intel_ringbuffer.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - (tail + I915_RING_FREE_SPACE);
  50. if (space < 0)
  51. space += size;
  52. return space;
  53. }
  54. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. return __intel_ring_space(ringbuf->head & HEAD_ADDR,
  57. ringbuf->tail, ringbuf->size);
  58. }
  59. bool intel_ring_stopped(struct intel_engine_cs *ring)
  60. {
  61. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  62. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  63. }
  64. void __intel_ring_advance(struct intel_engine_cs *ring)
  65. {
  66. struct intel_ringbuffer *ringbuf = ring->buffer;
  67. ringbuf->tail &= ringbuf->size - 1;
  68. if (intel_ring_stopped(ring))
  69. return;
  70. ring->write_tail(ring, ringbuf->tail);
  71. }
  72. static int
  73. gen2_render_ring_flush(struct intel_engine_cs *ring,
  74. u32 invalidate_domains,
  75. u32 flush_domains)
  76. {
  77. u32 cmd;
  78. int ret;
  79. cmd = MI_FLUSH;
  80. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  81. cmd |= MI_NO_WRITE_FLUSH;
  82. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  83. cmd |= MI_READ_FLUSH;
  84. ret = intel_ring_begin(ring, 2);
  85. if (ret)
  86. return ret;
  87. intel_ring_emit(ring, cmd);
  88. intel_ring_emit(ring, MI_NOOP);
  89. intel_ring_advance(ring);
  90. return 0;
  91. }
  92. static int
  93. gen4_render_ring_flush(struct intel_engine_cs *ring,
  94. u32 invalidate_domains,
  95. u32 flush_domains)
  96. {
  97. struct drm_device *dev = ring->dev;
  98. u32 cmd;
  99. int ret;
  100. /*
  101. * read/write caches:
  102. *
  103. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  104. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  105. * also flushed at 2d versus 3d pipeline switches.
  106. *
  107. * read-only caches:
  108. *
  109. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  110. * MI_READ_FLUSH is set, and is always flushed on 965.
  111. *
  112. * I915_GEM_DOMAIN_COMMAND may not exist?
  113. *
  114. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  115. * invalidated when MI_EXE_FLUSH is set.
  116. *
  117. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  118. * invalidated with every MI_FLUSH.
  119. *
  120. * TLBs:
  121. *
  122. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  123. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  124. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  125. * are flushed at any MI_FLUSH.
  126. */
  127. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  128. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  129. cmd &= ~MI_NO_WRITE_FLUSH;
  130. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  131. cmd |= MI_EXE_FLUSH;
  132. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  133. (IS_G4X(dev) || IS_GEN5(dev)))
  134. cmd |= MI_INVALIDATE_ISP;
  135. ret = intel_ring_begin(ring, 2);
  136. if (ret)
  137. return ret;
  138. intel_ring_emit(ring, cmd);
  139. intel_ring_emit(ring, MI_NOOP);
  140. intel_ring_advance(ring);
  141. return 0;
  142. }
  143. /**
  144. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  145. * implementing two workarounds on gen6. From section 1.4.7.1
  146. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  147. *
  148. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  149. * produced by non-pipelined state commands), software needs to first
  150. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  151. * 0.
  152. *
  153. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  154. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  155. *
  156. * And the workaround for these two requires this workaround first:
  157. *
  158. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  159. * BEFORE the pipe-control with a post-sync op and no write-cache
  160. * flushes.
  161. *
  162. * And this last workaround is tricky because of the requirements on
  163. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  164. * volume 2 part 1:
  165. *
  166. * "1 of the following must also be set:
  167. * - Render Target Cache Flush Enable ([12] of DW1)
  168. * - Depth Cache Flush Enable ([0] of DW1)
  169. * - Stall at Pixel Scoreboard ([1] of DW1)
  170. * - Depth Stall ([13] of DW1)
  171. * - Post-Sync Operation ([13] of DW1)
  172. * - Notify Enable ([8] of DW1)"
  173. *
  174. * The cache flushes require the workaround flush that triggered this
  175. * one, so we can't use it. Depth stall would trigger the same.
  176. * Post-sync nonzero is what triggered this second workaround, so we
  177. * can't use that one either. Notify enable is IRQs, which aren't
  178. * really our business. That leaves only stall at scoreboard.
  179. */
  180. static int
  181. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  182. {
  183. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  184. int ret;
  185. ret = intel_ring_begin(ring, 6);
  186. if (ret)
  187. return ret;
  188. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  189. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  190. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  191. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  192. intel_ring_emit(ring, 0); /* low dword */
  193. intel_ring_emit(ring, 0); /* high dword */
  194. intel_ring_emit(ring, MI_NOOP);
  195. intel_ring_advance(ring);
  196. ret = intel_ring_begin(ring, 6);
  197. if (ret)
  198. return ret;
  199. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  200. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  201. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  202. intel_ring_emit(ring, 0);
  203. intel_ring_emit(ring, 0);
  204. intel_ring_emit(ring, MI_NOOP);
  205. intel_ring_advance(ring);
  206. return 0;
  207. }
  208. static int
  209. gen6_render_ring_flush(struct intel_engine_cs *ring,
  210. u32 invalidate_domains, u32 flush_domains)
  211. {
  212. u32 flags = 0;
  213. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  214. int ret;
  215. /* Force SNB workarounds for PIPE_CONTROL flushes */
  216. ret = intel_emit_post_sync_nonzero_flush(ring);
  217. if (ret)
  218. return ret;
  219. /* Just flush everything. Experiments have shown that reducing the
  220. * number of bits based on the write domains has little performance
  221. * impact.
  222. */
  223. if (flush_domains) {
  224. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  225. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  226. /*
  227. * Ensure that any following seqno writes only happen
  228. * when the render cache is indeed flushed.
  229. */
  230. flags |= PIPE_CONTROL_CS_STALL;
  231. }
  232. if (invalidate_domains) {
  233. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  234. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  238. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  239. /*
  240. * TLB invalidate requires a post-sync write.
  241. */
  242. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  243. }
  244. ret = intel_ring_begin(ring, 4);
  245. if (ret)
  246. return ret;
  247. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  248. intel_ring_emit(ring, flags);
  249. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  250. intel_ring_emit(ring, 0);
  251. intel_ring_advance(ring);
  252. return 0;
  253. }
  254. static int
  255. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  256. {
  257. int ret;
  258. ret = intel_ring_begin(ring, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(ring, 0);
  265. intel_ring_emit(ring, 0);
  266. intel_ring_advance(ring);
  267. return 0;
  268. }
  269. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  270. {
  271. int ret;
  272. if (!ring->fbc_dirty)
  273. return 0;
  274. ret = intel_ring_begin(ring, 6);
  275. if (ret)
  276. return ret;
  277. /* WaFbcNukeOn3DBlt:ivb/hsw */
  278. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  279. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  280. intel_ring_emit(ring, value);
  281. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  282. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  283. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  284. intel_ring_advance(ring);
  285. ring->fbc_dirty = false;
  286. return 0;
  287. }
  288. static int
  289. gen7_render_ring_flush(struct intel_engine_cs *ring,
  290. u32 invalidate_domains, u32 flush_domains)
  291. {
  292. u32 flags = 0;
  293. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  294. int ret;
  295. /*
  296. * Ensure that any following seqno writes only happen when the render
  297. * cache is indeed flushed.
  298. *
  299. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  300. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  301. * don't try to be clever and just set it unconditionally.
  302. */
  303. flags |= PIPE_CONTROL_CS_STALL;
  304. /* Just flush everything. Experiments have shown that reducing the
  305. * number of bits based on the write domains has little performance
  306. * impact.
  307. */
  308. if (flush_domains) {
  309. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  310. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  311. }
  312. if (invalidate_domains) {
  313. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  314. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  316. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  317. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  318. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  319. /*
  320. * TLB invalidate requires a post-sync write.
  321. */
  322. flags |= PIPE_CONTROL_QW_WRITE;
  323. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  324. /* Workaround: we must issue a pipe_control with CS-stall bit
  325. * set before a pipe_control command that has the state cache
  326. * invalidate bit set. */
  327. gen7_render_ring_cs_stall_wa(ring);
  328. }
  329. ret = intel_ring_begin(ring, 4);
  330. if (ret)
  331. return ret;
  332. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  333. intel_ring_emit(ring, flags);
  334. intel_ring_emit(ring, scratch_addr);
  335. intel_ring_emit(ring, 0);
  336. intel_ring_advance(ring);
  337. if (!invalidate_domains && flush_domains)
  338. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  339. return 0;
  340. }
  341. static int
  342. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  343. u32 flags, u32 scratch_addr)
  344. {
  345. int ret;
  346. ret = intel_ring_begin(ring, 6);
  347. if (ret)
  348. return ret;
  349. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  350. intel_ring_emit(ring, flags);
  351. intel_ring_emit(ring, scratch_addr);
  352. intel_ring_emit(ring, 0);
  353. intel_ring_emit(ring, 0);
  354. intel_ring_emit(ring, 0);
  355. intel_ring_advance(ring);
  356. return 0;
  357. }
  358. static int
  359. gen8_render_ring_flush(struct intel_engine_cs *ring,
  360. u32 invalidate_domains, u32 flush_domains)
  361. {
  362. u32 flags = 0;
  363. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  364. int ret;
  365. flags |= PIPE_CONTROL_CS_STALL;
  366. if (flush_domains) {
  367. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  368. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  369. }
  370. if (invalidate_domains) {
  371. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  372. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  375. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  376. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  377. flags |= PIPE_CONTROL_QW_WRITE;
  378. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  379. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  380. ret = gen8_emit_pipe_control(ring,
  381. PIPE_CONTROL_CS_STALL |
  382. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  383. 0);
  384. if (ret)
  385. return ret;
  386. }
  387. ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
  388. if (ret)
  389. return ret;
  390. if (!invalidate_domains && flush_domains)
  391. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  392. return 0;
  393. }
  394. static void ring_write_tail(struct intel_engine_cs *ring,
  395. u32 value)
  396. {
  397. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  398. I915_WRITE_TAIL(ring, value);
  399. }
  400. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  401. {
  402. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  403. u64 acthd;
  404. if (INTEL_INFO(ring->dev)->gen >= 8)
  405. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  406. RING_ACTHD_UDW(ring->mmio_base));
  407. else if (INTEL_INFO(ring->dev)->gen >= 4)
  408. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  409. else
  410. acthd = I915_READ(ACTHD);
  411. return acthd;
  412. }
  413. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  414. {
  415. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  416. u32 addr;
  417. addr = dev_priv->status_page_dmah->busaddr;
  418. if (INTEL_INFO(ring->dev)->gen >= 4)
  419. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  420. I915_WRITE(HWS_PGA, addr);
  421. }
  422. static bool stop_ring(struct intel_engine_cs *ring)
  423. {
  424. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  425. if (!IS_GEN2(ring->dev)) {
  426. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  427. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  428. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  429. /* Sometimes we observe that the idle flag is not
  430. * set even though the ring is empty. So double
  431. * check before giving up.
