m_can.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212
  1. /*
  2. * CAN bus driver for Bosch M_CAN controller
  3. *
  4. * Copyright (C) 2014 Freescale Semiconductor, Inc.
  5. * Dong Aisheng <b29396@freescale.com>
  6. *
  7. * Bosch M_CAN user manual can be obtained from:
  8. * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
  9. * mcan_users_manual_v302.pdf
  10. *
  11. * This file is licensed under the terms of the GNU General Public
  12. * License version 2. This program is licensed "as is" without any
  13. * warranty of any kind, whether express or implied.
  14. */
  15. #include <linux/clk.h>
  16. #include <linux/delay.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/io.h>
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/of.h>
  23. #include <linux/of_device.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/can/dev.h>
  26. /* napi related */
  27. #define M_CAN_NAPI_WEIGHT 64
  28. /* message ram configuration data length */
  29. #define MRAM_CFG_LEN 8
  30. /* registers definition */
  31. enum m_can_reg {
  32. M_CAN_CREL = 0x0,
  33. M_CAN_ENDN = 0x4,
  34. M_CAN_CUST = 0x8,
  35. M_CAN_FBTP = 0xc,
  36. M_CAN_TEST = 0x10,
  37. M_CAN_RWD = 0x14,
  38. M_CAN_CCCR = 0x18,
  39. M_CAN_BTP = 0x1c,
  40. M_CAN_TSCC = 0x20,
  41. M_CAN_TSCV = 0x24,
  42. M_CAN_TOCC = 0x28,
  43. M_CAN_TOCV = 0x2c,
  44. M_CAN_ECR = 0x40,
  45. M_CAN_PSR = 0x44,
  46. M_CAN_IR = 0x50,
  47. M_CAN_IE = 0x54,
  48. M_CAN_ILS = 0x58,
  49. M_CAN_ILE = 0x5c,
  50. M_CAN_GFC = 0x80,
  51. M_CAN_SIDFC = 0x84,
  52. M_CAN_XIDFC = 0x88,
  53. M_CAN_XIDAM = 0x90,
  54. M_CAN_HPMS = 0x94,
  55. M_CAN_NDAT1 = 0x98,
  56. M_CAN_NDAT2 = 0x9c,
  57. M_CAN_RXF0C = 0xa0,
  58. M_CAN_RXF0S = 0xa4,
  59. M_CAN_RXF0A = 0xa8,
  60. M_CAN_RXBC = 0xac,
  61. M_CAN_RXF1C = 0xb0,
  62. M_CAN_RXF1S = 0xb4,
  63. M_CAN_RXF1A = 0xb8,
  64. M_CAN_RXESC = 0xbc,
  65. M_CAN_TXBC = 0xc0,
  66. M_CAN_TXFQS = 0xc4,
  67. M_CAN_TXESC = 0xc8,
  68. M_CAN_TXBRP = 0xcc,
  69. M_CAN_TXBAR = 0xd0,
  70. M_CAN_TXBCR = 0xd4,
  71. M_CAN_TXBTO = 0xd8,
  72. M_CAN_TXBCF = 0xdc,
  73. M_CAN_TXBTIE = 0xe0,
  74. M_CAN_TXBCIE = 0xe4,
  75. M_CAN_TXEFC = 0xf0,
  76. M_CAN_TXEFS = 0xf4,
  77. M_CAN_TXEFA = 0xf8,
  78. };
  79. /* m_can lec values */
  80. enum m_can_lec_type {
  81. LEC_NO_ERROR = 0,
  82. LEC_STUFF_ERROR,
  83. LEC_FORM_ERROR,
  84. LEC_ACK_ERROR,
  85. LEC_BIT1_ERROR,
  86. LEC_BIT0_ERROR,
  87. LEC_CRC_ERROR,
  88. LEC_UNUSED,
  89. };
  90. enum m_can_mram_cfg {
  91. MRAM_SIDF = 0,
  92. MRAM_XIDF,
  93. MRAM_RXF0,
  94. MRAM_RXF1,
  95. MRAM_RXB,
  96. MRAM_TXE,
  97. MRAM_TXB,
  98. MRAM_CFG_NUM,
  99. };
  100. /* Test Register (TEST) */
  101. #define TEST_LBCK BIT(4)
  102. /* CC Control Register(CCCR) */
  103. #define CCCR_TEST BIT(7)
  104. #define CCCR_MON BIT(5)
  105. #define CCCR_CCE BIT(1)
  106. #define CCCR_INIT BIT(0)
  107. /* Bit Timing & Prescaler Register (BTP) */
  108. #define BTR_BRP_MASK 0x3ff
  109. #define BTR_BRP_SHIFT 16
  110. #define BTR_TSEG1_SHIFT 8
  111. #define BTR_TSEG1_MASK (0x3f << BTR_TSEG1_SHIFT)
  112. #define BTR_TSEG2_SHIFT 4
  113. #define BTR_TSEG2_MASK (0xf << BTR_TSEG2_SHIFT)
  114. #define BTR_SJW_SHIFT 0
  115. #define BTR_SJW_MASK 0xf
  116. /* Error Counter Register(ECR) */
  117. #define ECR_RP BIT(15)
  118. #define ECR_REC_SHIFT 8
  119. #define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
  120. #define ECR_TEC_SHIFT 0
  121. #define ECR_TEC_MASK 0xff
  122. /* Protocol Status Register(PSR) */
  123. #define PSR_BO BIT(7)
  124. #define PSR_EW BIT(6)
  125. #define PSR_EP BIT(5)
  126. #define PSR_LEC_MASK 0x7
  127. /* Interrupt Register(IR) */
  128. #define IR_ALL_INT 0xffffffff
  129. #define IR_STE BIT(31)
  130. #define IR_FOE BIT(30)
  131. #define IR_ACKE BIT(29)
  132. #define IR_BE BIT(28)
  133. #define IR_CRCE BIT(27)
  134. #define IR_WDI BIT(26)
  135. #define IR_BO BIT(25)
  136. #define IR_EW BIT(24)
