md.c 230 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/badblocks.h>
  29. #include <linux/sysctl.h>
  30. #include <linux/seq_file.h>
  31. #include <linux/fs.h>
  32. #include <linux/poll.h>
  33. #include <linux/ctype.h>
  34. #include <linux/string.h>
  35. #include <linux/hdreg.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/random.h>
  38. #include <linux/module.h>
  39. #include <linux/reboot.h>
  40. #include <linux/file.h>
  41. #include <linux/compat.h>
  42. #include <linux/delay.h>
  43. #include <linux/raid/md_p.h>
  44. #include <linux/raid/md_u.h>
  45. #include <linux/slab.h>
  46. #include "md.h"
  47. #include "bitmap.h"
  48. #include "md-cluster.h"
  49. #ifndef MODULE
  50. static void autostart_arrays(int part);
  51. #endif
  52. /* pers_list is a list of registered personalities protected
  53. * by pers_lock.
  54. * pers_lock does extra service to protect accesses to
  55. * mddev->thread when the mutex cannot be held.
  56. */
  57. static LIST_HEAD(pers_list);
  58. static DEFINE_SPINLOCK(pers_lock);
  59. struct md_cluster_operations *md_cluster_ops;
  60. EXPORT_SYMBOL(md_cluster_ops);
  61. struct module *md_cluster_mod;
  62. EXPORT_SYMBOL(md_cluster_mod);
  63. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  64. static struct workqueue_struct *md_wq;
  65. static struct workqueue_struct *md_misc_wq;
  66. static int remove_and_add_spares(struct mddev *mddev,
  67. struct md_rdev *this);
  68. static void mddev_detach(struct mddev *mddev);
  69. /*
  70. * Default number of read corrections we'll attempt on an rdev
  71. * before ejecting it from the array. We divide the read error
  72. * count by 2 for every hour elapsed between read errors.
  73. */
  74. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  75. /*
  76. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  77. * is 1000 KB/sec, so the extra system load does not show up that much.
  78. * Increase it if you want to have more _guaranteed_ speed. Note that
  79. * the RAID driver will use the maximum available bandwidth if the IO
  80. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  81. * speed limit - in case reconstruction slows down your system despite
  82. * idle IO detection.
  83. *
  84. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  85. * or /sys/block/mdX/md/sync_speed_{min,max}
  86. */
  87. static int sysctl_speed_limit_min = 1000;
  88. static int sysctl_speed_limit_max = 200000;
  89. static inline int speed_min(struct mddev *mddev)
  90. {
  91. return mddev->sync_speed_min ?
  92. mddev->sync_speed_min : sysctl_speed_limit_min;
  93. }
  94. static inline int speed_max(struct mddev *mddev)
  95. {
  96. return mddev->sync_speed_max ?
  97. mddev->sync_speed_max : sysctl_speed_limit_max;
  98. }
  99. static struct ctl_table_header *raid_table_header;
  100. static struct ctl_table raid_table[] = {
  101. {
  102. .procname = "speed_limit_min",
  103. .data = &sysctl_speed_limit_min,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. {
  109. .procname = "speed_limit_max",
  110. .data = &sysctl_speed_limit_max,
  111. .maxlen = sizeof(int),
  112. .mode = S_IRUGO|S_IWUSR,
  113. .proc_handler = proc_dointvec,
  114. },
  115. { }
  116. };
  117. static struct ctl_table raid_dir_table[] = {
  118. {
  119. .procname = "raid",
  120. .maxlen = 0,
  121. .mode = S_IRUGO|S_IXUGO,
  122. .child = raid_table,
  123. },
  124. { }
  125. };
  126. static struct ctl_table raid_root_table[] = {
  127. {
  128. .procname = "dev",
  129. .maxlen = 0,
  130. .mode = 0555,
  131. .child = raid_dir_table,
  132. },
  133. { }
  134. };
  135. static const struct block_device_operations md_fops;
  136. static int start_readonly;
  137. /* bio_clone_mddev
  138. * like bio_clone, but with a local bio set
  139. */
  140. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  141. struct mddev *mddev)
  142. {
  143. struct bio *b;
  144. if (!mddev || !mddev->bio_set)
  145. return bio_alloc(gfp_mask, nr_iovecs);
  146. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  147. if (!b)
  148. return NULL;
  149. return b;
  150. }
  151. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  152. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  153. struct mddev *mddev)
  154. {
  155. if (!mddev || !mddev->bio_set)
  156. return bio_clone(bio, gfp_mask);
  157. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  158. }
  159. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  160. /*
  161. * We have a system wide 'event count' that is incremented
  162. * on any 'interesting' event, and readers of /proc/mdstat
  163. * can use 'poll' or 'select' to find out when the event
  164. * count increases.