  432. */
  433. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  434. return false;
  435. }
  436. }
  437. I915_WRITE_CTL(ring, 0);
  438. I915_WRITE_HEAD(ring, 0);
  439. ring->write_tail(ring, 0);
  440. if (!IS_GEN2(ring->dev)) {
  441. (void)I915_READ_CTL(ring);
  442. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  443. }
  444. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  445. }
  446. static int init_ring_common(struct intel_engine_cs *ring)
  447. {
  448. struct drm_device *dev = ring->dev;
  449. struct drm_i915_private *dev_priv = dev->dev_private;
  450. struct intel_ringbuffer *ringbuf = ring->buffer;
  451. struct drm_i915_gem_object *obj = ringbuf->obj;
  452. int ret = 0;
  453. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  454. if (!stop_ring(ring)) {
  455. /* G45 ring initialization often fails to reset head to zero */
  456. DRM_DEBUG_KMS("%s head not reset to zero "
  457. "ctl %08x head %08x tail %08x start %08x\n",
  458. ring->name,
  459. I915_READ_CTL(ring),
  460. I915_READ_HEAD(ring),
  461. I915_READ_TAIL(ring),
  462. I915_READ_START(ring));
  463. if (!stop_ring(ring)) {
  464. DRM_ERROR("failed to set %s head to zero "
  465. "ctl %08x head %08x tail %08x start %08x\n",
  466. ring->name,
  467. I915_READ_CTL(ring),
  468. I915_READ_HEAD(ring),
  469. I915_READ_TAIL(ring),
  470. I915_READ_START(ring));
  471. ret = -EIO;
  472. goto out;
  473. }
  474. }
  475. if (I915_NEED_GFX_HWS(dev))
  476. intel_ring_setup_status_page(ring);
  477. else
  478. ring_setup_phys_status_page(ring);
  479. /* Enforce ordering by reading HEAD register back */
  480. I915_READ_HEAD(ring);
  481. /* Initialize the ring. This must happen _after_ we've cleared the ring
  482. * registers with the above sequence (the readback of the HEAD registers
  483. * also enforces ordering), otherwise the hw might lose the new ring
  484. * register values. */
  485. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  486. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  487. if (I915_READ_HEAD(ring))
  488. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  489. ring->name, I915_READ_HEAD(ring));
  490. I915_WRITE_HEAD(ring, 0);
  491. (void)I915_READ_HEAD(ring);
  492. I915_WRITE_CTL(ring,
  493. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  494. | RING_VALID);
  495. /* If the head is still not zero, the ring is dead */
  496. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  497. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  498. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  499. DRM_ERROR("%s initialization failed "
  500. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  501. ring->name,
  502. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  503. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  504. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  505. ret = -EIO;
  506. goto out;
  507. }
  508. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  509. i915_kernel_lost_context(ring->dev);
  510. else {
  511. ringbuf->head = I915_READ_HEAD(ring);
  512. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  513. ringbuf->space = intel_ring_space(ringbuf);
  514. ringbuf->last_retired_head = -1;
  515. }
  516. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  517. out:
  518. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  519. return ret;
  520. }
  521. void
  522. intel_fini_pipe_control(struct intel_engine_cs *ring)
  523. {
  524. struct drm_device *dev = ring->dev;
  525. if (ring->scratch.obj == NULL)
  526. return;
  527. if (INTEL_INFO(dev)->gen >= 5) {
  528. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  529. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  530. }
  531. drm_gem_object_unreference(&ring->scratch.obj->base);
  532. ring->scratch.obj = NULL;
  533. }
  534. int
  535. intel_init_pipe_control(struct intel_engine_cs *ring)
  536. {
  537. int ret;
  538. if (ring->scratch.obj)
  539. return 0;
  540. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  541. if (ring->scratch.obj == NULL) {
  542. DRM_ERROR("Failed to allocate seqno page\n");
  543. ret = -ENOMEM;
  544. goto err;
  545. }
  546. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  547. if (ret)
  548. goto err_unref;
  549. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  550. if (ret)
  551. goto err_unref;
  552. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  553. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  554. if (ring->scratch.cpu_page == NULL) {
  555. ret = -ENOMEM;
  556. goto err_unpin;
  557. }
  558. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  559. ring->name, ring->scratch.gtt_offset);
  560. return 0;
  561. err_unpin:
  562. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  563. err_unref:
  564. drm_gem_object_unreference(&ring->scratch.obj->base);
  565. err:
  566. return ret;
  567. }
  568. static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
  569. u32 addr, u32 value)
  570. {
  571. struct drm_device *dev = ring->dev;
  572. struct drm_i915_private *dev_priv = dev->dev_private;
  573. if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
  574. return;
  575. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  576. intel_ring_emit(ring, addr);
  577. intel_ring_emit(ring, value);
  578. dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
  579. dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
  580. /* value is updated with the status of remaining bits of this
  581. * register when it is read from debugfs file
  582. */
  583. dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
  584. dev_priv->num_wa_regs++;
  585. return;
  586. }
  587. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  588. {
  589. int ret;
  590. struct drm_device *dev = ring->dev;
  591. struct drm_i915_private *dev_priv = dev->dev_private;
  592. /*
  593. * workarounds applied in this fn are part of register state context,
  594. * they need to be re-initialized followed by gpu reset, suspend/resume,
  595. * module reload.
  596. */
  597. dev_priv->num_wa_regs = 0;
  598. memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
  599. /*
  600. * update the number of dwords required based on the
  601. * actual number of workarounds applied
  602. */
  603. ret = intel_ring_begin(ring, 24);
  604. if (ret)
  605. return ret;
  606. /* WaDisablePartialInstShootdown:bdw */
  607. /* WaDisableThreadStallDopClockGating:bdw */
  608. /* FIXME: Unclear whether we really need this on production bdw. */
  609. intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
  610. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
  611. | STALL_DOP_GATING_DISABLE));
  612. /* WaDisableDopClockGating:bdw May not be needed for production */
  613. intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
  614. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  615. /*
  616. * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
  617. * pre-production hardware
  618. */
  619. intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
  620. _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS
  621. | GEN8_SAMPLER_POWER_BYPASS_DIS));
  622. intel_ring_emit_wa(ring, GEN7_HALF_SLICE_CHICKEN1,
  623. _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
  624. intel_ring_emit_wa(ring, COMMON_SLICE_CHICKEN2,
  625. _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
  626. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  627. * workaround for for a possible hang in the unlikely event a TLB
  628. * invalidation occurs during a PSD flush.
  629. */
  630. /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
  631. intel_ring_emit_wa(ring, HDC_CHICKEN0,
  632. _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT |
  633. (IS_BDW_GT3(dev) ?
  634. HDC_FENCE_DEST_SLM_DISABLE : 0)
  635. ));
  636. /* Wa4x4STCOptimizationDisable:bdw */
  637. intel_ring_emit_wa(ring, CACHE_MODE_1,
  638. _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
  639. /*
  640. * BSpec recommends 8x4 when MSAA is used,
  641. * however in practice 16x4 seems fastest.
  642. *
  643. * Note that PS/WM thread counts depend on the WIZ hashing
  644. * disable bit, which we don't touch here, but it's good
  645. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  646. */
  647. intel_ring_emit_wa(ring, GEN7_GT_MODE,
  648. GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
  649. intel_ring_advance(ring);
  650. DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
  651. dev_priv->num_wa_regs);
  652. return 0;
  653. }
  654. static int chv_init_workarounds(struct intel_engine_cs *ring)
  655. {
  656. int ret;
  657. struct drm_device *dev = ring->dev;
  658. struct drm_i915_private *dev_priv = dev->dev_private;
  659. /*
  660. * workarounds applied in this fn are part of register state context,
  661. * they need to be re-initialized followed by gpu reset, suspend/resume,
  662. * module reload.
