bool dirty = false;
  1492. for (; level < num_levels; level++) {
  1493. struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
  1494. dirty |= raw->plane[plane_id] != value;
  1495. raw->plane[plane_id] = value;
  1496. }
  1497. return dirty;
  1498. }
  1499. static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
  1500. const struct intel_plane_state *plane_state)
  1501. {
  1502. struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
  1503. enum plane_id plane_id = plane->id;
  1504. int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
  1505. int level;
  1506. bool dirty = false;
  1507. if (!intel_wm_plane_visible(crtc_state, plane_state)) {
  1508. dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
  1509. goto out;
  1510. }
  1511. for (level = 0; level < num_levels; level++) {
  1512. struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
  1513. int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
  1514. int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
  1515. if (wm > max_wm)
  1516. break;
  1517. dirty |= raw->plane[plane_id] != wm;
  1518. raw->plane[plane_id] = wm;
  1519. }
  1520. /* mark all higher levels as invalid */
  1521. dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
  1522. out:
  1523. if (dirty)
  1524. DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
  1525. plane->base.name,
  1526. crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
  1527. crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
  1528. crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
  1529. return dirty;
  1530. }
  1531. static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
  1532. enum plane_id plane_id, int level)
  1533. {
  1534. const struct g4x_pipe_wm *raw =
  1535. &crtc_state->wm.vlv.raw[level];
  1536. const struct vlv_fifo_state *fifo_state =
  1537. &crtc_state->wm.vlv.fifo_state;
  1538. return raw->plane[plane_id] <= fifo_state->plane[plane_id];
  1539. }
  1540. static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
  1541. {
  1542. return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
  1543. vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
  1544. vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
  1545. vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
  1546. }
  1547. static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
  1548. {
  1549. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1550. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1551. struct intel_atomic_state *state =
  1552. to_intel_atomic_state(crtc_state->base.state);
  1553. struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
  1554. const struct vlv_fifo_state *fifo_state =
  1555. &crtc_state->wm.vlv.fifo_state;
  1556. int num_active_planes = hweight32(crtc_state->active_planes &
  1557. ~BIT(PLANE_CURSOR));
  1558. bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
  1559. const struct intel_plane_state *old_plane_state;
  1560. const struct intel_plane_state *new_plane_state;
  1561. struct intel_plane *plane;
  1562. enum plane_id plane_id;
  1563. int level, ret, i;
  1564. unsigned int dirty = 0;
  1565. for_each_oldnew_intel_plane_in_state(state, plane,
  1566. old_plane_state,
  1567. new_plane_state, i) {
  1568. if (new_plane_state->base.crtc != &crtc->base &&
  1569. old_plane_state->base.crtc != &crtc->base)
  1570. continue;
  1571. if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
  1572. dirty |= BIT(plane->id);
  1573. }
  1574. /*
  1575. * DSPARB registers may have been reset due to the
  1576. * power well being turned off. Make sure we restore
  1577. * them to a consistent state even if no primary/sprite
  1578. * planes are initially active.
  1579. */
  1580. if (needs_modeset)
  1581. crtc_state->fifo_changed = true;
  1582. if (!dirty)
  1583. return 0;
  1584. /* cursor changes don't warrant a FIFO recompute */
  1585. if (dirty & ~BIT(PLANE_CURSOR)) {
  1586. const struct intel_crtc_state *old_crtc_state =
  1587. intel_atomic_get_old_crtc_state(state, crtc);
  1588. const struct vlv_fifo_state *old_fifo_state =
  1589. &old_crtc_state->wm.vlv.fifo_state;
  1590. ret = vlv_compute_fifo(crtc_state);
  1591. if (ret)
  1592. return ret;
  1593. if (needs_modeset ||
  1594. memcmp(old_fifo_state, fifo_state,
  1595. sizeof(*fifo_state)) != 0)
  1596. crtc_state->fifo_changed = true;
  1597. }
  1598. /* initially allow all levels */
  1599. wm_state->num_levels = intel_wm_num_levels(dev_priv);
  1600. /*
  1601. * Note that enabling cxsr with no primary/sprite planes
  1602. * enabled can wedge the pipe. Hence we only allow cxsr
  1603. * with exactly one enabled primary/sprite plane.
  1604. */
  1605. wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
  1606. for (level = 0; level < wm_state->num_levels; level++) {
  1607. const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
  1608. const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
  1609. if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
  1610. break;
  1611. for_each_plane_id_on_crtc(crtc, plane_id) {
  1612. wm_state->wm[level].plane[plane_id] =
  1613. vlv_invert_wm_value(raw->plane[plane_id],
  1614. fifo_state->plane[plane_id]);
  1615. }
  1616. wm_state->sr[level].plane =
  1617. vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
  1618. raw->plane[PLANE_SPRITE0],
  1619. raw->plane[PLANE_SPRITE1]),
  1620. sr_fifo_size);
  1621. wm_state->sr[level].cursor =
  1622. vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
  1623. 63);
  1624. }
  1625. if (level == 0)
  1626. return -EINVAL;
  1627. /* limit to only levels we can actually handle */
  1628. wm_state->num_levels = level;
  1629. /* invalidate the higher levels */
  1630. vlv_invalidate_wms(crtc, wm_state, level);
  1631. return 0;
  1632. }
  1633. #define VLV_FIFO(plane, value) \
  1634. (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
  1635. static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
  1636. struct intel_crtc_state *crtc_state)
  1637. {
  1638. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1639. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  1640. const struct vlv_fifo_state *fifo_state =
  1641. &crtc_state->wm.vlv.fifo_state;
  1642. int sprite0_start, sprite1_start, fifo_size;
  1643. if (!crtc_state->fifo_changed)
  1644. return;
  1645. sprite0_start = fifo_state->plane[PLANE_PRIMARY];
  1646. sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
  1647. fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
  1648. WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
  1649. WARN_ON(fifo_size != 511);
  1650. trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
  1651. /*
  1652. * uncore.lock serves a double purpose here. It allows us to
  1653. * use the less expensive I915_{READ,WRITE}_FW() functions, and
  1654. * it protects the DSPARB registers from getting clobbered by
  1655. * parallel updates from multiple pipes.
  1656. *
  1657. * intel_pipe_update_start() has already disabled interrupts
  1658. * for us, so a plain spin_lock() is sufficient here.
  1659. */
  1660. spin_lock(&dev_priv->uncore.lock);
  1661. switch (crtc->pipe) {
  1662. uint32_t dsparb, dsparb2, dsparb3;
  1663. case PIPE_A:
  1664. dsparb = I915_READ_FW(DSPARB);
  1665. dsparb2 = I915_READ_FW(DSPARB2);
  1666. dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
  1667. VLV_FIFO(SPRITEB, 0xff));
  1668. dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
  1669. VLV_FIFO(SPRITEB, sprite1_start));
  1670. dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
  1671. VLV_FIFO(SPRITEB_HI, 0x1));
  1672. dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
  1673. VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
  1674. I915_WRITE_FW(DSPARB, dsparb);
  1675. I915_WRITE_FW(DSPARB2, dsparb2);
  1676. break;
  1677. case PIPE_B:
  1678. dsparb = I915_READ_FW(DSPARB);
  1679. dsparb2 = I915_READ_FW(DSPARB2);
  1680. dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
  1681. VLV_FIFO(SPRITED, 0xff));
  1682. dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
  1683. VLV_FIFO(SPRITED, sprite1_start));
  1684. dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
  1685. VLV_FIFO(SPRITED_HI, 0xff));
  1686. dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
  1687. VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
  1688. I915_WRITE_FW(DSPARB, dsparb);
  1689. I915_WRITE_FW(DSPARB2, dsparb2);
  1690. break;
  1691. case PIPE_C:
  1692. dsparb3 = I915_READ_FW(DSPARB3);
  1693. dsparb2 = I915_READ_FW(DSPARB2);
  1694. dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
  1695. VLV_FIFO(SPRITEF, 0xff));
  1696. dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
  1697. VLV_FIFO(SPRITEF, sprite1_start));
  1698. dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
  1699. VLV_FIFO(SPRITEF_HI, 0xff));
  1700. dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
  1701. VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
  1702. I915_WRITE_FW(DSPARB3, dsparb3);
  1703. I915_WRITE_FW(DSPARB2, dsparb2);
  1704. break;
  1705. default:
  1706. break;
  1707. }
  1708. POSTING_READ_FW(DSPARB);
  1709. spin_unlock(&dev_priv->uncore.lock);
  1710. }
  1711. #undef VLV_FIFO
  1712. static int vlv_compute_intermediate_wm(struct drm_device *dev,
  1713. struct intel_crtc *crtc,
  1714. struct intel_crtc_state *crtc_state)
  1715. {
  1716. struct vlv_wm_state *intermediate = &crtc_state->wm.vlv.intermediate;
  1717. const struct vlv_wm_state *optimal = &crtc_state->wm.vlv.optimal;
  1718. const struct vlv_wm_state *active = &crtc->wm.active.vlv;
  1719. int level;
  1720. intermediate->num_levels = min(optimal->num_levels, active->num_levels);
  1721. intermediate->cxsr = optimal->cxsr && active->cxsr &&
  1722. !crtc_state->disable_cxsr;
  1723. for (level = 0; level < intermediate->num_levels; level++) {
  1724. enum plane_id plane_id;
  1725. for_each_plane_id_on_crtc(crtc, plane_id) {
  1726. intermediate->wm[level].plane[plane_id] =
  1727. min(optimal->wm[level].plane[plane_id],
  1728. active->wm[level].plane[plane_id]);
  1729. }
  1730. intermediate->sr[level].plane = min(optimal->sr[level].plane,
  1731. active->sr[level].plane);
  1732. intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
  1733. active->sr[level].cursor);
  1734. }
  1735. vlv_invalidate_wms(crtc, intermediate, level);
  1736. /*
  1737. * If our intermediate WM are identical to the final WM, then we can
  1738. * omit the post-vblank programming; only update if it's different.
  1739. */
  1740. if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
  1741. crtc_state->wm.need_postvbl_update = true;
  1742. return 0;
  1743. }
  1744. static void vlv_merge_wm(struct drm_i915_private *dev_priv,
  1745. struct vlv_wm_values *wm)
  1746. {
  1747. struct intel_crtc *crtc;
  1748. int num_active_crtcs = 0;
  1749. wm->level = dev_priv->wm.max_level;
  1750. wm->cxsr = true;
  1751. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1752. const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
  1753. if (!crtc->active)
  1754. continue;
  1755. if (!wm_state->cxsr)
  1756. wm->cxsr = false;
  1757. num_active_crtcs++;
  1758. wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
  1759. }
  1760. if (num_active_crtcs != 1)
  1761. wm->cxsr = false;
  1762. if (num_active_crtcs > 1)
  1763. wm->level = VLV_WM_LEVEL_PM2;
  1764. for_each_intel_crtc(&dev_priv->drm, crtc) {
  1765. const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
  1766. enum pipe pipe = crtc->pipe;
  1767. wm->pipe[pipe] = wm_state->wm[wm->level];
  1768. if (crtc->active && wm->cxsr)
  1769. wm->sr = wm_state->sr[wm->level];
  1770. wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
  1771. wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
  1772. wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
  1773. wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
  1774. }
  1775. }
  1776. static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
  1777. {
  1778. struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
  1779. struct vlv_wm_values new_wm = {};
  1780. vlv_merge_wm(dev_priv, &new_wm);
  1781. if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
  1782. return;
  1783. if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
  1784. chv_set_memory_dvfs(dev_priv, false);
  1785. if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
  1786. chv_set_memory_pm5(dev_priv, false);
  1787. if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
  1788. _intel_set_memory_cxsr(dev_priv, false);
  1789. vlv_write_wm_values(dev_priv, &new_wm);
  1790. if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
  1791. _intel_set_memory_cxsr(dev_priv, true);
  1792. if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
  1793. chv_set_memory_pm5(dev_priv, true);
  1794. if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
  1795. chv_set_memory_dvfs(dev_priv, true);
  1796. *old_wm = new_wm;
  1797. }
  1798. static void vlv_initial_watermarks(struct intel_atomic_state *state,
  1799. struct intel_crtc_state *crtc_state)
  1800. {
  1801. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1802. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  1803. mutex_lock(&dev_priv->wm.wm_mutex);
  1804. crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
  1805. vlv_program_watermarks(dev_priv);
  1806. mutex_unlock(&dev_priv->wm.wm_mutex);
  1807. }
  1808. static void vlv_optimize_watermarks(struct intel_atomic_state *state,
  1809. struct intel_crtc_state *crtc_state)
  1810. {
  1811. struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
  1812. struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
  1813. if (!crtc_state->wm.need_postvbl_update)
  1814. return;
  1815. mutex_lock(&dev_priv->wm.wm_mutex);
  1816. intel_crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
  1817. vlv_program_watermarks(dev_priv);
  1818. mutex_unlock(&dev_priv->wm.wm_mutex);
  1819. }
  1820. static void i965_update_wm(struct intel_crtc *unused_crtc)
  1821. {
  1822. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1823. struct intel_crtc *crtc;
  1824. int srwm = 1;
  1825. int cursor_sr = 16;
  1826. bool cxsr_enabled;
  1827. /* Calc sr entries for one plane configs */
  1828. crtc = single_enabled_crtc(dev_priv);
  1829. if (crtc) {
  1830. /* self-refresh has much higher latency */
  1831. static const int sr_latency_ns = 12000;
  1832. const struct drm_display_mode *adjusted_mode =
  1833. &crtc->config->base.adjusted_mode;
  1834. const struct drm_framebuffer *fb =
  1835. crtc->base.primary->state->fb;
  1836. int clock = adjusted_mode->crtc_clock;
  1837. int htotal = adjusted_mode->crtc_htotal;
  1838. int hdisplay = crtc->config->pipe_src_w;
  1839. int cpp = fb->format->cpp[0];
  1840. int entries;
  1841. entries = intel_wm_method2(clock, htotal,
  1842. hdisplay, cpp, sr_latency_ns / 100);
  1843. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1844. srwm = I965_FIFO_SIZE - entries;
  1845. if (srwm < 0)
  1846. srwm = 1;
  1847. srwm &= 0x1ff;
  1848. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1849. entries, srwm);
  1850. entries = intel_wm_method2(clock, htotal,
  1851. crtc->base.cursor->state->crtc_w, 4,
  1852. sr_latency_ns / 100);
  1853. entries = DIV_ROUND_UP(entries,
  1854. i965_cursor_wm_info.cacheline_size) +
  1855. i965_cursor_wm_info.guard_size;
  1856. cursor_sr = i965_cursor_wm_info.fifo_size - entries;
  1857. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1858. cursor_sr = i965_cursor_wm_info.max_wm;
  1859. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1860. "cursor %d\n", srwm, cursor_sr);
  1861. cxsr_enabled = true;
  1862. } else {
  1863. cxsr_enabled = false;
  1864. /* Turn off self refresh if both pipes are enabled */
  1865. intel_set_memory_cxsr(dev_priv, false);
  1866. }
  1867. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1868. srwm);
  1869. /* 965 has limitations... */
  1870. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1871. FW_WM(8, CURSORB) |
  1872. FW_WM(8, PLANEB) |
  1873. FW_WM(8, PLANEA));
  1874. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1875. FW_WM(8, PLANEC_OLD));
  1876. /* update cursor SR watermark */
  1877. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1878. if (cxsr_enabled)
  1879. intel_set_memory_cxsr(dev_priv, true);
  1880. }
  1881. #undef FW_WM
  1882. static void i9xx_update_wm(struct intel_crtc *unused_crtc)
  1883. {
  1884. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  1885. const struct intel_watermark_params *wm_info;
  1886. uint32_t fwater_lo;
  1887. uint32_t fwater_hi;
  1888. int cwm, srwm = 1;
  1889. int fifo_size;
  1890. int planea_wm, planeb_wm;
  1891. struct intel_crtc *crtc, *enabled = NULL;
  1892. if (IS_I945GM(dev_priv))
  1893. wm_info = &i945_wm_info;
  1894. else if (!IS_GEN2(dev_priv))
  1895. wm_info = &i915_wm_info;
  1896. else
  1897. wm_info = &i830_a_wm_info;
  1898. fifo_size = dev_priv->display.get_fifo_size(dev_priv, 0);
  1899. crtc = intel_get_crtc_for_plane(dev_priv, 0);
  1900. if (intel_crtc_active(crtc)) {
  1901. const struct drm_display_mode *adjusted_mode =
  1902. &crtc->config->base.adjusted_mode;
  1903. const struct drm_framebuffer *fb =
  1904. crtc->base.primary->state->fb;
  1905. int cpp;
  1906. if (IS_GEN2(dev_priv))
  1907. cpp = 4;
  1908. else
  1909. cpp = fb->format->cpp[0];
  1910. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1911. wm_info, fifo_size, cpp,
  1912. pessimal_latency_ns);
  1913. enabled = crtc;
  1914. } else {
  1915. planea_wm = fifo_size - wm_info->guard_size;
  1916. if (planea_wm > (long)wm_info->max_wm)
  1917. planea_wm = wm_info->max_wm;
  1918. }
  1919. if (IS_GEN2(dev_priv))
  1920. wm_info = &i830_bc_wm_info;
  1921. fifo_size = dev_priv->display.get_fifo_size(dev_priv, 1);
  1922. crtc = intel_get_crtc_for_plane(dev_priv, 1);
  1923. if (intel_crtc_active(crtc)) {
  1924. const struct drm_display_mode *adjusted_mode =
  1925. &crtc->config->base.adjusted_mode;
  1926. const struct drm_framebuffer *fb =
  1927. crtc->base.primary->state->fb;
  1928. int cpp;
  1929. if (IS_GEN2(dev_priv))
  1930. cpp = 4;
  1931. else
  1932. cpp = fb->format->cpp[0];
  1933. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1934. wm_info, fifo_size, cpp,
  1935. pessimal_latency_ns);
  1936. if (enabled == NULL)
  1937. enabled = crtc;
  1938. else
  1939. enabled = NULL;
  1940. } else {
  1941. planeb_wm = fifo_size - wm_info->guard_size;
  1942. if (planeb_wm > (long)wm_info->max_wm)
  1943. planeb_wm = wm_info->max_wm;
  1944. }
  1945. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1946. if (IS_I915GM(dev_priv) && enabled) {
  1947. struct drm_i915_gem_object *obj;
  1948. obj = intel_fb_obj(enabled->base.primary->state->fb);
  1949. /* self-refresh seems busted with untiled */
  1950. if (!i915_gem_object_is_tiled(obj))
  1951. enabled = NULL;
  1952. }
  1953. /*
  1954. * Overlay gets an aggressive default since video jitter is bad.
  1955. */
  1956. cwm = 2;
  1957. /* Play safe and disable self-refresh before adjusting watermarks. */
  1958. intel_set_memory_cxsr(dev_priv, false);
  1959. /* Calc sr entries for one plane configs */
  1960. if (HAS_FW_BLC(dev_priv) && enabled) {
  1961. /* self-refresh has much higher latency */
  1962. static const int sr_latency_ns = 6000;
  1963. const struct drm_display_mode *adjusted_mode =
  1964. &enabled->config->base.adjusted_mode;
  1965. const struct drm_framebuffer *fb =
  1966. enabled->base.primary->state->fb;
  1967. int clock = adjusted_mode->crtc_clock;
  1968. int htotal = adjusted_mode->crtc_htotal;
  1969. int hdisplay = enabled->config->pipe_src_w;
  1970. int cpp;
  1971. int entries;
  1972. if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
  1973. cpp = 4;
  1974. else
  1975. cpp = fb->format->cpp[0];
  1976. entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
  1977. sr_latency_ns / 100);
  1978. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1979. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1980. srwm = wm_info->fifo_size - entries;
  1981. if (srwm < 0)
  1982. srwm = 1;
  1983. if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1984. I915_WRITE(FW_BLC_SELF,
  1985. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1986. else
  1987. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1988. }
  1989. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1990. planea_wm, planeb_wm, cwm, srwm);
  1991. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1992. fwater_hi = (cwm & 0x1f);
  1993. /* Set request length to 8 cachelines per fetch */
  1994. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1995. fwater_hi = fwater_hi | (1 << 8);
  1996. I915_WRITE(FW_BLC, fwater_lo);
  1997. I915_WRITE(FW_BLC2, fwater_hi);
  1998. if (enabled)
  1999. intel_set_memory_cxsr(dev_priv, true);
  2000. }
  2001. static void i845_update_wm(struct intel_crtc *unused_crtc)
  2002. {
  2003. struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
  2004. struct intel_crtc *crtc;
  2005. const struct drm_display_mode *adjusted_mode;
  2006. uint32_t fwater_lo;
  2007. int planea_wm;
  2008. crtc = single_enabled_crtc(dev_priv);
  2009. if (crtc == NULL)
  2010. return;
  2011. adjusted_mode = &crtc->config->base.adjusted_mode;
  2012. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  2013. &i845_wm_info,
  2014. dev_priv->display.get_fifo_size(dev_priv, 0),
  2015. 4, pessimal_latency_ns);
  2016. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  2017. fwater_lo |= (3<<8) | planea_wm;
  2018. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2019. I915_WRITE(FW_BLC, fwater_lo);
  2020. }
  2021. /* latency must be in 0.1us units. */
  2022. static unsigned int ilk_wm_method1(unsigned int pixel_rate,
  2023. unsigned int cpp,
  2024. unsigned int latency)
  2025. {
  2026. unsigned int ret;
  2027. ret = intel_wm_method1(pixel_rate, cpp, latency);
  2028. ret = DIV_ROUND_UP(ret, 64) + 2;
  2029. return ret;
  2030. }
  2031. /* latency must be in 0.1us units. */
  2032. static unsigned int ilk_wm_method2(unsigned int pixel_rate,
  2033. unsigned int htotal,
  2034. unsigned int width,
  2035. unsigned int cpp,
  2036. unsigned int latency)
  2037. {
  2038. unsigned int ret;
  2039. ret = intel_wm_method2(pixel_rate, htotal,
  2040. width, cpp, latency);
  2041. ret = DIV_ROUND_UP(ret, 64) + 2;
  2042. return ret;
  2043. }
  2044. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  2045. uint8_t cpp)
  2046. {
  2047. /*
  2048. * Neither of these should be possible since this function shouldn't be
  2049. * called if the CRTC is off or the plane is invisible. But let's be
  2050. * extra paranoid to avoid a potential divide-by-zero if we screw up
  2051. * elsewhere in the driver.
  2052. */
  2053. if (WARN_ON(!cpp))
  2054. return 0;
  2055. if (WARN_ON(!horiz_pixels))
  2056. return 0;
  2057. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
  2058. }
  2059. struct ilk_wm_maximums {
  2060. uint16_t pri;
  2061. uint16_t spr;
  2062. uint16_t cur;
  2063. uint16_t fbc;
  2064. };
  2065. /*
  2066. * For both WM_PIPE and WM_LP.
  2067. * mem_value must be in 0.1us units.
  2068. */
  2069. static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
  2070. const struct intel_plane_state *pstate,
  2071. uint32_t mem_value,
  2072. bool is_lp)
  2073. {
  2074. uint32_t method1, method2;
  2075. int cpp;
  2076. if (!intel_wm_plane_visible(cstate, pstate))
  2077. return 0;
  2078. cpp = pstate->base.fb->format->cpp[0];
  2079. method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
  2080. if (!is_lp)
  2081. return method1;
  2082. method2 = ilk_wm_method2(cstate->pixel_rate,
  2083. cstate->base.adjusted_mode.crtc_htotal,
  2084. drm_rect_width(&pstate->base.dst),
  2085. cpp, mem_value);
  2086. return min(method1, method2);
  2087. }
  2088. /*
  2089. * For both WM_PIPE and WM_LP.
  2090. * mem_value must be in 0.1us units.
  2091. */
  2092. static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
  2093. const struct intel_plane_state *pstate,
  2094. uint32_t mem_value)
  2095. {
  2096. uint32_t method1, method2;
  2097. int cpp;
  2098. if (!intel_wm_plane_visible(cstate, pstate))
  2099. return 0;
  2100. cpp = pstate->base.fb->format->cpp[0];
  2101. method1 = ilk_wm_method1(cstate->pixel_rate, cpp, mem_value);
  2102. method2 = ilk_wm_method2(cstate->pixel_rate,
  2103. cstate->base.adjusted_mode.crtc_htotal,
  2104. drm_rect_width(&pstate->base.dst),
  2105. cpp, mem_value);
  2106. return min(method1, method2);
  2107. }
  2108. /*
  2109. * For both WM_PIPE and WM_LP.
  2110. * mem_value must be in 0.1us units.
  2111. */
  2112. static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
  2113. const struct intel_plane_state *pstate,
  2114. uint32_t mem_value)
  2115. {
  2116. int cpp;
  2117. if (!intel_wm_plane_visible(cstate, pstate))
  2118. return 0;
  2119. cpp = pstate->base.fb->format->cpp[0];
  2120. return ilk_wm_method2(cstate->pixel_rate,
  2121. cstate->base.adjusted_mode.crtc_htotal,
  2122. pstate->base.crtc_w, cpp, mem_value);
  2123. }
  2124. /* Only for WM_LP. */
  2125. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  2126. const struct intel_plane_state *pstate,
  2127. uint32_t pri_val)
  2128. {
  2129. int cpp;
  2130. if (!intel_wm_plane_visible(cstate, pstate))
  2131. return 0;
  2132. cpp = pstate->base.fb->format->cpp[0];
  2133. return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
  2134. }
  2135. static unsigned int
  2136. ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
  2137. {
  2138. if (INTEL_GEN(dev_priv) >= 8)
  2139. return 3072;
  2140. else if (INTEL_GEN(dev_priv) >= 7)
  2141. return 768;
  2142. else
  2143. return 512;
  2144. }
  2145. static unsigned int
  2146. ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
  2147. int level, bool is_sprite)
  2148. {
  2149. if (INTEL_GEN(dev_priv) >= 8)
  2150. /* BDW primary/sprite plane watermarks */
  2151. return level == 0 ? 255 : 2047;
  2152. else if (INTEL_GEN(dev_priv) >= 7)
  2153. /* IVB/HSW primary/sprite plane watermarks */
  2154. return level == 0 ? 127 : 1023;
  2155. else if (!is_sprite)
  2156. /* ILK/SNB primary plane watermarks */
  2157. return level == 0 ? 127 : 511;
  2158. else
  2159. /* ILK/SNB sprite plane watermarks */
  2160. return level == 0 ? 63 : 255;
  2161. }
  2162. static unsigned int
  2163. ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
  2164. {
  2165. if (INTEL_GEN(dev_priv) >= 7)
  2166. return level == 0 ? 63 : 255;
  2167. else
  2168. return level == 0 ? 31 : 63;
  2169. }
  2170. static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
  2171. {
  2172. if (INTEL_GEN(dev_priv) >= 8)
  2173. return 31;
  2174. else
  2175. return 15;
  2176. }
  2177. /* Calculate the maximum primary/sprite plane watermark */
  2178. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  2179. int level,
  2180. const struct intel_wm_config *config,
  2181. enum intel_ddb_partitioning ddb_partitioning,
  2182. bool is_sprite)
  2183. {
  2184. struct drm_i915_private *dev_priv = to_i915(dev);
  2185. unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
  2186. /* if sprites aren't enabled, sprites get nothing */
  2187. if (is_sprite && !config->sprites_enabled)
  2188. return 0;
  2189. /* HSW allows LP1+ watermarks even with multiple pipes */
  2190. if (level == 0 || config->num_pipes_active > 1) {
  2191. fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
  2192. /*
  2193. * For some reason the non self refresh
  2194. * FIFO size is only half of the self
  2195. * refresh FIFO size on ILK/SNB.
  2196. */
  2197. if (INTEL_GEN(dev_priv) <= 6)
  2198. fifo_size /= 2;
  2199. }
  2200. if (config->sprites_enabled) {
  2201. /* level 0 is always calculated with 1:1 split */
  2202. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2203. if (is_sprite)
  2204. fifo_size *= 5;
  2205. fifo_size /= 6;
  2206. } else {
  2207. fifo_size /= 2;
  2208. }
  2209. }
  2210. /* clamp to max that the registers can hold */
  2211. return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
  2212. }
  2213. /* Calculate the maximum cursor plane watermark */
  2214. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2215. int level,
  2216. const struct intel_wm_config *config)
  2217. {
  2218. /* HSW LP1+ watermarks w/ multiple pipes */
  2219. if (level > 0 && config->num_pipes_active > 1)
  2220. return 64;
  2221. /* otherwise just report max that registers can hold */
  2222. return ilk_cursor_wm_reg_max(to_i915(dev), level);
  2223. }
  2224. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  2225. int level,
  2226. const struct intel_wm_config *config,
  2227. enum intel_ddb_partitioning ddb_partitioning,
  2228. struct ilk_wm_maximums *max)
  2229. {
  2230. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2231. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2232. max->cur = ilk_cursor_wm_max(dev, level, config);
  2233. max->fbc = ilk_fbc_wm_reg_max(to_i915(dev));
  2234. }
  2235. static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
  2236. int level,
  2237. struct ilk_wm_maximums *max)
  2238. {
  2239. max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
  2240. max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
  2241. max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
  2242. max->fbc = ilk_fbc_wm_reg_max(dev_priv);
  2243. }
  2244. static bool ilk_validate_wm_level(int level,
  2245. const struct ilk_wm_maximums *max,
  2246. struct intel_wm_level *result)
  2247. {
  2248. bool ret;
  2249. /* already determined to be invalid? */
  2250. if (!result->enable)
  2251. return false;
  2252. result->enable = result->pri_val <= max->pri &&
  2253. result->spr_val <= max->spr &&
  2254. result->cur_val <= max->cur;
  2255. ret = result->enable;
  2256. /*
  2257. * HACK until we can pre-compute everything,
  2258. * and thus fail gracefully if LP0 watermarks
  2259. * are exceeded...