  165. *
  166. * Events are:
  167. * start array, stop array, error, add device, remove device,
  168. * start build, activate spare
  169. */
  170. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  171. static atomic_t md_event_count;
  172. void md_new_event(struct mddev *mddev)
  173. {
  174. atomic_inc(&md_event_count);
  175. wake_up(&md_event_waiters);
  176. }
  177. EXPORT_SYMBOL_GPL(md_new_event);
  178. /*
  179. * Enables to iterate over all existing md arrays
  180. * all_mddevs_lock protects this list.
  181. */
  182. static LIST_HEAD(all_mddevs);
  183. static DEFINE_SPINLOCK(all_mddevs_lock);
  184. /*
  185. * iterates through all used mddevs in the system.
  186. * We take care to grab the all_mddevs_lock whenever navigating
  187. * the list, and to always hold a refcount when unlocked.
  188. * Any code which breaks out of this loop while own
  189. * a reference to the current mddev and must mddev_put it.
  190. */
  191. #define for_each_mddev(_mddev,_tmp) \
  192. \
  193. for (({ spin_lock(&all_mddevs_lock); \
  194. _tmp = all_mddevs.next; \
  195. _mddev = NULL;}); \
  196. ({ if (_tmp != &all_mddevs) \
  197. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  198. spin_unlock(&all_mddevs_lock); \
  199. if (_mddev) mddev_put(_mddev); \
  200. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  201. _tmp != &all_mddevs;}); \
  202. ({ spin_lock(&all_mddevs_lock); \
  203. _tmp = _tmp->next;}) \
  204. )
  205. /* Rather than calling directly into the personality make_request function,
  206. * IO requests come here first so that we can check if the device is
  207. * being suspended pending a reconfiguration.
  208. * We hold a refcount over the call to ->make_request. By the time that
  209. * call has finished, the bio has been linked into some internal structure
  210. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  211. */
  212. static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
  213. {
  214. const int rw = bio_data_dir(bio);
  215. struct mddev *mddev = q->queuedata;
  216. unsigned int sectors;
  217. int cpu;
  218. blk_queue_split(q, &bio, q->bio_split);
  219. if (mddev == NULL || mddev->pers == NULL) {
  220. bio_io_error(bio);
  221. return BLK_QC_T_NONE;
  222. }
  223. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  224. if (bio_sectors(bio) != 0)
  225. bio->bi_error = -EROFS;
  226. bio_endio(bio);
  227. return BLK_QC_T_NONE;
  228. }
  229. smp_rmb(); /* Ensure implications of 'active' are visible */
  230. rcu_read_lock();
  231. if (mddev->suspended) {
  232. DEFINE_WAIT(__wait);
  233. for (;;) {
  234. prepare_to_wait(&mddev->sb_wait, &__wait,
  235. TASK_UNINTERRUPTIBLE);
  236. if (!mddev->suspended)
  237. break;
  238. rcu_read_unlock();
  239. schedule();
  240. rcu_read_lock();
  241. }
  242. finish_wait(&mddev->sb_wait, &__wait);
  243. }
  244. atomic_inc(&mddev->active_io);
  245. rcu_read_unlock();
  246. /*
  247. * save the sectors now since our bio can
  248. * go away inside make_request
  249. */
  250. sectors = bio_sectors(bio);
  251. mddev->pers->make_request(mddev, bio);
  252. cpu = part_stat_lock();
  253. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  254. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  255. part_stat_unlock();
  256. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  257. wake_up(&mddev->sb_wait);
  258. return BLK_QC_T_NONE;
  259. }
  260. /* mddev_suspend makes sure no new requests are submitted
  261. * to the device, and that any requests that have been submitted
  262. * are completely handled.