  137. #define IR_EP BIT(23)
  138. #define IR_ELO BIT(22)
  139. #define IR_BEU BIT(21)
  140. #define IR_BEC BIT(20)
  141. #define IR_DRX BIT(19)
  142. #define IR_TOO BIT(18)
  143. #define IR_MRAF BIT(17)
  144. #define IR_TSW BIT(16)
  145. #define IR_TEFL BIT(15)
  146. #define IR_TEFF BIT(14)
  147. #define IR_TEFW BIT(13)
  148. #define IR_TEFN BIT(12)
  149. #define IR_TFE BIT(11)
  150. #define IR_TCF BIT(10)
  151. #define IR_TC BIT(9)
  152. #define IR_HPM BIT(8)
  153. #define IR_RF1L BIT(7)
  154. #define IR_RF1F BIT(6)
  155. #define IR_RF1W BIT(5)
  156. #define IR_RF1N BIT(4)
  157. #define IR_RF0L BIT(3)
  158. #define IR_RF0F BIT(2)
  159. #define IR_RF0W BIT(1)
  160. #define IR_RF0N BIT(0)
  161. #define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
  162. #define IR_ERR_LEC (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
  163. #define IR_ERR_BUS (IR_ERR_LEC | IR_WDI | IR_ELO | IR_BEU | \
  164. IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
  165. IR_RF1L | IR_RF0L)
  166. #define IR_ERR_ALL (IR_ERR_STATE | IR_ERR_BUS)
  167. /* Interrupt Line Select (ILS) */
  168. #define ILS_ALL_INT0 0x0
  169. #define ILS_ALL_INT1 0xFFFFFFFF
  170. /* Interrupt Line Enable (ILE) */
  171. #define ILE_EINT0 BIT(0)
  172. #define ILE_EINT1 BIT(1)
  173. /* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
  174. #define RXFC_FWM_OFF 24
  175. #define RXFC_FWM_MASK 0x7f
  176. #define RXFC_FWM_1 (1 << RXFC_FWM_OFF)
  177. #define RXFC_FS_OFF 16
  178. #define RXFC_FS_MASK 0x7f
  179. /* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
  180. #define RXFS_RFL BIT(25)
  181. #define RXFS_FF BIT(24)
  182. #define RXFS_FPI_OFF 16
  183. #define RXFS_FPI_MASK 0x3f0000
  184. #define RXFS_FGI_OFF 8
  185. #define RXFS_FGI_MASK 0x3f00
  186. #define RXFS_FFL_MASK 0x7f
  187. /* Rx Buffer / FIFO Element Size Configuration (RXESC) */
  188. #define M_CAN_RXESC_8BYTES 0x0
  189. /* Tx Buffer Configuration(TXBC) */
  190. #define TXBC_NDTB_OFF 16
  191. #define TXBC_NDTB_MASK 0x3f
  192. /* Tx Buffer Element Size Configuration(TXESC) */
  193. #define TXESC_TBDS_8BYTES 0x0
  194. /* Tx Event FIFO Con.guration (TXEFC) */
  195. #define TXEFC_EFS_OFF 16
  196. #define TXEFC_EFS_MASK 0x3f
  197. /* Message RAM Configuration (in bytes) */
  198. #define SIDF_ELEMENT_SIZE 4
  199. #define XIDF_ELEMENT_SIZE 8
  200. #define RXF0_ELEMENT_SIZE 16
  201. #define RXF1_ELEMENT_SIZE 16
  202. #define RXB_ELEMENT_SIZE 16
  203. #define TXE_ELEMENT_SIZE 8
  204. #define TXB_ELEMENT_SIZE 16
  205. /* Message RAM Elements */
  206. #define M_CAN_FIFO_ID 0x0
  207. #define M_CAN_FIFO_DLC 0x4
  208. #define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
  209. /* Rx Buffer Element */
  210. #define RX_BUF_ESI BIT(31)
  211. #define RX_BUF_XTD BIT(30)
  212. #define RX_BUF_RTR BIT(29)
  213. /* Tx Buffer Element */
  214. #define TX_BUF_XTD BIT(30)
  215. #define TX_BUF_RTR BIT(29)
  216. /* address offset and element number for each FIFO/Buffer in the Message RAM */
  217. struct mram_cfg {
  218. u16 off;
  219. u8 num;
  220. };
  221. /* m_can private data structure */
  222. struct m_can_priv {
  223. struct can_priv can; /* must be the first member */
  224. struct napi_struct napi;
  225. struct net_device *dev;
  226. struct device *device;
  227. struct clk *hclk;
  228. struct clk *cclk;
  229. void __iomem *base;
  230. u32 irqstatus;
  231. /* message ram configuration */
  232. void __iomem *mram_base;
  233. struct mram_cfg mcfg[MRAM_CFG_NUM];
  234. };
  235. static inline u32 m_can_read(const struct m_can_priv *priv, enum m_can_reg reg)
  236. {
  237. return readl(priv->base + reg);
  238. }
  239. static inline void m_can_write(const struct m_can_priv *priv,
  240. enum m_can_reg reg, u32 val)
  241. {
  242. writel(val, priv->base + reg);
  243. }
  244. static inline u32 m_can_fifo_read(const struct m_can_priv *priv,
  245. u32 fgi, unsigned int offset)