  2260. */
  2261. if (level == 0 && !result->enable) {
  2262. if (result->pri_val > max->pri)
  2263. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2264. level, result->pri_val, max->pri);
  2265. if (result->spr_val > max->spr)
  2266. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2267. level, result->spr_val, max->spr);
  2268. if (result->cur_val > max->cur)
  2269. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2270. level, result->cur_val, max->cur);
  2271. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2272. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2273. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2274. result->enable = true;
  2275. }
  2276. return ret;
  2277. }
  2278. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  2279. const struct intel_crtc *intel_crtc,
  2280. int level,
  2281. struct intel_crtc_state *cstate,
  2282. const struct intel_plane_state *pristate,
  2283. const struct intel_plane_state *sprstate,
  2284. const struct intel_plane_state *curstate,
  2285. struct intel_wm_level *result)
  2286. {
  2287. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2288. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2289. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2290. /* WM1+ latency values stored in 0.5us units */
  2291. if (level > 0) {
  2292. pri_latency *= 5;
  2293. spr_latency *= 5;
  2294. cur_latency *= 5;
  2295. }
  2296. if (pristate) {
  2297. result->pri_val = ilk_compute_pri_wm(cstate, pristate,
  2298. pri_latency, level);
  2299. result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
  2300. }
  2301. if (sprstate)
  2302. result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
  2303. if (curstate)
  2304. result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
  2305. result->enable = true;
  2306. }
  2307. static uint32_t
  2308. hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
  2309. {
  2310. const struct intel_atomic_state *intel_state =
  2311. to_intel_atomic_state(cstate->base.state);
  2312. const struct drm_display_mode *adjusted_mode =
  2313. &cstate->base.adjusted_mode;
  2314. u32 linetime, ips_linetime;
  2315. if (!cstate->base.active)
  2316. return 0;
  2317. if (WARN_ON(adjusted_mode->crtc_clock == 0))
  2318. return 0;
  2319. if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
  2320. return 0;
  2321. /* The WM are computed with base on how long it takes to fill a single
  2322. * row at the given clock rate, multiplied by 8.
  2323. * */
  2324. linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  2325. adjusted_mode->crtc_clock);
  2326. ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  2327. intel_state->cdclk.logical.cdclk);
  2328. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2329. PIPE_WM_LINETIME_TIME(linetime);
  2330. }
  2331. static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
  2332. uint16_t wm[8])
  2333. {
  2334. if (INTEL_GEN(dev_priv) >= 9) {
  2335. uint32_t val;
  2336. int ret, i;
  2337. int level, max_level = ilk_wm_max_level(dev_priv);
  2338. /* read the first set of memory latencies[0:3] */
  2339. val = 0; /* data0 to be programmed to 0 for first set */
  2340. mutex_lock(&dev_priv->pcu_lock);
  2341. ret = sandybridge_pcode_read(dev_priv,
  2342. GEN9_PCODE_READ_MEM_LATENCY,
  2343. &val);
  2344. mutex_unlock(&dev_priv->pcu_lock);
  2345. if (ret) {
  2346. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  2347. return;
  2348. }
  2349. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  2350. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  2351. GEN9_MEM_LATENCY_LEVEL_MASK;
  2352. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  2353. GEN9_MEM_LATENCY_LEVEL_MASK;
  2354. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  2355. GEN9_MEM_LATENCY_LEVEL_MASK;
  2356. /* read the second set of memory latencies[4:7] */
  2357. val = 1; /* data0 to be programmed to 1 for second set */
  2358. mutex_lock(&dev_priv->pcu_lock);
  2359. ret = sandybridge_pcode_read(dev_priv,
  2360. GEN9_PCODE_READ_MEM_LATENCY,
  2361. &val);
  2362. mutex_unlock(&dev_priv->pcu_lock);
  2363. if (ret) {
  2364. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  2365. return;
  2366. }
  2367. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  2368. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  2369. GEN9_MEM_LATENCY_LEVEL_MASK;
  2370. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  2371. GEN9_MEM_LATENCY_LEVEL_MASK;
  2372. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  2373. GEN9_MEM_LATENCY_LEVEL_MASK;
  2374. /*
  2375. * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
  2376. * need to be disabled. We make sure to sanitize the values out
  2377. * of the punit to satisfy this requirement.
  2378. */
  2379. for (level = 1; level <= max_level; level++) {
  2380. if (wm[level] == 0) {
  2381. for (i = level + 1; i <= max_level; i++)
  2382. wm[i] = 0;
  2383. break;
  2384. }
  2385. }
  2386. /*
  2387. * WaWmMemoryReadLatency:skl+,glk
  2388. *
  2389. * punit doesn't take into account the read latency so we need
  2390. * to add 2us to the various latency levels we retrieve from the
  2391. * punit when level 0 response data us 0us.
  2392. */
  2393. if (wm[0] == 0) {
  2394. wm[0] += 2;
  2395. for (level = 1; level <= max_level; level++) {
  2396. if (wm[level] == 0)
  2397. break;
  2398. wm[level] += 2;
  2399. }
  2400. }
  2401. } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2402. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2403. wm[0] = (sskpd >> 56) & 0xFF;
  2404. if (wm[0] == 0)
  2405. wm[0] = sskpd & 0xF;
  2406. wm[1] = (sskpd >> 4) & 0xFF;
  2407. wm[2] = (sskpd >> 12) & 0xFF;
  2408. wm[3] = (sskpd >> 20) & 0x1FF;
  2409. wm[4] = (sskpd >> 32) & 0x1FF;
  2410. } else if (INTEL_GEN(dev_priv) >= 6) {
  2411. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2412. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2413. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2414. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2415. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2416. } else if (INTEL_GEN(dev_priv) >= 5) {
  2417. uint32_t mltr = I915_READ(MLTR_ILK);
  2418. /* ILK primary LP0 latency is 700 ns */
  2419. wm[0] = 7;
  2420. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2421. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2422. } else {
  2423. MISSING_CASE(INTEL_DEVID(dev_priv));
  2424. }
  2425. }
  2426. static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
  2427. uint16_t wm[5])
  2428. {
  2429. /* ILK sprite LP0 latency is 1300 ns */
  2430. if (IS_GEN5(dev_priv))
  2431. wm[0] = 13;
  2432. }
  2433. static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
  2434. uint16_t wm[5])
  2435. {
  2436. /* ILK cursor LP0 latency is 1300 ns */
  2437. if (IS_GEN5(dev_priv))
  2438. wm[0] = 13;
  2439. /* WaDoubleCursorLP3Latency:ivb */
  2440. if (IS_IVYBRIDGE(dev_priv))
  2441. wm[3] *= 2;
  2442. }
  2443. int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
  2444. {
  2445. /* how many WM levels are we expecting */
  2446. if (INTEL_GEN(dev_priv) >= 9)
  2447. return 7;
  2448. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2449. return 4;
  2450. else if (INTEL_GEN(dev_priv) >= 6)
  2451. return 3;
  2452. else
  2453. return 2;
  2454. }
  2455. static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
  2456. const char *name,
  2457. const uint16_t wm[8])
  2458. {
  2459. int level, max_level = ilk_wm_max_level(dev_priv);
  2460. for (level = 0; level <= max_level; level++) {
  2461. unsigned int latency = wm[level];
  2462. if (latency == 0) {
  2463. DRM_ERROR("%s WM%d latency not provided\n",
  2464. name, level);
  2465. continue;
  2466. }
  2467. /*
  2468. * - latencies are in us on gen9.
  2469. * - before then, WM1+ latency values are in 0.5us units
  2470. */
  2471. if (INTEL_GEN(dev_priv) >= 9)
  2472. latency *= 10;
  2473. else if (level > 0)
  2474. latency *= 5;
  2475. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2476. name, level, wm[level],
  2477. latency / 10, latency % 10);
  2478. }
  2479. }
  2480. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  2481. uint16_t wm[5], uint16_t min)
  2482. {
  2483. int level, max_level = ilk_wm_max_level(dev_priv);
  2484. if (wm[0] >= min)
  2485. return false;
  2486. wm[0] = max(wm[0], min);
  2487. for (level = 1; level <= max_level; level++)
  2488. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  2489. return true;
  2490. }
  2491. static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
  2492. {
  2493. bool changed;
  2494. /*
  2495. * The BIOS provided WM memory latency values are often
  2496. * inadequate for high resolution displays. Adjust them.
  2497. */
  2498. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  2499. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  2500. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  2501. if (!changed)
  2502. return;
  2503. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  2504. intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
  2505. intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
  2506. intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
  2507. }
  2508. static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
  2509. {
  2510. intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
  2511. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2512. sizeof(dev_priv->wm.pri_latency));
  2513. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2514. sizeof(dev_priv->wm.pri_latency));
  2515. intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
  2516. intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
  2517. intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
  2518. intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
  2519. intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
  2520. if (IS_GEN6(dev_priv))
  2521. snb_wm_latency_quirk(dev_priv);
  2522. }
  2523. static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
  2524. {
  2525. intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
  2526. intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
  2527. }
  2528. static bool ilk_validate_pipe_wm(struct drm_device *dev,
  2529. struct intel_pipe_wm *pipe_wm)
  2530. {
  2531. /* LP0 watermark maximums depend on this pipe alone */
  2532. const struct intel_wm_config config = {
  2533. .num_pipes_active = 1,
  2534. .sprites_enabled = pipe_wm->sprites_enabled,
  2535. .sprites_scaled = pipe_wm->sprites_scaled,
  2536. };
  2537. struct ilk_wm_maximums max;
  2538. /* LP0 watermarks always use 1/2 DDB partitioning */
  2539. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2540. /* At least LP0 must be valid */
  2541. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
  2542. DRM_DEBUG_KMS("LP0 watermark invalid\n");
  2543. return false;
  2544. }
  2545. return true;
  2546. }
  2547. /* Compute new watermarks for the pipe */
  2548. static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
  2549. {
  2550. struct drm_atomic_state *state = cstate->base.state;
  2551. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2552. struct intel_pipe_wm *pipe_wm;
  2553. struct drm_device *dev = state->dev;
  2554. const struct drm_i915_private *dev_priv = to_i915(dev);
  2555. struct drm_plane *plane;
  2556. const struct drm_plane_state *plane_state;
  2557. const struct intel_plane_state *pristate = NULL;
  2558. const struct intel_plane_state *sprstate = NULL;
  2559. const struct intel_plane_state *curstate = NULL;
  2560. int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
  2561. struct ilk_wm_maximums max;
  2562. pipe_wm = &cstate->wm.ilk.optimal;
  2563. drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &cstate->base) {
  2564. const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
  2565. if (plane->type == DRM_PLANE_TYPE_PRIMARY)
  2566. pristate = ps;
  2567. else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
  2568. sprstate = ps;
  2569. else if (plane->type == DRM_PLANE_TYPE_CURSOR)
  2570. curstate = ps;
  2571. }
  2572. pipe_wm->pipe_enabled = cstate->base.active;
  2573. if (sprstate) {
  2574. pipe_wm->sprites_enabled = sprstate->base.visible;
  2575. pipe_wm->sprites_scaled = sprstate->base.visible &&
  2576. (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
  2577. drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
  2578. }
  2579. usable_level = max_level;
  2580. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  2581. if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
  2582. usable_level = 1;
  2583. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  2584. if (pipe_wm->sprites_scaled)
  2585. usable_level = 0;
  2586. memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
  2587. ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
  2588. pristate, sprstate, curstate, &pipe_wm->wm[0]);
  2589. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2590. pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
  2591. if (!ilk_validate_pipe_wm(dev, pipe_wm))
  2592. return -EINVAL;
  2593. ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
  2594. for (level = 1; level <= usable_level; level++) {
  2595. struct intel_wm_level *wm = &pipe_wm->wm[level];
  2596. ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
  2597. pristate, sprstate, curstate, wm);
  2598. /*
  2599. * Disable any watermark level that exceeds the
  2600. * register maximums since such watermarks are
  2601. * always invalid.
  2602. */
  2603. if (!ilk_validate_wm_level(level, &max, wm)) {
  2604. memset(wm, 0, sizeof(*wm));
  2605. break;
  2606. }
  2607. }
  2608. return 0;
  2609. }
  2610. /*
  2611. * Build a set of 'intermediate' watermark values that satisfy both the old
  2612. * state and the new state. These can be programmed to the hardware
  2613. * immediately.
  2614. */
  2615. static int ilk_compute_intermediate_wm(struct drm_device *dev,
  2616. struct intel_crtc *intel_crtc,
  2617. struct intel_crtc_state *newstate)
  2618. {
  2619. struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
  2620. struct intel_atomic_state *intel_state =
  2621. to_intel_atomic_state(newstate->base.state);
  2622. const struct intel_crtc_state *oldstate =
  2623. intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
  2624. const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
  2625. int level, max_level = ilk_wm_max_level(to_i915(dev));
  2626. /*
  2627. * Start with the final, target watermarks, then combine with the
  2628. * currently active watermarks to get values that are safe both before
  2629. * and after the vblank.
  2630. */
  2631. *a = newstate->wm.ilk.optimal;
  2632. if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base))
  2633. return 0;
  2634. a->pipe_enabled |= b->pipe_enabled;
  2635. a->sprites_enabled |= b->sprites_enabled;
  2636. a->sprites_scaled |= b->sprites_scaled;
  2637. for (level = 0; level <= max_level; level++) {
  2638. struct intel_wm_level *a_wm = &a->wm[level];
  2639. const struct intel_wm_level *b_wm = &b->wm[level];
  2640. a_wm->enable &= b_wm->enable;
  2641. a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
  2642. a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
  2643. a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
  2644. a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
  2645. }
  2646. /*
  2647. * We need to make sure that these merged watermark values are
  2648. * actually a valid configuration themselves. If they're not,
  2649. * there's no safe way to transition from the old state to
  2650. * the new state, so we need to fail the atomic transaction.
  2651. */
  2652. if (!ilk_validate_pipe_wm(dev, a))
  2653. return -EINVAL;
  2654. /*
  2655. * If our intermediate WM are identical to the final WM, then we can
  2656. * omit the post-vblank programming; only update if it's different.
  2657. */
  2658. if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
  2659. newstate->wm.need_postvbl_update = true;
  2660. return 0;
  2661. }
  2662. /*
  2663. * Merge the watermarks from all active pipes for a specific level.
  2664. */
  2665. static void ilk_merge_wm_level(struct drm_device *dev,
  2666. int level,
  2667. struct intel_wm_level *ret_wm)
  2668. {
  2669. const struct intel_crtc *intel_crtc;
  2670. ret_wm->enable = true;
  2671. for_each_intel_crtc(dev, intel_crtc) {
  2672. const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
  2673. const struct intel_wm_level *wm = &active->wm[level];
  2674. if (!active->pipe_enabled)
  2675. continue;
  2676. /*
  2677. * The watermark values may have been used in the past,
  2678. * so we must maintain them in the registers for some
  2679. * time even if the level is now disabled.
  2680. */
  2681. if (!wm->enable)
  2682. ret_wm->enable = false;
  2683. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2684. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2685. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2686. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2687. }
  2688. }
  2689. /*
  2690. * Merge all low power watermarks for all active pipes.
  2691. */
  2692. static void ilk_wm_merge(struct drm_device *dev,
  2693. const struct intel_wm_config *config,
  2694. const struct ilk_wm_maximums *max,
  2695. struct intel_pipe_wm *merged)
  2696. {
  2697. struct drm_i915_private *dev_priv = to_i915(dev);
  2698. int level, max_level = ilk_wm_max_level(dev_priv);
  2699. int last_enabled_level = max_level;
  2700. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2701. if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
  2702. config->num_pipes_active > 1)
  2703. last_enabled_level = 0;
  2704. /* ILK: FBC WM must be disabled always */
  2705. merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
  2706. /* merge each WM1+ level */
  2707. for (level = 1; level <= max_level; level++) {
  2708. struct intel_wm_level *wm = &merged->wm[level];
  2709. ilk_merge_wm_level(dev, level, wm);
  2710. if (level > last_enabled_level)
  2711. wm->enable = false;
  2712. else if (!ilk_validate_wm_level(level, max, wm))
  2713. /* make sure all following levels get disabled */
  2714. last_enabled_level = level - 1;
  2715. /*
  2716. * The spec says it is preferred to disable
  2717. * FBC WMs instead of disabling a WM level.
  2718. */
  2719. if (wm->fbc_val > max->fbc) {
  2720. if (wm->enable)
  2721. merged->fbc_wm_enabled = false;
  2722. wm->fbc_val = 0;
  2723. }
  2724. }
  2725. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2726. /*
  2727. * FIXME this is racy. FBC might get enabled later.
  2728. * What we should check here is whether FBC can be
  2729. * enabled sometime later.
  2730. */
  2731. if (IS_GEN5(dev_priv) && !merged->fbc_wm_enabled &&
  2732. intel_fbc_is_active(dev_priv)) {
  2733. for (level = 2; level <= max_level; level++) {
  2734. struct intel_wm_level *wm = &merged->wm[level];
  2735. wm->enable = false;
  2736. }
  2737. }
  2738. }
  2739. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2740. {
  2741. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2742. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2743. }
  2744. /* The value we need to program into the WM_LPx latency field */
  2745. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2746. {
  2747. struct drm_i915_private *dev_priv = to_i915(dev);
  2748. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  2749. return 2 * level;
  2750. else
  2751. return dev_priv->wm.pri_latency[level];
  2752. }
  2753. static void ilk_compute_wm_results(struct drm_device *dev,
  2754. const struct intel_pipe_wm *merged,
  2755. enum intel_ddb_partitioning partitioning,
  2756. struct ilk_wm_values *results)
  2757. {
  2758. struct drm_i915_private *dev_priv = to_i915(dev);
  2759. struct intel_crtc *intel_crtc;
  2760. int level, wm_lp;
  2761. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2762. results->partitioning = partitioning;
  2763. /* LP1+ register values */
  2764. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2765. const struct intel_wm_level *r;
  2766. level = ilk_wm_lp_to_level(wm_lp, merged);
  2767. r = &merged->wm[level];
  2768. /*
  2769. * Maintain the watermark values even if the level is
  2770. * disabled. Doing otherwise could cause underruns.
  2771. */
  2772. results->wm_lp[wm_lp - 1] =
  2773. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2774. (r->pri_val << WM1_LP_SR_SHIFT) |
  2775. r->cur_val;
  2776. if (r->enable)
  2777. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2778. if (INTEL_GEN(dev_priv) >= 8)
  2779. results->wm_lp[wm_lp - 1] |=
  2780. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2781. else
  2782. results->wm_lp[wm_lp - 1] |=
  2783. r->fbc_val << WM1_LP_FBC_SHIFT;
  2784. /*
  2785. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2786. * level is disabled. Doing otherwise could cause underruns.
  2787. */
  2788. if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
  2789. WARN_ON(wm_lp != 1);
  2790. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2791. } else
  2792. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2793. }
  2794. /* LP0 register values */
  2795. for_each_intel_crtc(dev, intel_crtc) {
  2796. enum pipe pipe = intel_crtc->pipe;
  2797. const struct intel_wm_level *r =
  2798. &intel_crtc->wm.active.ilk.wm[0];
  2799. if (WARN_ON(!r->enable))
  2800. continue;
  2801. results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
  2802. results->wm_pipe[pipe] =
  2803. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2804. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2805. r->cur_val;
  2806. }
  2807. }
  2808. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2809. * case both are at the same level. Prefer r1 in case they're the same. */
  2810. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2811. struct intel_pipe_wm *r1,
  2812. struct intel_pipe_wm *r2)
  2813. {
  2814. int level, max_level = ilk_wm_max_level(to_i915(dev));
  2815. int level1 = 0, level2 = 0;
  2816. for (level = 1; level <= max_level; level++) {
  2817. if (r1->wm[level].enable)
  2818. level1 = level;
  2819. if (r2->wm[level].enable)
  2820. level2 = level;
  2821. }
  2822. if (level1 == level2) {
  2823. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2824. return r2;
  2825. else
  2826. return r1;
  2827. } else if (level1 > level2) {
  2828. return r1;
  2829. } else {
  2830. return r2;
  2831. }
  2832. }
  2833. /* dirty bits used to track which watermarks need changes */
  2834. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2835. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2836. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2837. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2838. #define WM_DIRTY_FBC (1 << 24)
  2839. #define WM_DIRTY_DDB (1 << 25)
  2840. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2841. const struct ilk_wm_values *old,
  2842. const struct ilk_wm_values *new)
  2843. {
  2844. unsigned int dirty = 0;
  2845. enum pipe pipe;
  2846. int wm_lp;
  2847. for_each_pipe(dev_priv, pipe) {
  2848. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2849. dirty |= WM_DIRTY_LINETIME(pipe);
  2850. /* Must disable LP1+ watermarks too */
  2851. dirty |= WM_DIRTY_LP_ALL;
  2852. }
  2853. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2854. dirty |= WM_DIRTY_PIPE(pipe);
  2855. /* Must disable LP1+ watermarks too */
  2856. dirty |= WM_DIRTY_LP_ALL;
  2857. }
  2858. }
  2859. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2860. dirty |= WM_DIRTY_FBC;
  2861. /* Must disable LP1+ watermarks too */
  2862. dirty |= WM_DIRTY_LP_ALL;
  2863. }
  2864. if (old->partitioning != new->partitioning) {
  2865. dirty |= WM_DIRTY_DDB;
  2866. /* Must disable LP1+ watermarks too */
  2867. dirty |= WM_DIRTY_LP_ALL;
  2868. }
  2869. /* LP1+ watermarks already deemed dirty, no need to continue */
  2870. if (dirty & WM_DIRTY_LP_ALL)
  2871. return dirty;
  2872. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2873. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2874. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2875. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2876. break;
  2877. }
  2878. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2879. for (; wm_lp <= 3; wm_lp++)
  2880. dirty |= WM_DIRTY_LP(wm_lp);
  2881. return dirty;
  2882. }
  2883. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2884. unsigned int dirty)
  2885. {
  2886. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2887. bool changed = false;
  2888. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2889. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2890. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2891. changed = true;
  2892. }
  2893. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2894. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2895. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2896. changed = true;
  2897. }
  2898. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2899. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2900. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2901. changed = true;
  2902. }
  2903. /*
  2904. * Don't touch WM1S_LP_EN here.
  2905. * Doing so could cause underruns.
  2906. */
  2907. return changed;
  2908. }
  2909. /*
  2910. * The spec says we shouldn't write when we don't need, because every write
  2911. * causes WMs to be re-evaluated, expending some power.
  2912. */
  2913. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2914. struct ilk_wm_values *results)
  2915. {
  2916. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2917. unsigned int dirty;
  2918. uint32_t val;
  2919. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2920. if (!dirty)
  2921. return;
  2922. _ilk_disable_lp_wm(dev_priv, dirty);
  2923. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2924. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2925. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2926. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2927. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2928. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2929. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2930. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2931. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2932. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2933. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2934. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2935. if (dirty & WM_DIRTY_DDB) {
  2936. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2937. val = I915_READ(WM_MISC);
  2938. if (results->partitioning == INTEL_DDB_PART_1_2)
  2939. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2940. else
  2941. val |= WM_MISC_DATA_PARTITION_5_6;
  2942. I915_WRITE(WM_MISC, val);
  2943. } else {
  2944. val = I915_READ(DISP_ARB_CTL2);
  2945. if (results->partitioning == INTEL_DDB_PART_1_2)
  2946. val &= ~DISP_DATA_PARTITION_5_6;
  2947. else
  2948. val |= DISP_DATA_PARTITION_5_6;
  2949. I915_WRITE(DISP_ARB_CTL2, val);
  2950. }
  2951. }
  2952. if (dirty & WM_DIRTY_FBC) {
  2953. val = I915_READ(DISP_ARB_CTL);
  2954. if (results->enable_fbc_wm)
  2955. val &= ~DISP_FBC_WM_DIS;
  2956. else
  2957. val |= DISP_FBC_WM_DIS;
  2958. I915_WRITE(DISP_ARB_CTL, val);
  2959. }
  2960. if (dirty & WM_DIRTY_LP(1) &&
  2961. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2962. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2963. if (INTEL_GEN(dev_priv) >= 7) {
  2964. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2965. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2966. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2967. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2968. }
  2969. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2970. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2971. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2972. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2973. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2974. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2975. dev_priv->wm.hw = *results;
  2976. }
  2977. bool ilk_disable_lp_wm(struct drm_device *dev)
  2978. {
  2979. struct drm_i915_private *dev_priv = to_i915(dev);
  2980. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2981. }
  2982. /*
  2983. * FIXME: We still don't have the proper code detect if we need to apply the WA,
  2984. * so assume we'll always need it in order to avoid underruns.
  2985. */
  2986. static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
  2987. {
  2988. struct drm_i915_private *dev_priv = to_i915(state->base.dev);
  2989. if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
  2990. return true;
  2991. return false;
  2992. }
  2993. static bool
  2994. intel_has_sagv(struct drm_i915_private *dev_priv)
  2995. {
  2996. if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
  2997. IS_CANNONLAKE(dev_priv))
  2998. return true;
  2999. if (IS_SKYLAKE(dev_priv) &&
  3000. dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
  3001. return true;
  3002. return false;
  3003. }
  3004. /*
  3005. * SAGV dynamically adjusts the system agent voltage and clock frequencies
  3006. * depending on power and performance requirements. The display engine access
  3007. * to system memory is blocked during the adjustment time. Because of the
  3008. * blocking time, having this enabled can cause full system hangs and/or pipe
  3009. * underruns if we don't meet all of the following requirements:
  3010. *
  3011. * - <= 1 pipe enabled
  3012. * - All planes can enable watermarks for latencies >= SAGV engine block time
  3013. * - We're not using an interlaced display configuration
  3014. */
  3015. int
  3016. intel_enable_sagv(struct drm_i915_private *dev_priv)
  3017. {
  3018. int ret;
  3019. if (!intel_has_sagv(dev_priv))
  3020. return 0;
  3021. if (dev_priv->sagv_status == I915_SAGV_ENABLED)
  3022. return 0;
  3023. DRM_DEBUG_KMS("Enabling the SAGV\n");
  3024. mutex_lock(&dev_priv->pcu_lock);
  3025. ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
  3026. GEN9_SAGV_ENABLE);
  3027. /* We don't need to wait for the SAGV when enabling */
  3028. mutex_unlock(&dev_priv->pcu_lock);
  3029. /*
  3030. * Some skl systems, pre-release machines in particular,
  3031. * don't actually have an SAGV.
  3032. */
  3033. if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
  3034. DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
  3035. dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
  3036. return 0;
  3037. } else if (ret < 0) {
  3038. DRM_ERROR("Failed to enable the SAGV\n");
  3039. return ret;
  3040. }
  3041. dev_priv->sagv_status = I915_SAGV_ENABLED;
  3042. return 0;
  3043. }
  3044. int
  3045. intel_disable_sagv(struct drm_i915_private *dev_priv)
  3046. {
  3047. int ret;
  3048. if (!intel_has_sagv(dev_priv))
  3049. return 0;
  3050. if (dev_priv->sagv_status == I915_SAGV_DISABLED)
  3051. return 0;
  3052. DRM_DEBUG_KMS("Disabling the SAGV\n");
  3053. mutex_lock(&dev_priv->pcu_lock);
  3054. /* bspec says to keep retrying for at least 1 ms */
  3055. ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
  3056. GEN9_SAGV_DISABLE,
  3057. GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
  3058. 1);
  3059. mutex_unlock(&dev_priv->pcu_lock);
  3060. /*
  3061. * Some skl systems, pre-release machines in particular,
  3062. * don't actually have an SAGV.
  3063. */
  3064. if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
  3065. DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
  3066. dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
  3067. return 0;
  3068. } else if (ret < 0) {
  3069. DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
  3070. return ret;
  3071. }
  3072. dev_priv->sagv_status = I915_SAGV_DISABLED;
  3073. return 0;
  3074. }
  3075. bool intel_can_enable_sagv(struct drm_atomic_state *state)
  3076. {
  3077. struct drm_device *dev = state->dev;
  3078. struct drm_i915_private *dev_priv = to_i915(dev);
  3079. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3080. struct intel_crtc *crtc;
  3081. struct intel_plane *plane;
  3082. struct intel_crtc_state *cstate;
  3083. enum pipe pipe;
  3084. int level, latency;
  3085. int sagv_block_time_us = IS_GEN9(dev_priv) ? 30 : 20;
  3086. if (!intel_has_sagv(dev_priv))
  3087. return false;
  3088. /*
  3089. * SKL+ workaround: bspec recommends we disable the SAGV when we have
  3090. * more then one pipe enabled
  3091. *
  3092. * If there are no active CRTCs, no additional checks need be performed
  3093. */
  3094. if (hweight32(intel_state->active_crtcs) == 0)
  3095. return true;
  3096. else if (hweight32(intel_state->active_crtcs) > 1)
  3097. return false;
  3098. /* Since we're now guaranteed to only have one active CRTC... */
  3099. pipe = ffs(intel_state->active_crtcs) - 1;
  3100. crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
  3101. cstate = to_intel_crtc_state(crtc->base.state);
  3102. if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  3103. return false;
  3104. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  3105. struct skl_plane_wm *wm =
  3106. &cstate->wm.skl.optimal.planes[plane->id];
  3107. /* Skip this plane if it's not enabled */
  3108. if (!wm->wm[0].plane_en)
  3109. continue;
  3110. /* Find the highest enabled wm level for this plane */
  3111. for (level = ilk_wm_max_level(dev_priv);
  3112. !wm->wm[level].plane_en; --level)
  3113. { }
  3114. latency = dev_priv->wm.skl_latency[level];
  3115. if (skl_needs_memory_bw_wa(intel_state) &&
  3116. plane->base.state->fb->modifier ==
  3117. I915_FORMAT_MOD_X_TILED)
  3118. latency += 15;
  3119. /*
  3120. * If any of the planes on this pipe don't enable wm levels that
  3121. * incur memory latencies higher than sagv_block_time_us we
  3122. * can't enable the SAGV.