  263. * Once mddev_detach() is called and completes, the module will be
  264. * completely unused.
  265. */
  266. void mddev_suspend(struct mddev *mddev)
  267. {
  268. if (mddev->suspended++)
  269. return;
  270. synchronize_rcu();
  271. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  272. mddev->pers->quiesce(mddev, 1);
  273. del_timer_sync(&mddev->safemode_timer);
  274. }
  275. EXPORT_SYMBOL_GPL(mddev_suspend);
  276. void mddev_resume(struct mddev *mddev)
  277. {
  278. if (--mddev->suspended)
  279. return;
  280. wake_up(&mddev->sb_wait);
  281. mddev->pers->quiesce(mddev, 0);
  282. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  283. md_wakeup_thread(mddev->thread);
  284. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  285. }
  286. EXPORT_SYMBOL_GPL(mddev_resume);
  287. int mddev_congested(struct mddev *mddev, int bits)
  288. {
  289. struct md_personality *pers = mddev->pers;
  290. int ret = 0;
  291. rcu_read_lock();
  292. if (mddev->suspended)
  293. ret = 1;
  294. else if (pers && pers->congested)
  295. ret = pers->congested(mddev, bits);
  296. rcu_read_unlock();
  297. return ret;
  298. }
  299. EXPORT_SYMBOL_GPL(mddev_congested);
  300. static int md_congested(void *data, int bits)
  301. {
  302. struct mddev *mddev = data;
  303. return mddev_congested(mddev, bits);
  304. }
  305. /*
  306. * Generic flush handling for md
  307. */
  308. static void md_end_flush(struct bio *bio)
  309. {
  310. struct md_rdev *rdev = bio->bi_private;
  311. struct mddev *mddev = rdev->mddev;
  312. rdev_dec_pending(rdev, mddev);
  313. if (atomic_dec_and_test(&mddev->flush_pending)) {
  314. /* The pre-request flush has finished */
  315. queue_work(md_wq, &mddev->flush_work);
  316. }
  317. bio_put(bio);
  318. }
  319. static void md_submit_flush_data(struct work_struct *ws);
  320. static void submit_flushes(struct work_struct *ws)
  321. {
  322. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  323. struct md_rdev *rdev;
  324. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  325. atomic_set(&mddev->flush_pending, 1);
  326. rcu_read_lock();
  327. rdev_for_each_rcu(rdev, mddev)
  328. if (rdev->raid_disk >= 0 &&
  329. !test_bit(Faulty, &rdev->flags)) {
  330. /* Take two references, one is dropped
  331. * when request finishes, one after
  332. * we reclaim rcu_read_lock
  333. */
  334. struct bio *bi;
  335. atomic_inc(&rdev->nr_pending);
  336. atomic_inc(&rdev->nr_pending);
  337. rcu_read_unlock();
  338. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  339. bi->bi_end_io = md_end_flush;
  340. bi->bi_private = rdev;
  341. bi->bi_bdev = rdev->bdev;
  342. atomic_inc(&mddev->flush_pending);
  343. submit_bio(WRITE_FLUSH, bi);
  344. rcu_read_lock();
  345. rdev_dec_pending(rdev, mddev);
  346. }
  347. rcu_read_unlock();
  348. if (atomic_dec_and_test(&mddev->flush_pending))