  246. {
  247. return readl(priv->mram_base + priv->mcfg[MRAM_RXF0].off +
  248. fgi * RXF0_ELEMENT_SIZE + offset);
  249. }
  250. static inline void m_can_fifo_write(const struct m_can_priv *priv,
  251. u32 fpi, unsigned int offset, u32 val)
  252. {
  253. return writel(val, priv->mram_base + priv->mcfg[MRAM_TXB].off +
  254. fpi * TXB_ELEMENT_SIZE + offset);
  255. }
  256. static inline void m_can_config_endisable(const struct m_can_priv *priv,
  257. bool enable)
  258. {
  259. u32 cccr = m_can_read(priv, M_CAN_CCCR);
  260. u32 timeout = 10;
  261. u32 val = 0;
  262. if (enable) {
  263. /* enable m_can configuration */
  264. m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT);
  265. /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
  266. m_can_write(priv, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
  267. } else {
  268. m_can_write(priv, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
  269. }
  270. /* there's a delay for module initialization */
  271. if (enable)
  272. val = CCCR_INIT | CCCR_CCE;
  273. while ((m_can_read(priv, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
  274. if (timeout == 0) {
  275. netdev_warn(priv->dev, "Failed to init module\n");
  276. return;
  277. }
  278. timeout--;
  279. udelay(1);
  280. }
  281. }
  282. static inline void m_can_enable_all_interrupts(const struct m_can_priv *priv)
  283. {
  284. m_can_write(priv, M_CAN_ILE, ILE_EINT0 | ILE_EINT1);
  285. }
  286. static inline void m_can_disable_all_interrupts(const struct m_can_priv *priv)
  287. {
  288. m_can_write(priv, M_CAN_ILE, 0x0);
  289. }
  290. static void m_can_read_fifo(const struct net_device *dev, struct can_frame *cf,
  291. u32 rxfs)
  292. {
  293. struct m_can_priv *priv = netdev_priv(dev);
  294. u32 id, fgi;
  295. /* calculate the fifo get index for where to read data */
  296. fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_OFF;
  297. id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_ID);
  298. if (id & RX_BUF_XTD)
  299. cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
  300. else
  301. cf->can_id = (id >> 18) & CAN_SFF_MASK;
  302. if (id & RX_BUF_RTR) {
  303. cf->can_id |= CAN_RTR_FLAG;
  304. } else {
  305. id = m_can_fifo_read(priv, fgi, M_CAN_FIFO_DLC);
  306. cf->can_dlc = get_can_dlc((id >> 16) & 0x0F);
  307. *(u32 *)(cf->data + 0) = m_can_fifo_read(priv, fgi,
  308. M_CAN_FIFO_DATA(0));
  309. *(u32 *)(cf->data + 4) = m_can_fifo_read(priv, fgi,
  310. M_CAN_FIFO_DATA(1));
  311. }
  312. /* acknowledge rx fifo 0 */
  313. m_can_write(priv, M_CAN_RXF0A, fgi);
  314. }
  315. static int m_can_do_rx_poll(struct net_device *dev, int quota)
  316. {
  317. struct m_can_priv *priv = netdev_priv(dev);
  318. struct net_device_stats *stats = &dev->stats;
  319. struct sk_buff *skb;
  320. struct can_frame *frame;
  321. u32 pkts = 0;
  322. u32 rxfs;
  323. rxfs = m_can_read(priv, M_CAN_RXF0S);
  324. if (!(rxfs & RXFS_FFL_MASK)) {
  325. netdev_dbg(dev, "no messages in fifo0\n");
  326. return 0;
  327. }
  328. while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
  329. if (rxfs & RXFS_RFL)
  330. netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
  331. skb = alloc_can_skb(dev, &frame);
  332. if (!skb) {
  333. stats->rx_dropped++;
  334. return pkts;
  335. }
  336. m_can_read_fifo(dev, frame, rxfs);
  337. stats->rx_packets++;
  338. stats->rx_bytes += frame->can_dlc;
  339. netif_receive_skb(skb);
  340. quota--;
  341. pkts++;
  342. rxfs = m_can_read(priv, M_CAN_RXF0S);
  343. }
  344. if (pkts)
  345. can_led_event(dev, CAN_LED_EVENT_RX);
  346. return pkts;
  347. }
  348. static int m_can_handle_lost_msg(struct net_device *dev)
  349. {
  350. struct net_device_stats *stats = &dev->stats;
  351. struct sk_buff *skb;
  352. struct can_frame *frame;
  353. netdev_err(dev, "msg lost in rxf0\n");
  354. stats->rx_errors++;
  355. stats->rx_over_errors++;