  3123. */
  3124. if (latency < sagv_block_time_us)
  3125. return false;
  3126. }
  3127. return true;
  3128. }
  3129. static void
  3130. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  3131. const struct intel_crtc_state *cstate,
  3132. struct skl_ddb_entry *alloc, /* out */
  3133. int *num_active /* out */)
  3134. {
  3135. struct drm_atomic_state *state = cstate->base.state;
  3136. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  3137. struct drm_i915_private *dev_priv = to_i915(dev);
  3138. struct drm_crtc *for_crtc = cstate->base.crtc;
  3139. unsigned int pipe_size, ddb_size;
  3140. int nth_active_pipe;
  3141. if (WARN_ON(!state) || !cstate->base.active) {
  3142. alloc->start = 0;
  3143. alloc->end = 0;
  3144. *num_active = hweight32(dev_priv->active_crtcs);
  3145. return;
  3146. }
  3147. if (intel_state->active_pipe_changes)
  3148. *num_active = hweight32(intel_state->active_crtcs);
  3149. else
  3150. *num_active = hweight32(dev_priv->active_crtcs);
  3151. ddb_size = INTEL_INFO(dev_priv)->ddb_size;
  3152. WARN_ON(ddb_size == 0);
  3153. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  3154. /*
  3155. * If the state doesn't change the active CRTC's, then there's
  3156. * no need to recalculate; the existing pipe allocation limits
  3157. * should remain unchanged. Note that we're safe from racing
  3158. * commits since any racing commit that changes the active CRTC
  3159. * list would need to grab _all_ crtc locks, including the one
  3160. * we currently hold.
  3161. */
  3162. if (!intel_state->active_pipe_changes) {
  3163. /*
  3164. * alloc may be cleared by clear_intel_crtc_state,
  3165. * copy from old state to be sure
  3166. */
  3167. *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
  3168. return;
  3169. }
  3170. nth_active_pipe = hweight32(intel_state->active_crtcs &
  3171. (drm_crtc_mask(for_crtc) - 1));
  3172. pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
  3173. alloc->start = nth_active_pipe * ddb_size / *num_active;
  3174. alloc->end = alloc->start + pipe_size;
  3175. }
  3176. static unsigned int skl_cursor_allocation(int num_active)
  3177. {
  3178. if (num_active == 1)
  3179. return 32;
  3180. return 8;
  3181. }
  3182. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  3183. {
  3184. entry->start = reg & 0x3ff;
  3185. entry->end = (reg >> 16) & 0x3ff;
  3186. if (entry->end)
  3187. entry->end += 1;
  3188. }
  3189. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  3190. struct skl_ddb_allocation *ddb /* out */)
  3191. {
  3192. struct intel_crtc *crtc;
  3193. memset(ddb, 0, sizeof(*ddb));
  3194. for_each_intel_crtc(&dev_priv->drm, crtc) {
  3195. enum intel_display_power_domain power_domain;
  3196. enum plane_id plane_id;
  3197. enum pipe pipe = crtc->pipe;
  3198. power_domain = POWER_DOMAIN_PIPE(pipe);
  3199. if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
  3200. continue;
  3201. for_each_plane_id_on_crtc(crtc, plane_id) {
  3202. u32 val;
  3203. if (plane_id != PLANE_CURSOR)
  3204. val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
  3205. else
  3206. val = I915_READ(CUR_BUF_CFG(pipe));
  3207. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane_id], val);
  3208. }
  3209. intel_display_power_put(dev_priv, power_domain);
  3210. }
  3211. }
  3212. /*
  3213. * Determines the downscale amount of a plane for the purposes of watermark calculations.
  3214. * The bspec defines downscale amount as:
  3215. *
  3216. * """
  3217. * Horizontal down scale amount = maximum[1, Horizontal source size /
  3218. * Horizontal destination size]
  3219. * Vertical down scale amount = maximum[1, Vertical source size /
  3220. * Vertical destination size]
  3221. * Total down scale amount = Horizontal down scale amount *
  3222. * Vertical down scale amount
  3223. * """
  3224. *
  3225. * Return value is provided in 16.16 fixed point form to retain fractional part.
  3226. * Caller should take care of dividing & rounding off the value.
  3227. */
  3228. static uint_fixed_16_16_t
  3229. skl_plane_downscale_amount(const struct intel_crtc_state *cstate,
  3230. const struct intel_plane_state *pstate)
  3231. {
  3232. struct intel_plane *plane = to_intel_plane(pstate->base.plane);
  3233. uint32_t src_w, src_h, dst_w, dst_h;
  3234. uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
  3235. uint_fixed_16_16_t downscale_h, downscale_w;
  3236. if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
  3237. return u32_to_fixed16(0);
  3238. /* n.b., src is 16.16 fixed point, dst is whole integer */
  3239. if (plane->id == PLANE_CURSOR) {
  3240. /*
  3241. * Cursors only support 0/180 degree rotation,
  3242. * hence no need to account for rotation here.
  3243. */
  3244. src_w = pstate->base.src_w >> 16;
  3245. src_h = pstate->base.src_h >> 16;
  3246. dst_w = pstate->base.crtc_w;
  3247. dst_h = pstate->base.crtc_h;
  3248. } else {
  3249. /*
  3250. * Src coordinates are already rotated by 270 degrees for
  3251. * the 90/270 degree plane rotation cases (to match the
  3252. * GTT mapping), hence no need to account for rotation here.
  3253. */
  3254. src_w = drm_rect_width(&pstate->base.src) >> 16;
  3255. src_h = drm_rect_height(&pstate->base.src) >> 16;
  3256. dst_w = drm_rect_width(&pstate->base.dst);
  3257. dst_h = drm_rect_height(&pstate->base.dst);
  3258. }
  3259. fp_w_ratio = div_fixed16(src_w, dst_w);
  3260. fp_h_ratio = div_fixed16(src_h, dst_h);
  3261. downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
  3262. downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
  3263. return mul_fixed16(downscale_w, downscale_h);
  3264. }
  3265. static uint_fixed_16_16_t
  3266. skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
  3267. {
  3268. uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
  3269. if (!crtc_state->base.enable)
  3270. return pipe_downscale;
  3271. if (crtc_state->pch_pfit.enabled) {
  3272. uint32_t src_w, src_h, dst_w, dst_h;
  3273. uint32_t pfit_size = crtc_state->pch_pfit.size;
  3274. uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
  3275. uint_fixed_16_16_t downscale_h, downscale_w;
  3276. src_w = crtc_state->pipe_src_w;
  3277. src_h = crtc_state->pipe_src_h;
  3278. dst_w = pfit_size >> 16;
  3279. dst_h = pfit_size & 0xffff;
  3280. if (!dst_w || !dst_h)
  3281. return pipe_downscale;
  3282. fp_w_ratio = div_fixed16(src_w, dst_w);
  3283. fp_h_ratio = div_fixed16(src_h, dst_h);
  3284. downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
  3285. downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
  3286. pipe_downscale = mul_fixed16(downscale_w, downscale_h);
  3287. }
  3288. return pipe_downscale;
  3289. }
  3290. int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
  3291. struct intel_crtc_state *cstate)
  3292. {
  3293. struct drm_crtc_state *crtc_state = &cstate->base;
  3294. struct drm_atomic_state *state = crtc_state->state;
  3295. struct drm_plane *plane;
  3296. const struct drm_plane_state *pstate;
  3297. struct intel_plane_state *intel_pstate;
  3298. int crtc_clock, dotclk;
  3299. uint32_t pipe_max_pixel_rate;
  3300. uint_fixed_16_16_t pipe_downscale;
  3301. uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
  3302. if (!cstate->base.enable)
  3303. return 0;
  3304. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
  3305. uint_fixed_16_16_t plane_downscale;
  3306. uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
  3307. int bpp;
  3308. if (!intel_wm_plane_visible(cstate,
  3309. to_intel_plane_state(pstate)))
  3310. continue;
  3311. if (WARN_ON(!pstate->fb))
  3312. return -EINVAL;
  3313. intel_pstate = to_intel_plane_state(pstate);
  3314. plane_downscale = skl_plane_downscale_amount(cstate,
  3315. intel_pstate);
  3316. bpp = pstate->fb->format->cpp[0] * 8;
  3317. if (bpp == 64)
  3318. plane_downscale = mul_fixed16(plane_downscale,
  3319. fp_9_div_8);
  3320. max_downscale = max_fixed16(plane_downscale, max_downscale);
  3321. }
  3322. pipe_downscale = skl_pipe_downscale_amount(cstate);
  3323. pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
  3324. crtc_clock = crtc_state->adjusted_mode.crtc_clock;
  3325. dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
  3326. if (IS_GEMINILAKE(to_i915(intel_crtc->base.dev)))
  3327. dotclk *= 2;
  3328. pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
  3329. if (pipe_max_pixel_rate < crtc_clock) {
  3330. DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
  3331. return -EINVAL;
  3332. }
  3333. return 0;
  3334. }
  3335. static unsigned int
  3336. skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
  3337. const struct drm_plane_state *pstate,
  3338. int y)
  3339. {
  3340. struct intel_plane *plane = to_intel_plane(pstate->plane);
  3341. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  3342. uint32_t data_rate;
  3343. uint32_t width = 0, height = 0;
  3344. struct drm_framebuffer *fb;
  3345. u32 format;
  3346. uint_fixed_16_16_t down_scale_amount;
  3347. if (!intel_pstate->base.visible)
  3348. return 0;
  3349. fb = pstate->fb;
  3350. format = fb->format->format;
  3351. if (plane->id == PLANE_CURSOR)
  3352. return 0;
  3353. if (y && format != DRM_FORMAT_NV12)
  3354. return 0;
  3355. /*
  3356. * Src coordinates are already rotated by 270 degrees for
  3357. * the 90/270 degree plane rotation cases (to match the
  3358. * GTT mapping), hence no need to account for rotation here.
  3359. */
  3360. width = drm_rect_width(&intel_pstate->base.src) >> 16;
  3361. height = drm_rect_height(&intel_pstate->base.src) >> 16;
  3362. /* for planar format */
  3363. if (format == DRM_FORMAT_NV12) {
  3364. if (y) /* y-plane data rate */
  3365. data_rate = width * height *
  3366. fb->format->cpp[0];
  3367. else /* uv-plane data rate */
  3368. data_rate = (width / 2) * (height / 2) *
  3369. fb->format->cpp[1];
  3370. } else {
  3371. /* for packed formats */
  3372. data_rate = width * height * fb->format->cpp[0];
  3373. }
  3374. down_scale_amount = skl_plane_downscale_amount(cstate, intel_pstate);
  3375. return mul_round_up_u32_fixed16(data_rate, down_scale_amount);
  3376. }
  3377. /*
  3378. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  3379. * a 8192x4096@32bpp framebuffer:
  3380. * 3 * 4096 * 8192 * 4 < 2^32
  3381. */
  3382. static unsigned int
  3383. skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate,
  3384. unsigned *plane_data_rate,
  3385. unsigned *plane_y_data_rate)
  3386. {
  3387. struct drm_crtc_state *cstate = &intel_cstate->base;
  3388. struct drm_atomic_state *state = cstate->state;
  3389. struct drm_plane *plane;
  3390. const struct drm_plane_state *pstate;
  3391. unsigned int total_data_rate = 0;
  3392. if (WARN_ON(!state))
  3393. return 0;
  3394. /* Calculate and cache data rate for each plane */
  3395. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, cstate) {
  3396. enum plane_id plane_id = to_intel_plane(plane)->id;
  3397. unsigned int rate;
  3398. /* packed/uv */
  3399. rate = skl_plane_relative_data_rate(intel_cstate,
  3400. pstate, 0);
  3401. plane_data_rate[plane_id] = rate;
  3402. total_data_rate += rate;
  3403. /* y-plane */
  3404. rate = skl_plane_relative_data_rate(intel_cstate,
  3405. pstate, 1);
  3406. plane_y_data_rate[plane_id] = rate;
  3407. total_data_rate += rate;
  3408. }
  3409. return total_data_rate;
  3410. }
  3411. static uint16_t
  3412. skl_ddb_min_alloc(const struct drm_plane_state *pstate,
  3413. const int y)
  3414. {
  3415. struct drm_framebuffer *fb = pstate->fb;
  3416. struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
  3417. uint32_t src_w, src_h;
  3418. uint32_t min_scanlines = 8;
  3419. uint8_t plane_bpp;
  3420. if (WARN_ON(!fb))
  3421. return 0;
  3422. /* For packed formats, no y-plane, return 0 */
  3423. if (y && fb->format->format != DRM_FORMAT_NV12)
  3424. return 0;
  3425. /* For Non Y-tile return 8-blocks */
  3426. if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
  3427. fb->modifier != I915_FORMAT_MOD_Yf_TILED &&
  3428. fb->modifier != I915_FORMAT_MOD_Y_TILED_CCS &&
  3429. fb->modifier != I915_FORMAT_MOD_Yf_TILED_CCS)
  3430. return 8;
  3431. /*
  3432. * Src coordinates are already rotated by 270 degrees for
  3433. * the 90/270 degree plane rotation cases (to match the
  3434. * GTT mapping), hence no need to account for rotation here.
  3435. */
  3436. src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
  3437. src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
  3438. /* Halve UV plane width and height for NV12 */
  3439. if (fb->format->format == DRM_FORMAT_NV12 && !y) {
  3440. src_w /= 2;
  3441. src_h /= 2;
  3442. }
  3443. if (fb->format->format == DRM_FORMAT_NV12 && !y)
  3444. plane_bpp = fb->format->cpp[1];
  3445. else
  3446. plane_bpp = fb->format->cpp[0];
  3447. if (drm_rotation_90_or_270(pstate->rotation)) {
  3448. switch (plane_bpp) {
  3449. case 1:
  3450. min_scanlines = 32;
  3451. break;
  3452. case 2:
  3453. min_scanlines = 16;
  3454. break;
  3455. case 4:
  3456. min_scanlines = 8;
  3457. break;
  3458. case 8:
  3459. min_scanlines = 4;
  3460. break;
  3461. default:
  3462. WARN(1, "Unsupported pixel depth %u for rotation",
  3463. plane_bpp);
  3464. min_scanlines = 32;
  3465. }
  3466. }
  3467. return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
  3468. }
  3469. static void
  3470. skl_ddb_calc_min(const struct intel_crtc_state *cstate, int num_active,
  3471. uint16_t *minimum, uint16_t *y_minimum)
  3472. {
  3473. const struct drm_plane_state *pstate;
  3474. struct drm_plane *plane;
  3475. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, &cstate->base) {
  3476. enum plane_id plane_id = to_intel_plane(plane)->id;
  3477. if (plane_id == PLANE_CURSOR)
  3478. continue;
  3479. if (!pstate->visible)
  3480. continue;
  3481. minimum[plane_id] = skl_ddb_min_alloc(pstate, 0);
  3482. y_minimum[plane_id] = skl_ddb_min_alloc(pstate, 1);
  3483. }
  3484. minimum[PLANE_CURSOR] = skl_cursor_allocation(num_active);
  3485. }
  3486. static int
  3487. skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
  3488. struct skl_ddb_allocation *ddb /* out */)
  3489. {
  3490. struct drm_atomic_state *state = cstate->base.state;
  3491. struct drm_crtc *crtc = cstate->base.crtc;
  3492. struct drm_device *dev = crtc->dev;
  3493. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3494. enum pipe pipe = intel_crtc->pipe;
  3495. struct skl_ddb_entry *alloc = &cstate->wm.skl.ddb;
  3496. uint16_t alloc_size, start;
  3497. uint16_t minimum[I915_MAX_PLANES] = {};
  3498. uint16_t y_minimum[I915_MAX_PLANES] = {};
  3499. unsigned int total_data_rate;
  3500. enum plane_id plane_id;
  3501. int num_active;
  3502. unsigned plane_data_rate[I915_MAX_PLANES] = {};
  3503. unsigned plane_y_data_rate[I915_MAX_PLANES] = {};
  3504. uint16_t total_min_blocks = 0;
  3505. /* Clear the partitioning for disabled planes. */
  3506. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  3507. memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
  3508. if (WARN_ON(!state))
  3509. return 0;
  3510. if (!cstate->base.active) {
  3511. alloc->start = alloc->end = 0;
  3512. return 0;
  3513. }
  3514. skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
  3515. alloc_size = skl_ddb_entry_size(alloc);
  3516. if (alloc_size == 0)
  3517. return 0;
  3518. skl_ddb_calc_min(cstate, num_active, minimum, y_minimum);
  3519. /*
  3520. * 1. Allocate the mininum required blocks for each active plane
  3521. * and allocate the cursor, it doesn't require extra allocation
  3522. * proportional to the data rate.
  3523. */
  3524. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  3525. total_min_blocks += minimum[plane_id];
  3526. total_min_blocks += y_minimum[plane_id];
  3527. }
  3528. if (total_min_blocks > alloc_size) {
  3529. DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
  3530. DRM_DEBUG_KMS("minimum required %d/%d\n", total_min_blocks,
  3531. alloc_size);
  3532. return -EINVAL;
  3533. }
  3534. alloc_size -= total_min_blocks;
  3535. ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - minimum[PLANE_CURSOR];
  3536. ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
  3537. /*
  3538. * 2. Distribute the remaining space in proportion to the amount of
  3539. * data each plane needs to fetch from memory.
  3540. *
  3541. * FIXME: we may not allocate every single block here.
  3542. */
  3543. total_data_rate = skl_get_total_relative_data_rate(cstate,
  3544. plane_data_rate,
  3545. plane_y_data_rate);
  3546. if (total_data_rate == 0)
  3547. return 0;
  3548. start = alloc->start;
  3549. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  3550. unsigned int data_rate, y_data_rate;
  3551. uint16_t plane_blocks, y_plane_blocks = 0;
  3552. if (plane_id == PLANE_CURSOR)
  3553. continue;
  3554. data_rate = plane_data_rate[plane_id];
  3555. /*
  3556. * allocation for (packed formats) or (uv-plane part of planar format):
  3557. * promote the expression to 64 bits to avoid overflowing, the
  3558. * result is < available as data_rate / total_data_rate < 1
  3559. */
  3560. plane_blocks = minimum[plane_id];
  3561. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  3562. total_data_rate);
  3563. /* Leave disabled planes at (0,0) */
  3564. if (data_rate) {
  3565. ddb->plane[pipe][plane_id].start = start;
  3566. ddb->plane[pipe][plane_id].end = start + plane_blocks;
  3567. }
  3568. start += plane_blocks;
  3569. /*
  3570. * allocation for y_plane part of planar format:
  3571. */
  3572. y_data_rate = plane_y_data_rate[plane_id];
  3573. y_plane_blocks = y_minimum[plane_id];
  3574. y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
  3575. total_data_rate);
  3576. if (y_data_rate) {
  3577. ddb->y_plane[pipe][plane_id].start = start;
  3578. ddb->y_plane[pipe][plane_id].end = start + y_plane_blocks;
  3579. }
  3580. start += y_plane_blocks;
  3581. }
  3582. return 0;
  3583. }
  3584. /*
  3585. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  3586. * for the read latency) and cpp should always be <= 8, so that
  3587. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  3588. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  3589. */
  3590. static uint_fixed_16_16_t
  3591. skl_wm_method1(const struct drm_i915_private *dev_priv, uint32_t pixel_rate,
  3592. uint8_t cpp, uint32_t latency)
  3593. {
  3594. uint32_t wm_intermediate_val;
  3595. uint_fixed_16_16_t ret;
  3596. if (latency == 0)
  3597. return FP_16_16_MAX;
  3598. wm_intermediate_val = latency * pixel_rate * cpp;
  3599. ret = div_fixed16(wm_intermediate_val, 1000 * 512);
  3600. if (INTEL_GEN(dev_priv) >= 10)
  3601. ret = add_fixed16_u32(ret, 1);
  3602. return ret;
  3603. }
  3604. static uint_fixed_16_16_t skl_wm_method2(uint32_t pixel_rate,
  3605. uint32_t pipe_htotal,
  3606. uint32_t latency,
  3607. uint_fixed_16_16_t plane_blocks_per_line)
  3608. {
  3609. uint32_t wm_intermediate_val;
  3610. uint_fixed_16_16_t ret;
  3611. if (latency == 0)
  3612. return FP_16_16_MAX;
  3613. wm_intermediate_val = latency * pixel_rate;
  3614. wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
  3615. pipe_htotal * 1000);
  3616. ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
  3617. return ret;
  3618. }
  3619. static uint_fixed_16_16_t
  3620. intel_get_linetime_us(struct intel_crtc_state *cstate)
  3621. {
  3622. uint32_t pixel_rate;
  3623. uint32_t crtc_htotal;
  3624. uint_fixed_16_16_t linetime_us;
  3625. if (!cstate->base.active)
  3626. return u32_to_fixed16(0);
  3627. pixel_rate = cstate->pixel_rate;
  3628. if (WARN_ON(pixel_rate == 0))
  3629. return u32_to_fixed16(0);
  3630. crtc_htotal = cstate->base.adjusted_mode.crtc_htotal;
  3631. linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
  3632. return linetime_us;
  3633. }
  3634. static uint32_t
  3635. skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
  3636. const struct intel_plane_state *pstate)
  3637. {
  3638. uint64_t adjusted_pixel_rate;
  3639. uint_fixed_16_16_t downscale_amount;
  3640. /* Shouldn't reach here on disabled planes... */
  3641. if (WARN_ON(!intel_wm_plane_visible(cstate, pstate)))
  3642. return 0;
  3643. /*
  3644. * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
  3645. * with additional adjustments for plane-specific scaling.
  3646. */
  3647. adjusted_pixel_rate = cstate->pixel_rate;
  3648. downscale_amount = skl_plane_downscale_amount(cstate, pstate);
  3649. return mul_round_up_u32_fixed16(adjusted_pixel_rate,
  3650. downscale_amount);
  3651. }
  3652. static int
  3653. skl_compute_plane_wm_params(const struct drm_i915_private *dev_priv,
  3654. struct intel_crtc_state *cstate,
  3655. const struct intel_plane_state *intel_pstate,
  3656. struct skl_wm_params *wp)
  3657. {
  3658. struct intel_plane *plane = to_intel_plane(intel_pstate->base.plane);
  3659. const struct drm_plane_state *pstate = &intel_pstate->base;
  3660. const struct drm_framebuffer *fb = pstate->fb;
  3661. uint32_t interm_pbpl;
  3662. struct intel_atomic_state *state =
  3663. to_intel_atomic_state(cstate->base.state);
  3664. bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
  3665. if (!intel_wm_plane_visible(cstate, intel_pstate))
  3666. return 0;
  3667. wp->y_tiled = fb->modifier == I915_FORMAT_MOD_Y_TILED ||
  3668. fb->modifier == I915_FORMAT_MOD_Yf_TILED ||
  3669. fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
  3670. fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
  3671. wp->x_tiled = fb->modifier == I915_FORMAT_MOD_X_TILED;
  3672. wp->rc_surface = fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
  3673. fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
  3674. if (plane->id == PLANE_CURSOR) {
  3675. wp->width = intel_pstate->base.crtc_w;
  3676. } else {
  3677. /*
  3678. * Src coordinates are already rotated by 270 degrees for
  3679. * the 90/270 degree plane rotation cases (to match the
  3680. * GTT mapping), hence no need to account for rotation here.
  3681. */
  3682. wp->width = drm_rect_width(&intel_pstate->base.src) >> 16;
  3683. }
  3684. wp->cpp = (fb->format->format == DRM_FORMAT_NV12) ? fb->format->cpp[1] :
  3685. fb->format->cpp[0];
  3686. wp->plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate,
  3687. intel_pstate);
  3688. if (drm_rotation_90_or_270(pstate->rotation)) {
  3689. switch (wp->cpp) {
  3690. case 1:
  3691. wp->y_min_scanlines = 16;
  3692. break;
  3693. case 2:
  3694. wp->y_min_scanlines = 8;
  3695. break;
  3696. case 4:
  3697. wp->y_min_scanlines = 4;
  3698. break;
  3699. default:
  3700. MISSING_CASE(wp->cpp);
  3701. return -EINVAL;
  3702. }
  3703. } else {
  3704. wp->y_min_scanlines = 4;
  3705. }
  3706. if (apply_memory_bw_wa)
  3707. wp->y_min_scanlines *= 2;
  3708. wp->plane_bytes_per_line = wp->width * wp->cpp;
  3709. if (wp->y_tiled) {
  3710. interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
  3711. wp->y_min_scanlines, 512);
  3712. if (INTEL_GEN(dev_priv) >= 10)
  3713. interm_pbpl++;
  3714. wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
  3715. wp->y_min_scanlines);
  3716. } else if (wp->x_tiled && IS_GEN9(dev_priv)) {
  3717. interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512);
  3718. wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
  3719. } else {
  3720. interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 512) + 1;
  3721. wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
  3722. }
  3723. wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
  3724. wp->plane_blocks_per_line);
  3725. wp->linetime_us = fixed16_to_u32_round_up(
  3726. intel_get_linetime_us(cstate));
  3727. return 0;
  3728. }
  3729. static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  3730. struct intel_crtc_state *cstate,
  3731. const struct intel_plane_state *intel_pstate,
  3732. uint16_t ddb_allocation,
  3733. int level,
  3734. const struct skl_wm_params *wp,
  3735. uint16_t *out_blocks, /* out */
  3736. uint8_t *out_lines, /* out */
  3737. bool *enabled /* out */)
  3738. {
  3739. const struct drm_plane_state *pstate = &intel_pstate->base;
  3740. uint32_t latency = dev_priv->wm.skl_latency[level];
  3741. uint_fixed_16_16_t method1, method2;
  3742. uint_fixed_16_16_t selected_result;
  3743. uint32_t res_blocks, res_lines;
  3744. struct intel_atomic_state *state =
  3745. to_intel_atomic_state(cstate->base.state);
  3746. bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
  3747. if (latency == 0 ||
  3748. !intel_wm_plane_visible(cstate, intel_pstate)) {
  3749. *enabled = false;
  3750. return 0;
  3751. }
  3752. /* Display WA #1141: kbl,cfl */
  3753. if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv) ||
  3754. IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0)) &&
  3755. dev_priv->ipc_enabled)
  3756. latency += 4;
  3757. if (apply_memory_bw_wa && wp->x_tiled)
  3758. latency += 15;
  3759. method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
  3760. wp->cpp, latency);
  3761. method2 = skl_wm_method2(wp->plane_pixel_rate,
  3762. cstate->base.adjusted_mode.crtc_htotal,
  3763. latency,
  3764. wp->plane_blocks_per_line);
  3765. if (wp->y_tiled) {
  3766. selected_result = max_fixed16(method2, wp->y_tile_minimum);
  3767. } else {
  3768. if ((wp->cpp * cstate->base.adjusted_mode.crtc_htotal /
  3769. 512 < 1) && (wp->plane_bytes_per_line / 512 < 1))
  3770. selected_result = method2;
  3771. else if (ddb_allocation >=
  3772. fixed16_to_u32_round_up(wp->plane_blocks_per_line))
  3773. selected_result = min_fixed16(method1, method2);
  3774. else if (latency >= wp->linetime_us)
  3775. selected_result = min_fixed16(method1, method2);
  3776. else
  3777. selected_result = method1;
  3778. }
  3779. res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
  3780. res_lines = div_round_up_fixed16(selected_result,
  3781. wp->plane_blocks_per_line);
  3782. /* Display WA #1125: skl,bxt,kbl,glk */
  3783. if (level == 0 && wp->rc_surface)
  3784. res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
  3785. /* Display WA #1126: skl,bxt,kbl,glk */
  3786. if (level >= 1 && level <= 7) {
  3787. if (wp->y_tiled) {
  3788. res_blocks += fixed16_to_u32_round_up(
  3789. wp->y_tile_minimum);
  3790. res_lines += wp->y_min_scanlines;
  3791. } else {
  3792. res_blocks++;
  3793. }
  3794. }
  3795. if (res_blocks >= ddb_allocation || res_lines > 31) {
  3796. *enabled = false;
  3797. /*
  3798. * If there are no valid level 0 watermarks, then we can't
  3799. * support this display configuration.