  349. queue_work(md_wq, &mddev->flush_work);
  350. }
  351. static void md_submit_flush_data(struct work_struct *ws)
  352. {
  353. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  354. struct bio *bio = mddev->flush_bio;
  355. if (bio->bi_iter.bi_size == 0)
  356. /* an empty barrier - all done */
  357. bio_endio(bio);
  358. else {
  359. bio->bi_rw &= ~REQ_FLUSH;
  360. mddev->pers->make_request(mddev, bio);
  361. }
  362. mddev->flush_bio = NULL;
  363. wake_up(&mddev->sb_wait);
  364. }
  365. void md_flush_request(struct mddev *mddev, struct bio *bio)
  366. {
  367. spin_lock_irq(&mddev->lock);
  368. wait_event_lock_irq(mddev->sb_wait,
  369. !mddev->flush_bio,
  370. mddev->lock);
  371. mddev->flush_bio = bio;
  372. spin_unlock_irq(&mddev->lock);
  373. INIT_WORK(&mddev->flush_work, submit_flushes);
  374. queue_work(md_wq, &mddev->flush_work);
  375. }
  376. EXPORT_SYMBOL(md_flush_request);
  377. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  378. {
  379. struct mddev *mddev = cb->data;
  380. md_wakeup_thread(mddev->thread);
  381. kfree(cb);
  382. }
  383. EXPORT_SYMBOL(md_unplug);
  384. static inline struct mddev *mddev_get(struct mddev *mddev)
  385. {
  386. atomic_inc(&mddev->active);
  387. return mddev;
  388. }
  389. static void mddev_delayed_delete(struct work_struct *ws);
  390. static void mddev_put(struct mddev *mddev)
  391. {
  392. struct bio_set *bs = NULL;
  393. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  394. return;
  395. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  396. mddev->ctime == 0 && !mddev->hold_active) {
  397. /* Array is not configured at all, and not held active,
  398. * so destroy it */
  399. list_del_init(&mddev->all_mddevs);
  400. bs = mddev->bio_set;
  401. mddev->bio_set = NULL;
  402. if (mddev->gendisk) {
  403. /* We did a probe so need to clean up. Call
  404. * queue_work inside the spinlock so that
  405. * flush_workqueue() after mddev_find will
  406. * succeed in waiting for the work to be done.
  407. */
  408. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  409. queue_work(md_misc_wq, &mddev->del_work);
  410. } else
  411. kfree(mddev);
  412. }
  413. spin_unlock(&all_mddevs_lock);
  414. if (bs)
  415. bioset_free(bs);
  416. }
  417. static void md_safemode_timeout(unsigned long data);
  418. void mddev_init(struct mddev *mddev)
  419. {
  420. mutex_init(&mddev->open_mutex);
  421. mutex_init(&mddev->reconfig_mutex);
  422. mutex_init(&mddev->bitmap_info.mutex);
  423. INIT_LIST_HEAD(&mddev->disks);
  424. INIT_LIST_HEAD(&mddev->all_mddevs);
  425. setup_timer(&mddev->safemode_timer, md_safemode_timeout,
  426. (unsigned long) mddev);
  427. atomic_set(&mddev->active, 1);
  428. atomic_set(&mddev->openers, 0);
  429. atomic_set(&mddev->active_io, 0);
  430. spin_lock_init(&mddev->lock);
  431. atomic_set(&mddev->flush_pending, 0);