  356. skb = alloc_can_err_skb(dev, &frame);
  357. if (unlikely(!skb))
  358. return 0;
  359. frame->can_id |= CAN_ERR_CRTL;
  360. frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  361. netif_receive_skb(skb);
  362. return 1;
  363. }
  364. static int m_can_handle_lec_err(struct net_device *dev,
  365. enum m_can_lec_type lec_type)
  366. {
  367. struct m_can_priv *priv = netdev_priv(dev);
  368. struct net_device_stats *stats = &dev->stats;
  369. struct can_frame *cf;
  370. struct sk_buff *skb;
  371. priv->can.can_stats.bus_error++;
  372. stats->rx_errors++;
  373. /* propagate the error condition to the CAN stack */
  374. skb = alloc_can_err_skb(dev, &cf);
  375. if (unlikely(!skb))
  376. return 0;
  377. /* check for 'last error code' which tells us the
  378. * type of the last error to occur on the CAN bus
  379. */
  380. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  381. cf->data[2] |= CAN_ERR_PROT_UNSPEC;
  382. switch (lec_type) {
  383. case LEC_STUFF_ERROR:
  384. netdev_dbg(dev, "stuff error\n");
  385. cf->data[2] |= CAN_ERR_PROT_STUFF;
  386. break;
  387. case LEC_FORM_ERROR:
  388. netdev_dbg(dev, "form error\n");
  389. cf->data[2] |= CAN_ERR_PROT_FORM;
  390. break;
  391. case LEC_ACK_ERROR:
  392. netdev_dbg(dev, "ack error\n");
  393. cf->data[3] |= (CAN_ERR_PROT_LOC_ACK |
  394. CAN_ERR_PROT_LOC_ACK_DEL);
  395. break;
  396. case LEC_BIT1_ERROR:
  397. netdev_dbg(dev, "bit1 error\n");
  398. cf->data[2] |= CAN_ERR_PROT_BIT1;
  399. break;
  400. case LEC_BIT0_ERROR:
  401. netdev_dbg(dev, "bit0 error\n");
  402. cf->data[2] |= CAN_ERR_PROT_BIT0;
  403. break;
  404. case LEC_CRC_ERROR:
  405. netdev_dbg(dev, "CRC error\n");
  406. cf->data[3] |= (CAN_ERR_PROT_LOC_CRC_SEQ |
  407. CAN_ERR_PROT_LOC_CRC_DEL);
  408. break;
  409. default:
  410. break;
  411. }
  412. stats->rx_packets++;
  413. stats->rx_bytes += cf->can_dlc;
  414. netif_receive_skb(skb);
  415. return 1;
  416. }
  417. static int m_can_get_berr_counter(const struct net_device *dev,
  418. struct can_berr_counter *bec)
  419. {
  420. struct m_can_priv *priv = netdev_priv(dev);
  421. unsigned int ecr;
  422. int err;
  423. err = clk_prepare_enable(priv->hclk);
  424. if (err)
  425. return err;
  426. err = clk_prepare_enable(priv->cclk);
  427. if (err) {
  428. clk_disable_unprepare(priv->hclk);
  429. return err;
  430. }
  431. ecr = m_can_read(priv, M_CAN_ECR);
  432. bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
  433. bec->txerr = ecr & ECR_TEC_MASK;
  434. clk_disable_unprepare(priv->cclk);
  435. clk_disable_unprepare(priv->hclk);
  436. return 0;
  437. }
  438. static int m_can_handle_state_change(struct net_device *dev,
  439. enum can_state new_state)
  440. {
  441. struct m_can_priv *priv = netdev_priv(dev);
  442. struct net_device_stats *stats = &dev->stats;
  443. struct can_frame *cf;
  444. struct sk_buff *skb;
  445. struct can_berr_counter bec;
  446. unsigned int ecr;
  447. switch (new_state) {
  448. case CAN_STATE_ERROR_ACTIVE:
  449. /* error warning state */
  450. priv->can.can_stats.error_warning++;
  451. priv->can.state = CAN_STATE_ERROR_WARNING;
  452. break;
  453. case CAN_STATE_ERROR_PASSIVE:
  454. /* error passive state */
  455. priv->can.can_stats.error_passive++;
  456. priv->can.state = CAN_STATE_ERROR_PASSIVE;
  457. break;
  458. case CAN_STATE_BUS_OFF:
  459. /* bus-off state */
  460. priv->can.state = CAN_STATE_BUS_OFF;
  461. m_can_disable_all_interrupts(priv);
  462. can_bus_off(dev);
  463. break;
  464. default:
  465. break;
  466. }
  467. /* propagate the error condition to the CAN stack */
  468. skb = alloc_can_err_skb(dev, &cf);
  469. if (unlikely(!skb))
  470. return 0;
  471. m_can_get_berr_counter(dev, &bec);
  472. switch (new_state) {
  473. case CAN_STATE_ERROR_ACTIVE:
  474. /* error warning state */
  475. cf->can_id |= CAN_ERR_CRTL;
  476. cf->data[1] = (bec.txerr > bec.rxerr) ?