  663. */
  664. dev_priv->num_wa_regs = 0;
  665. memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
  666. ret = intel_ring_begin(ring, 12);
  667. if (ret)
  668. return ret;
  669. /* WaDisablePartialInstShootdown:chv */
  670. intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
  671. _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
  672. /* WaDisableThreadStallDopClockGating:chv */
  673. intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
  674. _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
  675. /* WaDisableDopClockGating:chv (pre-production hw) */
  676. intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
  677. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  678. /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
  679. intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
  680. _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
  681. intel_ring_advance(ring);
  682. return 0;
  683. }
  684. static int init_render_ring(struct intel_engine_cs *ring)
  685. {
  686. struct drm_device *dev = ring->dev;
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. int ret = init_ring_common(ring);
  689. if (ret)
  690. return ret;
  691. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  692. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  693. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  694. /* We need to disable the AsyncFlip performance optimisations in order
  695. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  696. * programmed to '1' on all products.
  697. *
  698. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  699. */
  700. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
  701. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  702. /* Required for the hardware to program scanline values for waiting */
  703. /* WaEnableFlushTlbInvalidationMode:snb */
  704. if (INTEL_INFO(dev)->gen == 6)
  705. I915_WRITE(GFX_MODE,
  706. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  707. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  708. if (IS_GEN7(dev))
  709. I915_WRITE(GFX_MODE_GEN7,
  710. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  711. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  712. if (INTEL_INFO(dev)->gen >= 5) {
  713. ret = intel_init_pipe_control(ring);
  714. if (ret)
  715. return ret;
  716. }
  717. if (IS_GEN6(dev)) {
  718. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  719. * "If this bit is set, STCunit will have LRA as replacement
  720. * policy. [...] This bit must be reset. LRA replacement
  721. * policy is not supported."
  722. */
  723. I915_WRITE(CACHE_MODE_0,
  724. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  725. }
  726. if (INTEL_INFO(dev)->gen >= 6)
  727. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  728. if (HAS_L3_DPF(dev))
  729. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  730. return ret;
  731. }
  732. static void render_ring_cleanup(struct intel_engine_cs *ring)
  733. {
  734. struct drm_device *dev = ring->dev;
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. if (dev_priv->semaphore_obj) {
  737. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  738. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  739. dev_priv->semaphore_obj = NULL;
  740. }
  741. intel_fini_pipe_control(ring);
  742. }
  743. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  744. unsigned int num_dwords)
  745. {
  746. #define MBOX_UPDATE_DWORDS 8
  747. struct drm_device *dev = signaller->dev;
  748. struct drm_i915_private *dev_priv = dev->dev_private;
  749. struct intel_engine_cs *waiter;
  750. int i, ret, num_rings;
  751. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  752. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  753. #undef MBOX_UPDATE_DWORDS
  754. ret = intel_ring_begin(signaller, num_dwords);
  755. if (ret)
  756. return ret;
  757. for_each_ring(waiter, dev_priv, i) {
  758. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  759. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  760. continue;
  761. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  762. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  763. PIPE_CONTROL_QW_WRITE |
  764. PIPE_CONTROL_FLUSH_ENABLE);
  765. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  766. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  767. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  768. intel_ring_emit(signaller, 0);
  769. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  770. MI_SEMAPHORE_TARGET(waiter->id));
  771. intel_ring_emit(signaller, 0);
  772. }
  773. return 0;
  774. }
  775. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  776. unsigned int num_dwords)
  777. {
  778. #define MBOX_UPDATE_DWORDS 6
  779. struct drm_device *dev = signaller->dev;
  780. struct drm_i915_private *dev_priv = dev->dev_private;
  781. struct intel_engine_cs *waiter;
  782. int i, ret, num_rings;
  783. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  784. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  785. #undef MBOX_UPDATE_DWORDS
  786. ret = intel_ring_begin(signaller, num_dwords);
  787. if (ret)
  788. return ret;
  789. for_each_ring(waiter, dev_priv, i) {
  790. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  791. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  792. continue;
  793. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  794. MI_FLUSH_DW_OP_STOREDW);
  795. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  796. MI_FLUSH_DW_USE_GTT);
  797. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  798. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  799. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  800. MI_SEMAPHORE_TARGET(waiter->id));
  801. intel_ring_emit(signaller, 0);
  802. }
  803. return 0;
  804. }
  805. static int gen6_signal(struct intel_engine_cs *signaller,
  806. unsigned int num_dwords)
  807. {
  808. struct drm_device *dev = signaller->dev;
  809. struct drm_i915_private *dev_priv = dev->dev_private;
  810. struct intel_engine_cs *useless;
  811. int i, ret, num_rings;
  812. #define MBOX_UPDATE_DWORDS 3
  813. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  814. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  815. #undef MBOX_UPDATE_DWORDS
  816. ret = intel_ring_begin(signaller, num_dwords);
  817. if (ret)
  818. return ret;
  819. for_each_ring(useless, dev_priv, i) {
  820. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  821. if (mbox_reg != GEN6_NOSYNC) {
  822. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  823. intel_ring_emit(signaller, mbox_reg);
  824. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  825. }
  826. }
  827. /* If num_dwords was rounded, make sure the tail pointer is correct */
  828. if (num_rings % 2 == 0)
  829. intel_ring_emit(signaller, MI_NOOP);
  830. return 0;
  831. }
  832. /**
  833. * gen6_add_request - Update the semaphore mailbox registers
  834. *
  835. * @ring - ring that is adding a request
  836. * @seqno - return seqno stuck into the ring
  837. *
  838. * Update the mailbox registers in the *other* rings with the current seqno.
  839. * This acts like a signal in the canonical semaphore.
  840. */
  841. static int
  842. gen6_add_request(struct intel_engine_cs *ring)
  843. {
  844. int ret;
  845. if (ring->semaphore.signal)
  846. ret = ring->semaphore.signal(ring, 4);
  847. else
  848. ret = intel_ring_begin(ring, 4);
  849. if (ret)
  850. return ret;
  851. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  852. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  853. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  854. intel_ring_emit(ring, MI_USER_INTERRUPT);
  855. __intel_ring_advance(ring);
  856. return 0;
  857. }
  858. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  859. u32 seqno)
  860. {
  861. struct drm_i915_private *dev_priv = dev->dev_private;
  862. return dev_priv->last_seqno < seqno;
  863. }
  864. /**
  865. * intel_ring_sync - sync the waiter to the signaller on seqno
  866. *
  867. * @waiter - ring that is waiting
  868. * @signaller - ring which has, or will signal
  869. * @seqno - seqno which the waiter will block on
  870. */
  871. static int
  872. gen8_ring_sync(struct intel_engine_cs *waiter,
  873. struct intel_engine_cs *signaller,
  874. u32 seqno)
  875. {
  876. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  877. int ret;
  878. ret = intel_ring_begin(waiter, 4);
  879. if (ret)
  880. return ret;
  881. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  882. MI_SEMAPHORE_GLOBAL_GTT |
  883. MI_SEMAPHORE_POLL |
  884. MI_SEMAPHORE_SAD_GTE_SDD);
  885. intel_ring_emit(waiter, seqno);
  886. intel_ring_emit(waiter,
  887. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  888. intel_ring_emit(waiter,
  889. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  890. intel_ring_advance(waiter);
  891. return 0;
  892. }
  893. static int
  894. gen6_ring_sync(struct intel_engine_cs *waiter,
  895. struct intel_engine_cs *signaller,
  896. u32 seqno)
  897. {
  898. u32 dw1 = MI_SEMAPHORE_MBOX |
  899. MI_SEMAPHORE_COMPARE |
  900. MI_SEMAPHORE_REGISTER;
  901. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  902. int ret;
  903. /* Throughout all of the GEM code, seqno passed implies our current
  904. * seqno is >= the last seqno executed. However for hardware the
  905. * comparison is strictly greater than.
  906. */
  907. seqno -= 1;
  908. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  909. ret = intel_ring_begin(waiter, 4);
  910. if (ret)
  911. return ret;
  912. /* If seqno wrap happened, omit the wait with no-ops */
  913. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  914. intel_ring_emit(waiter, dw1 | wait_mbox);
  915. intel_ring_emit(waiter, seqno);
  916. intel_ring_emit(waiter, 0);
  917. intel_ring_emit(waiter, MI_NOOP);
  918. } else {
  919. intel_ring_emit(waiter, MI_NOOP);
  920. intel_ring_emit(waiter, MI_NOOP);
  921. intel_ring_emit(waiter, MI_NOOP);
  922. intel_ring_emit(waiter, MI_NOOP);
  923. }
  924. intel_ring_advance(waiter);
  925. return 0;
  926. }
  927. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  928. do { \
  929. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  930. PIPE_CONTROL_DEPTH_STALL); \
  931. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  932. intel_ring_emit(ring__, 0); \
  933. intel_ring_emit(ring__, 0); \
  934. } while (0)
  935. static int
  936. pc_render_add_request(struct intel_engine_cs *ring)
  937. {
  938. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  939. int ret;
  940. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  941. * incoherent with writes to memory, i.e. completely fubar,
  942. * so we need to use PIPE_NOTIFY instead.
  943. *
  944. * However, we also need to workaround the qword write
  945. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  946. * memory before requesting an interrupt.