  432. init_waitqueue_head(&mddev->sb_wait);
  433. init_waitqueue_head(&mddev->recovery_wait);
  434. mddev->reshape_position = MaxSector;
  435. mddev->reshape_backwards = 0;
  436. mddev->last_sync_action = "none";
  437. mddev->resync_min = 0;
  438. mddev->resync_max = MaxSector;
  439. mddev->level = LEVEL_NONE;
  440. }
  441. EXPORT_SYMBOL_GPL(mddev_init);
  442. static struct mddev *mddev_find(dev_t unit)
  443. {
  444. struct mddev *mddev, *new = NULL;
  445. if (unit && MAJOR(unit) != MD_MAJOR)
  446. unit &= ~((1<<MdpMinorShift)-1);
  447. retry:
  448. spin_lock(&all_mddevs_lock);
  449. if (unit) {
  450. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  451. if (mddev->unit == unit) {
  452. mddev_get(mddev);
  453. spin_unlock(&all_mddevs_lock);
  454. kfree(new);
  455. return mddev;
  456. }
  457. if (new) {
  458. list_add(&new->all_mddevs, &all_mddevs);
  459. spin_unlock(&all_mddevs_lock);
  460. new->hold_active = UNTIL_IOCTL;
  461. return new;
  462. }
  463. } else if (new) {
  464. /* find an unused unit number */
  465. static int next_minor = 512;
  466. int start = next_minor;
  467. int is_free = 0;
  468. int dev = 0;
  469. while (!is_free) {
  470. dev = MKDEV(MD_MAJOR, next_minor);
  471. next_minor++;
  472. if (next_minor > MINORMASK)
  473. next_minor = 0;
  474. if (next_minor == start) {
  475. /* Oh dear, all in use. */
  476. spin_unlock(&all_mddevs_lock);
  477. kfree(new);
  478. return NULL;
  479. }
  480. is_free = 1;
  481. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  482. if (mddev->unit == dev) {
  483. is_free = 0;
  484. break;
  485. }
  486. }
  487. new->unit = dev;
  488. new->md_minor = MINOR(dev);
  489. new->hold_active = UNTIL_STOP;
  490. list_add(&new->all_mddevs, &all_mddevs);
  491. spin_unlock(&all_mddevs_lock);
  492. return new;
  493. }
  494. spin_unlock(&all_mddevs_lock);
  495. new = kzalloc(sizeof(*new), GFP_KERNEL);
  496. if (!new)
  497. return NULL;
  498. new->unit = unit;
  499. if (MAJOR(unit) == MD_MAJOR)
  500. new->md_minor = MINOR(unit);
  501. else
  502. new->md_minor = MINOR(unit) >> MdpMinorShift;
  503. mddev_init(new);
  504. goto retry;
  505. }
  506. static struct attribute_group md_redundancy_group;
  507. void mddev_unlock(struct mddev *mddev)
  508. {
  509. if (mddev->to_remove) {
  510. /* These cannot be removed under reconfig_mutex as
  511. * an access to the files will try to take reconfig_mutex
  512. * while holding the file unremovable, which leads to
  513. * a deadlock.
  514. * So hold set sysfs_active while the remove in happeing,
  515. * and anything else which might set ->to_remove or my
  516. * otherwise change the sysfs namespace will fail with
  517. * -EBUSY if sysfs_active is still set.
  518. * We set sysfs_active under reconfig_mutex and elsewhere
  519. * test it under the same mutex to ensure its correct value
  520. * is seen.