  477. CAN_ERR_CRTL_TX_WARNING :
  478. CAN_ERR_CRTL_RX_WARNING;
  479. cf->data[6] = bec.txerr;
  480. cf->data[7] = bec.rxerr;
  481. break;
  482. case CAN_STATE_ERROR_PASSIVE:
  483. /* error passive state */
  484. cf->can_id |= CAN_ERR_CRTL;
  485. ecr = m_can_read(priv, M_CAN_ECR);
  486. if (ecr & ECR_RP)
  487. cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
  488. if (bec.txerr > 127)
  489. cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
  490. cf->data[6] = bec.txerr;
  491. cf->data[7] = bec.rxerr;
  492. break;
  493. case CAN_STATE_BUS_OFF:
  494. /* bus-off state */
  495. cf->can_id |= CAN_ERR_BUSOFF;
  496. break;
  497. default:
  498. break;
  499. }
  500. stats->rx_packets++;
  501. stats->rx_bytes += cf->can_dlc;
  502. netif_receive_skb(skb);
  503. return 1;
  504. }
  505. static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
  506. {
  507. struct m_can_priv *priv = netdev_priv(dev);
  508. int work_done = 0;
  509. if ((psr & PSR_EW) &&
  510. (priv->can.state != CAN_STATE_ERROR_WARNING)) {
  511. netdev_dbg(dev, "entered error warning state\n");
  512. work_done += m_can_handle_state_change(dev,
  513. CAN_STATE_ERROR_WARNING);
  514. }
  515. if ((psr & PSR_EP) &&
  516. (priv->can.state != CAN_STATE_ERROR_PASSIVE)) {
  517. netdev_dbg(dev, "entered error warning state\n");
  518. work_done += m_can_handle_state_change(dev,
  519. CAN_STATE_ERROR_PASSIVE);
  520. }
  521. if ((psr & PSR_BO) &&
  522. (priv->can.state != CAN_STATE_BUS_OFF)) {
  523. netdev_dbg(dev, "entered error warning state\n");
  524. work_done += m_can_handle_state_change(dev,
  525. CAN_STATE_BUS_OFF);
  526. }
  527. return work_done;
  528. }
  529. static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
  530. {
  531. if (irqstatus & IR_WDI)
  532. netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
  533. if (irqstatus & IR_BEU)
  534. netdev_err(dev, "Error Logging Overflow\n");
  535. if (irqstatus & IR_BEU)
  536. netdev_err(dev, "Bit Error Uncorrected\n");
  537. if (irqstatus & IR_BEC)
  538. netdev_err(dev, "Bit Error Corrected\n");
  539. if (irqstatus & IR_TOO)
  540. netdev_err(dev, "Timeout reached\n");
  541. if (irqstatus & IR_MRAF)
  542. netdev_err(dev, "Message RAM access failure occurred\n");
  543. }
  544. static inline bool is_lec_err(u32 psr)
  545. {
  546. psr &= LEC_UNUSED;
  547. return psr && (psr != LEC_UNUSED);
  548. }
  549. static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
  550. u32 psr)
  551. {
  552. struct m_can_priv *priv = netdev_priv(dev);
  553. int work_done = 0;
  554. if (irqstatus & IR_RF0L)
  555. work_done += m_can_handle_lost_msg(dev);
  556. /* handle lec errors on the bus */
  557. if ((priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
  558. is_lec_err(psr))
  559. work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
  560. /* other unproccessed error interrupts */
  561. m_can_handle_other_err(dev, irqstatus);
  562. return work_done;
  563. }
  564. static int m_can_poll(struct napi_struct *napi, int quota)
  565. {
  566. struct net_device *dev = napi->dev;
  567. struct m_can_priv *priv = netdev_priv(dev);
  568. int work_done = 0;
  569. u32 irqstatus, psr;
  570. irqstatus = priv->irqstatus | m_can_read(priv, M_CAN_IR);
  571. if (!irqstatus)
  572. goto end;
  573. psr = m_can_read(priv, M_CAN_PSR);
  574. if (irqstatus & IR_ERR_STATE)
  575. work_done += m_can_handle_state_errors(dev, psr);
  576. if (irqstatus & IR_ERR_BUS)
  577. work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
  578. if (irqstatus & IR_RF0N)
  579. work_done += m_can_do_rx_poll(dev, (quota - work_done));
  580. if (work_done < quota) {
  581. napi_complete(napi);
  582. m_can_enable_all_interrupts(priv);
  583. }
  584. end:
  585. return work_done;
  586. }
  587. static irqreturn_t m_can_isr(int irq, void *dev_id)
  588. {
  589. struct net_device *dev = (struct net_device *)dev_id;
  590. struct m_can_priv *priv = netdev_priv(dev);
  591. struct net_device_stats *stats = &dev->stats;
  592. u32 ir;
  593. ir = m_can_read(priv, M_CAN_IR);
  594. if (!ir)
  595. return IRQ_NONE;
  596. /* ACK all irqs */
  597. if (ir & IR_ALL_INT)
  598. m_can_write(priv, M_CAN_IR, ir);
  599. /* schedule NAPI in case of
  600. * - rx IRQ
  601. * - state change IRQ
  602. * - bus error IRQ and bus error reporting
  603. */
  604. if ((ir & IR_RF0N) || (ir & IR_ERR_ALL)) {
  605. priv->irqstatus = ir;
  606. m_can_disable_all_interrupts(priv);
  607. napi_schedule(&priv->napi);
  608. }
  609. /* transmission complete interrupt */
  610. if (ir & IR_TC) {
  611. stats->tx_bytes += can_get_echo_skb(dev, 0);
  612. stats->tx_packets++;
  613. can_led_event(dev, CAN_LED_EVENT_TX);
  614. netif_wake_queue(dev);
  615. }
  616. return IRQ_HANDLED;
  617. }
  618. static const struct can_bittiming_const m_can_bittiming_const = {