  947. */
  948. ret = intel_ring_begin(ring, 32);
  949. if (ret)
  950. return ret;
  951. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  952. PIPE_CONTROL_WRITE_FLUSH |
  953. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  954. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  955. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  956. intel_ring_emit(ring, 0);
  957. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  958. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  959. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  960. scratch_addr += 2 * CACHELINE_BYTES;
  961. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  962. scratch_addr += 2 * CACHELINE_BYTES;
  963. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  964. scratch_addr += 2 * CACHELINE_BYTES;
  965. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  966. scratch_addr += 2 * CACHELINE_BYTES;
  967. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  968. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  969. PIPE_CONTROL_WRITE_FLUSH |
  970. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  971. PIPE_CONTROL_NOTIFY);
  972. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  973. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  974. intel_ring_emit(ring, 0);
  975. __intel_ring_advance(ring);
  976. return 0;
  977. }
  978. static u32
  979. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  980. {
  981. /* Workaround to force correct ordering between irq and seqno writes on
  982. * ivb (and maybe also on snb) by reading from a CS register (like
  983. * ACTHD) before reading the status page. */
  984. if (!lazy_coherency) {
  985. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  986. POSTING_READ(RING_ACTHD(ring->mmio_base));
  987. }
  988. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  989. }
  990. static u32
  991. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  992. {
  993. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  994. }
  995. static void
  996. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  997. {
  998. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  999. }
  1000. static u32
  1001. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1002. {
  1003. return ring->scratch.cpu_page[0];
  1004. }
  1005. static void
  1006. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1007. {
  1008. ring->scratch.cpu_page[0] = seqno;
  1009. }
  1010. static bool
  1011. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1012. {
  1013. struct drm_device *dev = ring->dev;
  1014. struct drm_i915_private *dev_priv = dev->dev_private;
  1015. unsigned long flags;
  1016. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1017. return false;
  1018. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1019. if (ring->irq_refcount++ == 0)
  1020. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1021. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1022. return true;
  1023. }
  1024. static void
  1025. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1026. {
  1027. struct drm_device *dev = ring->dev;
  1028. struct drm_i915_private *dev_priv = dev->dev_private;
  1029. unsigned long flags;
  1030. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1031. if (--ring->irq_refcount == 0)
  1032. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1033. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1034. }
  1035. static bool
  1036. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1037. {
  1038. struct drm_device *dev = ring->dev;
  1039. struct drm_i915_private *dev_priv = dev->dev_private;
  1040. unsigned long flags;
  1041. if (!intel_irqs_enabled(dev_priv))
  1042. return false;
  1043. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1044. if (ring->irq_refcount++ == 0) {
  1045. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1046. I915_WRITE(IMR, dev_priv->irq_mask);
  1047. POSTING_READ(IMR);
  1048. }
  1049. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1050. return true;
  1051. }
  1052. static void
  1053. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1054. {
  1055. struct drm_device *dev = ring->dev;
  1056. struct drm_i915_private *dev_priv = dev->dev_private;
  1057. unsigned long flags;
  1058. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1059. if (--ring->irq_refcount == 0) {
  1060. dev_priv->irq_mask |= ring->irq_enable_mask;
  1061. I915_WRITE(IMR, dev_priv->irq_mask);
  1062. POSTING_READ(IMR);
  1063. }
  1064. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1065. }
  1066. static bool
  1067. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1068. {
  1069. struct drm_device *dev = ring->dev;
  1070. struct drm_i915_private *dev_priv = dev->dev_private;
  1071. unsigned long flags;
  1072. if (!intel_irqs_enabled(dev_priv))
  1073. return false;
  1074. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1075. if (ring->irq_refcount++ == 0) {
  1076. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1077. I915_WRITE16(IMR, dev_priv->irq_mask);
  1078. POSTING_READ16(IMR);
  1079. }
  1080. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1081. return true;
  1082. }
  1083. static void
  1084. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1085. {
  1086. struct drm_device *dev = ring->dev;
  1087. struct drm_i915_private *dev_priv = dev->dev_private;
  1088. unsigned long flags;
  1089. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1090. if (--ring->irq_refcount == 0) {
  1091. dev_priv->irq_mask |= ring->irq_enable_mask;
  1092. I915_WRITE16(IMR, dev_priv->irq_mask);
  1093. POSTING_READ16(IMR);
  1094. }
  1095. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1096. }
  1097. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  1098. {
  1099. struct drm_device *dev = ring->dev;
  1100. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1101. u32 mmio = 0;
  1102. /* The ring status page addresses are no longer next to the rest of
  1103. * the ring registers as of gen7.
  1104. */
  1105. if (IS_GEN7(dev)) {
  1106. switch (ring->id) {
  1107. case RCS:
  1108. mmio = RENDER_HWS_PGA_GEN7;
  1109. break;
  1110. case BCS:
  1111. mmio = BLT_HWS_PGA_GEN7;
  1112. break;
  1113. /*
  1114. * VCS2 actually doesn't exist on Gen7. Only shut up
  1115. * gcc switch check warning
  1116. */
  1117. case VCS2:
  1118. case VCS:
  1119. mmio = BSD_HWS_PGA_GEN7;
  1120. break;
  1121. case VECS:
  1122. mmio = VEBOX_HWS_PGA_GEN7;
  1123. break;
  1124. }
  1125. } else if (IS_GEN6(ring->dev)) {
  1126. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  1127. } else {
  1128. /* XXX: gen8 returns to sanity */
  1129. mmio = RING_HWS_PGA(ring->mmio_base);
  1130. }
  1131. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  1132. POSTING_READ(mmio);
  1133. /*
  1134. * Flush the TLB for this page
  1135. *
  1136. * FIXME: These two bits have disappeared on gen8, so a question
  1137. * arises: do we still need this and if so how should we go about
  1138. * invalidating the TLB?
  1139. */
  1140. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  1141. u32 reg = RING_INSTPM(ring->mmio_base);
  1142. /* ring should be idle before issuing a sync flush*/
  1143. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1144. I915_WRITE(reg,
  1145. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  1146. INSTPM_SYNC_FLUSH));
  1147. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  1148. 1000))
  1149. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  1150. ring->name);
  1151. }
  1152. }
  1153. static int
  1154. bsd_ring_flush(struct intel_engine_cs *ring,
  1155. u32 invalidate_domains,
  1156. u32 flush_domains)
  1157. {
  1158. int ret;
  1159. ret = intel_ring_begin(ring, 2);
  1160. if (ret)
  1161. return ret;
  1162. intel_ring_emit(ring, MI_FLUSH);
  1163. intel_ring_emit(ring, MI_NOOP);
  1164. intel_ring_advance(ring);
  1165. return 0;
  1166. }
  1167. static int
  1168. i9xx_add_request(struct intel_engine_cs *ring)
  1169. {
  1170. int ret;
  1171. ret = intel_ring_begin(ring, 4);
  1172. if (ret)
  1173. return ret;
  1174. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1175. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1176. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  1177. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1178. __intel_ring_advance(ring);
  1179. return 0;
  1180. }
  1181. static bool
  1182. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1183. {
  1184. struct drm_device *dev = ring->dev;
  1185. struct drm_i915_private *dev_priv = dev->dev_private;
  1186. unsigned long flags;
  1187. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1188. return false;
  1189. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1190. if (ring->irq_refcount++ == 0) {
  1191. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1192. I915_WRITE_IMR(ring,
  1193. ~(ring->irq_enable_mask |
  1194. GT_PARITY_ERROR(dev)));
  1195. else
  1196. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1197. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1198. }
  1199. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1200. return true;
  1201. }
  1202. static void
  1203. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1204. {
  1205. struct drm_device *dev = ring->dev;
  1206. struct drm_i915_private *dev_priv = dev->dev_private;
  1207. unsigned long flags;
  1208. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1209. if (--ring->irq_refcount == 0) {
  1210. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1211. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1212. else
  1213. I915_WRITE_IMR(ring, ~0);
  1214. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1215. }
  1216. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1217. }
  1218. static bool
  1219. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1220. {
  1221. struct drm_device *dev = ring->dev;
  1222. struct drm_i915_private *dev_priv = dev->dev_private;
  1223. unsigned long flags;
  1224. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1225. return false;
  1226. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1227. if (ring->irq_refcount++ == 0) {
  1228. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1229. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1230. }
  1231. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1232. return true;
  1233. }
  1234. static void
  1235. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1236. {
  1237. struct drm_device *dev = ring->dev;
  1238. struct drm_i915_private *dev_priv = dev->dev_private;
  1239. unsigned long flags;
  1240. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1241. if (--ring->irq_refcount == 0) {
  1242. I915_WRITE_IMR(ring, ~0);
  1243. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1244. }
  1245. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1246. }
  1247. static bool
  1248. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1249. {
  1250. struct drm_device *dev = ring->dev;
  1251. struct drm_i915_private *dev_priv = dev->dev_private;
  1252. unsigned long flags;
  1253. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1254. return false;
  1255. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1256. if (ring->irq_refcount++ == 0) {
  1257. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1258. I915_WRITE_IMR(ring,
  1259. ~(ring->irq_enable_mask |
  1260. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1261. } else {
  1262. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1263. }
  1264. POSTING_READ(RING_IMR(ring->mmio_base));
  1265. }
  1266. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1267. return true;
  1268. }
  1269. static void
  1270. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1271. {
  1272. struct drm_device *dev = ring->dev;
  1273. struct drm_i915_private *dev_priv = dev->dev_private;
  1274. unsigned long flags;
  1275. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1276. if (--ring->irq_refcount == 0) {
  1277. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1278. I915_WRITE_IMR(ring,
  1279. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1280. } else {
  1281. I915_WRITE_IMR(ring, ~0);
  1282. }
  1283. POSTING_READ(RING_IMR(ring->mmio_base));
  1284. }
  1285. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1286. }
  1287. static int
  1288. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1289. u64 offset, u32 length,
  1290. unsigned flags)
  1291. {
  1292. int ret;
  1293. ret = intel_ring_begin(ring, 2);
  1294. if (ret)
  1295. return ret;
  1296. intel_ring_emit(ring,
  1297. MI_BATCH_BUFFER_START |
  1298. MI_BATCH_GTT |
  1299. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1300. intel_ring_emit(ring, offset);
  1301. intel_ring_advance(ring);
  1302. return 0;
  1303. }
  1304. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1305. #define I830_BATCH_LIMIT (256*1024)
  1306. #define I830_TLB_ENTRIES (2)
  1307. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1308. static int
  1309. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1310. u64 offset, u32 len,
  1311. unsigned flags)
  1312. {
  1313. u32 cs_offset = ring->scratch.gtt_offset;
  1314. int ret;
  1315. ret = intel_ring_begin(ring, 6);
  1316. if (ret)
  1317. return ret;
  1318. /* Evict the invalid PTE TLBs */
  1319. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1320. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1321. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1322. intel_ring_emit(ring, cs_offset);
  1323. intel_ring_emit(ring, 0xdeadbeef);
  1324. intel_ring_emit(ring, MI_NOOP);
  1325. intel_ring_advance(ring);
  1326. if ((flags & I915_DISPATCH_PINNED) == 0) {
  1327. if (len > I830_BATCH_LIMIT)
  1328. return -ENOSPC;
  1329. ret = intel_ring_begin(ring, 6 + 2);
  1330. if (ret)
  1331. return ret;
  1332. /* Blit the batch (which has now all relocs applied) to the
  1333. * stable batch scratch bo area (so that the CS never
  1334. * stumbles over its tlb invalidation bug) ...