  521. */
  522. struct attribute_group *to_remove = mddev->to_remove;
  523. mddev->to_remove = NULL;
  524. mddev->sysfs_active = 1;
  525. mutex_unlock(&mddev->reconfig_mutex);
  526. if (mddev->kobj.sd) {
  527. if (to_remove != &md_redundancy_group)
  528. sysfs_remove_group(&mddev->kobj, to_remove);
  529. if (mddev->pers == NULL ||
  530. mddev->pers->sync_request == NULL) {
  531. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  532. if (mddev->sysfs_action)
  533. sysfs_put(mddev->sysfs_action);
  534. mddev->sysfs_action = NULL;
  535. }
  536. }
  537. mddev->sysfs_active = 0;
  538. } else
  539. mutex_unlock(&mddev->reconfig_mutex);
  540. /* As we've dropped the mutex we need a spinlock to
  541. * make sure the thread doesn't disappear
  542. */
  543. spin_lock(&pers_lock);
  544. md_wakeup_thread(mddev->thread);
  545. spin_unlock(&pers_lock);
  546. }
  547. EXPORT_SYMBOL_GPL(mddev_unlock);
  548. struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
  549. {
  550. struct md_rdev *rdev;
  551. rdev_for_each_rcu(rdev, mddev)
  552. if (rdev->desc_nr == nr)
  553. return rdev;
  554. return NULL;
  555. }
  556. EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
  557. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  558. {
  559. struct md_rdev *rdev;
  560. rdev_for_each(rdev, mddev)
  561. if (rdev->bdev->bd_dev == dev)
  562. return rdev;
  563. return NULL;
  564. }
  565. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  566. {
  567. struct md_rdev *rdev;
  568. rdev_for_each_rcu(rdev, mddev)
  569. if (rdev->bdev->bd_dev == dev)
  570. return rdev;
  571. return NULL;
  572. }
  573. static struct md_personality *find_pers(int level, char *clevel)
  574. {
  575. struct md_personality *pers;
  576. list_for_each_entry(pers, &pers_list, list) {
  577. if (level != LEVEL_NONE && pers->level == level)
  578. return pers;
  579. if (strcmp(pers->name, clevel)==0)
  580. return pers;
  581. }
  582. return NULL;
  583. }
  584. /* return the offset of the super block in 512byte sectors */
  585. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  586. {
  587. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  588. return MD_NEW_SIZE_SECTORS(num_sectors);
  589. }
  590. static int alloc_disk_sb(struct md_rdev *rdev)
  591. {
  592. rdev->sb_page = alloc_page(GFP_KERNEL);
  593. if (!rdev->sb_page) {
  594. printk(KERN_ALERT "md: out of memory.\n");
  595. return -ENOMEM;
  596. }
  597. return 0;
  598. }
  599. void md_rdev_clear(struct md_rdev *rdev)
  600. {
  601. if (rdev->sb_page) {
  602. put_page(rdev->sb_page);
  603. rdev->sb_loaded = 0;
  604. rdev->sb_page = NULL;
  605. rdev->sb_start = 0;
  606. rdev->sectors = 0;
  607. }
  608. if (rdev->bb_page) {
  609. put_page(rdev->bb_page);
  610. rdev->bb_page = NULL;
  611. }
  612. badblocks_exit(&rdev->badblocks);
  613. }
  614. EXPORT_SYMBOL_GPL(md_rdev_clear);
  615. static void super_written(struct bio *bio)
  616. {
  617. struct md_rdev *rdev = bio->bi_private;
  618. struct mddev *mddev = rdev->mddev;
  619. if (bio->bi_error) {
  620. printk("md: super_written gets error=%d\n", bio->bi_error);
  621. md_error(mddev, rdev);
  622. }
  623. if (atomic_dec_and_test(&mddev->pending_writes))
  624. wake_up(&mddev->sb_wait);
  625. bio_put(bio);
  626. }
  627. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  628. sector_t sector, int size, struct page *page)
  629. {
  630. /* write first size bytes of page to sector of rdev
  631. * Increment mddev->pending_writes before returning
  632. * and decrement it on completion, waking up sb_wait
  633. * if zero is reached.