  619. .name = KBUILD_MODNAME,
  620. .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
  621. .tseg1_max = 64,
  622. .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
  623. .tseg2_max = 16,
  624. .sjw_max = 16,
  625. .brp_min = 1,
  626. .brp_max = 1024,
  627. .brp_inc = 1,
  628. };
  629. static int m_can_set_bittiming(struct net_device *dev)
  630. {
  631. struct m_can_priv *priv = netdev_priv(dev);
  632. const struct can_bittiming *bt = &priv->can.bittiming;
  633. u16 brp, sjw, tseg1, tseg2;
  634. u32 reg_btp;
  635. brp = bt->brp - 1;
  636. sjw = bt->sjw - 1;
  637. tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
  638. tseg2 = bt->phase_seg2 - 1;
  639. reg_btp = (brp << BTR_BRP_SHIFT) | (sjw << BTR_SJW_SHIFT) |
  640. (tseg1 << BTR_TSEG1_SHIFT) | (tseg2 << BTR_TSEG2_SHIFT);
  641. m_can_write(priv, M_CAN_BTP, reg_btp);
  642. netdev_dbg(dev, "setting BTP 0x%x\n", reg_btp);
  643. return 0;
  644. }
  645. /* Configure M_CAN chip:
  646. * - set rx buffer/fifo element size
  647. * - configure rx fifo
  648. * - accept non-matching frame into fifo 0
  649. * - configure tx buffer
  650. * - configure mode
  651. * - setup bittiming
  652. */
  653. static void m_can_chip_config(struct net_device *dev)
  654. {
  655. struct m_can_priv *priv = netdev_priv(dev);
  656. u32 cccr, test;
  657. m_can_config_endisable(priv, true);
  658. /* RX Buffer/FIFO Element Size 8 bytes data field */
  659. m_can_write(priv, M_CAN_RXESC, M_CAN_RXESC_8BYTES);
  660. /* Accept Non-matching Frames Into FIFO 0 */
  661. m_can_write(priv, M_CAN_GFC, 0x0);
  662. /* only support one Tx Buffer currently */
  663. m_can_write(priv, M_CAN_TXBC, (1 << TXBC_NDTB_OFF) |
  664. priv->mcfg[MRAM_TXB].off);
  665. /* only support 8 bytes firstly */
  666. m_can_write(priv, M_CAN_TXESC, TXESC_TBDS_8BYTES);
  667. m_can_write(priv, M_CAN_TXEFC, (1 << TXEFC_EFS_OFF) |
  668. priv->mcfg[MRAM_TXE].off);
  669. /* rx fifo configuration, blocking mode, fifo size 1 */
  670. m_can_write(priv, M_CAN_RXF0C,
  671. (priv->mcfg[MRAM_RXF0].num << RXFC_FS_OFF) |
  672. RXFC_FWM_1 | priv->mcfg[MRAM_RXF0].off);
  673. m_can_write(priv, M_CAN_RXF1C,
  674. (priv->mcfg[MRAM_RXF1].num << RXFC_FS_OFF) |
  675. RXFC_FWM_1 | priv->mcfg[MRAM_RXF1].off);
  676. cccr = m_can_read(priv, M_CAN_CCCR);
  677. cccr &= ~(CCCR_TEST | CCCR_MON);
  678. test = m_can_read(priv, M_CAN_TEST);
  679. test &= ~TEST_LBCK;
  680. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  681. cccr |= CCCR_MON;
  682. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  683. cccr |= CCCR_TEST;
  684. test |= TEST_LBCK;
  685. }
  686. m_can_write(priv, M_CAN_CCCR, cccr);
  687. m_can_write(priv, M_CAN_TEST, test);
  688. /* enable interrupts */
  689. m_can_write(priv, M_CAN_IR, IR_ALL_INT);
  690. if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
  691. m_can_write(priv, M_CAN_IE, IR_ALL_INT & ~IR_ERR_LEC);
  692. else
  693. m_can_write(priv, M_CAN_IE, IR_ALL_INT);
  694. /* route all interrupts to INT0 */
  695. m_can_write(priv, M_CAN_ILS, ILS_ALL_INT0);
  696. /* set bittiming params */
  697. m_can_set_bittiming(dev);
  698. m_can_config_endisable(priv, false);
  699. }
  700. static void m_can_start(struct net_device *dev)
  701. {
  702. struct m_can_priv *priv = netdev_priv(dev);
  703. /* basic m_can configuration */
  704. m_can_chip_config(dev);
  705. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  706. m_can_enable_all_interrupts(priv);
  707. }
  708. static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
  709. {
  710. switch (mode) {
  711. case CAN_MODE_START:
  712. m_can_start(dev);
  713. netif_wake_queue(dev);
  714. break;
  715. default:
  716. return -EOPNOTSUPP;
  717. }
  718. return 0;
  719. }
  720. static void free_m_can_dev(struct net_device *dev)
  721. {
  722. free_candev(dev);
  723. }
  724. static struct net_device *alloc_m_can_dev(void)
  725. {
  726. struct net_device *dev;
  727. struct m_can_priv *priv;
  728. dev = alloc_candev(sizeof(*priv), 1);
  729. if (!dev)
  730. return NULL;
  731. priv = netdev_priv(dev);
  732. netif_napi_add(dev, &priv->napi, m_can_poll, M_CAN_NAPI_WEIGHT);
  733. priv->dev = dev;
  734. priv->can.bittiming_const = &m_can_bittiming_const;
  735. priv->can.do_set_mode = m_can_set_mode;
  736. priv->can.do_get_berr_counter = m_can_get_berr_counter;
  737. priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
  738. CAN_CTRLMODE_LISTENONLY |
  739. CAN_CTRLMODE_BERR_REPORTING;
  740. return dev;
  741. }
  742. static int m_can_open(struct net_device *dev)
  743. {
  744. struct m_can_priv *priv = netdev_priv(dev);
  745. int err;
  746. err = clk_prepare_enable(priv->hclk);
  747. if (err)
  748. return err;
  749. err = clk_prepare_enable(priv->cclk);
  750. if (err)