  3800. */
  3801. if (level) {
  3802. return 0;
  3803. } else {
  3804. struct drm_plane *plane = pstate->plane;
  3805. DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
  3806. DRM_DEBUG_KMS("[PLANE:%d:%s] blocks required = %u/%u, lines required = %u/31\n",
  3807. plane->base.id, plane->name,
  3808. res_blocks, ddb_allocation, res_lines);
  3809. return -EINVAL;
  3810. }
  3811. }
  3812. *out_blocks = res_blocks;
  3813. *out_lines = res_lines;
  3814. *enabled = true;
  3815. return 0;
  3816. }
  3817. static int
  3818. skl_compute_wm_levels(const struct drm_i915_private *dev_priv,
  3819. struct skl_ddb_allocation *ddb,
  3820. struct intel_crtc_state *cstate,
  3821. const struct intel_plane_state *intel_pstate,
  3822. const struct skl_wm_params *wm_params,
  3823. struct skl_plane_wm *wm)
  3824. {
  3825. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  3826. struct drm_plane *plane = intel_pstate->base.plane;
  3827. struct intel_plane *intel_plane = to_intel_plane(plane);
  3828. uint16_t ddb_blocks;
  3829. enum pipe pipe = intel_crtc->pipe;
  3830. int level, max_level = ilk_wm_max_level(dev_priv);
  3831. int ret;
  3832. if (WARN_ON(!intel_pstate->base.fb))
  3833. return -EINVAL;
  3834. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][intel_plane->id]);
  3835. for (level = 0; level <= max_level; level++) {
  3836. struct skl_wm_level *result = &wm->wm[level];
  3837. ret = skl_compute_plane_wm(dev_priv,
  3838. cstate,
  3839. intel_pstate,
  3840. ddb_blocks,
  3841. level,
  3842. wm_params,
  3843. &result->plane_res_b,
  3844. &result->plane_res_l,
  3845. &result->plane_en);
  3846. if (ret)
  3847. return ret;
  3848. }
  3849. return 0;
  3850. }
  3851. static uint32_t
  3852. skl_compute_linetime_wm(struct intel_crtc_state *cstate)
  3853. {
  3854. struct drm_atomic_state *state = cstate->base.state;
  3855. struct drm_i915_private *dev_priv = to_i915(state->dev);
  3856. uint_fixed_16_16_t linetime_us;
  3857. uint32_t linetime_wm;
  3858. linetime_us = intel_get_linetime_us(cstate);
  3859. if (is_fixed16_zero(linetime_us))
  3860. return 0;
  3861. linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
  3862. /* Display WA #1135: bxt:ALL GLK:ALL */
  3863. if ((IS_BROXTON(dev_priv) || IS_GEMINILAKE(dev_priv)) &&
  3864. dev_priv->ipc_enabled)
  3865. linetime_wm /= 2;
  3866. return linetime_wm;
  3867. }
  3868. static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
  3869. struct skl_wm_params *wp,
  3870. struct skl_wm_level *wm_l0,
  3871. uint16_t ddb_allocation,
  3872. struct skl_wm_level *trans_wm /* out */)
  3873. {
  3874. struct drm_device *dev = cstate->base.crtc->dev;
  3875. const struct drm_i915_private *dev_priv = to_i915(dev);
  3876. uint16_t trans_min, trans_y_tile_min;
  3877. const uint16_t trans_amount = 10; /* This is configurable amount */
  3878. uint16_t trans_offset_b, res_blocks;
  3879. if (!cstate->base.active)
  3880. goto exit;
  3881. /* Transition WM are not recommended by HW team for GEN9 */
  3882. if (INTEL_GEN(dev_priv) <= 9)
  3883. goto exit;
  3884. /* Transition WM don't make any sense if ipc is disabled */
  3885. if (!dev_priv->ipc_enabled)
  3886. goto exit;
  3887. if (INTEL_GEN(dev_priv) >= 10)
  3888. trans_min = 4;
  3889. trans_offset_b = trans_min + trans_amount;
  3890. if (wp->y_tiled) {
  3891. trans_y_tile_min = (uint16_t) mul_round_up_u32_fixed16(2,
  3892. wp->y_tile_minimum);
  3893. res_blocks = max(wm_l0->plane_res_b, trans_y_tile_min) +
  3894. trans_offset_b;
  3895. } else {
  3896. res_blocks = wm_l0->plane_res_b + trans_offset_b;
  3897. /* WA BUG:1938466 add one block for non y-tile planes */
  3898. if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
  3899. res_blocks += 1;
  3900. }
  3901. res_blocks += 1;
  3902. if (res_blocks < ddb_allocation) {
  3903. trans_wm->plane_res_b = res_blocks;
  3904. trans_wm->plane_en = true;
  3905. return;
  3906. }
  3907. exit:
  3908. trans_wm->plane_en = false;
  3909. }
  3910. static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
  3911. struct skl_ddb_allocation *ddb,
  3912. struct skl_pipe_wm *pipe_wm)
  3913. {
  3914. struct drm_device *dev = cstate->base.crtc->dev;
  3915. struct drm_crtc_state *crtc_state = &cstate->base;
  3916. const struct drm_i915_private *dev_priv = to_i915(dev);
  3917. struct drm_plane *plane;
  3918. const struct drm_plane_state *pstate;
  3919. struct skl_plane_wm *wm;
  3920. int ret;
  3921. /*
  3922. * We'll only calculate watermarks for planes that are actually
  3923. * enabled, so make sure all other planes are set as disabled.
  3924. */
  3925. memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
  3926. drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
  3927. const struct intel_plane_state *intel_pstate =
  3928. to_intel_plane_state(pstate);
  3929. enum plane_id plane_id = to_intel_plane(plane)->id;
  3930. struct skl_wm_params wm_params;
  3931. enum pipe pipe = to_intel_crtc(cstate->base.crtc)->pipe;
  3932. uint16_t ddb_blocks;
  3933. wm = &pipe_wm->planes[plane_id];
  3934. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][plane_id]);
  3935. memset(&wm_params, 0, sizeof(struct skl_wm_params));
  3936. ret = skl_compute_plane_wm_params(dev_priv, cstate,
  3937. intel_pstate, &wm_params);
  3938. if (ret)
  3939. return ret;
  3940. ret = skl_compute_wm_levels(dev_priv, ddb, cstate,
  3941. intel_pstate, &wm_params, wm);
  3942. if (ret)
  3943. return ret;
  3944. skl_compute_transition_wm(cstate, &wm_params, &wm->wm[0],
  3945. ddb_blocks, &wm->trans_wm);
  3946. }
  3947. pipe_wm->linetime = skl_compute_linetime_wm(cstate);
  3948. return 0;
  3949. }
  3950. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
  3951. i915_reg_t reg,
  3952. const struct skl_ddb_entry *entry)
  3953. {
  3954. if (entry->end)
  3955. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  3956. else
  3957. I915_WRITE(reg, 0);
  3958. }
  3959. static void skl_write_wm_level(struct drm_i915_private *dev_priv,
  3960. i915_reg_t reg,
  3961. const struct skl_wm_level *level)
  3962. {
  3963. uint32_t val = 0;
  3964. if (level->plane_en) {
  3965. val |= PLANE_WM_EN;
  3966. val |= level->plane_res_b;
  3967. val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
  3968. }
  3969. I915_WRITE(reg, val);
  3970. }
  3971. static void skl_write_plane_wm(struct intel_crtc *intel_crtc,
  3972. const struct skl_plane_wm *wm,
  3973. const struct skl_ddb_allocation *ddb,
  3974. enum plane_id plane_id)
  3975. {
  3976. struct drm_crtc *crtc = &intel_crtc->base;
  3977. struct drm_device *dev = crtc->dev;
  3978. struct drm_i915_private *dev_priv = to_i915(dev);
  3979. int level, max_level = ilk_wm_max_level(dev_priv);
  3980. enum pipe pipe = intel_crtc->pipe;
  3981. for (level = 0; level <= max_level; level++) {
  3982. skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
  3983. &wm->wm[level]);
  3984. }
  3985. skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
  3986. &wm->trans_wm);
  3987. skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id),
  3988. &ddb->plane[pipe][plane_id]);
  3989. skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id),
  3990. &ddb->y_plane[pipe][plane_id]);
  3991. }
  3992. static void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
  3993. const struct skl_plane_wm *wm,
  3994. const struct skl_ddb_allocation *ddb)
  3995. {
  3996. struct drm_crtc *crtc = &intel_crtc->base;
  3997. struct drm_device *dev = crtc->dev;
  3998. struct drm_i915_private *dev_priv = to_i915(dev);
  3999. int level, max_level = ilk_wm_max_level(dev_priv);
  4000. enum pipe pipe = intel_crtc->pipe;
  4001. for (level = 0; level <= max_level; level++) {
  4002. skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
  4003. &wm->wm[level]);
  4004. }
  4005. skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
  4006. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  4007. &ddb->plane[pipe][PLANE_CURSOR]);
  4008. }
  4009. bool skl_wm_level_equals(const struct skl_wm_level *l1,
  4010. const struct skl_wm_level *l2)
  4011. {
  4012. if (l1->plane_en != l2->plane_en)
  4013. return false;
  4014. /* If both planes aren't enabled, the rest shouldn't matter */
  4015. if (!l1->plane_en)
  4016. return true;
  4017. return (l1->plane_res_l == l2->plane_res_l &&
  4018. l1->plane_res_b == l2->plane_res_b);
  4019. }
  4020. static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
  4021. const struct skl_ddb_entry *b)
  4022. {
  4023. return a->start < b->end && b->start < a->end;
  4024. }
  4025. bool skl_ddb_allocation_overlaps(struct drm_i915_private *dev_priv,
  4026. const struct skl_ddb_entry **entries,
  4027. const struct skl_ddb_entry *ddb,
  4028. int ignore)
  4029. {
  4030. enum pipe pipe;
  4031. for_each_pipe(dev_priv, pipe) {
  4032. if (pipe != ignore && entries[pipe] &&
  4033. skl_ddb_entries_overlap(ddb, entries[pipe]))
  4034. return true;
  4035. }
  4036. return false;
  4037. }
  4038. static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
  4039. const struct skl_pipe_wm *old_pipe_wm,
  4040. struct skl_pipe_wm *pipe_wm, /* out */
  4041. struct skl_ddb_allocation *ddb, /* out */
  4042. bool *changed /* out */)
  4043. {
  4044. struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
  4045. int ret;
  4046. ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
  4047. if (ret)
  4048. return ret;
  4049. if (!memcmp(old_pipe_wm, pipe_wm, sizeof(*pipe_wm)))
  4050. *changed = false;
  4051. else
  4052. *changed = true;
  4053. return 0;
  4054. }
  4055. static uint32_t
  4056. pipes_modified(struct drm_atomic_state *state)
  4057. {
  4058. struct drm_crtc *crtc;
  4059. struct drm_crtc_state *cstate;
  4060. uint32_t i, ret = 0;
  4061. for_each_new_crtc_in_state(state, crtc, cstate, i)
  4062. ret |= drm_crtc_mask(crtc);
  4063. return ret;
  4064. }
  4065. static int
  4066. skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
  4067. {
  4068. struct drm_atomic_state *state = cstate->base.state;
  4069. struct drm_device *dev = state->dev;
  4070. struct drm_crtc *crtc = cstate->base.crtc;
  4071. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4072. struct drm_i915_private *dev_priv = to_i915(dev);
  4073. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  4074. struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
  4075. struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  4076. struct drm_plane_state *plane_state;
  4077. struct drm_plane *plane;
  4078. enum pipe pipe = intel_crtc->pipe;
  4079. WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
  4080. drm_for_each_plane_mask(plane, dev, cstate->base.plane_mask) {
  4081. enum plane_id plane_id = to_intel_plane(plane)->id;
  4082. if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][plane_id],
  4083. &new_ddb->plane[pipe][plane_id]) &&
  4084. skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][plane_id],
  4085. &new_ddb->y_plane[pipe][plane_id]))
  4086. continue;
  4087. plane_state = drm_atomic_get_plane_state(state, plane);
  4088. if (IS_ERR(plane_state))
  4089. return PTR_ERR(plane_state);
  4090. }
  4091. return 0;
  4092. }
  4093. static int
  4094. skl_compute_ddb(struct drm_atomic_state *state)
  4095. {
  4096. struct drm_device *dev = state->dev;
  4097. struct drm_i915_private *dev_priv = to_i915(dev);
  4098. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  4099. struct intel_crtc *intel_crtc;
  4100. struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
  4101. uint32_t realloc_pipes = pipes_modified(state);
  4102. int ret;
  4103. /*
  4104. * If this is our first atomic update following hardware readout,
  4105. * we can't trust the DDB that the BIOS programmed for us. Let's
  4106. * pretend that all pipes switched active status so that we'll
  4107. * ensure a full DDB recompute.
  4108. */
  4109. if (dev_priv->wm.distrust_bios_wm) {
  4110. ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
  4111. state->acquire_ctx);
  4112. if (ret)
  4113. return ret;
  4114. intel_state->active_pipe_changes = ~0;
  4115. /*
  4116. * We usually only initialize intel_state->active_crtcs if we
  4117. * we're doing a modeset; make sure this field is always
  4118. * initialized during the sanitization process that happens
  4119. * on the first commit too.
  4120. */
  4121. if (!intel_state->modeset)
  4122. intel_state->active_crtcs = dev_priv->active_crtcs;
  4123. }
  4124. /*
  4125. * If the modeset changes which CRTC's are active, we need to
  4126. * recompute the DDB allocation for *all* active pipes, even
  4127. * those that weren't otherwise being modified in any way by this
  4128. * atomic commit. Due to the shrinking of the per-pipe allocations
  4129. * when new active CRTC's are added, it's possible for a pipe that
  4130. * we were already using and aren't changing at all here to suddenly
  4131. * become invalid if its DDB needs exceeds its new allocation.
  4132. *
  4133. * Note that if we wind up doing a full DDB recompute, we can't let
  4134. * any other display updates race with this transaction, so we need
  4135. * to grab the lock on *all* CRTC's.
  4136. */
  4137. if (intel_state->active_pipe_changes) {
  4138. realloc_pipes = ~0;
  4139. intel_state->wm_results.dirty_pipes = ~0;
  4140. }
  4141. /*
  4142. * We're not recomputing for the pipes not included in the commit, so
  4143. * make sure we start with the current state.
  4144. */
  4145. memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
  4146. for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
  4147. struct intel_crtc_state *cstate;
  4148. cstate = intel_atomic_get_crtc_state(state, intel_crtc);
  4149. if (IS_ERR(cstate))
  4150. return PTR_ERR(cstate);
  4151. ret = skl_allocate_pipe_ddb(cstate, ddb);
  4152. if (ret)
  4153. return ret;
  4154. ret = skl_ddb_add_affected_planes(cstate);
  4155. if (ret)
  4156. return ret;
  4157. }
  4158. return 0;
  4159. }
  4160. static void
  4161. skl_copy_wm_for_pipe(struct skl_wm_values *dst,
  4162. struct skl_wm_values *src,
  4163. enum pipe pipe)
  4164. {
  4165. memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
  4166. sizeof(dst->ddb.y_plane[pipe]));
  4167. memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
  4168. sizeof(dst->ddb.plane[pipe]));
  4169. }
  4170. static void
  4171. skl_print_wm_changes(const struct drm_atomic_state *state)
  4172. {
  4173. const struct drm_device *dev = state->dev;
  4174. const struct drm_i915_private *dev_priv = to_i915(dev);
  4175. const struct intel_atomic_state *intel_state =
  4176. to_intel_atomic_state(state);
  4177. const struct drm_crtc *crtc;
  4178. const struct drm_crtc_state *cstate;
  4179. const struct intel_plane *intel_plane;
  4180. const struct skl_ddb_allocation *old_ddb = &dev_priv->wm.skl_hw.ddb;
  4181. const struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
  4182. int i;
  4183. for_each_new_crtc_in_state(state, crtc, cstate, i) {
  4184. const struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4185. enum pipe pipe = intel_crtc->pipe;
  4186. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  4187. enum plane_id plane_id = intel_plane->id;
  4188. const struct skl_ddb_entry *old, *new;
  4189. old = &old_ddb->plane[pipe][plane_id];
  4190. new = &new_ddb->plane[pipe][plane_id];
  4191. if (skl_ddb_entry_equal(old, new))
  4192. continue;
  4193. DRM_DEBUG_ATOMIC("[PLANE:%d:%s] ddb (%d - %d) -> (%d - %d)\n",
  4194. intel_plane->base.base.id,
  4195. intel_plane->base.name,
  4196. old->start, old->end,
  4197. new->start, new->end);
  4198. }
  4199. }
  4200. }
  4201. static int
  4202. skl_compute_wm(struct drm_atomic_state *state)
  4203. {
  4204. struct drm_crtc *crtc;
  4205. struct drm_crtc_state *cstate;
  4206. struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
  4207. struct skl_wm_values *results = &intel_state->wm_results;
  4208. struct drm_device *dev = state->dev;
  4209. struct skl_pipe_wm *pipe_wm;
  4210. bool changed = false;
  4211. int ret, i;
  4212. /*
  4213. * When we distrust bios wm we always need to recompute to set the
  4214. * expected DDB allocations for each CRTC.
  4215. */
  4216. if (to_i915(dev)->wm.distrust_bios_wm)
  4217. changed = true;
  4218. /*
  4219. * If this transaction isn't actually touching any CRTC's, don't
  4220. * bother with watermark calculation. Note that if we pass this
  4221. * test, we're guaranteed to hold at least one CRTC state mutex,
  4222. * which means we can safely use values like dev_priv->active_crtcs
  4223. * since any racing commits that want to update them would need to
  4224. * hold _all_ CRTC state mutexes.
  4225. */
  4226. for_each_new_crtc_in_state(state, crtc, cstate, i)
  4227. changed = true;
  4228. if (!changed)
  4229. return 0;
  4230. /* Clear all dirty flags */
  4231. results->dirty_pipes = 0;
  4232. ret = skl_compute_ddb(state);
  4233. if (ret)
  4234. return ret;
  4235. /*
  4236. * Calculate WM's for all pipes that are part of this transaction.
  4237. * Note that the DDB allocation above may have added more CRTC's that
  4238. * weren't otherwise being modified (and set bits in dirty_pipes) if
  4239. * pipe allocations had to change.
  4240. *
  4241. * FIXME: Now that we're doing this in the atomic check phase, we
  4242. * should allow skl_update_pipe_wm() to return failure in cases where
  4243. * no suitable watermark values can be found.
  4244. */
  4245. for_each_new_crtc_in_state(state, crtc, cstate, i) {
  4246. struct intel_crtc_state *intel_cstate =
  4247. to_intel_crtc_state(cstate);
  4248. const struct skl_pipe_wm *old_pipe_wm =
  4249. &to_intel_crtc_state(crtc->state)->wm.skl.optimal;
  4250. pipe_wm = &intel_cstate->wm.skl.optimal;
  4251. ret = skl_update_pipe_wm(cstate, old_pipe_wm, pipe_wm,
  4252. &results->ddb, &changed);
  4253. if (ret)
  4254. return ret;
  4255. if (changed)
  4256. results->dirty_pipes |= drm_crtc_mask(crtc);
  4257. if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
  4258. /* This pipe's WM's did not change */
  4259. continue;
  4260. intel_cstate->update_wm_pre = true;
  4261. }
  4262. skl_print_wm_changes(state);
  4263. return 0;
  4264. }
  4265. static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
  4266. struct intel_crtc_state *cstate)
  4267. {
  4268. struct intel_crtc *crtc = to_intel_crtc(cstate->base.crtc);
  4269. struct drm_i915_private *dev_priv = to_i915(state->base.dev);
  4270. struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
  4271. const struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
  4272. enum pipe pipe = crtc->pipe;
  4273. enum plane_id plane_id;
  4274. if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
  4275. return;
  4276. I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
  4277. for_each_plane_id_on_crtc(crtc, plane_id) {
  4278. if (plane_id != PLANE_CURSOR)
  4279. skl_write_plane_wm(crtc, &pipe_wm->planes[plane_id],
  4280. ddb, plane_id);
  4281. else
  4282. skl_write_cursor_wm(crtc, &pipe_wm->planes[plane_id],
  4283. ddb);
  4284. }
  4285. }
  4286. static void skl_initial_wm(struct intel_atomic_state *state,
  4287. struct intel_crtc_state *cstate)
  4288. {
  4289. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  4290. struct drm_device *dev = intel_crtc->base.dev;
  4291. struct drm_i915_private *dev_priv = to_i915(dev);
  4292. struct skl_wm_values *results = &state->wm_results;
  4293. struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
  4294. enum pipe pipe = intel_crtc->pipe;
  4295. if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
  4296. return;
  4297. mutex_lock(&dev_priv->wm.wm_mutex);
  4298. if (cstate->base.active_changed)
  4299. skl_atomic_update_crtc_wm(state, cstate);
  4300. skl_copy_wm_for_pipe(hw_vals, results, pipe);
  4301. mutex_unlock(&dev_priv->wm.wm_mutex);
  4302. }
  4303. static void ilk_compute_wm_config(struct drm_device *dev,
  4304. struct intel_wm_config *config)
  4305. {
  4306. struct intel_crtc *crtc;
  4307. /* Compute the currently _active_ config */
  4308. for_each_intel_crtc(dev, crtc) {
  4309. const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
  4310. if (!wm->pipe_enabled)
  4311. continue;
  4312. config->sprites_enabled |= wm->sprites_enabled;
  4313. config->sprites_scaled |= wm->sprites_scaled;
  4314. config->num_pipes_active++;
  4315. }
  4316. }
  4317. static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
  4318. {
  4319. struct drm_device *dev = &dev_priv->drm;
  4320. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  4321. struct ilk_wm_maximums max;
  4322. struct intel_wm_config config = {};
  4323. struct ilk_wm_values results = {};
  4324. enum intel_ddb_partitioning partitioning;
  4325. ilk_compute_wm_config(dev, &config);
  4326. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  4327. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  4328. /* 5/6 split only in single pipe config on IVB+ */
  4329. if (INTEL_GEN(dev_priv) >= 7 &&
  4330. config.num_pipes_active == 1 && config.sprites_enabled) {
  4331. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  4332. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  4333. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  4334. } else {
  4335. best_lp_wm = &lp_wm_1_2;
  4336. }
  4337. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  4338. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  4339. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  4340. ilk_write_wm_values(dev_priv, &results);
  4341. }
  4342. static void ilk_initial_watermarks(struct intel_atomic_state *state,
  4343. struct intel_crtc_state *cstate)
  4344. {
  4345. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  4346. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  4347. mutex_lock(&dev_priv->wm.wm_mutex);
  4348. intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
  4349. ilk_program_watermarks(dev_priv);
  4350. mutex_unlock(&dev_priv->wm.wm_mutex);
  4351. }
  4352. static void ilk_optimize_watermarks(struct intel_atomic_state *state,
  4353. struct intel_crtc_state *cstate)
  4354. {
  4355. struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
  4356. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  4357. mutex_lock(&dev_priv->wm.wm_mutex);
  4358. if (cstate->wm.need_postvbl_update) {
  4359. intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
  4360. ilk_program_watermarks(dev_priv);
  4361. }
  4362. mutex_unlock(&dev_priv->wm.wm_mutex);
  4363. }
  4364. static inline void skl_wm_level_from_reg_val(uint32_t val,
  4365. struct skl_wm_level *level)
  4366. {
  4367. level->plane_en = val & PLANE_WM_EN;
  4368. level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
  4369. level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
  4370. PLANE_WM_LINES_MASK;
  4371. }
  4372. void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc,
  4373. struct skl_pipe_wm *out)
  4374. {
  4375. struct drm_i915_private *dev_priv = to_i915(crtc->dev);
  4376. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4377. enum pipe pipe = intel_crtc->pipe;
  4378. int level, max_level;
  4379. enum plane_id plane_id;
  4380. uint32_t val;
  4381. max_level = ilk_wm_max_level(dev_priv);
  4382. for_each_plane_id_on_crtc(intel_crtc, plane_id) {
  4383. struct skl_plane_wm *wm = &out->planes[plane_id];
  4384. for (level = 0; level <= max_level; level++) {
  4385. if (plane_id != PLANE_CURSOR)
  4386. val = I915_READ(PLANE_WM(pipe, plane_id, level));
  4387. else
  4388. val = I915_READ(CUR_WM(pipe, level));
  4389. skl_wm_level_from_reg_val(val, &wm->wm[level]);
  4390. }
  4391. if (plane_id != PLANE_CURSOR)
  4392. val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
  4393. else
  4394. val = I915_READ(CUR_WM_TRANS(pipe));
  4395. skl_wm_level_from_reg_val(val, &wm->trans_wm);
  4396. }
  4397. if (!intel_crtc->active)
  4398. return;
  4399. out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
  4400. }
  4401. void skl_wm_get_hw_state(struct drm_device *dev)
  4402. {
  4403. struct drm_i915_private *dev_priv = to_i915(dev);
  4404. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  4405. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  4406. struct drm_crtc *crtc;
  4407. struct intel_crtc *intel_crtc;
  4408. struct intel_crtc_state *cstate;
  4409. skl_ddb_get_hw_state(dev_priv, ddb);
  4410. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  4411. intel_crtc = to_intel_crtc(crtc);
  4412. cstate = to_intel_crtc_state(crtc->state);
  4413. skl_pipe_wm_get_hw_state(crtc, &cstate->wm.skl.optimal);
  4414. if (intel_crtc->active)
  4415. hw->dirty_pipes |= drm_crtc_mask(crtc);
  4416. }
  4417. if (dev_priv->active_crtcs) {
  4418. /* Fully recompute DDB on first atomic commit */
  4419. dev_priv->wm.distrust_bios_wm = true;
  4420. } else {
  4421. /* Easy/common case; just sanitize DDB now if everything off */
  4422. memset(ddb, 0, sizeof(*ddb));
  4423. }
  4424. }
  4425. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  4426. {
  4427. struct drm_device *dev = crtc->dev;
  4428. struct drm_i915_private *dev_priv = to_i915(dev);
  4429. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  4430. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4431. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  4432. struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
  4433. enum pipe pipe = intel_crtc->pipe;
  4434. static const i915_reg_t wm0_pipe_reg[] = {
  4435. [PIPE_A] = WM0_PIPEA_ILK,
  4436. [PIPE_B] = WM0_PIPEB_ILK,
  4437. [PIPE_C] = WM0_PIPEC_IVB,
  4438. };
  4439. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  4440. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  4441. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  4442. memset(active, 0, sizeof(*active));
  4443. active->pipe_enabled = intel_crtc->active;
  4444. if (active->pipe_enabled) {
  4445. u32 tmp = hw->wm_pipe[pipe];
  4446. /*
  4447. * For active pipes LP0 watermark is marked as
  4448. * enabled, and LP1+ watermaks as disabled since
  4449. * we can't really reverse compute them in case
  4450. * multiple pipes are active.
  4451. */
  4452. active->wm[0].enable = true;
  4453. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  4454. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  4455. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  4456. active->linetime = hw->wm_linetime[pipe];
  4457. } else {
  4458. int level, max_level = ilk_wm_max_level(dev_priv);
  4459. /*
  4460. * For inactive pipes, all watermark levels
  4461. * should be marked as enabled but zeroed,
  4462. * which is what we'd compute them to.
  4463. */
  4464. for (level = 0; level <= max_level; level++)
  4465. active->wm[level].enable = true;
  4466. }
  4467. intel_crtc->wm.active.ilk = *active;
  4468. }
  4469. #define _FW_WM(value, plane) \
  4470. (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
  4471. #define _FW_WM_VLV(value, plane) \
  4472. (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
  4473. static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
  4474. struct g4x_wm_values *wm)
  4475. {
  4476. uint32_t tmp;
  4477. tmp = I915_READ(DSPFW1);
  4478. wm->sr.plane = _FW_WM(tmp, SR);
  4479. wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
  4480. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
  4481. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
  4482. tmp = I915_READ(DSPFW2);
  4483. wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
  4484. wm->sr.fbc = _FW_WM(tmp, FBC_SR);
  4485. wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
  4486. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
  4487. wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
  4488. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
  4489. tmp = I915_READ(DSPFW3);
  4490. wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
  4491. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  4492. wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
  4493. wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
  4494. }
  4495. static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
  4496. struct vlv_wm_values *wm)
  4497. {
  4498. enum pipe pipe;
  4499. uint32_t tmp;
  4500. for_each_pipe(dev_priv, pipe) {
  4501. tmp = I915_READ(VLV_DDL(pipe));
  4502. wm->ddl[pipe].plane[PLANE_PRIMARY] =
  4503. (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4504. wm->ddl[pipe].plane[PLANE_CURSOR] =
  4505. (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4506. wm->ddl[pipe].plane[PLANE_SPRITE0] =
  4507. (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4508. wm->ddl[pipe].plane[PLANE_SPRITE1] =
  4509. (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  4510. }
  4511. tmp = I915_READ(DSPFW1);
  4512. wm->sr.plane = _FW_WM(tmp, SR);
  4513. wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
  4514. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
  4515. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
  4516. tmp = I915_READ(DSPFW2);
  4517. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
  4518. wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
  4519. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
  4520. tmp = I915_READ(DSPFW3);
  4521. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  4522. if (IS_CHERRYVIEW(dev_priv)) {
  4523. tmp = I915_READ(DSPFW7_CHV);
  4524. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
  4525. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
  4526. tmp = I915_READ(DSPFW8_CHV);
  4527. wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
  4528. wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
  4529. tmp = I915_READ(DSPFW9_CHV);
  4530. wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
  4531. wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
  4532. tmp = I915_READ(DSPHOWM);
  4533. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  4534. wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
  4535. wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
  4536. wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
  4537. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  4538. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  4539. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
  4540. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  4541. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  4542. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
  4543. } else {
  4544. tmp = I915_READ(DSPFW7);
  4545. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
  4546. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
  4547. tmp = I915_READ(DSPHOWM);
  4548. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  4549. wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  4550. wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  4551. wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
  4552. wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  4553. wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  4554. wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
  4555. }
  4556. }
  4557. #undef _FW_WM
  4558. #undef _FW_WM_VLV
  4559. void g4x_wm_get_hw_state(struct drm_device *dev)
  4560. {
  4561. struct drm_i915_private *dev_priv = to_i915(dev);
  4562. struct g4x_wm_values *wm = &dev_priv->wm.g4x;
  4563. struct intel_crtc *crtc;
  4564. g4x_read_wm_values(dev_priv, wm);
  4565. wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  4566. for_each_intel_crtc(dev, crtc) {
  4567. struct intel_crtc_state *crtc_state =
  4568. to_intel_crtc_state(crtc->base.state);
  4569. struct g4x_wm_state *active = &crtc->wm.active.g4x;
  4570. struct g4x_pipe_wm *raw;
  4571. enum pipe pipe = crtc->pipe;
  4572. enum plane_id plane_id;
  4573. int level, max_level;
  4574. active->cxsr = wm->cxsr;
  4575. active->hpll_en = wm->hpll_en;
  4576. active->fbc_en = wm->fbc_en;
  4577. active->sr = wm->sr;
  4578. active->hpll = wm->hpll;
  4579. for_each_plane_id_on_crtc(crtc, plane_id) {
  4580. active->wm.plane[plane_id] =
  4581. wm->pipe[pipe].plane[plane_id];
  4582. }
  4583. if (wm->cxsr && wm->hpll_en)
  4584. max_level = G4X_WM_LEVEL_HPLL;
  4585. else if (wm->cxsr)
  4586. max_level = G4X_WM_LEVEL_SR;
  4587. else
  4588. max_level = G4X_WM_LEVEL_NORMAL;
  4589. level = G4X_WM_LEVEL_NORMAL;
  4590. raw = &crtc_state->wm.g4x.raw[level];
  4591. for_each_plane_id_on_crtc(crtc, plane_id)
  4592. raw->plane[plane_id] = active->wm.plane[plane_id];
  4593. if (++level > max_level)
  4594. goto out;
  4595. raw = &crtc_state->wm.g4x.raw[level];
  4596. raw->plane[PLANE_PRIMARY] = active->sr.plane;
  4597. raw->plane[PLANE_CURSOR] = active->sr.cursor;
  4598. raw->plane[PLANE_SPRITE0] = 0;
  4599. raw->fbc = active->sr.fbc;
  4600. if (++level > max_level)
  4601. goto out;
  4602. raw = &crtc_state->wm.g4x.raw[level];
  4603. raw->plane[PLANE_PRIMARY] = active->hpll.plane;
  4604. raw->plane[PLANE_CURSOR] = active->hpll.cursor;
  4605. raw->plane[PLANE_SPRITE0] = 0;
  4606. raw->fbc = active->hpll.fbc;
  4607. out:
  4608. for_each_plane_id_on_crtc(crtc, plane_id)
  4609. g4x_raw_plane_wm_set(crtc_state, level,
  4610. plane_id, USHRT_MAX);
  4611. g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
  4612. crtc_state->wm.g4x.optimal = *active;
  4613. crtc_state->wm.g4x.intermediate = *active;
  4614. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
  4615. pipe_name(pipe),
  4616. wm->pipe[pipe].plane[PLANE_PRIMARY],
  4617. wm->pipe[pipe].plane[PLANE_CURSOR],
  4618. wm->pipe[pipe].plane[PLANE_SPRITE0]);
  4619. }
  4620. DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
  4621. wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
  4622. DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
  4623. wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
  4624. DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
  4625. yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
  4626. }
  4627. void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
  4628. {
  4629. struct intel_plane *plane;
  4630. struct intel_crtc *crtc;
  4631. mutex_lock(&dev_priv->wm.wm_mutex);
  4632. for_each_intel_plane(&dev_priv->drm, plane) {
  4633. struct intel_crtc *crtc =
  4634. intel_get_crtc_for_pipe(dev_priv, plane->pipe);
  4635. struct intel_crtc_state *crtc_state =
  4636. to_intel_crtc_state(crtc->base.state);
  4637. struct intel_plane_state *plane_state =
  4638. to_intel_plane_state(plane->base.state);
  4639. struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
  4640. enum plane_id plane_id = plane->id;
  4641. int level;
  4642. if (plane_state->base.visible)
  4643. continue;
  4644. for (level = 0; level < 3; level++) {
  4645. struct g4x_pipe_wm *raw =
  4646. &crtc_state->wm.g4x.raw[level];
  4647. raw->plane[plane_id] = 0;
  4648. wm_state->wm.plane[plane_id] = 0;
  4649. }
  4650. if (plane_id == PLANE_PRIMARY) {
  4651. for (level = 0; level < 3; level++) {
  4652. struct g4x_pipe_wm *raw =
  4653. &crtc_state->wm.g4x.raw[level];
  4654. raw->fbc = 0;
  4655. }
  4656. wm_state->sr.fbc = 0;
  4657. wm_state->hpll.fbc = 0;
  4658. wm_state->fbc_en = false;
  4659. }
  4660. }
  4661. for_each_intel_crtc(&dev_priv->drm, crtc) {
  4662. struct intel_crtc_state *crtc_state =
  4663. to_intel_crtc_state(crtc->base.state);
  4664. crtc_state->wm.g4x.intermediate =
  4665. crtc_state->wm.g4x.optimal;
  4666. crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
  4667. }
  4668. g4x_program_watermarks(dev_priv);
  4669. mutex_unlock(&dev_priv->wm.wm_mutex);
  4670. }
  4671. void vlv_wm_get_hw_state(struct drm_device *dev)
  4672. {
  4673. struct drm_i915_private *dev_priv = to_i915(dev);
  4674. struct vlv_wm_values *wm = &dev_priv->wm.vlv;
  4675. struct intel_crtc *crtc;
  4676. u32 val;
  4677. vlv_read_wm_values(dev_priv, wm);
  4678. wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  4679. wm->level = VLV_WM_LEVEL_PM2;
  4680. if (IS_CHERRYVIEW(dev_priv)) {
  4681. mutex_lock(&dev_priv->pcu_lock);
  4682. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  4683. if (val & DSP_MAXFIFO_PM5_ENABLE)
  4684. wm->level = VLV_WM_LEVEL_PM5;
  4685. /*
  4686. * If DDR DVFS is disabled in the BIOS, Punit
  4687. * will never ack the request. So if that happens
  4688. * assume we don't have to enable/disable DDR DVFS
  4689. * dynamically. To test that just set the REQ_ACK
  4690. * bit to poke the Punit, but don't change the
  4691. * HIGH/LOW bits so that we don't actually change
  4692. * the current state.