  1335. */
  1336. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1337. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1338. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 1024);
  1339. intel_ring_emit(ring, cs_offset);
  1340. intel_ring_emit(ring, 4096);
  1341. intel_ring_emit(ring, offset);
  1342. intel_ring_emit(ring, MI_FLUSH);
  1343. intel_ring_emit(ring, MI_NOOP);
  1344. intel_ring_advance(ring);
  1345. /* ... and execute it. */
  1346. offset = cs_offset;
  1347. }
  1348. ret = intel_ring_begin(ring, 4);
  1349. if (ret)
  1350. return ret;
  1351. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1352. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1353. intel_ring_emit(ring, offset + len - 8);
  1354. intel_ring_emit(ring, MI_NOOP);
  1355. intel_ring_advance(ring);
  1356. return 0;
  1357. }
  1358. static int
  1359. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1360. u64 offset, u32 len,
  1361. unsigned flags)
  1362. {
  1363. int ret;
  1364. ret = intel_ring_begin(ring, 2);
  1365. if (ret)
  1366. return ret;
  1367. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1368. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1369. intel_ring_advance(ring);
  1370. return 0;
  1371. }
  1372. static void cleanup_status_page(struct intel_engine_cs *ring)
  1373. {
  1374. struct drm_i915_gem_object *obj;
  1375. obj = ring->status_page.obj;
  1376. if (obj == NULL)
  1377. return;
  1378. kunmap(sg_page(obj->pages->sgl));
  1379. i915_gem_object_ggtt_unpin(obj);
  1380. drm_gem_object_unreference(&obj->base);
  1381. ring->status_page.obj = NULL;
  1382. }
  1383. static int init_status_page(struct intel_engine_cs *ring)
  1384. {
  1385. struct drm_i915_gem_object *obj;
  1386. if ((obj = ring->status_page.obj) == NULL) {
  1387. unsigned flags;
  1388. int ret;
  1389. obj = i915_gem_alloc_object(ring->dev, 4096);
  1390. if (obj == NULL) {
  1391. DRM_ERROR("Failed to allocate status page\n");
  1392. return -ENOMEM;
  1393. }
  1394. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1395. if (ret)
  1396. goto err_unref;
  1397. flags = 0;
  1398. if (!HAS_LLC(ring->dev))
  1399. /* On g33, we cannot place HWS above 256MiB, so
  1400. * restrict its pinning to the low mappable arena.
  1401. * Though this restriction is not documented for
  1402. * gen4, gen5, or byt, they also behave similarly
  1403. * and hang if the HWS is placed at the top of the
  1404. * GTT. To generalise, it appears that all !llc
  1405. * platforms have issues with us placing the HWS
  1406. * above the mappable region (even though we never
  1407. * actualy map it).
  1408. */
  1409. flags |= PIN_MAPPABLE;
  1410. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1411. if (ret) {
  1412. err_unref:
  1413. drm_gem_object_unreference(&obj->base);
  1414. return ret;
  1415. }
  1416. ring->status_page.obj = obj;
  1417. }
  1418. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1419. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1420. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1421. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1422. ring->name, ring->status_page.gfx_addr);
  1423. return 0;
  1424. }
  1425. static int init_phys_status_page(struct intel_engine_cs *ring)
  1426. {
  1427. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1428. if (!dev_priv->status_page_dmah) {
  1429. dev_priv->status_page_dmah =
  1430. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1431. if (!dev_priv->status_page_dmah)
  1432. return -ENOMEM;
  1433. }
  1434. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1435. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1436. return 0;
  1437. }
  1438. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1439. {
  1440. if (!ringbuf->obj)
  1441. return;
  1442. iounmap(ringbuf->virtual_start);
  1443. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1444. drm_gem_object_unreference(&ringbuf->obj->base);
  1445. ringbuf->obj = NULL;
  1446. }
  1447. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1448. struct intel_ringbuffer *ringbuf)
  1449. {
  1450. struct drm_i915_private *dev_priv = to_i915(dev);
  1451. struct drm_i915_gem_object *obj;
  1452. int ret;
  1453. if (ringbuf->obj)
  1454. return 0;
  1455. obj = NULL;
  1456. if (!HAS_LLC(dev))
  1457. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1458. if (obj == NULL)
  1459. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1460. if (obj == NULL)
  1461. return -ENOMEM;
  1462. /* mark ring buffers as read-only from GPU side by default */
  1463. obj->gt_ro = 1;
  1464. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1465. if (ret)
  1466. goto err_unref;
  1467. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1468. if (ret)
  1469. goto err_unpin;
  1470. ringbuf->virtual_start =
  1471. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1472. ringbuf->size);
  1473. if (ringbuf->virtual_start == NULL) {
  1474. ret = -EINVAL;
  1475. goto err_unpin;
  1476. }
  1477. ringbuf->obj = obj;
  1478. return 0;
  1479. err_unpin:
  1480. i915_gem_object_ggtt_unpin(obj);
  1481. err_unref:
  1482. drm_gem_object_unreference(&obj->base);
  1483. return ret;
  1484. }
  1485. static int intel_init_ring_buffer(struct drm_device *dev,
  1486. struct intel_engine_cs *ring)
  1487. {
  1488. struct intel_ringbuffer *ringbuf = ring->buffer;
  1489. int ret;
  1490. if (ringbuf == NULL) {
  1491. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1492. if (!ringbuf)
  1493. return -ENOMEM;
  1494. ring->buffer = ringbuf;
  1495. }
  1496. ring->dev = dev;
  1497. INIT_LIST_HEAD(&ring->active_list);
  1498. INIT_LIST_HEAD(&ring->request_list);
  1499. INIT_LIST_HEAD(&ring->execlist_queue);
  1500. ringbuf->size = 32 * PAGE_SIZE;
  1501. ringbuf->ring = ring;
  1502. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1503. init_waitqueue_head(&ring->irq_queue);
  1504. if (I915_NEED_GFX_HWS(dev)) {
  1505. ret = init_status_page(ring);
  1506. if (ret)
  1507. goto error;
  1508. } else {
  1509. BUG_ON(ring->id != RCS);
  1510. ret = init_phys_status_page(ring);
  1511. if (ret)
  1512. goto error;
  1513. }
  1514. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1515. if (ret) {
  1516. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1517. goto error;
  1518. }
  1519. /* Workaround an erratum on the i830 which causes a hang if
  1520. * the TAIL pointer points to within the last 2 cachelines
  1521. * of the buffer.