  751. goto exit_disable_hclk;
  752. /* open the can device */
  753. err = open_candev(dev);
  754. if (err) {
  755. netdev_err(dev, "failed to open can device\n");
  756. goto exit_disable_cclk;
  757. }
  758. /* register interrupt handler */
  759. err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
  760. dev);
  761. if (err < 0) {
  762. netdev_err(dev, "failed to request interrupt\n");
  763. goto exit_irq_fail;
  764. }
  765. /* start the m_can controller */
  766. m_can_start(dev);
  767. can_led_event(dev, CAN_LED_EVENT_OPEN);
  768. napi_enable(&priv->napi);
  769. netif_start_queue(dev);
  770. return 0;
  771. exit_irq_fail:
  772. close_candev(dev);
  773. exit_disable_cclk:
  774. clk_disable_unprepare(priv->cclk);
  775. exit_disable_hclk:
  776. clk_disable_unprepare(priv->hclk);
  777. return err;
  778. }
  779. static void m_can_stop(struct net_device *dev)
  780. {
  781. struct m_can_priv *priv = netdev_priv(dev);
  782. /* disable all interrupts */
  783. m_can_disable_all_interrupts(priv);
  784. clk_disable_unprepare(priv->hclk);
  785. clk_disable_unprepare(priv->cclk);
  786. /* set the state as STOPPED */
  787. priv->can.state = CAN_STATE_STOPPED;
  788. }
  789. static int m_can_close(struct net_device *dev)
  790. {
  791. struct m_can_priv *priv = netdev_priv(dev);
  792. netif_stop_queue(dev);
  793. napi_disable(&priv->napi);
  794. m_can_stop(dev);
  795. free_irq(dev->irq, dev);
  796. close_candev(dev);
  797. can_led_event(dev, CAN_LED_EVENT_STOP);
  798. return 0;
  799. }
  800. static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
  801. struct net_device *dev)
  802. {
  803. struct m_can_priv *priv = netdev_priv(dev);
  804. struct can_frame *cf = (struct can_frame *)skb->data;
  805. u32 id;
  806. if (can_dropped_invalid_skb(dev, skb))
  807. return NETDEV_TX_OK;
  808. netif_stop_queue(dev);
  809. if (cf->can_id & CAN_EFF_FLAG) {
  810. id = cf->can_id & CAN_EFF_MASK;
  811. id |= TX_BUF_XTD;
  812. } else {
  813. id = ((cf->can_id & CAN_SFF_MASK) << 18);
  814. }
  815. if (cf->can_id & CAN_RTR_FLAG)
  816. id |= TX_BUF_RTR;
  817. /* message ram configuration */
  818. m_can_fifo_write(priv, 0, M_CAN_FIFO_ID, id);
  819. m_can_fifo_write(priv, 0, M_CAN_FIFO_DLC, cf->can_dlc << 16);
  820. m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(0), *(u32 *)(cf->data + 0));
  821. m_can_fifo_write(priv, 0, M_CAN_FIFO_DATA(1), *(u32 *)(cf->data + 4));
  822. can_put_echo_skb(skb, dev, 0);
  823. /* enable first TX buffer to start transfer */
  824. m_can_write(priv, M_CAN_TXBTIE, 0x1);
  825. m_can_write(priv, M_CAN_TXBAR, 0x1);
  826. return NETDEV_TX_OK;
  827. }
  828. static const struct net_device_ops m_can_netdev_ops = {
  829. .ndo_open = m_can_open,
  830. .ndo_stop = m_can_close,
  831. .ndo_start_xmit = m_can_start_xmit,
  832. .ndo_change_mtu = can_change_mtu,
  833. };
  834. static int register_m_can_dev(struct net_device *dev)
  835. {
  836. dev->flags |= IFF_ECHO; /* we support local echo */
  837. dev->netdev_ops = &m_can_netdev_ops;
  838. return register_candev(dev);
  839. }
  840. static int m_can_of_parse_mram(struct platform_device *pdev,
  841. struct m_can_priv *priv)
  842. {
  843. struct device_node *np = pdev->dev.of_node;
  844. struct resource *res;
  845. void __iomem *addr;
  846. u32 out_val[MRAM_CFG_LEN];
  847. int i, start, end, ret;
  848. /* message ram could be shared */
  849. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "message_ram");
  850. if (!res)
  851. return -ENODEV;
  852. addr = devm_ioremap(&pdev->dev, res->start, resource_size(res));
  853. if (!addr)
  854. return -ENOMEM;
  855. /* get message ram configuration */
  856. ret = of_property_read_u32_array(np, "bosch,mram-cfg",
  857. out_val, sizeof(out_val) / 4);
  858. if (ret) {
  859. dev_err(&pdev->dev, "can not get message ram configuration\n");
  860. return -ENODEV;
  861. }
  862. priv->mram_base = addr;
  863. priv->mcfg[MRAM_SIDF].off = out_val[0];
  864. priv->mcfg[MRAM_SIDF].num = out_val[1];
  865. priv->mcfg[MRAM_XIDF].off = priv->mcfg[MRAM_SIDF].off +
  866. priv->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
  867. priv->mcfg[MRAM_XIDF].num = out_val[2];
  868. priv->mcfg[MRAM_RXF0].off = priv->mcfg[MRAM_XIDF].off +
  869. priv->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
  870. priv->mcfg[MRAM_RXF0].num = out_val[3] & RXFC_FS_MASK;
  871. priv->mcfg[MRAM_RXF1].off = priv->mcfg[MRAM_RXF0].off +
  872. priv->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
  873. priv->mcfg[MRAM_RXF1].num = out_val[4] & RXFC_FS_MASK;
  874. priv->mcfg[MRAM_RXB].off = priv->mcfg[MRAM_RXF1].off +
  875. priv->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
  876. priv->mcfg[MRAM_RXB].num = out_val[5];
  877. priv->mcfg[MRAM_TXE].off = priv->mcfg[MRAM_RXB].off +