  4693. */
  4694. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  4695. val |= FORCE_DDR_FREQ_REQ_ACK;
  4696. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  4697. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  4698. FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
  4699. DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
  4700. "assuming DDR DVFS is disabled\n");
  4701. dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
  4702. } else {
  4703. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  4704. if ((val & FORCE_DDR_HIGH_FREQ) == 0)
  4705. wm->level = VLV_WM_LEVEL_DDR_DVFS;
  4706. }
  4707. mutex_unlock(&dev_priv->pcu_lock);
  4708. }
  4709. for_each_intel_crtc(dev, crtc) {
  4710. struct intel_crtc_state *crtc_state =
  4711. to_intel_crtc_state(crtc->base.state);
  4712. struct vlv_wm_state *active = &crtc->wm.active.vlv;
  4713. const struct vlv_fifo_state *fifo_state =
  4714. &crtc_state->wm.vlv.fifo_state;
  4715. enum pipe pipe = crtc->pipe;
  4716. enum plane_id plane_id;
  4717. int level;
  4718. vlv_get_fifo_size(crtc_state);
  4719. active->num_levels = wm->level + 1;
  4720. active->cxsr = wm->cxsr;
  4721. for (level = 0; level < active->num_levels; level++) {
  4722. struct g4x_pipe_wm *raw =
  4723. &crtc_state->wm.vlv.raw[level];
  4724. active->sr[level].plane = wm->sr.plane;
  4725. active->sr[level].cursor = wm->sr.cursor;
  4726. for_each_plane_id_on_crtc(crtc, plane_id) {
  4727. active->wm[level].plane[plane_id] =
  4728. wm->pipe[pipe].plane[plane_id];
  4729. raw->plane[plane_id] =
  4730. vlv_invert_wm_value(active->wm[level].plane[plane_id],
  4731. fifo_state->plane[plane_id]);
  4732. }
  4733. }
  4734. for_each_plane_id_on_crtc(crtc, plane_id)
  4735. vlv_raw_plane_wm_set(crtc_state, level,
  4736. plane_id, USHRT_MAX);
  4737. vlv_invalidate_wms(crtc, active, level);
  4738. crtc_state->wm.vlv.optimal = *active;
  4739. crtc_state->wm.vlv.intermediate = *active;
  4740. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
  4741. pipe_name(pipe),
  4742. wm->pipe[pipe].plane[PLANE_PRIMARY],
  4743. wm->pipe[pipe].plane[PLANE_CURSOR],
  4744. wm->pipe[pipe].plane[PLANE_SPRITE0],
  4745. wm->pipe[pipe].plane[PLANE_SPRITE1]);
  4746. }
  4747. DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
  4748. wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
  4749. }
  4750. void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
  4751. {
  4752. struct intel_plane *plane;
  4753. struct intel_crtc *crtc;
  4754. mutex_lock(&dev_priv->wm.wm_mutex);
  4755. for_each_intel_plane(&dev_priv->drm, plane) {
  4756. struct intel_crtc *crtc =
  4757. intel_get_crtc_for_pipe(dev_priv, plane->pipe);
  4758. struct intel_crtc_state *crtc_state =
  4759. to_intel_crtc_state(crtc->base.state);
  4760. struct intel_plane_state *plane_state =
  4761. to_intel_plane_state(plane->base.state);
  4762. struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
  4763. const struct vlv_fifo_state *fifo_state =
  4764. &crtc_state->wm.vlv.fifo_state;
  4765. enum plane_id plane_id = plane->id;
  4766. int level;
  4767. if (plane_state->base.visible)
  4768. continue;
  4769. for (level = 0; level < wm_state->num_levels; level++) {
  4770. struct g4x_pipe_wm *raw =
  4771. &crtc_state->wm.vlv.raw[level];
  4772. raw->plane[plane_id] = 0;
  4773. wm_state->wm[level].plane[plane_id] =
  4774. vlv_invert_wm_value(raw->plane[plane_id],
  4775. fifo_state->plane[plane_id]);
  4776. }
  4777. }
  4778. for_each_intel_crtc(&dev_priv->drm, crtc) {
  4779. struct intel_crtc_state *crtc_state =
  4780. to_intel_crtc_state(crtc->base.state);
  4781. crtc_state->wm.vlv.intermediate =
  4782. crtc_state->wm.vlv.optimal;
  4783. crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
  4784. }
  4785. vlv_program_watermarks(dev_priv);
  4786. mutex_unlock(&dev_priv->wm.wm_mutex);
  4787. }
  4788. /*
  4789. * FIXME should probably kill this and improve
  4790. * the real watermark readout/sanitation instead
  4791. */
  4792. static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
  4793. {
  4794. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4795. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4796. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4797. /*
  4798. * Don't touch WM1S_LP_EN here.
  4799. * Doing so could cause underruns.
  4800. */
  4801. }
  4802. void ilk_wm_get_hw_state(struct drm_device *dev)
  4803. {
  4804. struct drm_i915_private *dev_priv = to_i915(dev);
  4805. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  4806. struct drm_crtc *crtc;
  4807. ilk_init_lp_watermarks(dev_priv);
  4808. for_each_crtc(dev, crtc)
  4809. ilk_pipe_wm_get_hw_state(crtc);
  4810. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  4811. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  4812. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  4813. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  4814. if (INTEL_GEN(dev_priv) >= 7) {
  4815. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  4816. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  4817. }
  4818. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  4819. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  4820. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  4821. else if (IS_IVYBRIDGE(dev_priv))
  4822. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  4823. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  4824. hw->enable_fbc_wm =
  4825. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  4826. }
  4827. /**
  4828. * intel_update_watermarks - update FIFO watermark values based on current modes
  4829. *
  4830. * Calculate watermark values for the various WM regs based on current mode
  4831. * and plane configuration.
  4832. *
  4833. * There are several cases to deal with here:
  4834. * - normal (i.e. non-self-refresh)
  4835. * - self-refresh (SR) mode
  4836. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4837. * - lines are small relative to FIFO size (buffer can hold more than 2
  4838. * lines), so need to account for TLB latency
  4839. *
  4840. * The normal calculation is:
  4841. * watermark = dotclock * bytes per pixel * latency
  4842. * where latency is platform & configuration dependent (we assume pessimal
  4843. * values here).
  4844. *
  4845. * The SR calculation is:
  4846. * watermark = (trunc(latency/line time)+1) * surface width *
  4847. * bytes per pixel
  4848. * where
  4849. * line time = htotal / dotclock
  4850. * surface width = hdisplay for normal plane and 64 for cursor
  4851. * and latency is assumed to be high, as above.
  4852. *
  4853. * The final value programmed to the register should always be rounded up,
  4854. * and include an extra 2 entries to account for clock crossings.
  4855. *
  4856. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4857. * to set the non-SR watermarks to 8.
  4858. */
  4859. void intel_update_watermarks(struct intel_crtc *crtc)
  4860. {
  4861. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  4862. if (dev_priv->display.update_wm)
  4863. dev_priv->display.update_wm(crtc);
  4864. }
  4865. void intel_enable_ipc(struct drm_i915_private *dev_priv)
  4866. {
  4867. u32 val;
  4868. /* Display WA #0477 WaDisableIPC: skl */
  4869. if (IS_SKYLAKE(dev_priv)) {
  4870. dev_priv->ipc_enabled = false;
  4871. return;
  4872. }
  4873. val = I915_READ(DISP_ARB_CTL2);
  4874. if (dev_priv->ipc_enabled)
  4875. val |= DISP_IPC_ENABLE;
  4876. else
  4877. val &= ~DISP_IPC_ENABLE;
  4878. I915_WRITE(DISP_ARB_CTL2, val);
  4879. }
  4880. void intel_init_ipc(struct drm_i915_private *dev_priv)
  4881. {
  4882. dev_priv->ipc_enabled = false;
  4883. if (!HAS_IPC(dev_priv))
  4884. return;
  4885. dev_priv->ipc_enabled = true;
  4886. intel_enable_ipc(dev_priv);
  4887. }
  4888. /*
  4889. * Lock protecting IPS related data structures
  4890. */
  4891. DEFINE_SPINLOCK(mchdev_lock);
  4892. /* Global for IPS driver to get at the current i915 device. Protected by
  4893. * mchdev_lock. */
  4894. static struct drm_i915_private *i915_mch_dev;
  4895. bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
  4896. {
  4897. u16 rgvswctl;
  4898. lockdep_assert_held(&mchdev_lock);
  4899. rgvswctl = I915_READ16(MEMSWCTL);
  4900. if (rgvswctl & MEMCTL_CMD_STS) {
  4901. DRM_DEBUG("gpu busy, RCS change rejected\n");
  4902. return false; /* still busy with another command */
  4903. }
  4904. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  4905. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  4906. I915_WRITE16(MEMSWCTL, rgvswctl);
  4907. POSTING_READ16(MEMSWCTL);
  4908. rgvswctl |= MEMCTL_CMD_STS;
  4909. I915_WRITE16(MEMSWCTL, rgvswctl);
  4910. return true;
  4911. }
  4912. static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
  4913. {
  4914. u32 rgvmodectl;
  4915. u8 fmax, fmin, fstart, vstart;
  4916. spin_lock_irq(&mchdev_lock);
  4917. rgvmodectl = I915_READ(MEMMODECTL);
  4918. /* Enable temp reporting */
  4919. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  4920. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  4921. /* 100ms RC evaluation intervals */
  4922. I915_WRITE(RCUPEI, 100000);
  4923. I915_WRITE(RCDNEI, 100000);
  4924. /* Set max/min thresholds to 90ms and 80ms respectively */
  4925. I915_WRITE(RCBMAXAVG, 90000);
  4926. I915_WRITE(RCBMINAVG, 80000);
  4927. I915_WRITE(MEMIHYST, 1);
  4928. /* Set up min, max, and cur for interrupt handling */
  4929. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  4930. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  4931. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  4932. MEMMODE_FSTART_SHIFT;
  4933. vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
  4934. PXVFREQ_PX_SHIFT;
  4935. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  4936. dev_priv->ips.fstart = fstart;
  4937. dev_priv->ips.max_delay = fstart;
  4938. dev_priv->ips.min_delay = fmin;
  4939. dev_priv->ips.cur_delay = fstart;
  4940. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  4941. fmax, fmin, fstart);
  4942. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  4943. /*
  4944. * Interrupts will be enabled in ironlake_irq_postinstall
  4945. */
  4946. I915_WRITE(VIDSTART, vstart);
  4947. POSTING_READ(VIDSTART);
  4948. rgvmodectl |= MEMMODE_SWMODE_EN;
  4949. I915_WRITE(MEMMODECTL, rgvmodectl);
  4950. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  4951. DRM_ERROR("stuck trying to change perf mode\n");
  4952. mdelay(1);
  4953. ironlake_set_drps(dev_priv, fstart);
  4954. dev_priv->ips.last_count1 = I915_READ(DMIEC) +
  4955. I915_READ(DDREC) + I915_READ(CSIEC);
  4956. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  4957. dev_priv->ips.last_count2 = I915_READ(GFXEC);
  4958. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  4959. spin_unlock_irq(&mchdev_lock);
  4960. }
  4961. static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
  4962. {
  4963. u16 rgvswctl;
  4964. spin_lock_irq(&mchdev_lock);
  4965. rgvswctl = I915_READ16(MEMSWCTL);
  4966. /* Ack interrupts, disable EFC interrupt */
  4967. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  4968. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  4969. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  4970. I915_WRITE(DEIIR, DE_PCU_EVENT);
  4971. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  4972. /* Go back to the starting frequency */
  4973. ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
  4974. mdelay(1);
  4975. rgvswctl |= MEMCTL_CMD_STS;
  4976. I915_WRITE(MEMSWCTL, rgvswctl);
  4977. mdelay(1);
  4978. spin_unlock_irq(&mchdev_lock);
  4979. }
  4980. /* There's a funny hw issue where the hw returns all 0 when reading from
  4981. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  4982. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  4983. * all limits and the gpu stuck at whatever frequency it is at atm).
  4984. */
  4985. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  4986. {
  4987. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  4988. u32 limits;
  4989. /* Only set the down limit when we've reached the lowest level to avoid
  4990. * getting more interrupts, otherwise leave this clear. This prevents a
  4991. * race in the hw when coming out of rc6: There's a tiny window where
  4992. * the hw runs at the minimal clock before selecting the desired
  4993. * frequency, if the down threshold expires in that window we will not
  4994. * receive a down interrupt. */
  4995. if (INTEL_GEN(dev_priv) >= 9) {
  4996. limits = (rps->max_freq_softlimit) << 23;
  4997. if (val <= rps->min_freq_softlimit)
  4998. limits |= (rps->min_freq_softlimit) << 14;
  4999. } else {
  5000. limits = rps->max_freq_softlimit << 24;
  5001. if (val <= rps->min_freq_softlimit)
  5002. limits |= rps->min_freq_softlimit << 16;
  5003. }
  5004. return limits;
  5005. }
  5006. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  5007. {
  5008. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5009. int new_power;
  5010. u32 threshold_up = 0, threshold_down = 0; /* in % */
  5011. u32 ei_up = 0, ei_down = 0;
  5012. new_power = rps->power;
  5013. switch (rps->power) {
  5014. case LOW_POWER:
  5015. if (val > rps->efficient_freq + 1 &&
  5016. val > rps->cur_freq)
  5017. new_power = BETWEEN;
  5018. break;
  5019. case BETWEEN:
  5020. if (val <= rps->efficient_freq &&
  5021. val < rps->cur_freq)
  5022. new_power = LOW_POWER;
  5023. else if (val >= rps->rp0_freq &&
  5024. val > rps->cur_freq)
  5025. new_power = HIGH_POWER;
  5026. break;
  5027. case HIGH_POWER:
  5028. if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
  5029. val < rps->cur_freq)
  5030. new_power = BETWEEN;
  5031. break;
  5032. }
  5033. /* Max/min bins are special */
  5034. if (val <= rps->min_freq_softlimit)
  5035. new_power = LOW_POWER;
  5036. if (val >= rps->max_freq_softlimit)
  5037. new_power = HIGH_POWER;
  5038. if (new_power == rps->power)
  5039. return;
  5040. /* Note the units here are not exactly 1us, but 1280ns. */
  5041. switch (new_power) {
  5042. case LOW_POWER:
  5043. /* Upclock if more than 95% busy over 16ms */
  5044. ei_up = 16000;
  5045. threshold_up = 95;
  5046. /* Downclock if less than 85% busy over 32ms */
  5047. ei_down = 32000;
  5048. threshold_down = 85;
  5049. break;
  5050. case BETWEEN:
  5051. /* Upclock if more than 90% busy over 13ms */
  5052. ei_up = 13000;
  5053. threshold_up = 90;
  5054. /* Downclock if less than 75% busy over 32ms */
  5055. ei_down = 32000;
  5056. threshold_down = 75;
  5057. break;
  5058. case HIGH_POWER:
  5059. /* Upclock if more than 85% busy over 10ms */
  5060. ei_up = 10000;
  5061. threshold_up = 85;
  5062. /* Downclock if less than 60% busy over 32ms */
  5063. ei_down = 32000;
  5064. threshold_down = 60;
  5065. break;
  5066. }
  5067. /* When byt can survive without system hang with dynamic
  5068. * sw freq adjustments, this restriction can be lifted.
  5069. */
  5070. if (IS_VALLEYVIEW(dev_priv))
  5071. goto skip_hw_write;
  5072. I915_WRITE(GEN6_RP_UP_EI,
  5073. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  5074. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  5075. GT_INTERVAL_FROM_US(dev_priv,
  5076. ei_up * threshold_up / 100));
  5077. I915_WRITE(GEN6_RP_DOWN_EI,
  5078. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  5079. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  5080. GT_INTERVAL_FROM_US(dev_priv,
  5081. ei_down * threshold_down / 100));
  5082. I915_WRITE(GEN6_RP_CONTROL,
  5083. GEN6_RP_MEDIA_TURBO |
  5084. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5085. GEN6_RP_MEDIA_IS_GFX |
  5086. GEN6_RP_ENABLE |
  5087. GEN6_RP_UP_BUSY_AVG |
  5088. GEN6_RP_DOWN_IDLE_AVG);
  5089. skip_hw_write:
  5090. rps->power = new_power;
  5091. rps->up_threshold = threshold_up;
  5092. rps->down_threshold = threshold_down;
  5093. rps->last_adj = 0;
  5094. }
  5095. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  5096. {
  5097. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5098. u32 mask = 0;
  5099. /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
  5100. if (val > rps->min_freq_softlimit)
  5101. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  5102. if (val < rps->max_freq_softlimit)
  5103. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  5104. mask &= dev_priv->pm_rps_events;
  5105. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  5106. }
  5107. /* gen6_set_rps is called to update the frequency request, but should also be
  5108. * called when the range (min_delay and max_delay) is modified so that we can
  5109. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  5110. static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
  5111. {
  5112. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5113. /* min/max delay may still have been modified so be sure to
  5114. * write the limits value.
  5115. */
  5116. if (val != rps->cur_freq) {
  5117. gen6_set_rps_thresholds(dev_priv, val);
  5118. if (INTEL_GEN(dev_priv) >= 9)
  5119. I915_WRITE(GEN6_RPNSWREQ,
  5120. GEN9_FREQUENCY(val));
  5121. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  5122. I915_WRITE(GEN6_RPNSWREQ,
  5123. HSW_FREQUENCY(val));
  5124. else
  5125. I915_WRITE(GEN6_RPNSWREQ,
  5126. GEN6_FREQUENCY(val) |
  5127. GEN6_OFFSET(0) |
  5128. GEN6_AGGRESSIVE_TURBO);
  5129. }
  5130. /* Make sure we continue to get interrupts
  5131. * until we hit the minimum or maximum frequencies.
  5132. */
  5133. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  5134. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  5135. rps->cur_freq = val;
  5136. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  5137. return 0;
  5138. }
  5139. static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
  5140. {
  5141. int err;
  5142. if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
  5143. "Odd GPU freq value\n"))
  5144. val &= ~1;
  5145. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  5146. if (val != dev_priv->gt_pm.rps.cur_freq) {
  5147. err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  5148. if (err)
  5149. return err;
  5150. gen6_set_rps_thresholds(dev_priv, val);
  5151. }
  5152. dev_priv->gt_pm.rps.cur_freq = val;
  5153. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  5154. return 0;
  5155. }
  5156. /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
  5157. *
  5158. * * If Gfx is Idle, then
  5159. * 1. Forcewake Media well.
  5160. * 2. Request idle freq.
  5161. * 3. Release Forcewake of Media well.
  5162. */
  5163. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  5164. {
  5165. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5166. u32 val = rps->idle_freq;
  5167. int err;
  5168. if (rps->cur_freq <= val)
  5169. return;
  5170. /* The punit delays the write of the frequency and voltage until it
  5171. * determines the GPU is awake. During normal usage we don't want to
  5172. * waste power changing the frequency if the GPU is sleeping (rc6).
  5173. * However, the GPU and driver is now idle and we do not want to delay
  5174. * switching to minimum voltage (reducing power whilst idle) as we do
  5175. * not expect to be woken in the near future and so must flush the
  5176. * change by waking the device.
  5177. *
  5178. * We choose to take the media powerwell (either would do to trick the
  5179. * punit into committing the voltage change) as that takes a lot less
  5180. * power than the render powerwell.
  5181. */
  5182. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
  5183. err = valleyview_set_rps(dev_priv, val);
  5184. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
  5185. if (err)
  5186. DRM_ERROR("Failed to set RPS for idle\n");
  5187. }
  5188. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  5189. {
  5190. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5191. mutex_lock(&dev_priv->pcu_lock);
  5192. if (rps->enabled) {
  5193. u8 freq;
  5194. if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
  5195. gen6_rps_reset_ei(dev_priv);
  5196. I915_WRITE(GEN6_PMINTRMSK,
  5197. gen6_rps_pm_mask(dev_priv, rps->cur_freq));
  5198. gen6_enable_rps_interrupts(dev_priv);
  5199. /* Use the user's desired frequency as a guide, but for better
  5200. * performance, jump directly to RPe as our starting frequency.
  5201. */
  5202. freq = max(rps->cur_freq,
  5203. rps->efficient_freq);
  5204. if (intel_set_rps(dev_priv,
  5205. clamp(freq,
  5206. rps->min_freq_softlimit,
  5207. rps->max_freq_softlimit)))
  5208. DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
  5209. }
  5210. mutex_unlock(&dev_priv->pcu_lock);
  5211. }
  5212. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  5213. {
  5214. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5215. /* Flush our bottom-half so that it does not race with us
  5216. * setting the idle frequency and so that it is bounded by
  5217. * our rpm wakeref. And then disable the interrupts to stop any
  5218. * futher RPS reclocking whilst we are asleep.
  5219. */
  5220. gen6_disable_rps_interrupts(dev_priv);
  5221. mutex_lock(&dev_priv->pcu_lock);
  5222. if (rps->enabled) {
  5223. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  5224. vlv_set_rps_idle(dev_priv);
  5225. else
  5226. gen6_set_rps(dev_priv, rps->idle_freq);
  5227. rps->last_adj = 0;
  5228. I915_WRITE(GEN6_PMINTRMSK,
  5229. gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  5230. }
  5231. mutex_unlock(&dev_priv->pcu_lock);
  5232. }
  5233. void gen6_rps_boost(struct drm_i915_gem_request *rq,
  5234. struct intel_rps_client *rps_client)
  5235. {
  5236. struct intel_rps *rps = &rq->i915->gt_pm.rps;
  5237. unsigned long flags;
  5238. bool boost;
  5239. /* This is intentionally racy! We peek at the state here, then
  5240. * validate inside the RPS worker.
  5241. */
  5242. if (!rps->enabled)
  5243. return;
  5244. boost = false;
  5245. spin_lock_irqsave(&rq->lock, flags);
  5246. if (!rq->waitboost && !i915_gem_request_completed(rq)) {
  5247. atomic_inc(&rps->num_waiters);
  5248. rq->waitboost = true;
  5249. boost = true;
  5250. }
  5251. spin_unlock_irqrestore(&rq->lock, flags);
  5252. if (!boost)
  5253. return;
  5254. if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
  5255. schedule_work(&rps->work);
  5256. atomic_inc(rps_client ? &rps_client->boosts : &rps->boosts);
  5257. }
  5258. int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
  5259. {
  5260. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5261. int err;
  5262. lockdep_assert_held(&dev_priv->pcu_lock);
  5263. GEM_BUG_ON(val > rps->max_freq);
  5264. GEM_BUG_ON(val < rps->min_freq);
  5265. if (!rps->enabled) {
  5266. rps->cur_freq = val;
  5267. return 0;
  5268. }
  5269. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  5270. err = valleyview_set_rps(dev_priv, val);
  5271. else
  5272. err = gen6_set_rps(dev_priv, val);
  5273. return err;
  5274. }
  5275. static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
  5276. {
  5277. I915_WRITE(GEN6_RC_CONTROL, 0);
  5278. I915_WRITE(GEN9_PG_ENABLE, 0);
  5279. }
  5280. static void gen9_disable_rps(struct drm_i915_private *dev_priv)
  5281. {
  5282. I915_WRITE(GEN6_RP_CONTROL, 0);
  5283. }
  5284. static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
  5285. {
  5286. I915_WRITE(GEN6_RC_CONTROL, 0);
  5287. }
  5288. static void gen6_disable_rps(struct drm_i915_private *dev_priv)
  5289. {
  5290. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  5291. I915_WRITE(GEN6_RP_CONTROL, 0);
  5292. }
  5293. static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
  5294. {
  5295. I915_WRITE(GEN6_RC_CONTROL, 0);
  5296. }
  5297. static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
  5298. {
  5299. I915_WRITE(GEN6_RP_CONTROL, 0);
  5300. }
  5301. static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
  5302. {
  5303. /* We're doing forcewake before Disabling RC6,
  5304. * This what the BIOS expects when going into suspend */
  5305. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5306. I915_WRITE(GEN6_RC_CONTROL, 0);
  5307. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5308. }
  5309. static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
  5310. {
  5311. I915_WRITE(GEN6_RP_CONTROL, 0);
  5312. }
  5313. static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
  5314. {
  5315. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  5316. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  5317. mode = GEN6_RC_CTL_RC6_ENABLE;
  5318. else
  5319. mode = 0;
  5320. }
  5321. if (HAS_RC6p(dev_priv))
  5322. DRM_DEBUG_DRIVER("Enabling RC6 states: "
  5323. "RC6 %s RC6p %s RC6pp %s\n",
  5324. onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
  5325. onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
  5326. onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
  5327. else
  5328. DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
  5329. onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
  5330. }
  5331. static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
  5332. {
  5333. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  5334. bool enable_rc6 = true;
  5335. unsigned long rc6_ctx_base;
  5336. u32 rc_ctl;
  5337. int rc_sw_target;
  5338. rc_ctl = I915_READ(GEN6_RC_CONTROL);
  5339. rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
  5340. RC_SW_TARGET_STATE_SHIFT;
  5341. DRM_DEBUG_DRIVER("BIOS enabled RC states: "
  5342. "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
  5343. onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
  5344. onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
  5345. rc_sw_target);
  5346. if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
  5347. DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
  5348. enable_rc6 = false;
  5349. }
  5350. /*
  5351. * The exact context size is not known for BXT, so assume a page size
  5352. * for this check.