  1522. */
  1523. ringbuf->effective_size = ringbuf->size;
  1524. if (IS_I830(dev) || IS_845G(dev))
  1525. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1526. ret = i915_cmd_parser_init_ring(ring);
  1527. if (ret)
  1528. goto error;
  1529. ret = ring->init(ring);
  1530. if (ret)
  1531. goto error;
  1532. return 0;
  1533. error:
  1534. kfree(ringbuf);
  1535. ring->buffer = NULL;
  1536. return ret;
  1537. }
  1538. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1539. {
  1540. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1541. struct intel_ringbuffer *ringbuf = ring->buffer;
  1542. if (!intel_ring_initialized(ring))
  1543. return;
  1544. intel_stop_ring_buffer(ring);
  1545. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1546. intel_destroy_ringbuffer_obj(ringbuf);
  1547. ring->preallocated_lazy_request = NULL;
  1548. ring->outstanding_lazy_seqno = 0;
  1549. if (ring->cleanup)
  1550. ring->cleanup(ring);
  1551. cleanup_status_page(ring);
  1552. i915_cmd_parser_fini_ring(ring);
  1553. kfree(ringbuf);
  1554. ring->buffer = NULL;
  1555. }
  1556. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1557. {
  1558. struct intel_ringbuffer *ringbuf = ring->buffer;
  1559. struct drm_i915_gem_request *request;
  1560. u32 seqno = 0;
  1561. int ret;
  1562. if (ringbuf->last_retired_head != -1) {
  1563. ringbuf->head = ringbuf->last_retired_head;
  1564. ringbuf->last_retired_head = -1;
  1565. ringbuf->space = intel_ring_space(ringbuf);
  1566. if (ringbuf->space >= n)
  1567. return 0;
  1568. }
  1569. list_for_each_entry(request, &ring->request_list, list) {
  1570. if (__intel_ring_space(request->tail, ringbuf->tail,
  1571. ringbuf->size) >= n) {
  1572. seqno = request->seqno;
  1573. break;
  1574. }
  1575. }
  1576. if (seqno == 0)
  1577. return -ENOSPC;
  1578. ret = i915_wait_seqno(ring, seqno);
  1579. if (ret)
  1580. return ret;
  1581. i915_gem_retire_requests_ring(ring);
  1582. ringbuf->head = ringbuf->last_retired_head;
  1583. ringbuf->last_retired_head = -1;
  1584. ringbuf->space = intel_ring_space(ringbuf);
  1585. return 0;
  1586. }
  1587. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1588. {
  1589. struct drm_device *dev = ring->dev;
  1590. struct drm_i915_private *dev_priv = dev->dev_private;
  1591. struct intel_ringbuffer *ringbuf = ring->buffer;
  1592. unsigned long end;
  1593. int ret;
  1594. ret = intel_ring_wait_request(ring, n);
  1595. if (ret != -ENOSPC)
  1596. return ret;
  1597. /* force the tail write in case we have been skipping them */
  1598. __intel_ring_advance(ring);
  1599. /* With GEM the hangcheck timer should kick us out of the loop,
  1600. * leaving it early runs the risk of corrupting GEM state (due
  1601. * to running on almost untested codepaths). But on resume
  1602. * timers don't work yet, so prevent a complete hang in that
  1603. * case by choosing an insanely large timeout. */
  1604. end = jiffies + 60 * HZ;
  1605. trace_i915_ring_wait_begin(ring);
  1606. do {
  1607. ringbuf->head = I915_READ_HEAD(ring);
  1608. ringbuf->space = intel_ring_space(ringbuf);
  1609. if (ringbuf->space >= n) {
  1610. ret = 0;
  1611. break;
  1612. }
  1613. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1614. dev->primary->master) {
  1615. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1616. if (master_priv->sarea_priv)
  1617. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1618. }
  1619. msleep(1);
  1620. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1621. ret = -ERESTARTSYS;
  1622. break;
  1623. }
  1624. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1625. dev_priv->mm.interruptible);
  1626. if (ret)
  1627. break;
  1628. if (time_after(jiffies, end)) {
  1629. ret = -EBUSY;
  1630. break;
  1631. }
  1632. } while (1);
  1633. trace_i915_ring_wait_end(ring);
  1634. return ret;
  1635. }
  1636. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1637. {
  1638. uint32_t __iomem *virt;
  1639. struct intel_ringbuffer *ringbuf = ring->buffer;
  1640. int rem = ringbuf->size - ringbuf->tail;
  1641. if (ringbuf->space < rem) {
  1642. int ret = ring_wait_for_space(ring, rem);
  1643. if (ret)
  1644. return ret;
  1645. }
  1646. virt = ringbuf->virtual_start + ringbuf->tail;
  1647. rem /= 4;
  1648. while (rem--)
  1649. iowrite32(MI_NOOP, virt++);
  1650. ringbuf->tail = 0;
  1651. ringbuf->space = intel_ring_space(ringbuf);
  1652. return 0;
  1653. }
  1654. int intel_ring_idle(struct intel_engine_cs *ring)
  1655. {
  1656. u32 seqno;
  1657. int ret;
  1658. /* We need to add any requests required to flush the objects and ring */
  1659. if (ring->outstanding_lazy_seqno) {
  1660. ret = i915_add_request(ring, NULL);
  1661. if (ret)
  1662. return ret;
  1663. }
  1664. /* Wait upon the last request to be completed */
  1665. if (list_empty(&ring->request_list))
  1666. return 0;
  1667. seqno = list_entry(ring->request_list.prev,
  1668. struct drm_i915_gem_request,
  1669. list)->seqno;
  1670. return i915_wait_seqno(ring, seqno);
  1671. }
  1672. static int
  1673. intel_ring_alloc_seqno(struct intel_engine_cs *ring)
  1674. {
  1675. if (ring->outstanding_lazy_seqno)
  1676. return 0;
  1677. if (ring->preallocated_lazy_request == NULL) {
  1678. struct drm_i915_gem_request *request;
  1679. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1680. if (request == NULL)
  1681. return -ENOMEM;
  1682. ring->preallocated_lazy_request = request;
  1683. }
  1684. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1685. }
  1686. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1687. int bytes)
  1688. {
  1689. struct intel_ringbuffer *ringbuf = ring->buffer;
  1690. int ret;
  1691. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1692. ret = intel_wrap_ring_buffer(ring);
  1693. if (unlikely(ret))
  1694. return ret;
  1695. }
  1696. if (unlikely(ringbuf->space < bytes)) {
  1697. ret = ring_wait_for_space(ring, bytes);
  1698. if (unlikely(ret))
  1699. return ret;
  1700. }
  1701. return 0;
  1702. }
  1703. int intel_ring_begin(struct intel_engine_cs *ring,
  1704. int num_dwords)
  1705. {
  1706. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1707. int ret;
  1708. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1709. dev_priv->mm.interruptible);
  1710. if (ret)
  1711. return ret;
  1712. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1713. if (ret)
  1714. return ret;
  1715. /* Preallocate the olr before touching the ring */
  1716. ret = intel_ring_alloc_seqno(ring);
  1717. if (ret)
  1718. return ret;
  1719. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1720. return 0;
  1721. }
  1722. /* Align the ring tail to a cacheline boundary */
  1723. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1724. {
  1725. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1726. int ret;
  1727. if (num_dwords == 0)
  1728. return 0;
  1729. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1730. ret = intel_ring_begin(ring, num_dwords);
  1731. if (ret)
  1732. return ret;
  1733. while (num_dwords--)
  1734. intel_ring_emit(ring, MI_NOOP);
  1735. intel_ring_advance(ring);
  1736. return 0;
  1737. }
  1738. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1739. {
  1740. struct drm_device *dev = ring->dev;
  1741. struct drm_i915_private *dev_priv = dev->dev_private;
  1742. BUG_ON(ring->outstanding_lazy_seqno);
  1743. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1744. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1745. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1746. if (HAS_VEBOX(dev))
  1747. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1748. }
  1749. ring->set_seqno(ring, seqno);
  1750. ring->hangcheck.seqno = seqno;
  1751. }
  1752. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1753. u32 value)
  1754. {
  1755. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1756. /* Every tail move must follow the sequence below */
  1757. /* Disable notification that the ring is IDLE. The GT
  1758. * will then assume that it is busy and bring it out of rc6.
  1759. */
  1760. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1761. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1762. /* Clear the context id. Here be magic! */
  1763. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1764. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1765. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1766. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1767. 50))
  1768. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1769. /* Now that the ring is fully powered up, update the tail */
  1770. I915_WRITE_TAIL(ring, value);
  1771. POSTING_READ(RING_TAIL(ring->mmio_base));
  1772. /* Let the ring send IDLE messages to the GT again,
  1773. * and so let it sleep to conserve power when idle.
  1774. */
  1775. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1776. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1777. }
  1778. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1779. u32 invalidate, u32 flush)
  1780. {
  1781. uint32_t cmd;
  1782. int ret;
  1783. ret = intel_ring_begin(ring, 4);
  1784. if (ret)
  1785. return ret;
  1786. cmd = MI_FLUSH_DW;
  1787. if (INTEL_INFO(ring->dev)->gen >= 8)
  1788. cmd += 1;
  1789. /*
  1790. * Bspec vol 1c.5 - video engine command streamer:
  1791. * "If ENABLED, all TLBs will be invalidated once the flush
  1792. * operation is complete. This bit is only valid when the
  1793. * Post-Sync Operation field is a value of 1h or 3h."
  1794. */
  1795. if (invalidate & I915_GEM_GPU_DOMAINS)
  1796. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1797. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1798. intel_ring_emit(ring, cmd);
  1799. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1800. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1801. intel_ring_emit(ring, 0); /* upper addr */
  1802. intel_ring_emit(ring, 0); /* value */
  1803. } else {
  1804. intel_ring_emit(ring, 0);
  1805. intel_ring_emit(ring, MI_NOOP);
  1806. }
  1807. intel_ring_advance(ring);
  1808. return 0;
  1809. }
  1810. static int
  1811. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1812. u64 offset, u32 len,
  1813. unsigned flags)
  1814. {
  1815. bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
  1816. int ret;
  1817. ret = intel_ring_begin(ring, 4);
  1818. if (ret)
  1819. return ret;
  1820. /* FIXME(BDW): Address space and security selectors. */
  1821. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1822. intel_ring_emit(ring, lower_32_bits(offset));
  1823. intel_ring_emit(ring, upper_32_bits(offset));
  1824. intel_ring_emit(ring, MI_NOOP);
  1825. intel_ring_advance(ring);
  1826. return 0;
  1827. }
  1828. static int
  1829. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1830. u64 offset, u32 len,
  1831. unsigned flags)
  1832. {
  1833. int ret;
  1834. ret = intel_ring_begin(ring, 2);
  1835. if (ret)
  1836. return ret;
  1837. intel_ring_emit(ring,
  1838. MI_BATCH_BUFFER_START |
  1839. (flags & I915_DISPATCH_SECURE ?