  878. priv->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
  879. priv->mcfg[MRAM_TXE].num = out_val[6];
  880. priv->mcfg[MRAM_TXB].off = priv->mcfg[MRAM_TXE].off +
  881. priv->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
  882. priv->mcfg[MRAM_TXB].num = out_val[7] & TXBC_NDTB_MASK;
  883. dev_dbg(&pdev->dev, "mram_base %p sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
  884. priv->mram_base,
  885. priv->mcfg[MRAM_SIDF].off, priv->mcfg[MRAM_SIDF].num,
  886. priv->mcfg[MRAM_XIDF].off, priv->mcfg[MRAM_XIDF].num,
  887. priv->mcfg[MRAM_RXF0].off, priv->mcfg[MRAM_RXF0].num,
  888. priv->mcfg[MRAM_RXF1].off, priv->mcfg[MRAM_RXF1].num,
  889. priv->mcfg[MRAM_RXB].off, priv->mcfg[MRAM_RXB].num,
  890. priv->mcfg[MRAM_TXE].off, priv->mcfg[MRAM_TXE].num,
  891. priv->mcfg[MRAM_TXB].off, priv->mcfg[MRAM_TXB].num);
  892. /* initialize the entire Message RAM in use to avoid possible
  893. * ECC/parity checksum errors when reading an uninitialized buffer
  894. */
  895. start = priv->mcfg[MRAM_SIDF].off;
  896. end = priv->mcfg[MRAM_TXB].off +
  897. priv->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
  898. for (i = start; i < end; i += 4)
  899. writel(0x0, priv->mram_base + i);
  900. return 0;
  901. }
  902. static int m_can_plat_probe(struct platform_device *pdev)
  903. {
  904. struct net_device *dev;
  905. struct m_can_priv *priv;
  906. struct resource *res;
  907. void __iomem *addr;
  908. struct clk *hclk, *cclk;
  909. int irq, ret;
  910. hclk = devm_clk_get(&pdev->dev, "hclk");
  911. cclk = devm_clk_get(&pdev->dev, "cclk");
  912. if (IS_ERR(hclk) || IS_ERR(cclk)) {
  913. dev_err(&pdev->dev, "no clock find\n");
  914. return -ENODEV;
  915. }
  916. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "m_can");
  917. addr = devm_ioremap_resource(&pdev->dev, res);
  918. irq = platform_get_irq_byname(pdev, "int0");
  919. if (IS_ERR(addr) || irq < 0)
  920. return -EINVAL;
  921. /* allocate the m_can device */
  922. dev = alloc_m_can_dev();
  923. if (!dev)
  924. return -ENOMEM;
  925. priv = netdev_priv(dev);
  926. dev->irq = irq;
  927. priv->base = addr;
  928. priv->device = &pdev->dev;
  929. priv->hclk = hclk;
  930. priv->cclk = cclk;
  931. priv->can.clock.freq = clk_get_rate(cclk);
  932. ret = m_can_of_parse_mram(pdev, priv);
  933. if (ret)
  934. goto failed_free_dev;
  935. platform_set_drvdata(pdev, dev);
  936. SET_NETDEV_DEV(dev, &pdev->dev);
  937. ret = register_m_can_dev(dev);
  938. if (ret) {
  939. dev_err(&pdev->dev, "registering %s failed (err=%d)\n",
  940. KBUILD_MODNAME, ret);
  941. goto failed_free_dev;
  942. }
  943. devm_can_led_init(dev);
  944. dev_info(&pdev->dev, "%s device registered (regs=%p, irq=%d)\n",
  945. KBUILD_MODNAME, priv->base, dev->irq);
  946. return 0;
  947. failed_free_dev:
  948. free_m_can_dev(dev);
  949. return ret;
  950. }
  951. static __maybe_unused int m_can_suspend(struct device *dev)
  952. {
  953. struct net_device *ndev = dev_get_drvdata(dev);
  954. struct m_can_priv *priv = netdev_priv(ndev);
  955. if (netif_running(ndev)) {
  956. netif_stop_queue(ndev);
  957. netif_device_detach(ndev);
  958. }
  959. /* TODO: enter low power */
  960. priv->can.state = CAN_STATE_SLEEPING;
  961. return 0;
  962. }
  963. static __maybe_unused int m_can_resume(struct device *dev)
  964. {
  965. struct net_device *ndev = dev_get_drvdata(dev);
  966. struct m_can_priv *priv = netdev_priv(ndev);
  967. /* TODO: exit low power */
  968. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  969. if (netif_running(ndev)) {
  970. netif_device_attach(ndev);
  971. netif_start_queue(ndev);
  972. }
  973. return 0;
  974. }
  975. static void unregister_m_can_dev(struct net_device *dev)
  976. {
  977. unregister_candev(dev);
  978. }
  979. static int m_can_plat_remove(struct platform_device *pdev)
  980. {
  981. struct net_device *dev = platform_get_drvdata(pdev);
  982. unregister_m_can_dev(dev);
  983. platform_set_drvdata(pdev, NULL);
  984. free_m_can_dev(dev);
  985. return 0;
  986. }
  987. static const struct dev_pm_ops m_can_pmops = {
  988. SET_SYSTEM_SLEEP_PM_OPS(m_can_suspend, m_can_resume)
  989. };
  990. static const struct of_device_id m_can_of_table[] = {
  991. { .compatible = "bosch,m_can", .data = NULL },
  992. { /* sentinel */ },
  993. };
  994. MODULE_DEVICE_TABLE(of, m_can_of_table);
  995. static struct platform_driver m_can_plat_driver = {
  996. .driver = {
  997. .name = KBUILD_MODNAME,
  998. .of_match_table = m_can_of_table,
  999. .pm = &m_can_pmops,
  1000. },
  1001. .probe = m_can_plat_probe,
  1002. .remove = m_can_plat_remove,
  1003. };
  1004. module_platform_driver(m_can_plat_driver);
  1005. MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
  1006. MODULE_LICENSE("GPL v2");
  1007. MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");