  5353. */
  5354. rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
  5355. if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
  5356. (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
  5357. ggtt->stolen_reserved_size))) {
  5358. DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
  5359. enable_rc6 = false;
  5360. }
  5361. if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
  5362. ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
  5363. ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
  5364. ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
  5365. DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
  5366. enable_rc6 = false;
  5367. }
  5368. if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
  5369. !I915_READ(GEN8_PUSHBUS_ENABLE) ||
  5370. !I915_READ(GEN8_PUSHBUS_SHIFT)) {
  5371. DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
  5372. enable_rc6 = false;
  5373. }
  5374. if (!I915_READ(GEN6_GFXPAUSE)) {
  5375. DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
  5376. enable_rc6 = false;
  5377. }
  5378. if (!I915_READ(GEN8_MISC_CTRL0)) {
  5379. DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
  5380. enable_rc6 = false;
  5381. }
  5382. return enable_rc6;
  5383. }
  5384. int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
  5385. {
  5386. /* No RC6 before Ironlake and code is gone for ilk. */
  5387. if (INTEL_INFO(dev_priv)->gen < 6)
  5388. return 0;
  5389. if (!enable_rc6)
  5390. return 0;
  5391. if (IS_GEN9_LP(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
  5392. DRM_INFO("RC6 disabled by BIOS\n");
  5393. return 0;
  5394. }
  5395. /* Respect the kernel parameter if it is set */
  5396. if (enable_rc6 >= 0) {
  5397. int mask;
  5398. if (HAS_RC6p(dev_priv))
  5399. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  5400. INTEL_RC6pp_ENABLE;
  5401. else
  5402. mask = INTEL_RC6_ENABLE;
  5403. if ((enable_rc6 & mask) != enable_rc6)
  5404. DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
  5405. "(requested %d, valid %d)\n",
  5406. enable_rc6 & mask, enable_rc6, mask);
  5407. return enable_rc6 & mask;
  5408. }
  5409. if (IS_IVYBRIDGE(dev_priv))
  5410. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  5411. return INTEL_RC6_ENABLE;
  5412. }
  5413. static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
  5414. {
  5415. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5416. /* All of these values are in units of 50MHz */
  5417. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  5418. if (IS_GEN9_LP(dev_priv)) {
  5419. u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  5420. rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
  5421. rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
  5422. rps->min_freq = (rp_state_cap >> 0) & 0xff;
  5423. } else {
  5424. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  5425. rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
  5426. rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
  5427. rps->min_freq = (rp_state_cap >> 16) & 0xff;
  5428. }
  5429. /* hw_max = RP0 until we check for overclocking */
  5430. rps->max_freq = rps->rp0_freq;
  5431. rps->efficient_freq = rps->rp1_freq;
  5432. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
  5433. IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5434. u32 ddcc_status = 0;
  5435. if (sandybridge_pcode_read(dev_priv,
  5436. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  5437. &ddcc_status) == 0)
  5438. rps->efficient_freq =
  5439. clamp_t(u8,
  5440. ((ddcc_status >> 8) & 0xff),
  5441. rps->min_freq,
  5442. rps->max_freq);
  5443. }
  5444. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5445. /* Store the frequency values in 16.66 MHZ units, which is
  5446. * the natural hardware unit for SKL
  5447. */
  5448. rps->rp0_freq *= GEN9_FREQ_SCALER;
  5449. rps->rp1_freq *= GEN9_FREQ_SCALER;
  5450. rps->min_freq *= GEN9_FREQ_SCALER;
  5451. rps->max_freq *= GEN9_FREQ_SCALER;
  5452. rps->efficient_freq *= GEN9_FREQ_SCALER;
  5453. }
  5454. }
  5455. static void reset_rps(struct drm_i915_private *dev_priv,
  5456. int (*set)(struct drm_i915_private *, u8))
  5457. {
  5458. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5459. u8 freq = rps->cur_freq;
  5460. /* force a reset */
  5461. rps->power = -1;
  5462. rps->cur_freq = -1;
  5463. if (set(dev_priv, freq))
  5464. DRM_ERROR("Failed to reset RPS to initial values\n");
  5465. }
  5466. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  5467. static void gen9_enable_rps(struct drm_i915_private *dev_priv)
  5468. {
  5469. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5470. /* Program defaults and thresholds for RPS*/
  5471. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  5472. GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
  5473. /* 1 second timeout*/
  5474. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  5475. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  5476. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  5477. /* Leaning on the below call to gen6_set_rps to program/setup the
  5478. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  5479. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  5480. reset_rps(dev_priv, gen6_set_rps);
  5481. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5482. }
  5483. static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
  5484. {
  5485. struct intel_engine_cs *engine;
  5486. enum intel_engine_id id;
  5487. u32 rc6_mode, rc6_mask = 0;
  5488. /* 1a: Software RC state - RC0 */
  5489. I915_WRITE(GEN6_RC_STATE, 0);
  5490. /* 1b: Get forcewake during program sequence. Although the driver
  5491. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  5492. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5493. /* 2a: Disable RC states. */
  5494. I915_WRITE(GEN6_RC_CONTROL, 0);
  5495. /* 2b: Program RC6 thresholds.*/
  5496. /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
  5497. if (IS_SKYLAKE(dev_priv))
  5498. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
  5499. else
  5500. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  5501. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  5502. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  5503. for_each_engine(engine, dev_priv, id)
  5504. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5505. if (HAS_GUC(dev_priv))
  5506. I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
  5507. I915_WRITE(GEN6_RC_SLEEP, 0);
  5508. /* 2c: Program Coarse Power Gating Policies. */
  5509. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  5510. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  5511. /* 3a: Enable RC6 */
  5512. if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
  5513. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  5514. DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
  5515. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  5516. /* WaRsUseTimeoutMode:cnl (pre-prod) */
  5517. if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
  5518. rc6_mode = GEN7_RC_CTL_TO_MODE;
  5519. else
  5520. rc6_mode = GEN6_RC_CTL_EI_MODE(1);
  5521. I915_WRITE(GEN6_RC_CONTROL,
  5522. GEN6_RC_CTL_HW_ENABLE | rc6_mode | rc6_mask);
  5523. /*
  5524. * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  5525. * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
  5526. */
  5527. if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
  5528. I915_WRITE(GEN9_PG_ENABLE, 0);
  5529. else
  5530. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  5531. (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
  5532. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5533. }
  5534. static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
  5535. {
  5536. struct intel_engine_cs *engine;
  5537. enum intel_engine_id id;
  5538. uint32_t rc6_mask = 0;
  5539. /* 1a: Software RC state - RC0 */
  5540. I915_WRITE(GEN6_RC_STATE, 0);
  5541. /* 1b: Get forcewake during program sequence. Although the driver
  5542. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  5543. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5544. /* 2a: Disable RC states. */
  5545. I915_WRITE(GEN6_RC_CONTROL, 0);
  5546. /* 2b: Program RC6 thresholds.*/
  5547. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  5548. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  5549. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  5550. for_each_engine(engine, dev_priv, id)
  5551. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5552. I915_WRITE(GEN6_RC_SLEEP, 0);
  5553. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  5554. /* 3: Enable RC6 */
  5555. if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
  5556. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  5557. intel_print_rc6_info(dev_priv, rc6_mask);
  5558. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  5559. GEN7_RC_CTL_TO_MODE |
  5560. rc6_mask);
  5561. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5562. }
  5563. static void gen8_enable_rps(struct drm_i915_private *dev_priv)
  5564. {
  5565. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5566. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5567. /* 1 Program defaults and thresholds for RPS*/
  5568. I915_WRITE(GEN6_RPNSWREQ,
  5569. HSW_FREQUENCY(rps->rp1_freq));
  5570. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  5571. HSW_FREQUENCY(rps->rp1_freq));
  5572. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  5573. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  5574. /* Docs recommend 900MHz, and 300 MHz respectively */
  5575. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  5576. rps->max_freq_softlimit << 24 |
  5577. rps->min_freq_softlimit << 16);
  5578. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  5579. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  5580. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  5581. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  5582. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5583. /* 2: Enable RPS */
  5584. I915_WRITE(GEN6_RP_CONTROL,
  5585. GEN6_RP_MEDIA_TURBO |
  5586. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  5587. GEN6_RP_MEDIA_IS_GFX |
  5588. GEN6_RP_ENABLE |
  5589. GEN6_RP_UP_BUSY_AVG |
  5590. GEN6_RP_DOWN_IDLE_AVG);
  5591. reset_rps(dev_priv, gen6_set_rps);
  5592. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5593. }
  5594. static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
  5595. {
  5596. struct intel_engine_cs *engine;
  5597. enum intel_engine_id id;
  5598. u32 rc6vids, rc6_mask = 0;
  5599. u32 gtfifodbg;
  5600. int rc6_mode;
  5601. int ret;
  5602. I915_WRITE(GEN6_RC_STATE, 0);
  5603. /* Clear the DBG now so we don't confuse earlier errors */
  5604. gtfifodbg = I915_READ(GTFIFODBG);
  5605. if (gtfifodbg) {
  5606. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  5607. I915_WRITE(GTFIFODBG, gtfifodbg);
  5608. }
  5609. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5610. /* disable the counters and set deterministic thresholds */
  5611. I915_WRITE(GEN6_RC_CONTROL, 0);
  5612. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  5613. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  5614. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  5615. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  5616. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  5617. for_each_engine(engine, dev_priv, id)
  5618. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  5619. I915_WRITE(GEN6_RC_SLEEP, 0);
  5620. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  5621. if (IS_IVYBRIDGE(dev_priv))
  5622. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  5623. else
  5624. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  5625. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  5626. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  5627. /* Check if we are enabling RC6 */
  5628. rc6_mode = intel_rc6_enabled();
  5629. if (rc6_mode & INTEL_RC6_ENABLE)
  5630. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  5631. /* We don't use those on Haswell */
  5632. if (!IS_HASWELL(dev_priv)) {
  5633. if (rc6_mode & INTEL_RC6p_ENABLE)
  5634. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  5635. if (rc6_mode & INTEL_RC6pp_ENABLE)
  5636. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  5637. }
  5638. intel_print_rc6_info(dev_priv, rc6_mask);
  5639. I915_WRITE(GEN6_RC_CONTROL,
  5640. rc6_mask |
  5641. GEN6_RC_CTL_EI_MODE(1) |
  5642. GEN6_RC_CTL_HW_ENABLE);
  5643. rc6vids = 0;
  5644. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  5645. if (IS_GEN6(dev_priv) && ret) {
  5646. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  5647. } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  5648. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  5649. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  5650. rc6vids &= 0xffff00;
  5651. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  5652. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  5653. if (ret)
  5654. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  5655. }
  5656. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5657. }
  5658. static void gen6_enable_rps(struct drm_i915_private *dev_priv)
  5659. {
  5660. /* Here begins a magic sequence of register writes to enable
  5661. * auto-downclocking.
  5662. *
  5663. * Perhaps there might be some value in exposing these to
  5664. * userspace...
  5665. */
  5666. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  5667. /* Power down if completely idle for over 50ms */
  5668. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  5669. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5670. reset_rps(dev_priv, gen6_set_rps);
  5671. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  5672. }
  5673. static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  5674. {
  5675. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5676. int min_freq = 15;
  5677. unsigned int gpu_freq;
  5678. unsigned int max_ia_freq, min_ring_freq;
  5679. unsigned int max_gpu_freq, min_gpu_freq;
  5680. int scaling_factor = 180;
  5681. struct cpufreq_policy *policy;
  5682. WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
  5683. policy = cpufreq_cpu_get(0);
  5684. if (policy) {
  5685. max_ia_freq = policy->cpuinfo.max_freq;
  5686. cpufreq_cpu_put(policy);
  5687. } else {
  5688. /*
  5689. * Default to measured freq if none found, PCU will ensure we
  5690. * don't go over
  5691. */
  5692. max_ia_freq = tsc_khz;
  5693. }
  5694. /* Convert from kHz to MHz */
  5695. max_ia_freq /= 1000;
  5696. min_ring_freq = I915_READ(DCLK) & 0xf;
  5697. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  5698. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  5699. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5700. /* Convert GT frequency to 50 HZ units */
  5701. min_gpu_freq = rps->min_freq / GEN9_FREQ_SCALER;
  5702. max_gpu_freq = rps->max_freq / GEN9_FREQ_SCALER;
  5703. } else {
  5704. min_gpu_freq = rps->min_freq;
  5705. max_gpu_freq = rps->max_freq;
  5706. }
  5707. /*
  5708. * For each potential GPU frequency, load a ring frequency we'd like
  5709. * to use for memory access. We do this by specifying the IA frequency
  5710. * the PCU should use as a reference to determine the ring frequency.
  5711. */
  5712. for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
  5713. int diff = max_gpu_freq - gpu_freq;
  5714. unsigned int ia_freq = 0, ring_freq = 0;
  5715. if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) {
  5716. /*
  5717. * ring_freq = 2 * GT. ring_freq is in 100MHz units
  5718. * No floor required for ring frequency on SKL.
  5719. */
  5720. ring_freq = gpu_freq;
  5721. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  5722. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  5723. ring_freq = max(min_ring_freq, gpu_freq);
  5724. } else if (IS_HASWELL(dev_priv)) {
  5725. ring_freq = mult_frac(gpu_freq, 5, 4);
  5726. ring_freq = max(min_ring_freq, ring_freq);
  5727. /* leave ia_freq as the default, chosen by cpufreq */
  5728. } else {
  5729. /* On older processors, there is no separate ring
  5730. * clock domain, so in order to boost the bandwidth
  5731. * of the ring, we need to upclock the CPU (ia_freq).
  5732. *
  5733. * For GPU frequencies less than 750MHz,
  5734. * just use the lowest ring freq.
  5735. */
  5736. if (gpu_freq < min_freq)
  5737. ia_freq = 800;
  5738. else
  5739. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  5740. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  5741. }
  5742. sandybridge_pcode_write(dev_priv,
  5743. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  5744. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  5745. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  5746. gpu_freq);
  5747. }
  5748. }
  5749. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  5750. {
  5751. u32 val, rp0;
  5752. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  5753. switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
  5754. case 8:
  5755. /* (2 * 4) config */
  5756. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  5757. break;
  5758. case 12:
  5759. /* (2 * 6) config */
  5760. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  5761. break;
  5762. case 16:
  5763. /* (2 * 8) config */
  5764. default:
  5765. /* Setting (2 * 8) Min RP0 for any other combination */
  5766. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  5767. break;
  5768. }
  5769. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  5770. return rp0;
  5771. }
  5772. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  5773. {
  5774. u32 val, rpe;
  5775. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  5776. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  5777. return rpe;
  5778. }
  5779. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  5780. {
  5781. u32 val, rp1;
  5782. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  5783. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  5784. return rp1;
  5785. }
  5786. static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  5787. {
  5788. u32 val, rpn;
  5789. val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
  5790. rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
  5791. FB_GFX_FREQ_FUSE_MASK);
  5792. return rpn;
  5793. }
  5794. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  5795. {
  5796. u32 val, rp1;
  5797. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  5798. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  5799. return rp1;
  5800. }
  5801. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  5802. {
  5803. u32 val, rp0;
  5804. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  5805. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  5806. /* Clamp to max */
  5807. rp0 = min_t(u32, rp0, 0xea);
  5808. return rp0;
  5809. }
  5810. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  5811. {
  5812. u32 val, rpe;
  5813. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  5814. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  5815. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  5816. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  5817. return rpe;
  5818. }
  5819. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  5820. {
  5821. u32 val;
  5822. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  5823. /*
  5824. * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
  5825. * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
  5826. * a BYT-M B0 the above register contains 0xbf. Moreover when setting
  5827. * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
  5828. * to make sure it matches what Punit accepts.
  5829. */
  5830. return max_t(u32, val, 0xc0);
  5831. }
  5832. /* Check that the pctx buffer wasn't move under us. */
  5833. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  5834. {
  5835. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  5836. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  5837. dev_priv->vlv_pctx->stolen->start);
  5838. }
  5839. /* Check that the pcbr address is not empty. */
  5840. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  5841. {
  5842. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  5843. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  5844. }
  5845. static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
  5846. {
  5847. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  5848. unsigned long pctx_paddr, paddr;
  5849. u32 pcbr;
  5850. int pctx_size = 32*1024;
  5851. pcbr = I915_READ(VLV_PCBR);
  5852. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  5853. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  5854. paddr = (dev_priv->mm.stolen_base +
  5855. (ggtt->stolen_size - pctx_size));
  5856. pctx_paddr = (paddr & (~4095));
  5857. I915_WRITE(VLV_PCBR, pctx_paddr);
  5858. }
  5859. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  5860. }
  5861. static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
  5862. {
  5863. struct drm_i915_gem_object *pctx;
  5864. unsigned long pctx_paddr;
  5865. u32 pcbr;
  5866. int pctx_size = 24*1024;
  5867. pcbr = I915_READ(VLV_PCBR);
  5868. if (pcbr) {
  5869. /* BIOS set it up already, grab the pre-alloc'd space */
  5870. int pcbr_offset;
  5871. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  5872. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
  5873. pcbr_offset,
  5874. I915_GTT_OFFSET_NONE,
  5875. pctx_size);
  5876. goto out;
  5877. }
  5878. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  5879. /*
  5880. * From the Gunit register HAS:
  5881. * The Gfx driver is expected to program this register and ensure
  5882. * proper allocation within Gfx stolen memory. For example, this
  5883. * register should be programmed such than the PCBR range does not
  5884. * overlap with other ranges, such as the frame buffer, protected
  5885. * memory, or any other relevant ranges.
  5886. */
  5887. pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
  5888. if (!pctx) {
  5889. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  5890. goto out;
  5891. }
  5892. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  5893. I915_WRITE(VLV_PCBR, pctx_paddr);
  5894. out:
  5895. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  5896. dev_priv->vlv_pctx = pctx;
  5897. }
  5898. static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
  5899. {
  5900. if (WARN_ON(!dev_priv->vlv_pctx))
  5901. return;
  5902. i915_gem_object_put(dev_priv->vlv_pctx);
  5903. dev_priv->vlv_pctx = NULL;
  5904. }
  5905. static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
  5906. {
  5907. dev_priv->gt_pm.rps.gpll_ref_freq =
  5908. vlv_get_cck_clock(dev_priv, "GPLL ref",
  5909. CCK_GPLL_CLOCK_CONTROL,
  5910. dev_priv->czclk_freq);
  5911. DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
  5912. dev_priv->gt_pm.rps.gpll_ref_freq);
  5913. }
  5914. static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
  5915. {
  5916. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5917. u32 val;
  5918. valleyview_setup_pctx(dev_priv);
  5919. vlv_init_gpll_ref_freq(dev_priv);
  5920. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  5921. switch ((val >> 6) & 3) {
  5922. case 0:
  5923. case 1:
  5924. dev_priv->mem_freq = 800;
  5925. break;
  5926. case 2:
  5927. dev_priv->mem_freq = 1066;
  5928. break;
  5929. case 3:
  5930. dev_priv->mem_freq = 1333;
  5931. break;
  5932. }
  5933. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  5934. rps->max_freq = valleyview_rps_max_freq(dev_priv);
  5935. rps->rp0_freq = rps->max_freq;
  5936. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  5937. intel_gpu_freq(dev_priv, rps->max_freq),
  5938. rps->max_freq);
  5939. rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  5940. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  5941. intel_gpu_freq(dev_priv, rps->efficient_freq),
  5942. rps->efficient_freq);
  5943. rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
  5944. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  5945. intel_gpu_freq(dev_priv, rps->rp1_freq),
  5946. rps->rp1_freq);
  5947. rps->min_freq = valleyview_rps_min_freq(dev_priv);
  5948. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  5949. intel_gpu_freq(dev_priv, rps->min_freq),
  5950. rps->min_freq);
  5951. }
  5952. static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
  5953. {
  5954. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  5955. u32 val;
  5956. cherryview_setup_pctx(dev_priv);
  5957. vlv_init_gpll_ref_freq(dev_priv);
  5958. mutex_lock(&dev_priv->sb_lock);
  5959. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  5960. mutex_unlock(&dev_priv->sb_lock);
  5961. switch ((val >> 2) & 0x7) {
  5962. case 3:
  5963. dev_priv->mem_freq = 2000;
  5964. break;
  5965. default:
  5966. dev_priv->mem_freq = 1600;
  5967. break;
  5968. }
  5969. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  5970. rps->max_freq = cherryview_rps_max_freq(dev_priv);
  5971. rps->rp0_freq = rps->max_freq;
  5972. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  5973. intel_gpu_freq(dev_priv, rps->max_freq),
  5974. rps->max_freq);
  5975. rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  5976. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  5977. intel_gpu_freq(dev_priv, rps->efficient_freq),
  5978. rps->efficient_freq);
  5979. rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
  5980. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  5981. intel_gpu_freq(dev_priv, rps->rp1_freq),
  5982. rps->rp1_freq);
  5983. rps->min_freq = cherryview_rps_min_freq(dev_priv);
  5984. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  5985. intel_gpu_freq(dev_priv, rps->min_freq),
  5986. rps->min_freq);
  5987. WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
  5988. rps->min_freq) & 1,
  5989. "Odd GPU freq values\n");
  5990. }
  5991. static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
  5992. {
  5993. valleyview_cleanup_pctx(dev_priv);
  5994. }
  5995. static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
  5996. {
  5997. struct intel_engine_cs *engine;
  5998. enum intel_engine_id id;
  5999. u32 gtfifodbg, rc6_mode = 0, pcbr;
  6000. gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
  6001. GT_FIFO_FREE_ENTRIES_CHV);
  6002. if (gtfifodbg) {
  6003. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  6004. gtfifodbg);
  6005. I915_WRITE(GTFIFODBG, gtfifodbg);
  6006. }
  6007. cherryview_check_pctx(dev_priv);
  6008. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  6009. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  6010. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  6011. /* Disable RC states. */
  6012. I915_WRITE(GEN6_RC_CONTROL, 0);
  6013. /* 2a: Program RC6 thresholds.*/
  6014. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  6015. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  6016. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  6017. for_each_engine(engine, dev_priv, id)
  6018. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  6019. I915_WRITE(GEN6_RC_SLEEP, 0);
  6020. /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
  6021. I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
  6022. /* Allows RC6 residency counter to work */
  6023. I915_WRITE(VLV_COUNTER_CONTROL,
  6024. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  6025. VLV_MEDIA_RC6_COUNT_EN |
  6026. VLV_RENDER_RC6_COUNT_EN));
  6027. /* For now we assume BIOS is allocating and populating the PCBR */
  6028. pcbr = I915_READ(VLV_PCBR);
  6029. /* 3: Enable RC6 */
  6030. if ((intel_rc6_enabled() & INTEL_RC6_ENABLE) &&
  6031. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  6032. rc6_mode = GEN7_RC_CTL_TO_MODE;
  6033. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  6034. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  6035. }
  6036. static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
  6037. {
  6038. u32 val;
  6039. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  6040. /* 1: Program defaults and thresholds for RPS*/
  6041. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  6042. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  6043. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  6044. I915_WRITE(GEN6_RP_UP_EI, 66000);
  6045. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  6046. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  6047. /* 2: Enable RPS */
  6048. I915_WRITE(GEN6_RP_CONTROL,
  6049. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  6050. GEN6_RP_MEDIA_IS_GFX |
  6051. GEN6_RP_ENABLE |
  6052. GEN6_RP_UP_BUSY_AVG |
  6053. GEN6_RP_DOWN_IDLE_AVG);
  6054. /* Setting Fixed Bias */
  6055. val = VLV_OVERRIDE_EN |
  6056. VLV_SOC_TDP_EN |
  6057. CHV_BIAS_CPU_50_SOC_50;
  6058. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  6059. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  6060. /* RPS code assumes GPLL is used */
  6061. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  6062. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  6063. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  6064. reset_rps(dev_priv, valleyview_set_rps);
  6065. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  6066. }
  6067. static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
  6068. {
  6069. struct intel_engine_cs *engine;
  6070. enum intel_engine_id id;
  6071. u32 gtfifodbg, rc6_mode = 0;
  6072. valleyview_check_pctx(dev_priv);
  6073. gtfifodbg = I915_READ(GTFIFODBG);
  6074. if (gtfifodbg) {
  6075. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  6076. gtfifodbg);
  6077. I915_WRITE(GTFIFODBG, gtfifodbg);
  6078. }
  6079. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  6080. /* Disable RC states. */
  6081. I915_WRITE(GEN6_RC_CONTROL, 0);
  6082. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  6083. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  6084. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  6085. for_each_engine(engine, dev_priv, id)
  6086. I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
  6087. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  6088. /* Allows RC6 residency counter to work */
  6089. I915_WRITE(VLV_COUNTER_CONTROL,
  6090. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  6091. VLV_MEDIA_RC0_COUNT_EN |
  6092. VLV_RENDER_RC0_COUNT_EN |
  6093. VLV_MEDIA_RC6_COUNT_EN |
  6094. VLV_RENDER_RC6_COUNT_EN));
  6095. if (intel_rc6_enabled() & INTEL_RC6_ENABLE)
  6096. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  6097. intel_print_rc6_info(dev_priv, rc6_mode);
  6098. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  6099. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  6100. }
  6101. static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
  6102. {
  6103. u32 val;
  6104. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  6105. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  6106. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  6107. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  6108. I915_WRITE(GEN6_RP_UP_EI, 66000);
  6109. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  6110. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  6111. I915_WRITE(GEN6_RP_CONTROL,
  6112. GEN6_RP_MEDIA_TURBO |
  6113. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  6114. GEN6_RP_MEDIA_IS_GFX |
  6115. GEN6_RP_ENABLE |
  6116. GEN6_RP_UP_BUSY_AVG |
  6117. GEN6_RP_DOWN_IDLE_CONT);
  6118. /* Setting Fixed Bias */
  6119. val = VLV_OVERRIDE_EN |
  6120. VLV_SOC_TDP_EN |
  6121. VLV_BIAS_CPU_125_SOC_875;
  6122. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  6123. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  6124. /* RPS code assumes GPLL is used */
  6125. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  6126. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  6127. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  6128. reset_rps(dev_priv, valleyview_set_rps);
  6129. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  6130. }
  6131. static unsigned long intel_pxfreq(u32 vidfreq)
  6132. {
  6133. unsigned long freq;
  6134. int div = (vidfreq & 0x3f0000) >> 16;
  6135. int post = (vidfreq & 0x3000) >> 12;
  6136. int pre = (vidfreq & 0x7);
  6137. if (!pre)
  6138. return 0;
  6139. freq = ((div * 133333) / ((1<<post) * pre));
  6140. return freq;
  6141. }
  6142. static const struct cparams {
  6143. u16 i;
  6144. u16 t;
  6145. u16 m;
  6146. u16 c;
  6147. } cparams[] = {
  6148. { 1, 1333, 301, 28664 },
  6149. { 1, 1066, 294, 24460 },
  6150. { 1, 800, 294, 25192 },
  6151. { 0, 1333, 276, 27605 },
  6152. { 0, 1066, 276, 27605 },
  6153. { 0, 800, 231, 23784 },
  6154. };
  6155. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  6156. {
  6157. u64 total_count, diff, ret;
  6158. u32 count1, count2, count3, m = 0, c = 0;
  6159. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  6160. int i;
  6161. lockdep_assert_held(&mchdev_lock);
  6162. diff1 = now - dev_priv->ips.last_time1;
  6163. /* Prevent division-by-zero if we are asking too fast.
  6164. * Also, we don't get interesting results if we are polling
  6165. * faster than once in 10ms, so just return the saved value
  6166. * in such cases.
  6167. */
  6168. if (diff1 <= 10)
  6169. return dev_priv->ips.chipset_power;
  6170. count1 = I915_READ(DMIEC);
  6171. count2 = I915_READ(DDREC);
  6172. count3 = I915_READ(CSIEC);
  6173. total_count = count1 + count2 + count3;
  6174. /* FIXME: handle per-counter overflow */
  6175. if (total_count < dev_priv->ips.last_count1) {
  6176. diff = ~0UL - dev_priv->ips.last_count1;
  6177. diff += total_count;
  6178. } else {
  6179. diff = total_count - dev_priv->ips.last_count1;
  6180. }
  6181. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  6182. if (cparams[i].i == dev_priv->ips.c_m &&
  6183. cparams[i].t == dev_priv->ips.r_t) {
  6184. m = cparams[i].m;
  6185. c = cparams[i].c;
  6186. break;
  6187. }
  6188. }
  6189. diff = div_u64(diff, diff1);
  6190. ret = ((m * diff) + c);
  6191. ret = div_u64(ret, 10);
  6192. dev_priv->ips.last_count1 = total_count;
  6193. dev_priv->ips.last_time1 = now;
  6194. dev_priv->ips.chipset_power = ret;
  6195. return ret;
  6196. }
  6197. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  6198. {
  6199. unsigned long val;
  6200. if (INTEL_INFO(dev_priv)->gen != 5)
  6201. return 0;
  6202. spin_lock_irq(&mchdev_lock);
  6203. val = __i915_chipset_val(dev_priv);
  6204. spin_unlock_irq(&mchdev_lock);
  6205. return val;
  6206. }
  6207. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  6208. {
  6209. unsigned long m, x, b;
  6210. u32 tsfs;
  6211. tsfs = I915_READ(TSFS);
  6212. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  6213. x = I915_READ8(TR1);
  6214. b = tsfs & TSFS_INTR_MASK;
  6215. return ((m * x) / 127) - b;
  6216. }
  6217. static int _pxvid_to_vd(u8 pxvid)
  6218. {
  6219. if (pxvid == 0)
  6220. return 0;
  6221. if (pxvid >= 8 && pxvid < 31)
  6222. pxvid = 31;
  6223. return (pxvid + 2) * 125;
  6224. }
  6225. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  6226. {
  6227. const int vd = _pxvid_to_vd(pxvid);
  6228. const int vm = vd - 1125;
  6229. if (INTEL_INFO(dev_priv)->is_mobile)
  6230. return vm > 0 ? vm : 0;
  6231. return vd;
  6232. }
  6233. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  6234. {
  6235. u64 now, diff, diffms;
  6236. u32 count;
  6237. lockdep_assert_held(&mchdev_lock);
  6238. now = ktime_get_raw_ns();
  6239. diffms = now - dev_priv->ips.last_time2;
  6240. do_div(diffms, NSEC_PER_MSEC);
  6241. /* Don't divide by 0 */
  6242. if (!diffms)
  6243. return;
  6244. count = I915_READ(GFXEC);
  6245. if (count < dev_priv->ips.last_count2) {
  6246. diff = ~0UL - dev_priv->ips.last_count2;
  6247. diff += count;
  6248. } else {
  6249. diff = count - dev_priv->ips.last_count2;
  6250. }
  6251. dev_priv->ips.last_count2 = count;
  6252. dev_priv->ips.last_time2 = now;
  6253. /* More magic constants... */
  6254. diff = diff * 1181;
  6255. diff = div_u64(diff, diffms * 10);
  6256. dev_priv->ips.gfx_power = diff;
  6257. }
  6258. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  6259. {
  6260. if (INTEL_INFO(dev_priv)->gen != 5)
  6261. return;
  6262. spin_lock_irq(&mchdev_lock);
  6263. __i915_update_gfx_val(dev_priv);
  6264. spin_unlock_irq(&mchdev_lock);
  6265. }
  6266. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  6267. {
  6268. unsigned long t, corr, state1, corr2, state2;
  6269. u32 pxvid, ext_v;
  6270. lockdep_assert_held(&mchdev_lock);
  6271. pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
  6272. pxvid = (pxvid >> 24) & 0x7f;
  6273. ext_v = pvid_to_extvid(dev_priv, pxvid);
  6274. state1 = ext_v;
  6275. t = i915_mch_val(dev_priv);
  6276. /* Revel in the empirically derived constants */
  6277. /* Correction factor in 1/100000 units */
  6278. if (t > 80)
  6279. corr = ((t * 2349) + 135940);
  6280. else if (t >= 50)
  6281. corr = ((t * 964) + 29317);
  6282. else /* < 50 */
  6283. corr = ((t * 301) + 1004);
  6284. corr = corr * ((150142 * state1) / 10000 - 78642);
  6285. corr /= 100000;
  6286. corr2 = (corr * dev_priv->ips.corr);
  6287. state2 = (corr2 * state1) / 10000;
  6288. state2 /= 100; /* convert to mW */
  6289. __i915_update_gfx_val(dev_priv);
  6290. return dev_priv->ips.gfx_power + state2;
  6291. }
  6292. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  6293. {
  6294. unsigned long val;
  6295. if (INTEL_INFO(dev_priv)->gen != 5)
  6296. return 0;
  6297. spin_lock_irq(&mchdev_lock);
  6298. val = __i915_gfx_val(dev_priv);
  6299. spin_unlock_irq(&mchdev_lock);
  6300. return val;
  6301. }
  6302. /**
  6303. * i915_read_mch_val - return value for IPS use
  6304. *
  6305. * Calculate and return a value for the IPS driver to use when deciding whether
  6306. * we have thermal and power headroom to increase CPU or GPU power budget.