  1840. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
  1841. /* bit0-7 is the length on GEN6+ */
  1842. intel_ring_emit(ring, offset);
  1843. intel_ring_advance(ring);
  1844. return 0;
  1845. }
  1846. static int
  1847. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1848. u64 offset, u32 len,
  1849. unsigned flags)
  1850. {
  1851. int ret;
  1852. ret = intel_ring_begin(ring, 2);
  1853. if (ret)
  1854. return ret;
  1855. intel_ring_emit(ring,
  1856. MI_BATCH_BUFFER_START |
  1857. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1858. /* bit0-7 is the length on GEN6+ */
  1859. intel_ring_emit(ring, offset);
  1860. intel_ring_advance(ring);
  1861. return 0;
  1862. }
  1863. /* Blitter support (SandyBridge+) */
  1864. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1865. u32 invalidate, u32 flush)
  1866. {
  1867. struct drm_device *dev = ring->dev;
  1868. struct drm_i915_private *dev_priv = dev->dev_private;
  1869. uint32_t cmd;
  1870. int ret;
  1871. ret = intel_ring_begin(ring, 4);
  1872. if (ret)
  1873. return ret;
  1874. cmd = MI_FLUSH_DW;
  1875. if (INTEL_INFO(ring->dev)->gen >= 8)
  1876. cmd += 1;
  1877. /*
  1878. * Bspec vol 1c.3 - blitter engine command streamer:
  1879. * "If ENABLED, all TLBs will be invalidated once the flush
  1880. * operation is complete. This bit is only valid when the
  1881. * Post-Sync Operation field is a value of 1h or 3h."
  1882. */
  1883. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1884. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1885. MI_FLUSH_DW_OP_STOREDW;
  1886. intel_ring_emit(ring, cmd);
  1887. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1888. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1889. intel_ring_emit(ring, 0); /* upper addr */
  1890. intel_ring_emit(ring, 0); /* value */
  1891. } else {
  1892. intel_ring_emit(ring, 0);
  1893. intel_ring_emit(ring, MI_NOOP);
  1894. }
  1895. intel_ring_advance(ring);
  1896. if (!invalidate && flush) {
  1897. if (IS_GEN7(dev))
  1898. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1899. else if (IS_BROADWELL(dev))
  1900. dev_priv->fbc.need_sw_cache_clean = true;
  1901. }
  1902. return 0;
  1903. }
  1904. int intel_init_render_ring_buffer(struct drm_device *dev)
  1905. {
  1906. struct drm_i915_private *dev_priv = dev->dev_private;
  1907. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1908. struct drm_i915_gem_object *obj;
  1909. int ret;
  1910. ring->name = "render ring";
  1911. ring->id = RCS;
  1912. ring->mmio_base = RENDER_RING_BASE;
  1913. if (INTEL_INFO(dev)->gen >= 8) {
  1914. if (i915_semaphore_is_enabled(dev)) {
  1915. obj = i915_gem_alloc_object(dev, 4096);
  1916. if (obj == NULL) {
  1917. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1918. i915.semaphores = 0;
  1919. } else {
  1920. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1921. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1922. if (ret != 0) {
  1923. drm_gem_object_unreference(&obj->base);
  1924. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1925. i915.semaphores = 0;
  1926. } else
  1927. dev_priv->semaphore_obj = obj;
  1928. }
  1929. }
  1930. if (IS_CHERRYVIEW(dev))
  1931. ring->init_context = chv_init_workarounds;
  1932. else
  1933. ring->init_context = bdw_init_workarounds;
  1934. ring->add_request = gen6_add_request;
  1935. ring->flush = gen8_render_ring_flush;
  1936. ring->irq_get = gen8_ring_get_irq;
  1937. ring->irq_put = gen8_ring_put_irq;
  1938. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1939. ring->get_seqno = gen6_ring_get_seqno;
  1940. ring->set_seqno = ring_set_seqno;
  1941. if (i915_semaphore_is_enabled(dev)) {
  1942. WARN_ON(!dev_priv->semaphore_obj);
  1943. ring->semaphore.sync_to = gen8_ring_sync;
  1944. ring->semaphore.signal = gen8_rcs_signal;
  1945. GEN8_RING_SEMAPHORE_INIT;
  1946. }
  1947. } else if (INTEL_INFO(dev)->gen >= 6) {
  1948. ring->add_request = gen6_add_request;
  1949. ring->flush = gen7_render_ring_flush;
  1950. if (INTEL_INFO(dev)->gen == 6)
  1951. ring->flush = gen6_render_ring_flush;
  1952. ring->irq_get = gen6_ring_get_irq;
  1953. ring->irq_put = gen6_ring_put_irq;
  1954. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1955. ring->get_seqno = gen6_ring_get_seqno;
  1956. ring->set_seqno = ring_set_seqno;
  1957. if (i915_semaphore_is_enabled(dev)) {
  1958. ring->semaphore.sync_to = gen6_ring_sync;
  1959. ring->semaphore.signal = gen6_signal;
  1960. /*
  1961. * The current semaphore is only applied on pre-gen8
  1962. * platform. And there is no VCS2 ring on the pre-gen8
  1963. * platform. So the semaphore between RCS and VCS2 is
  1964. * initialized as INVALID. Gen8 will initialize the
  1965. * sema between VCS2 and RCS later.
  1966. */
  1967. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1968. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1969. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1970. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1971. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1972. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1973. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1974. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1975. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1976. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1977. }
  1978. } else if (IS_GEN5(dev)) {
  1979. ring->add_request = pc_render_add_request;
  1980. ring->flush = gen4_render_ring_flush;
  1981. ring->get_seqno = pc_render_get_seqno;
  1982. ring->set_seqno = pc_render_set_seqno;
  1983. ring->irq_get = gen5_ring_get_irq;
  1984. ring->irq_put = gen5_ring_put_irq;
  1985. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1986. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1987. } else {
  1988. ring->add_request = i9xx_add_request;
  1989. if (INTEL_INFO(dev)->gen < 4)
  1990. ring->flush = gen2_render_ring_flush;
  1991. else
  1992. ring->flush = gen4_render_ring_flush;
  1993. ring->get_seqno = ring_get_seqno;
  1994. ring->set_seqno = ring_set_seqno;
  1995. if (IS_GEN2(dev)) {
  1996. ring->irq_get = i8xx_ring_get_irq;
  1997. ring->irq_put = i8xx_ring_put_irq;
  1998. } else {
  1999. ring->irq_get = i9xx_ring_get_irq;
  2000. ring->irq_put = i9xx_ring_put_irq;
  2001. }
  2002. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2003. }
  2004. ring->write_tail = ring_write_tail;
  2005. if (IS_HASWELL(dev))
  2006. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2007. else if (IS_GEN8(dev))
  2008. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2009. else if (INTEL_INFO(dev)->gen >= 6)
  2010. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2011. else if (INTEL_INFO(dev)->gen >= 4)
  2012. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2013. else if (IS_I830(dev) || IS_845G(dev))
  2014. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2015. else
  2016. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2017. ring->init = init_render_ring;
  2018. ring->cleanup = render_ring_cleanup;
  2019. /* Workaround batchbuffer to combat CS tlb bug. */
  2020. if (HAS_BROKEN_CS_TLB(dev)) {
  2021. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2022. if (obj == NULL) {
  2023. DRM_ERROR("Failed to allocate batch bo\n");
  2024. return -ENOMEM;
  2025. }
  2026. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2027. if (ret != 0) {
  2028. drm_gem_object_unreference(&obj->base);
  2029. DRM_ERROR("Failed to ping batch bo\n");
  2030. return ret;
  2031. }
  2032. ring->scratch.obj = obj;
  2033. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2034. }
  2035. return intel_init_ring_buffer(dev, ring);
  2036. }
  2037. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  2038. {
  2039. struct drm_i915_private *dev_priv = dev->dev_private;
  2040. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2041. struct intel_ringbuffer *ringbuf = ring->buffer;
  2042. int ret;
  2043. if (ringbuf == NULL) {
  2044. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  2045. if (!ringbuf)
  2046. return -ENOMEM;
  2047. ring->buffer = ringbuf;
  2048. }
  2049. ring->name = "render ring";
  2050. ring->id = RCS;
  2051. ring->mmio_base = RENDER_RING_BASE;
  2052. if (INTEL_INFO(dev)->gen >= 6) {
  2053. /* non-kms not supported on gen6+ */
  2054. ret = -ENODEV;
  2055. goto err_ringbuf;
  2056. }
  2057. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  2058. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  2059. * the special gen5 functions. */
  2060. ring->add_request = i9xx_add_request;
  2061. if (INTEL_INFO(dev)->gen < 4)
  2062. ring->flush = gen2_render_ring_flush;
  2063. else
  2064. ring->flush = gen4_render_ring_flush;
  2065. ring->get_seqno = ring_get_seqno;
  2066. ring->set_seqno = ring_set_seqno;
  2067. if (IS_GEN2(dev)) {
  2068. ring->irq_get = i8xx_ring_get_irq;
  2069. ring->irq_put = i8xx_ring_put_irq;
  2070. } else {
  2071. ring->irq_get = i9xx_ring_get_irq;
  2072. ring->irq_put = i9xx_ring_put_irq;
  2073. }
  2074. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2075. ring->write_tail = ring_write_tail;
  2076. if (INTEL_INFO(dev)->gen >= 4)
  2077. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2078. else if (IS_I830(dev) || IS_845G(dev))
  2079. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2080. else
  2081. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2082. ring->init = init_render_ring;
  2083. ring->cleanup = render_ring_cleanup;
  2084. ring->dev = dev;
  2085. INIT_LIST_HEAD(&ring->active_list);
  2086. INIT_LIST_HEAD(&ring->request_list);
  2087. ringbuf->size = size;
  2088. ringbuf->effective_size = ringbuf->size;
  2089. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  2090. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  2091. ringbuf->virtual_start = ioremap_wc(start, size);
  2092. if (ringbuf->virtual_start == NULL) {
  2093. DRM_ERROR("can not ioremap virtual address for"
  2094. " ring buffer\n");
  2095. ret = -ENOMEM;
  2096. goto err_ringbuf;
  2097. }
  2098. if (!I915_NEED_GFX_HWS(dev)) {