  6307. */
  6308. unsigned long i915_read_mch_val(void)
  6309. {
  6310. struct drm_i915_private *dev_priv;
  6311. unsigned long chipset_val, graphics_val, ret = 0;
  6312. spin_lock_irq(&mchdev_lock);
  6313. if (!i915_mch_dev)
  6314. goto out_unlock;
  6315. dev_priv = i915_mch_dev;
  6316. chipset_val = __i915_chipset_val(dev_priv);
  6317. graphics_val = __i915_gfx_val(dev_priv);
  6318. ret = chipset_val + graphics_val;
  6319. out_unlock:
  6320. spin_unlock_irq(&mchdev_lock);
  6321. return ret;
  6322. }
  6323. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  6324. /**
  6325. * i915_gpu_raise - raise GPU frequency limit
  6326. *
  6327. * Raise the limit; IPS indicates we have thermal headroom.
  6328. */
  6329. bool i915_gpu_raise(void)
  6330. {
  6331. struct drm_i915_private *dev_priv;
  6332. bool ret = true;
  6333. spin_lock_irq(&mchdev_lock);
  6334. if (!i915_mch_dev) {
  6335. ret = false;
  6336. goto out_unlock;
  6337. }
  6338. dev_priv = i915_mch_dev;
  6339. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  6340. dev_priv->ips.max_delay--;
  6341. out_unlock:
  6342. spin_unlock_irq(&mchdev_lock);
  6343. return ret;
  6344. }
  6345. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  6346. /**
  6347. * i915_gpu_lower - lower GPU frequency limit
  6348. *
  6349. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  6350. * frequency maximum.
  6351. */
  6352. bool i915_gpu_lower(void)
  6353. {
  6354. struct drm_i915_private *dev_priv;
  6355. bool ret = true;
  6356. spin_lock_irq(&mchdev_lock);
  6357. if (!i915_mch_dev) {
  6358. ret = false;
  6359. goto out_unlock;
  6360. }
  6361. dev_priv = i915_mch_dev;
  6362. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  6363. dev_priv->ips.max_delay++;
  6364. out_unlock:
  6365. spin_unlock_irq(&mchdev_lock);
  6366. return ret;
  6367. }
  6368. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  6369. /**
  6370. * i915_gpu_busy - indicate GPU business to IPS
  6371. *
  6372. * Tell the IPS driver whether or not the GPU is busy.
  6373. */
  6374. bool i915_gpu_busy(void)
  6375. {
  6376. bool ret = false;
  6377. spin_lock_irq(&mchdev_lock);
  6378. if (i915_mch_dev)
  6379. ret = i915_mch_dev->gt.awake;
  6380. spin_unlock_irq(&mchdev_lock);
  6381. return ret;
  6382. }
  6383. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  6384. /**
  6385. * i915_gpu_turbo_disable - disable graphics turbo
  6386. *
  6387. * Disable graphics turbo by resetting the max frequency and setting the
  6388. * current frequency to the default.
  6389. */
  6390. bool i915_gpu_turbo_disable(void)
  6391. {
  6392. struct drm_i915_private *dev_priv;
  6393. bool ret = true;
  6394. spin_lock_irq(&mchdev_lock);
  6395. if (!i915_mch_dev) {
  6396. ret = false;
  6397. goto out_unlock;
  6398. }
  6399. dev_priv = i915_mch_dev;
  6400. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  6401. if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
  6402. ret = false;
  6403. out_unlock:
  6404. spin_unlock_irq(&mchdev_lock);
  6405. return ret;
  6406. }
  6407. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  6408. /**
  6409. * Tells the intel_ips driver that the i915 driver is now loaded, if
  6410. * IPS got loaded first.
  6411. *
  6412. * This awkward dance is so that neither module has to depend on the
  6413. * other in order for IPS to do the appropriate communication of
  6414. * GPU turbo limits to i915.
  6415. */
  6416. static void
  6417. ips_ping_for_i915_load(void)
  6418. {
  6419. void (*link)(void);
  6420. link = symbol_get(ips_link_to_i915_driver);
  6421. if (link) {
  6422. link();
  6423. symbol_put(ips_link_to_i915_driver);
  6424. }
  6425. }
  6426. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  6427. {
  6428. /* We only register the i915 ips part with intel-ips once everything is
  6429. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  6430. spin_lock_irq(&mchdev_lock);
  6431. i915_mch_dev = dev_priv;
  6432. spin_unlock_irq(&mchdev_lock);
  6433. ips_ping_for_i915_load();
  6434. }
  6435. void intel_gpu_ips_teardown(void)
  6436. {
  6437. spin_lock_irq(&mchdev_lock);
  6438. i915_mch_dev = NULL;
  6439. spin_unlock_irq(&mchdev_lock);
  6440. }
  6441. static void intel_init_emon(struct drm_i915_private *dev_priv)
  6442. {
  6443. u32 lcfuse;
  6444. u8 pxw[16];
  6445. int i;
  6446. /* Disable to program */
  6447. I915_WRITE(ECR, 0);
  6448. POSTING_READ(ECR);
  6449. /* Program energy weights for various events */
  6450. I915_WRITE(SDEW, 0x15040d00);
  6451. I915_WRITE(CSIEW0, 0x007f0000);
  6452. I915_WRITE(CSIEW1, 0x1e220004);
  6453. I915_WRITE(CSIEW2, 0x04000004);
  6454. for (i = 0; i < 5; i++)
  6455. I915_WRITE(PEW(i), 0);
  6456. for (i = 0; i < 3; i++)
  6457. I915_WRITE(DEW(i), 0);
  6458. /* Program P-state weights to account for frequency power adjustment */
  6459. for (i = 0; i < 16; i++) {
  6460. u32 pxvidfreq = I915_READ(PXVFREQ(i));
  6461. unsigned long freq = intel_pxfreq(pxvidfreq);
  6462. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  6463. PXVFREQ_PX_SHIFT;
  6464. unsigned long val;
  6465. val = vid * vid;
  6466. val *= (freq / 1000);
  6467. val *= 255;
  6468. val /= (127*127*900);
  6469. if (val > 0xff)
  6470. DRM_ERROR("bad pxval: %ld\n", val);
  6471. pxw[i] = val;
  6472. }
  6473. /* Render standby states get 0 weight */
  6474. pxw[14] = 0;
  6475. pxw[15] = 0;
  6476. for (i = 0; i < 4; i++) {
  6477. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  6478. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  6479. I915_WRITE(PXW(i), val);
  6480. }
  6481. /* Adjust magic regs to magic values (more experimental results) */
  6482. I915_WRITE(OGW0, 0);
  6483. I915_WRITE(OGW1, 0);
  6484. I915_WRITE(EG0, 0x00007f00);
  6485. I915_WRITE(EG1, 0x0000000e);
  6486. I915_WRITE(EG2, 0x000e0000);
  6487. I915_WRITE(EG3, 0x68000300);
  6488. I915_WRITE(EG4, 0x42000000);
  6489. I915_WRITE(EG5, 0x00140031);
  6490. I915_WRITE(EG6, 0);
  6491. I915_WRITE(EG7, 0);
  6492. for (i = 0; i < 8; i++)
  6493. I915_WRITE(PXWL(i), 0);
  6494. /* Enable PMON + select events */
  6495. I915_WRITE(ECR, 0x80000019);
  6496. lcfuse = I915_READ(LCFUSE02);
  6497. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  6498. }
  6499. void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
  6500. {
  6501. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  6502. /*
  6503. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  6504. * requirement.
  6505. */
  6506. if (!i915_modparams.enable_rc6) {
  6507. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  6508. intel_runtime_pm_get(dev_priv);
  6509. }
  6510. mutex_lock(&dev_priv->drm.struct_mutex);
  6511. mutex_lock(&dev_priv->pcu_lock);
  6512. /* Initialize RPS limits (for userspace) */
  6513. if (IS_CHERRYVIEW(dev_priv))
  6514. cherryview_init_gt_powersave(dev_priv);
  6515. else if (IS_VALLEYVIEW(dev_priv))
  6516. valleyview_init_gt_powersave(dev_priv);
  6517. else if (INTEL_GEN(dev_priv) >= 6)
  6518. gen6_init_rps_frequencies(dev_priv);
  6519. /* Derive initial user preferences/limits from the hardware limits */
  6520. rps->idle_freq = rps->min_freq;
  6521. rps->cur_freq = rps->idle_freq;
  6522. rps->max_freq_softlimit = rps->max_freq;
  6523. rps->min_freq_softlimit = rps->min_freq;
  6524. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  6525. rps->min_freq_softlimit =
  6526. max_t(int,
  6527. rps->efficient_freq,
  6528. intel_freq_opcode(dev_priv, 450));
  6529. /* After setting max-softlimit, find the overclock max freq */
  6530. if (IS_GEN6(dev_priv) ||
  6531. IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
  6532. u32 params = 0;
  6533. sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
  6534. if (params & BIT(31)) { /* OC supported */
  6535. DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
  6536. (rps->max_freq & 0xff) * 50,
  6537. (params & 0xff) * 50);
  6538. rps->max_freq = params & 0xff;
  6539. }
  6540. }
  6541. /* Finally allow us to boost to max by default */
  6542. rps->boost_freq = rps->max_freq;
  6543. mutex_unlock(&dev_priv->pcu_lock);
  6544. mutex_unlock(&dev_priv->drm.struct_mutex);
  6545. intel_autoenable_gt_powersave(dev_priv);
  6546. }
  6547. void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
  6548. {
  6549. if (IS_VALLEYVIEW(dev_priv))
  6550. valleyview_cleanup_gt_powersave(dev_priv);
  6551. if (!i915_modparams.enable_rc6)
  6552. intel_runtime_pm_put(dev_priv);
  6553. }
  6554. /**
  6555. * intel_suspend_gt_powersave - suspend PM work and helper threads
  6556. * @dev_priv: i915 device
  6557. *
  6558. * We don't want to disable RC6 or other features here, we just want
  6559. * to make sure any work we've queued has finished and won't bother
  6560. * us while we're suspended.
  6561. */
  6562. void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
  6563. {
  6564. if (INTEL_GEN(dev_priv) < 6)
  6565. return;
  6566. if (cancel_delayed_work_sync(&dev_priv->gt_pm.autoenable_work))
  6567. intel_runtime_pm_put(dev_priv);
  6568. /* gen6_rps_idle() will be called later to disable interrupts */
  6569. }
  6570. void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
  6571. {
  6572. dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
  6573. dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
  6574. intel_disable_gt_powersave(dev_priv);
  6575. gen6_reset_rps_interrupts(dev_priv);
  6576. }
  6577. static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
  6578. {
  6579. lockdep_assert_held(&i915->pcu_lock);
  6580. if (!i915->gt_pm.llc_pstate.enabled)
  6581. return;
  6582. /* Currently there is no HW configuration to be done to disable. */
  6583. i915->gt_pm.llc_pstate.enabled = false;
  6584. }
  6585. static void intel_disable_rc6(struct drm_i915_private *dev_priv)
  6586. {
  6587. lockdep_assert_held(&dev_priv->pcu_lock);
  6588. if (!dev_priv->gt_pm.rc6.enabled)
  6589. return;
  6590. if (INTEL_GEN(dev_priv) >= 9)
  6591. gen9_disable_rc6(dev_priv);
  6592. else if (IS_CHERRYVIEW(dev_priv))
  6593. cherryview_disable_rc6(dev_priv);
  6594. else if (IS_VALLEYVIEW(dev_priv))
  6595. valleyview_disable_rc6(dev_priv);
  6596. else if (INTEL_GEN(dev_priv) >= 6)
  6597. gen6_disable_rc6(dev_priv);
  6598. dev_priv->gt_pm.rc6.enabled = false;
  6599. }
  6600. static void intel_disable_rps(struct drm_i915_private *dev_priv)
  6601. {
  6602. lockdep_assert_held(&dev_priv->pcu_lock);
  6603. if (!dev_priv->gt_pm.rps.enabled)
  6604. return;
  6605. if (INTEL_GEN(dev_priv) >= 9)
  6606. gen9_disable_rps(dev_priv);
  6607. else if (IS_CHERRYVIEW(dev_priv))
  6608. cherryview_disable_rps(dev_priv);
  6609. else if (IS_VALLEYVIEW(dev_priv))
  6610. valleyview_disable_rps(dev_priv);
  6611. else if (INTEL_GEN(dev_priv) >= 6)
  6612. gen6_disable_rps(dev_priv);
  6613. else if (IS_IRONLAKE_M(dev_priv))
  6614. ironlake_disable_drps(dev_priv);
  6615. dev_priv->gt_pm.rps.enabled = false;
  6616. }
  6617. void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
  6618. {
  6619. mutex_lock(&dev_priv->pcu_lock);
  6620. intel_disable_rc6(dev_priv);
  6621. intel_disable_rps(dev_priv);
  6622. if (HAS_LLC(dev_priv))
  6623. intel_disable_llc_pstate(dev_priv);
  6624. mutex_unlock(&dev_priv->pcu_lock);
  6625. }
  6626. static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
  6627. {
  6628. lockdep_assert_held(&i915->pcu_lock);
  6629. if (i915->gt_pm.llc_pstate.enabled)
  6630. return;
  6631. gen6_update_ring_freq(i915);
  6632. i915->gt_pm.llc_pstate.enabled = true;
  6633. }
  6634. static void intel_enable_rc6(struct drm_i915_private *dev_priv)
  6635. {
  6636. lockdep_assert_held(&dev_priv->pcu_lock);
  6637. if (dev_priv->gt_pm.rc6.enabled)
  6638. return;
  6639. if (IS_CHERRYVIEW(dev_priv))
  6640. cherryview_enable_rc6(dev_priv);
  6641. else if (IS_VALLEYVIEW(dev_priv))
  6642. valleyview_enable_rc6(dev_priv);
  6643. else if (INTEL_GEN(dev_priv) >= 9)
  6644. gen9_enable_rc6(dev_priv);
  6645. else if (IS_BROADWELL(dev_priv))
  6646. gen8_enable_rc6(dev_priv);
  6647. else if (INTEL_GEN(dev_priv) >= 6)
  6648. gen6_enable_rc6(dev_priv);
  6649. dev_priv->gt_pm.rc6.enabled = true;
  6650. }
  6651. static void intel_enable_rps(struct drm_i915_private *dev_priv)
  6652. {
  6653. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  6654. lockdep_assert_held(&dev_priv->pcu_lock);
  6655. if (rps->enabled)
  6656. return;
  6657. if (IS_CHERRYVIEW(dev_priv)) {
  6658. cherryview_enable_rps(dev_priv);
  6659. } else if (IS_VALLEYVIEW(dev_priv)) {
  6660. valleyview_enable_rps(dev_priv);
  6661. } else if (INTEL_GEN(dev_priv) >= 9) {
  6662. gen9_enable_rps(dev_priv);
  6663. } else if (IS_BROADWELL(dev_priv)) {
  6664. gen8_enable_rps(dev_priv);
  6665. } else if (INTEL_GEN(dev_priv) >= 6) {
  6666. gen6_enable_rps(dev_priv);
  6667. } else if (IS_IRONLAKE_M(dev_priv)) {
  6668. ironlake_enable_drps(dev_priv);
  6669. intel_init_emon(dev_priv);
  6670. }
  6671. WARN_ON(rps->max_freq < rps->min_freq);
  6672. WARN_ON(rps->idle_freq > rps->max_freq);
  6673. WARN_ON(rps->efficient_freq < rps->min_freq);
  6674. WARN_ON(rps->efficient_freq > rps->max_freq);
  6675. rps->enabled = true;
  6676. }
  6677. void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
  6678. {
  6679. /* Powersaving is controlled by the host when inside a VM */
  6680. if (intel_vgpu_active(dev_priv))
  6681. return;
  6682. mutex_lock(&dev_priv->pcu_lock);
  6683. intel_enable_rc6(dev_priv);
  6684. intel_enable_rps(dev_priv);
  6685. if (HAS_LLC(dev_priv))
  6686. intel_enable_llc_pstate(dev_priv);
  6687. mutex_unlock(&dev_priv->pcu_lock);
  6688. }
  6689. static void __intel_autoenable_gt_powersave(struct work_struct *work)
  6690. {
  6691. struct drm_i915_private *dev_priv =
  6692. container_of(work,
  6693. typeof(*dev_priv),
  6694. gt_pm.autoenable_work.work);
  6695. struct intel_engine_cs *rcs;
  6696. struct drm_i915_gem_request *req;
  6697. rcs = dev_priv->engine[RCS];
  6698. if (rcs->last_retired_context)
  6699. goto out;
  6700. if (!rcs->init_context)
  6701. goto out;
  6702. mutex_lock(&dev_priv->drm.struct_mutex);
  6703. req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
  6704. if (IS_ERR(req))
  6705. goto unlock;
  6706. if (!i915_modparams.enable_execlists && i915_switch_context(req) == 0)
  6707. rcs->init_context(req);
  6708. /* Mark the device busy, calling intel_enable_gt_powersave() */
  6709. i915_add_request(req);
  6710. unlock:
  6711. mutex_unlock(&dev_priv->drm.struct_mutex);
  6712. out:
  6713. intel_runtime_pm_put(dev_priv);
  6714. }
  6715. void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
  6716. {
  6717. if (IS_IRONLAKE_M(dev_priv)) {
  6718. ironlake_enable_drps(dev_priv);
  6719. intel_init_emon(dev_priv);
  6720. } else if (INTEL_INFO(dev_priv)->gen >= 6) {
  6721. /*
  6722. * PCU communication is slow and this doesn't need to be
  6723. * done at any specific time, so do this out of our fast path
  6724. * to make resume and init faster.
  6725. *
  6726. * We depend on the HW RC6 power context save/restore
  6727. * mechanism when entering D3 through runtime PM suspend. So
  6728. * disable RPM until RPS/RC6 is properly setup. We can only
  6729. * get here via the driver load/system resume/runtime resume
  6730. * paths, so the _noresume version is enough (and in case of
  6731. * runtime resume it's necessary).
  6732. */
  6733. if (queue_delayed_work(dev_priv->wq,
  6734. &dev_priv->gt_pm.autoenable_work,
  6735. round_jiffies_up_relative(HZ)))
  6736. intel_runtime_pm_get_noresume(dev_priv);
  6737. }
  6738. }
  6739. static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
  6740. {
  6741. /*
  6742. * On Ibex Peak and Cougar Point, we need to disable clock
  6743. * gating for the panel power sequencer or it will fail to
  6744. * start up when no ports are active.
  6745. */
  6746. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  6747. }
  6748. static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
  6749. {
  6750. enum pipe pipe;
  6751. for_each_pipe(dev_priv, pipe) {
  6752. I915_WRITE(DSPCNTR(pipe),
  6753. I915_READ(DSPCNTR(pipe)) |
  6754. DISPPLANE_TRICKLE_FEED_DISABLE);
  6755. I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
  6756. POSTING_READ(DSPSURF(pipe));
  6757. }
  6758. }
  6759. static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
  6760. {
  6761. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  6762. /*
  6763. * Required for FBC
  6764. * WaFbcDisableDpfcClockGating:ilk
  6765. */
  6766. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  6767. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  6768. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  6769. I915_WRITE(PCH_3DCGDIS0,
  6770. MARIUNIT_CLOCK_GATE_DISABLE |
  6771. SVSMUNIT_CLOCK_GATE_DISABLE);
  6772. I915_WRITE(PCH_3DCGDIS1,
  6773. VFMUNIT_CLOCK_GATE_DISABLE);
  6774. /*
  6775. * According to the spec the following bits should be set in
  6776. * order to enable memory self-refresh
  6777. * The bit 22/21 of 0x42004
  6778. * The bit 5 of 0x42020
  6779. * The bit 15 of 0x45000
  6780. */
  6781. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6782. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  6783. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  6784. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  6785. I915_WRITE(DISP_ARB_CTL,
  6786. (I915_READ(DISP_ARB_CTL) |
  6787. DISP_FBC_WM_DIS));
  6788. /*
  6789. * Based on the document from hardware guys the following bits
  6790. * should be set unconditionally in order to enable FBC.
  6791. * The bit 22 of 0x42000
  6792. * The bit 22 of 0x42004
  6793. * The bit 7,8,9 of 0x42020.
  6794. */
  6795. if (IS_IRONLAKE_M(dev_priv)) {
  6796. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  6797. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6798. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6799. ILK_FBCQ_DIS);
  6800. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6801. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6802. ILK_DPARB_GATE);
  6803. }
  6804. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  6805. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6806. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6807. ILK_ELPIN_409_SELECT);
  6808. I915_WRITE(_3D_CHICKEN2,
  6809. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  6810. _3D_CHICKEN2_WM_READ_PIPELINED);
  6811. /* WaDisableRenderCachePipelinedFlush:ilk */
  6812. I915_WRITE(CACHE_MODE_0,
  6813. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  6814. /* WaDisable_RenderCache_OperationalFlush:ilk */
  6815. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6816. g4x_disable_trickle_feed(dev_priv);
  6817. ibx_init_clock_gating(dev_priv);
  6818. }
  6819. static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
  6820. {
  6821. int pipe;
  6822. uint32_t val;
  6823. /*
  6824. * On Ibex Peak and Cougar Point, we need to disable clock
  6825. * gating for the panel power sequencer or it will fail to
  6826. * start up when no ports are active.
  6827. */
  6828. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  6829. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  6830. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  6831. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  6832. DPLS_EDP_PPS_FIX_DIS);
  6833. /* The below fixes the weird display corruption, a few pixels shifted
  6834. * downward, on (only) LVDS of some HP laptops with IVY.
  6835. */
  6836. for_each_pipe(dev_priv, pipe) {
  6837. val = I915_READ(TRANS_CHICKEN2(pipe));
  6838. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  6839. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  6840. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  6841. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  6842. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  6843. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  6844. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  6845. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  6846. }
  6847. /* WADP0ClockGatingDisable */
  6848. for_each_pipe(dev_priv, pipe) {
  6849. I915_WRITE(TRANS_CHICKEN1(pipe),
  6850. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  6851. }
  6852. }
  6853. static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
  6854. {
  6855. uint32_t tmp;
  6856. tmp = I915_READ(MCH_SSKPD);
  6857. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  6858. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  6859. tmp);
  6860. }
  6861. static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
  6862. {
  6863. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  6864. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  6865. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6866. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6867. ILK_ELPIN_409_SELECT);
  6868. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  6869. I915_WRITE(_3D_CHICKEN,
  6870. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  6871. /* WaDisable_RenderCache_OperationalFlush:snb */
  6872. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  6873. /*
  6874. * BSpec recoomends 8x4 when MSAA is used,
  6875. * however in practice 16x4 seems fastest.
  6876. *
  6877. * Note that PS/WM thread counts depend on the WIZ hashing
  6878. * disable bit, which we don't touch here, but it's good
  6879. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  6880. */
  6881. I915_WRITE(GEN6_GT_MODE,
  6882. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  6883. I915_WRITE(CACHE_MODE_0,
  6884. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  6885. I915_WRITE(GEN6_UCGCTL1,
  6886. I915_READ(GEN6_UCGCTL1) |
  6887. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  6888. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  6889. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  6890. * gating disable must be set. Failure to set it results in
  6891. * flickering pixels due to Z write ordering failures after
  6892. * some amount of runtime in the Mesa "fire" demo, and Unigine
  6893. * Sanctuary and Tropics, and apparently anything else with
  6894. * alpha test or pixel discard.
  6895. *
  6896. * According to the spec, bit 11 (RCCUNIT) must also be set,
  6897. * but we didn't debug actual testcases to find it out.
  6898. *
  6899. * WaDisableRCCUnitClockGating:snb
  6900. * WaDisableRCPBUnitClockGating:snb
  6901. */
  6902. I915_WRITE(GEN6_UCGCTL2,
  6903. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  6904. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  6905. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  6906. I915_WRITE(_3D_CHICKEN3,
  6907. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  6908. /*
  6909. * Bspec says:
  6910. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  6911. * 3DSTATE_SF number of SF output attributes is more than 16."
  6912. */
  6913. I915_WRITE(_3D_CHICKEN3,
  6914. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  6915. /*
  6916. * According to the spec the following bits should be
  6917. * set in order to enable memory self-refresh and fbc:
  6918. * The bit21 and bit22 of 0x42000
  6919. * The bit21 and bit22 of 0x42004
  6920. * The bit5 and bit7 of 0x42020
  6921. * The bit14 of 0x70180
  6922. * The bit14 of 0x71180
  6923. *
  6924. * WaFbcAsynchFlipDisableFbcQueue:snb
  6925. */
  6926. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6927. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6928. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  6929. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6930. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6931. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  6932. I915_WRITE(ILK_DSPCLK_GATE_D,
  6933. I915_READ(ILK_DSPCLK_GATE_D) |
  6934. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  6935. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  6936. g4x_disable_trickle_feed(dev_priv);
  6937. cpt_init_clock_gating(dev_priv);
  6938. gen6_check_mch_setup(dev_priv);
  6939. }
  6940. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  6941. {
  6942. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  6943. /*
  6944. * WaVSThreadDispatchOverride:ivb,vlv
  6945. *
  6946. * This actually overrides the dispatch
  6947. * mode for all thread types.
  6948. */
  6949. reg &= ~GEN7_FF_SCHED_MASK;
  6950. reg |= GEN7_FF_TS_SCHED_HW;
  6951. reg |= GEN7_FF_VS_SCHED_HW;
  6952. reg |= GEN7_FF_DS_SCHED_HW;
  6953. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  6954. }
  6955. static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
  6956. {
  6957. /*
  6958. * TODO: this bit should only be enabled when really needed, then
  6959. * disabled when not needed anymore in order to save power.
  6960. */
  6961. if (HAS_PCH_LPT_LP(dev_priv))
  6962. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  6963. I915_READ(SOUTH_DSPCLK_GATE_D) |
  6964. PCH_LP_PARTITION_LEVEL_DISABLE);
  6965. /* WADPOClockGatingDisable:hsw */
  6966. I915_WRITE(TRANS_CHICKEN1(PIPE_A),
  6967. I915_READ(TRANS_CHICKEN1(PIPE_A)) |
  6968. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  6969. }
  6970. static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
  6971. {
  6972. if (HAS_PCH_LPT_LP(dev_priv)) {
  6973. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  6974. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  6975. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  6976. }
  6977. }
  6978. static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
  6979. int general_prio_credits,
  6980. int high_prio_credits)
  6981. {
  6982. u32 misccpctl;
  6983. u32 val;
  6984. /* WaTempDisableDOPClkGating:bdw */
  6985. misccpctl = I915_READ(GEN7_MISCCPCTL);
  6986. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  6987. val = I915_READ(GEN8_L3SQCREG1);
  6988. val &= ~L3_PRIO_CREDITS_MASK;
  6989. val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
  6990. val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
  6991. I915_WRITE(GEN8_L3SQCREG1, val);
  6992. /*
  6993. * Wait at least 100 clocks before re-enabling clock gating.
  6994. * See the definition of L3SQCREG1 in BSpec.