  2099. ret = init_phys_status_page(ring);
  2100. if (ret)
  2101. goto err_vstart;
  2102. }
  2103. return 0;
  2104. err_vstart:
  2105. iounmap(ringbuf->virtual_start);
  2106. err_ringbuf:
  2107. kfree(ringbuf);
  2108. ring->buffer = NULL;
  2109. return ret;
  2110. }
  2111. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2112. {
  2113. struct drm_i915_private *dev_priv = dev->dev_private;
  2114. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2115. ring->name = "bsd ring";
  2116. ring->id = VCS;
  2117. ring->write_tail = ring_write_tail;
  2118. if (INTEL_INFO(dev)->gen >= 6) {
  2119. ring->mmio_base = GEN6_BSD_RING_BASE;
  2120. /* gen6 bsd needs a special wa for tail updates */
  2121. if (IS_GEN6(dev))
  2122. ring->write_tail = gen6_bsd_ring_write_tail;
  2123. ring->flush = gen6_bsd_ring_flush;
  2124. ring->add_request = gen6_add_request;
  2125. ring->get_seqno = gen6_ring_get_seqno;
  2126. ring->set_seqno = ring_set_seqno;
  2127. if (INTEL_INFO(dev)->gen >= 8) {
  2128. ring->irq_enable_mask =
  2129. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2130. ring->irq_get = gen8_ring_get_irq;
  2131. ring->irq_put = gen8_ring_put_irq;
  2132. ring->dispatch_execbuffer =
  2133. gen8_ring_dispatch_execbuffer;
  2134. if (i915_semaphore_is_enabled(dev)) {
  2135. ring->semaphore.sync_to = gen8_ring_sync;
  2136. ring->semaphore.signal = gen8_xcs_signal;
  2137. GEN8_RING_SEMAPHORE_INIT;
  2138. }
  2139. } else {
  2140. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2141. ring->irq_get = gen6_ring_get_irq;
  2142. ring->irq_put = gen6_ring_put_irq;
  2143. ring->dispatch_execbuffer =
  2144. gen6_ring_dispatch_execbuffer;
  2145. if (i915_semaphore_is_enabled(dev)) {
  2146. ring->semaphore.sync_to = gen6_ring_sync;
  2147. ring->semaphore.signal = gen6_signal;
  2148. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2149. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2150. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2151. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2152. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2153. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2154. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2155. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2156. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2157. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2158. }
  2159. }
  2160. } else {
  2161. ring->mmio_base = BSD_RING_BASE;
  2162. ring->flush = bsd_ring_flush;
  2163. ring->add_request = i9xx_add_request;
  2164. ring->get_seqno = ring_get_seqno;
  2165. ring->set_seqno = ring_set_seqno;
  2166. if (IS_GEN5(dev)) {
  2167. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2168. ring->irq_get = gen5_ring_get_irq;
  2169. ring->irq_put = gen5_ring_put_irq;
  2170. } else {
  2171. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2172. ring->irq_get = i9xx_ring_get_irq;
  2173. ring->irq_put = i9xx_ring_put_irq;
  2174. }
  2175. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2176. }
  2177. ring->init = init_ring_common;
  2178. return intel_init_ring_buffer(dev, ring);
  2179. }
  2180. /**
  2181. * Initialize the second BSD ring for Broadwell GT3.
  2182. * It is noted that this only exists on Broadwell GT3.
  2183. */
  2184. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2185. {
  2186. struct drm_i915_private *dev_priv = dev->dev_private;
  2187. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2188. if ((INTEL_INFO(dev)->gen != 8)) {
  2189. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2190. return -EINVAL;
  2191. }
  2192. ring->name = "bsd2 ring";
  2193. ring->id = VCS2;
  2194. ring->write_tail = ring_write_tail;
  2195. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2196. ring->flush = gen6_bsd_ring_flush;
  2197. ring->add_request = gen6_add_request;
  2198. ring->get_seqno = gen6_ring_get_seqno;
  2199. ring->set_seqno = ring_set_seqno;
  2200. ring->irq_enable_mask =
  2201. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2202. ring->irq_get = gen8_ring_get_irq;
  2203. ring->irq_put = gen8_ring_put_irq;
  2204. ring->dispatch_execbuffer =
  2205. gen8_ring_dispatch_execbuffer;
  2206. if (i915_semaphore_is_enabled(dev)) {
  2207. ring->semaphore.sync_to = gen8_ring_sync;
  2208. ring->semaphore.signal = gen8_xcs_signal;
  2209. GEN8_RING_SEMAPHORE_INIT;
  2210. }
  2211. ring->init = init_ring_common;
  2212. return intel_init_ring_buffer(dev, ring);
  2213. }
  2214. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2215. {
  2216. struct drm_i915_private *dev_priv = dev->dev_private;
  2217. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2218. ring->name = "blitter ring";
  2219. ring->id = BCS;
  2220. ring->mmio_base = BLT_RING_BASE;
  2221. ring->write_tail = ring_write_tail;
  2222. ring->flush = gen6_ring_flush;
  2223. ring->add_request = gen6_add_request;
  2224. ring->get_seqno = gen6_ring_get_seqno;
  2225. ring->set_seqno = ring_set_seqno;
  2226. if (INTEL_INFO(dev)->gen >= 8) {
  2227. ring->irq_enable_mask =
  2228. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2229. ring->irq_get = gen8_ring_get_irq;
  2230. ring->irq_put = gen8_ring_put_irq;
  2231. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2232. if (i915_semaphore_is_enabled(dev)) {
  2233. ring->semaphore.sync_to = gen8_ring_sync;
  2234. ring->semaphore.signal = gen8_xcs_signal;
  2235. GEN8_RING_SEMAPHORE_INIT;
  2236. }
  2237. } else {
  2238. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2239. ring->irq_get = gen6_ring_get_irq;
  2240. ring->irq_put = gen6_ring_put_irq;
  2241. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2242. if (i915_semaphore_is_enabled(dev)) {
  2243. ring->semaphore.signal = gen6_signal;
  2244. ring->semaphore.sync_to = gen6_ring_sync;
  2245. /*
  2246. * The current semaphore is only applied on pre-gen8
  2247. * platform. And there is no VCS2 ring on the pre-gen8
  2248. * platform. So the semaphore between BCS and VCS2 is
  2249. * initialized as INVALID. Gen8 will initialize the
  2250. * sema between BCS and VCS2 later.
  2251. */
  2252. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2253. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2254. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2255. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2256. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2257. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2258. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2259. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2260. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2261. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2262. }
  2263. }
  2264. ring->init = init_ring_common;
  2265. return intel_init_ring_buffer(dev, ring);
  2266. }
  2267. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2268. {
  2269. struct drm_i915_private *dev_priv = dev->dev_private;
  2270. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2271. ring->name = "video enhancement ring";
  2272. ring->id = VECS;
  2273. ring->mmio_base = VEBOX_RING_BASE;
  2274. ring->write_tail = ring_write_tail;
  2275. ring->flush = gen6_ring_flush;
  2276. ring->add_request = gen6_add_request;
  2277. ring->get_seqno = gen6_ring_get_seqno;
  2278. ring->set_seqno = ring_set_seqno;
  2279. if (INTEL_INFO(dev)->gen >= 8) {
  2280. ring->irq_enable_mask =
  2281. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2282. ring->irq_get = gen8_ring_get_irq;
  2283. ring->irq_put = gen8_ring_put_irq;
  2284. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2285. if (i915_semaphore_is_enabled(dev)) {
  2286. ring->semaphore.sync_to = gen8_ring_sync;
  2287. ring->semaphore.signal = gen8_xcs_signal;
  2288. GEN8_RING_SEMAPHORE_INIT;
  2289. }
  2290. } else {
  2291. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2292. ring->irq_get = hsw_vebox_get_irq;
  2293. ring->irq_put = hsw_vebox_put_irq;
  2294. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2295. if (i915_semaphore_is_enabled(dev)) {
  2296. ring->semaphore.sync_to = gen6_ring_sync;
  2297. ring->semaphore.signal = gen6_signal;
  2298. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2299. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2300. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2301. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2302. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2303. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2304. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2305. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2306. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2307. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2308. }
  2309. }
  2310. ring->init = init_ring_common;
  2311. return intel_init_ring_buffer(dev, ring);
  2312. }
  2313. int
  2314. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2315. {
  2316. int ret;
  2317. if (!ring->gpu_caches_dirty)
  2318. return 0;
  2319. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2320. if (ret)
  2321. return ret;
  2322. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2323. ring->gpu_caches_dirty = false;
  2324. return 0;
  2325. }
  2326. int
  2327. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2328. {
  2329. uint32_t flush_domains;
  2330. int ret;
  2331. flush_domains = 0;
  2332. if (ring->gpu_caches_dirty)
  2333. flush_domains = I915_GEM_GPU_DOMAINS;
  2334. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2335. if (ret)
  2336. return ret;
  2337. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2338. ring->gpu_caches_dirty = false;
  2339. return 0;
  2340. }
  2341. void
  2342. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2343. {
  2344. int ret;
  2345. if (!intel_ring_initialized(ring))
  2346. return;
  2347. ret = intel_ring_idle(ring);
  2348. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2349. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2350. ring->name, ret);
  2351. stop_ring(ring);
  2352. }