  6995. */
  6996. POSTING_READ(GEN8_L3SQCREG1);
  6997. udelay(1);
  6998. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  6999. }
  7000. static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
  7001. {
  7002. if (!HAS_PCH_CNP(dev_priv))
  7003. return;
  7004. /* Wa #1181 */
  7005. I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
  7006. CNP_PWM_CGE_GATING_DISABLE);
  7007. }
  7008. static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
  7009. {
  7010. cnp_init_clock_gating(dev_priv);
  7011. /* This is not an Wa. Enable for better image quality */
  7012. I915_WRITE(_3D_CHICKEN3,
  7013. _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
  7014. /* WaEnableChickenDCPR:cnl */
  7015. I915_WRITE(GEN8_CHICKEN_DCPR_1,
  7016. I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
  7017. /* WaFbcWakeMemOn:cnl */
  7018. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  7019. DISP_FBC_MEMORY_WAKE);
  7020. /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
  7021. if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
  7022. I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE,
  7023. I915_READ(SLICE_UNIT_LEVEL_CLKGATE) |
  7024. SARBUNIT_CLKGATE_DIS);
  7025. }
  7026. static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
  7027. {
  7028. cnp_init_clock_gating(dev_priv);
  7029. gen9_init_clock_gating(dev_priv);
  7030. /* WaFbcNukeOnHostModify:cfl */
  7031. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  7032. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  7033. }
  7034. static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
  7035. {
  7036. gen9_init_clock_gating(dev_priv);
  7037. /* WaDisableSDEUnitClockGating:kbl */
  7038. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  7039. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  7040. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  7041. /* WaDisableGamClockGating:kbl */
  7042. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  7043. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  7044. GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
  7045. /* WaFbcNukeOnHostModify:kbl */
  7046. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  7047. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  7048. }
  7049. static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
  7050. {
  7051. gen9_init_clock_gating(dev_priv);
  7052. /* WAC6entrylatency:skl */
  7053. I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
  7054. FBC_LLC_FULLY_OPEN);
  7055. /* WaFbcNukeOnHostModify:skl */
  7056. I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
  7057. ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
  7058. }
  7059. static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
  7060. {
  7061. /* The GTT cache must be disabled if the system is using 2M pages. */
  7062. bool can_use_gtt_cache = !HAS_PAGE_SIZES(dev_priv,
  7063. I915_GTT_PAGE_SIZE_2M);
  7064. enum pipe pipe;
  7065. /* WaSwitchSolVfFArbitrationPriority:bdw */
  7066. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  7067. /* WaPsrDPAMaskVBlankInSRD:bdw */
  7068. I915_WRITE(CHICKEN_PAR1_1,
  7069. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  7070. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  7071. for_each_pipe(dev_priv, pipe) {
  7072. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  7073. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  7074. BDW_DPRS_MASK_VBLANK_SRD);
  7075. }
  7076. /* WaVSRefCountFullforceMissDisable:bdw */
  7077. /* WaDSRefCountFullforceMissDisable:bdw */
  7078. I915_WRITE(GEN7_FF_THREAD_MODE,
  7079. I915_READ(GEN7_FF_THREAD_MODE) &
  7080. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  7081. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  7082. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  7083. /* WaDisableSDEUnitClockGating:bdw */
  7084. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  7085. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  7086. /* WaProgramL3SqcReg1Default:bdw */
  7087. gen8_set_l3sqc_credits(dev_priv, 30, 2);
  7088. /* WaGttCachingOffByDefault:bdw */
  7089. I915_WRITE(HSW_GTT_CACHE_EN, can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
  7090. /* WaKVMNotificationOnConfigChange:bdw */
  7091. I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
  7092. | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
  7093. lpt_init_clock_gating(dev_priv);
  7094. /* WaDisableDopClockGating:bdw
  7095. *
  7096. * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
  7097. * clock gating.
  7098. */
  7099. I915_WRITE(GEN6_UCGCTL1,
  7100. I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
  7101. }
  7102. static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
  7103. {
  7104. /* L3 caching of data atomics doesn't work -- disable it. */
  7105. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  7106. I915_WRITE(HSW_ROW_CHICKEN3,
  7107. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  7108. /* This is required by WaCatErrorRejectionIssue:hsw */
  7109. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7110. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7111. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7112. /* WaVSRefCountFullforceMissDisable:hsw */
  7113. I915_WRITE(GEN7_FF_THREAD_MODE,
  7114. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  7115. /* WaDisable_RenderCache_OperationalFlush:hsw */
  7116. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7117. /* enable HiZ Raw Stall Optimization */
  7118. I915_WRITE(CACHE_MODE_0_GEN7,
  7119. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  7120. /* WaDisable4x2SubspanOptimization:hsw */
  7121. I915_WRITE(CACHE_MODE_1,
  7122. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  7123. /*
  7124. * BSpec recommends 8x4 when MSAA is used,
  7125. * however in practice 16x4 seems fastest.
  7126. *
  7127. * Note that PS/WM thread counts depend on the WIZ hashing
  7128. * disable bit, which we don't touch here, but it's good
  7129. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  7130. */
  7131. I915_WRITE(GEN7_GT_MODE,
  7132. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  7133. /* WaSampleCChickenBitEnable:hsw */
  7134. I915_WRITE(HALF_SLICE_CHICKEN3,
  7135. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  7136. /* WaSwitchSolVfFArbitrationPriority:hsw */
  7137. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  7138. lpt_init_clock_gating(dev_priv);
  7139. }
  7140. static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
  7141. {
  7142. uint32_t snpcr;
  7143. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  7144. /* WaDisableEarlyCull:ivb */
  7145. I915_WRITE(_3D_CHICKEN3,
  7146. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  7147. /* WaDisableBackToBackFlipFix:ivb */
  7148. I915_WRITE(IVB_CHICKEN3,
  7149. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7150. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7151. /* WaDisablePSDDualDispatchEnable:ivb */
  7152. if (IS_IVB_GT1(dev_priv))
  7153. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  7154. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  7155. /* WaDisable_RenderCache_OperationalFlush:ivb */
  7156. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7157. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  7158. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  7159. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  7160. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  7161. I915_WRITE(GEN7_L3CNTLREG1,
  7162. GEN7_WA_FOR_GEN7_L3_CONTROL);
  7163. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  7164. GEN7_WA_L3_CHICKEN_MODE);
  7165. if (IS_IVB_GT1(dev_priv))
  7166. I915_WRITE(GEN7_ROW_CHICKEN2,
  7167. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  7168. else {
  7169. /* must write both registers */
  7170. I915_WRITE(GEN7_ROW_CHICKEN2,
  7171. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  7172. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  7173. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  7174. }
  7175. /* WaForceL3Serialization:ivb */
  7176. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  7177. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  7178. /*
  7179. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7180. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  7181. */
  7182. I915_WRITE(GEN6_UCGCTL2,
  7183. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7184. /* This is required by WaCatErrorRejectionIssue:ivb */
  7185. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7186. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7187. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7188. g4x_disable_trickle_feed(dev_priv);
  7189. gen7_setup_fixed_func_scheduler(dev_priv);
  7190. if (0) { /* causes HiZ corruption on ivb:gt1 */
  7191. /* enable HiZ Raw Stall Optimization */
  7192. I915_WRITE(CACHE_MODE_0_GEN7,
  7193. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  7194. }
  7195. /* WaDisable4x2SubspanOptimization:ivb */
  7196. I915_WRITE(CACHE_MODE_1,
  7197. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  7198. /*
  7199. * BSpec recommends 8x4 when MSAA is used,
  7200. * however in practice 16x4 seems fastest.
  7201. *
  7202. * Note that PS/WM thread counts depend on the WIZ hashing
  7203. * disable bit, which we don't touch here, but it's good
  7204. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  7205. */
  7206. I915_WRITE(GEN7_GT_MODE,
  7207. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  7208. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  7209. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  7210. snpcr |= GEN6_MBC_SNPCR_MED;
  7211. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  7212. if (!HAS_PCH_NOP(dev_priv))
  7213. cpt_init_clock_gating(dev_priv);
  7214. gen6_check_mch_setup(dev_priv);
  7215. }
  7216. static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
  7217. {
  7218. /* WaDisableEarlyCull:vlv */
  7219. I915_WRITE(_3D_CHICKEN3,
  7220. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  7221. /* WaDisableBackToBackFlipFix:vlv */
  7222. I915_WRITE(IVB_CHICKEN3,
  7223. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7224. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7225. /* WaPsdDispatchEnable:vlv */
  7226. /* WaDisablePSDDualDispatchEnable:vlv */
  7227. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  7228. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  7229. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  7230. /* WaDisable_RenderCache_OperationalFlush:vlv */
  7231. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7232. /* WaForceL3Serialization:vlv */
  7233. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  7234. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  7235. /* WaDisableDopClockGating:vlv */
  7236. I915_WRITE(GEN7_ROW_CHICKEN2,
  7237. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  7238. /* This is required by WaCatErrorRejectionIssue:vlv */
  7239. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7240. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7241. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7242. gen7_setup_fixed_func_scheduler(dev_priv);
  7243. /*
  7244. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7245. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  7246. */
  7247. I915_WRITE(GEN6_UCGCTL2,
  7248. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7249. /* WaDisableL3Bank2xClockGate:vlv
  7250. * Disabling L3 clock gating- MMIO 940c[25] = 1
  7251. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  7252. I915_WRITE(GEN7_UCGCTL4,
  7253. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  7254. /*
  7255. * BSpec says this must be set, even though
  7256. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  7257. */
  7258. I915_WRITE(CACHE_MODE_1,
  7259. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  7260. /*
  7261. * BSpec recommends 8x4 when MSAA is used,
  7262. * however in practice 16x4 seems fastest.
  7263. *
  7264. * Note that PS/WM thread counts depend on the WIZ hashing
  7265. * disable bit, which we don't touch here, but it's good
  7266. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  7267. */
  7268. I915_WRITE(GEN7_GT_MODE,
  7269. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  7270. /*
  7271. * WaIncreaseL3CreditsForVLVB0:vlv
  7272. * This is the hardware default actually.
  7273. */
  7274. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  7275. /*
  7276. * WaDisableVLVClockGating_VBIIssue:vlv
  7277. * Disable clock gating on th GCFG unit to prevent a delay
  7278. * in the reporting of vblank events.
  7279. */
  7280. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  7281. }
  7282. static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
  7283. {
  7284. /* WaVSRefCountFullforceMissDisable:chv */
  7285. /* WaDSRefCountFullforceMissDisable:chv */
  7286. I915_WRITE(GEN7_FF_THREAD_MODE,
  7287. I915_READ(GEN7_FF_THREAD_MODE) &
  7288. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  7289. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  7290. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  7291. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  7292. /* WaDisableCSUnitClockGating:chv */
  7293. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  7294. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  7295. /* WaDisableSDEUnitClockGating:chv */
  7296. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  7297. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  7298. /*
  7299. * WaProgramL3SqcReg1Default:chv
  7300. * See gfxspecs/Related Documents/Performance Guide/
  7301. * LSQC Setting Recommendations.
  7302. */
  7303. gen8_set_l3sqc_credits(dev_priv, 38, 2);
  7304. /*
  7305. * GTT cache may not work with big pages, so if those
  7306. * are ever enabled GTT cache may need to be disabled.
  7307. */
  7308. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  7309. }
  7310. static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
  7311. {
  7312. uint32_t dspclk_gate;
  7313. I915_WRITE(RENCLK_GATE_D1, 0);
  7314. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7315. GS_UNIT_CLOCK_GATE_DISABLE |
  7316. CL_UNIT_CLOCK_GATE_DISABLE);
  7317. I915_WRITE(RAMCLK_GATE_D, 0);
  7318. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7319. OVRUNIT_CLOCK_GATE_DISABLE |
  7320. OVCUNIT_CLOCK_GATE_DISABLE;
  7321. if (IS_GM45(dev_priv))
  7322. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7323. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7324. /* WaDisableRenderCachePipelinedFlush */
  7325. I915_WRITE(CACHE_MODE_0,
  7326. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  7327. /* WaDisable_RenderCache_OperationalFlush:g4x */
  7328. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7329. g4x_disable_trickle_feed(dev_priv);
  7330. }
  7331. static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
  7332. {
  7333. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7334. I915_WRITE(RENCLK_GATE_D2, 0);
  7335. I915_WRITE(DSPCLK_GATE_D, 0);
  7336. I915_WRITE(RAMCLK_GATE_D, 0);
  7337. I915_WRITE16(DEUC, 0);
  7338. I915_WRITE(MI_ARB_STATE,
  7339. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7340. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  7341. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7342. }
  7343. static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
  7344. {
  7345. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7346. I965_RCC_CLOCK_GATE_DISABLE |
  7347. I965_RCPB_CLOCK_GATE_DISABLE |
  7348. I965_ISC_CLOCK_GATE_DISABLE |
  7349. I965_FBC_CLOCK_GATE_DISABLE);
  7350. I915_WRITE(RENCLK_GATE_D2, 0);
  7351. I915_WRITE(MI_ARB_STATE,
  7352. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7353. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  7354. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  7355. }
  7356. static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
  7357. {
  7358. u32 dstate = I915_READ(D_STATE);
  7359. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7360. DSTATE_DOT_CLOCK_GATING;
  7361. I915_WRITE(D_STATE, dstate);
  7362. if (IS_PINEVIEW(dev_priv))
  7363. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  7364. /* IIR "flip pending" means done if this bit is set */
  7365. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  7366. /* interrupts should cause a wake up from C3 */
  7367. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  7368. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  7369. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  7370. I915_WRITE(MI_ARB_STATE,
  7371. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  7372. }
  7373. static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
  7374. {
  7375. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7376. /* interrupts should cause a wake up from C3 */
  7377. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  7378. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  7379. I915_WRITE(MEM_MODE,
  7380. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  7381. }
  7382. static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
  7383. {
  7384. I915_WRITE(MEM_MODE,
  7385. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  7386. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  7387. }
  7388. void intel_init_clock_gating(struct drm_i915_private *dev_priv)
  7389. {
  7390. dev_priv->display.init_clock_gating(dev_priv);
  7391. }
  7392. void intel_suspend_hw(struct drm_i915_private *dev_priv)
  7393. {
  7394. if (HAS_PCH_LPT(dev_priv))
  7395. lpt_suspend_hw(dev_priv);
  7396. }
  7397. static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
  7398. {
  7399. DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
  7400. }
  7401. /**
  7402. * intel_init_clock_gating_hooks - setup the clock gating hooks
  7403. * @dev_priv: device private
  7404. *
  7405. * Setup the hooks that configure which clocks of a given platform can be
  7406. * gated and also apply various GT and display specific workarounds for these
  7407. * platforms. Note that some GT specific workarounds are applied separately
  7408. * when GPU contexts or batchbuffers start their execution.
  7409. */
  7410. void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
  7411. {
  7412. if (IS_CANNONLAKE(dev_priv))
  7413. dev_priv->display.init_clock_gating = cnl_init_clock_gating;
  7414. else if (IS_COFFEELAKE(dev_priv))
  7415. dev_priv->display.init_clock_gating = cfl_init_clock_gating;
  7416. else if (IS_SKYLAKE(dev_priv))
  7417. dev_priv->display.init_clock_gating = skl_init_clock_gating;
  7418. else if (IS_KABYLAKE(dev_priv))
  7419. dev_priv->display.init_clock_gating = kbl_init_clock_gating;
  7420. else if (IS_BROXTON(dev_priv))
  7421. dev_priv->display.init_clock_gating = bxt_init_clock_gating;
  7422. else if (IS_GEMINILAKE(dev_priv))
  7423. dev_priv->display.init_clock_gating = glk_init_clock_gating;
  7424. else if (IS_BROADWELL(dev_priv))
  7425. dev_priv->display.init_clock_gating = bdw_init_clock_gating;
  7426. else if (IS_CHERRYVIEW(dev_priv))
  7427. dev_priv->display.init_clock_gating = chv_init_clock_gating;
  7428. else if (IS_HASWELL(dev_priv))
  7429. dev_priv->display.init_clock_gating = hsw_init_clock_gating;
  7430. else if (IS_IVYBRIDGE(dev_priv))
  7431. dev_priv->display.init_clock_gating = ivb_init_clock_gating;
  7432. else if (IS_VALLEYVIEW(dev_priv))
  7433. dev_priv->display.init_clock_gating = vlv_init_clock_gating;
  7434. else if (IS_GEN6(dev_priv))
  7435. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7436. else if (IS_GEN5(dev_priv))
  7437. dev_priv->display.init_clock_gating = ilk_init_clock_gating;
  7438. else if (IS_G4X(dev_priv))
  7439. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7440. else if (IS_I965GM(dev_priv))
  7441. dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
  7442. else if (IS_I965G(dev_priv))
  7443. dev_priv->display.init_clock_gating = i965g_init_clock_gating;
  7444. else if (IS_GEN3(dev_priv))
  7445. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7446. else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
  7447. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7448. else if (IS_GEN2(dev_priv))
  7449. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7450. else {
  7451. MISSING_CASE(INTEL_DEVID(dev_priv));
  7452. dev_priv->display.init_clock_gating = nop_init_clock_gating;
  7453. }
  7454. }
  7455. /* Set up chip specific power management-related functions */
  7456. void intel_init_pm(struct drm_i915_private *dev_priv)
  7457. {
  7458. intel_fbc_init(dev_priv);
  7459. /* For cxsr */
  7460. if (IS_PINEVIEW(dev_priv))
  7461. i915_pineview_get_mem_freq(dev_priv);
  7462. else if (IS_GEN5(dev_priv))
  7463. i915_ironlake_get_mem_freq(dev_priv);
  7464. /* For FIFO watermark updates */
  7465. if (INTEL_GEN(dev_priv) >= 9) {
  7466. skl_setup_wm_latency(dev_priv);
  7467. dev_priv->display.initial_watermarks = skl_initial_wm;
  7468. dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
  7469. dev_priv->display.compute_global_watermarks = skl_compute_wm;
  7470. } else if (HAS_PCH_SPLIT(dev_priv)) {
  7471. ilk_setup_wm_latency(dev_priv);
  7472. if ((IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[1] &&
  7473. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  7474. (!IS_GEN5(dev_priv) && dev_priv->wm.pri_latency[0] &&
  7475. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  7476. dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
  7477. dev_priv->display.compute_intermediate_wm =
  7478. ilk_compute_intermediate_wm;
  7479. dev_priv->display.initial_watermarks =
  7480. ilk_initial_watermarks;
  7481. dev_priv->display.optimize_watermarks =
  7482. ilk_optimize_watermarks;
  7483. } else {
  7484. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7485. "Disable CxSR\n");
  7486. }
  7487. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  7488. vlv_setup_wm_latency(dev_priv);
  7489. dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
  7490. dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
  7491. dev_priv->display.initial_watermarks = vlv_initial_watermarks;
  7492. dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
  7493. dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
  7494. } else if (IS_G4X(dev_priv)) {
  7495. g4x_setup_wm_latency(dev_priv);
  7496. dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
  7497. dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
  7498. dev_priv->display.initial_watermarks = g4x_initial_watermarks;
  7499. dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
  7500. } else if (IS_PINEVIEW(dev_priv)) {
  7501. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev_priv),
  7502. dev_priv->is_ddr3,
  7503. dev_priv->fsb_freq,
  7504. dev_priv->mem_freq)) {
  7505. DRM_INFO("failed to find known CxSR latency "
  7506. "(found ddr%s fsb freq %d, mem freq %d), "
  7507. "disabling CxSR\n",
  7508. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7509. dev_priv->fsb_freq, dev_priv->mem_freq);
  7510. /* Disable CxSR and never update its watermark again */
  7511. intel_set_memory_cxsr(dev_priv, false);
  7512. dev_priv->display.update_wm = NULL;
  7513. } else
  7514. dev_priv->display.update_wm = pineview_update_wm;
  7515. } else if (IS_GEN4(dev_priv)) {
  7516. dev_priv->display.update_wm = i965_update_wm;
  7517. } else if (IS_GEN3(dev_priv)) {
  7518. dev_priv->display.update_wm = i9xx_update_wm;
  7519. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7520. } else if (IS_GEN2(dev_priv)) {
  7521. if (INTEL_INFO(dev_priv)->num_pipes == 1) {
  7522. dev_priv->display.update_wm = i845_update_wm;
  7523. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7524. } else {
  7525. dev_priv->display.update_wm = i9xx_update_wm;
  7526. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7527. }
  7528. } else {
  7529. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  7530. }
  7531. }
  7532. static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
  7533. {
  7534. uint32_t flags =
  7535. I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
  7536. switch (flags) {
  7537. case GEN6_PCODE_SUCCESS:
  7538. return 0;
  7539. case GEN6_PCODE_UNIMPLEMENTED_CMD:
  7540. return -ENODEV;
  7541. case GEN6_PCODE_ILLEGAL_CMD:
  7542. return -ENXIO;
  7543. case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  7544. case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  7545. return -EOVERFLOW;
  7546. case GEN6_PCODE_TIMEOUT:
  7547. return -ETIMEDOUT;
  7548. default:
  7549. MISSING_CASE(flags);
  7550. return 0;
  7551. }
  7552. }
  7553. static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
  7554. {
  7555. uint32_t flags =
  7556. I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
  7557. switch (flags) {
  7558. case GEN6_PCODE_SUCCESS:
  7559. return 0;
  7560. case GEN6_PCODE_ILLEGAL_CMD:
  7561. return -ENXIO;
  7562. case GEN7_PCODE_TIMEOUT:
  7563. return -ETIMEDOUT;
  7564. case GEN7_PCODE_ILLEGAL_DATA:
  7565. return -EINVAL;
  7566. case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
  7567. return -EOVERFLOW;
  7568. default:
  7569. MISSING_CASE(flags);
  7570. return 0;
  7571. }
  7572. }
  7573. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  7574. {
  7575. int status;
  7576. WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
  7577. /* GEN6_PCODE_* are outside of the forcewake domain, we can
  7578. * use te fw I915_READ variants to reduce the amount of work
  7579. * required when reading/writing.
  7580. */
  7581. if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  7582. DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps\n",
  7583. mbox, __builtin_return_address(0));
  7584. return -EAGAIN;
  7585. }
  7586. I915_WRITE_FW(GEN6_PCODE_DATA, *val);
  7587. I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
  7588. I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  7589. if (__intel_wait_for_register_fw(dev_priv,
  7590. GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
  7591. 500, 0, NULL)) {
  7592. DRM_ERROR("timeout waiting for pcode read (from mbox %x) to finish for %ps\n",
  7593. mbox, __builtin_return_address(0));
  7594. return -ETIMEDOUT;
  7595. }
  7596. *val = I915_READ_FW(GEN6_PCODE_DATA);
  7597. I915_WRITE_FW(GEN6_PCODE_DATA, 0);
  7598. if (INTEL_GEN(dev_priv) > 6)
  7599. status = gen7_check_mailbox_status(dev_priv);
  7600. else
  7601. status = gen6_check_mailbox_status(dev_priv);
  7602. if (status) {
  7603. DRM_DEBUG_DRIVER("warning: pcode (read from mbox %x) mailbox access failed for %ps: %d\n",
  7604. mbox, __builtin_return_address(0), status);
  7605. return status;
  7606. }
  7607. return 0;
  7608. }
  7609. int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
  7610. u32 mbox, u32 val)
  7611. {
  7612. int status;
  7613. WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
  7614. /* GEN6_PCODE_* are outside of the forcewake domain, we can
  7615. * use te fw I915_READ variants to reduce the amount of work
  7616. * required when reading/writing.
  7617. */
  7618. if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  7619. DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps\n",
  7620. val, mbox, __builtin_return_address(0));
  7621. return -EAGAIN;
  7622. }
  7623. I915_WRITE_FW(GEN6_PCODE_DATA, val);
  7624. I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
  7625. I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  7626. if (__intel_wait_for_register_fw(dev_priv,
  7627. GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
  7628. 500, 0, NULL)) {
  7629. DRM_ERROR("timeout waiting for pcode write of 0x%08x to mbox %x to finish for %ps\n",
  7630. val, mbox, __builtin_return_address(0));
  7631. return -ETIMEDOUT;
  7632. }
  7633. I915_WRITE_FW(GEN6_PCODE_DATA, 0);
  7634. if (INTEL_GEN(dev_priv) > 6)
  7635. status = gen7_check_mailbox_status(dev_priv);
  7636. else
  7637. status = gen6_check_mailbox_status(dev_priv);
  7638. if (status) {
  7639. DRM_DEBUG_DRIVER("warning: pcode (write of 0x%08x to mbox %x) mailbox access failed for %ps: %d\n",
  7640. val, mbox, __builtin_return_address(0), status);
  7641. return status;
  7642. }
  7643. return 0;
  7644. }
  7645. static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
  7646. u32 request, u32 reply_mask, u32 reply,
  7647. u32 *status)
  7648. {
  7649. u32 val = request;
  7650. *status = sandybridge_pcode_read(dev_priv, mbox, &val);
  7651. return *status || ((val & reply_mask) == reply);
  7652. }
  7653. /**
  7654. * skl_pcode_request - send PCODE request until acknowledgment
  7655. * @dev_priv: device private
  7656. * @mbox: PCODE mailbox ID the request is targeted for
  7657. * @request: request ID
  7658. * @reply_mask: mask used to check for request acknowledgment
  7659. * @reply: value used to check for request acknowledgment
  7660. * @timeout_base_ms: timeout for polling with preemption enabled
  7661. *
  7662. * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
  7663. * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
  7664. * The request is acknowledged once the PCODE reply dword equals @reply after
  7665. * applying @reply_mask. Polling is first attempted with preemption enabled
  7666. * for @timeout_base_ms and if this times out for another 50 ms with
  7667. * preemption disabled.
  7668. *
  7669. * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
  7670. * other error as reported by PCODE.
  7671. */
  7672. int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
  7673. u32 reply_mask, u32 reply, int timeout_base_ms)
  7674. {
  7675. u32 status;
  7676. int ret;
  7677. WARN_ON(!mutex_is_locked(&dev_priv->pcu_lock));
  7678. #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
  7679. &status)
  7680. /*
  7681. * Prime the PCODE by doing a request first. Normally it guarantees
  7682. * that a subsequent request, at most @timeout_base_ms later, succeeds.
  7683. * _wait_for() doesn't guarantee when its passed condition is evaluated
  7684. * first, so send the first request explicitly.
  7685. */
  7686. if (COND) {
  7687. ret = 0;
  7688. goto out;
  7689. }
  7690. ret = _wait_for(COND, timeout_base_ms * 1000, 10);
  7691. if (!ret)
  7692. goto out;
  7693. /*
  7694. * The above can time out if the number of requests was low (2 in the
  7695. * worst case) _and_ PCODE was busy for some reason even after a
  7696. * (queued) request and @timeout_base_ms delay. As a workaround retry
  7697. * the poll with preemption disabled to maximize the number of
  7698. * requests. Increase the timeout from @timeout_base_ms to 50ms to
  7699. * account for interrupts that could reduce the number of these
  7700. * requests, and for any quirks of the PCODE firmware that delays
  7701. * the request completion.
  7702. */
  7703. DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
  7704. WARN_ON_ONCE(timeout_base_ms > 3);
  7705. preempt_disable();
  7706. ret = wait_for_atomic(COND, 50);
  7707. preempt_enable();
  7708. out:
  7709. return ret ? ret : status;
  7710. #undef COND
  7711. }
  7712. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7713. {
  7714. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  7715. /*
  7716. * N = val - 0xb7
  7717. * Slow = Fast = GPLL ref * N
  7718. */
  7719. return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
  7720. }
  7721. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7722. {
  7723. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  7724. return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
  7725. }
  7726. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7727. {
  7728. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  7729. /*
  7730. * N = val / 2
  7731. * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
  7732. */
  7733. return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
  7734. }
  7735. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7736. {
  7737. struct intel_rps *rps = &dev_priv->gt_pm.rps;
  7738. /* CHV needs even values */
  7739. return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
  7740. }
  7741. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  7742. {
  7743. if (INTEL_GEN(dev_priv) >= 9)
  7744. return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
  7745. GEN9_FREQ_SCALER);
  7746. else if (IS_CHERRYVIEW(dev_priv))
  7747. return chv_gpu_freq(dev_priv, val);
  7748. else if (IS_VALLEYVIEW(dev_priv))
  7749. return byt_gpu_freq(dev_priv, val);
  7750. else
  7751. return val * GT_FREQUENCY_MULTIPLIER;
  7752. }
  7753. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  7754. {
  7755. if (INTEL_GEN(dev_priv) >= 9)
  7756. return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
  7757. GT_FREQUENCY_MULTIPLIER);
  7758. else if (IS_CHERRYVIEW(dev_priv))
  7759. return chv_freq_opcode(dev_priv, val);
  7760. else if (IS_VALLEYVIEW(dev_priv))
  7761. return byt_freq_opcode(dev_priv, val);
  7762. else
  7763. return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
  7764. }
  7765. void intel_pm_setup(struct drm_i915_private *dev_priv)
  7766. {
  7767. mutex_init(&dev_priv->pcu_lock);
  7768. INIT_DELAYED_WORK(&dev_priv->gt_pm.autoenable_work,
  7769. __intel_autoenable_gt_powersave);
  7770. atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
  7771. dev_priv->runtime_pm.suspended = false;
  7772. atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
  7773. }
  7774. static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
  7775. const i915_reg_t reg)
  7776. {
  7777. u32 lower, upper, tmp;
  7778. int loop = 2;
  7779. /* The register accessed do not need forcewake. We borrow
  7780. * uncore lock to prevent concurrent access to range reg.
  7781. */
  7782. spin_lock_irq(&dev_priv->uncore.lock);
  7783. /* vlv and chv residency counters are 40 bits in width.
  7784. * With a control bit, we can choose between upper or lower
  7785. * 32bit window into this counter.
  7786. *
  7787. * Although we always use the counter in high-range mode elsewhere,
  7788. * userspace may attempt to read the value before rc6 is initialised,
  7789. * before we have set the default VLV_COUNTER_CONTROL value. So always
  7790. * set the high bit to be safe.
  7791. */
  7792. I915_WRITE_FW(VLV_COUNTER_CONTROL,
  7793. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
  7794. upper = I915_READ_FW(reg);
  7795. do {
  7796. tmp = upper;
  7797. I915_WRITE_FW(VLV_COUNTER_CONTROL,
  7798. _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
  7799. lower = I915_READ_FW(reg);
  7800. I915_WRITE_FW(VLV_COUNTER_CONTROL,
  7801. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
  7802. upper = I915_READ_FW(reg);
  7803. } while (upper != tmp && --loop);
  7804. /* Everywhere else we always use VLV_COUNTER_CONTROL with the
  7805. * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
  7806. * now.
  7807. */
  7808. spin_unlock_irq(&dev_priv->uncore.lock);
  7809. return lower | (u64)upper << 8;
  7810. }
  7811. u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
  7812. const i915_reg_t reg)
  7813. {
  7814. u64 time_hw, units, div;
  7815. if (!intel_rc6_enabled())
  7816. return 0;
  7817. intel_runtime_pm_get(dev_priv);
  7818. /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
  7819. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  7820. units = 1000;
  7821. div = dev_priv->czclk_freq;
  7822. time_hw = vlv_residency_raw(dev_priv, reg);
  7823. } else if (IS_GEN9_LP(dev_priv)) {
  7824. units = 1000;
  7825. div = 1200; /* 833.33ns */
  7826. time_hw = I915_READ(reg);
  7827. } else {
  7828. units = 128000; /* 1.28us */
  7829. div = 100000;
  7830. time_hw = I915_READ(reg);
  7831. }
  7832. intel_runtime_pm_put(dev_priv);
  7833. return DIV_ROUND_UP_ULL(time_hw * units, div);
  7834. }