  634. * If an error occurred, call md_error
  635. */
  636. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  637. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  638. bio->bi_iter.bi_sector = sector;
  639. bio_add_page(bio, page, size, 0);
  640. bio->bi_private = rdev;
  641. bio->bi_end_io = super_written;
  642. atomic_inc(&mddev->pending_writes);
  643. submit_bio(WRITE_FLUSH_FUA, bio);
  644. }
  645. void md_super_wait(struct mddev *mddev)
  646. {
  647. /* wait for all superblock writes that were scheduled to complete */
  648. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  649. }
  650. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  651. struct page *page, int rw, bool metadata_op)
  652. {
  653. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  654. int ret;
  655. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  656. rdev->meta_bdev : rdev->bdev;
  657. if (metadata_op)
  658. bio->bi_iter.bi_sector = sector + rdev->sb_start;
  659. else if (rdev->mddev->reshape_position != MaxSector &&
  660. (rdev->mddev->reshape_backwards ==
  661. (sector >= rdev->mddev->reshape_position)))
  662. bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
  663. else
  664. bio->bi_iter.bi_sector = sector + rdev->data_offset;
  665. bio_add_page(bio, page, size, 0);
  666. submit_bio_wait(rw, bio);
  667. ret = !bio->bi_error;
  668. bio_put(bio);
  669. return ret;
  670. }
  671. EXPORT_SYMBOL_GPL(sync_page_io);
  672. static int read_disk_sb(struct md_rdev *rdev, int size)
  673. {
  674. char b[BDEVNAME_SIZE];
  675. if (rdev->sb_loaded)
  676. return 0;
  677. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  678. goto fail;
  679. rdev->sb_loaded = 1;
  680. return 0;
  681. fail:
  682. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  683. bdevname(rdev->bdev,b));
  684. return -EINVAL;
  685. }
  686. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  687. {
  688. return sb1->set_uuid0 == sb2->set_uuid0 &&
  689. sb1->set_uuid1 == sb2->set_uuid1 &&
  690. sb1->set_uuid2 == sb2->set_uuid2 &&
  691. sb1->set_uuid3 == sb2->set_uuid3;
  692. }
  693. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  694. {
  695. int ret;
  696. mdp_super_t *tmp1, *tmp2;
  697. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  698. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  699. if (!tmp1 || !tmp2) {
  700. ret = 0;
  701. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  702. goto abort;
  703. }
  704. *tmp1 = *sb1;
  705. *tmp2 = *sb2;
  706. /*
  707. * nr_disks is not constant
  708. */
  709. tmp1->nr_disks = 0;
  710. tmp2->nr_disks = 0;
  711. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  712. abort:
  713. kfree(tmp1);
  714. kfree(tmp2);
  715. return ret;
  716. }
  717. static u32 md_csum_fold(u32 csum)
  718. {
  719. csum = (csum & 0xffff) + (csum >> 16);
  720. return (csum & 0xffff) + (csum >> 16);
  721. }
  722. static unsigned int calc_sb_csum(mdp_super_t *sb)
  723. {
  724. u64 newcsum = 0;
  725. u32 *sb32 = (u32*)sb;
  726. int i;
  727. unsigned int disk_csum, csum;
  728. disk_csum = sb->sb_csum;
  729. sb->sb_csum = 0;
  730. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  731. newcsum += sb32[i];
  732. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  733. #ifdef CONFIG_ALPHA
  734. /* This used to use csum_partial, which was wrong for several
  735. * reasons including that different results are returned on
  736. * different architectures. It isn't critical that we get exactly
  737. * the same return value as before (we always csum_fold before
  738. * testing, and that removes any differences). However as we
  739. * know that csum_partial always returned a 16bit value on
  740. * alphas, do a fold to maximise conformity to previous behaviour.
  741. */
  742. sb->sb_csum = md_csum_fold(disk_csum);
  743. #else
  744. sb->sb_csum = disk_csum;
  745. #endif
  746. return csum;
  747. }
  748. /*
  749. * Handle superblock details.
  750. * We want to be able to handle multiple superblock formats
  751. * so we have a common interface to them all, and an array of
  752. * different handlers.
  753. * We rely on user-space to write the initial superblock, and support
  754. * reading and updating of superblocks.
  755. * Interface methods are:
  756. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  757. * loads and validates a superblock on dev.
  758. * if refdev != NULL, compare superblocks on both devices
  759. * Return:
  760. * 0 - dev has a superblock that is compatible with refdev
  761. * 1 - dev has a superblock that is compatible and newer than refdev
  762. * so dev should be used as the refdev in future
  763. * -EINVAL superblock incompatible or invalid
  764. * -othererror e.g. -EIO
  765. *
  766. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  767. * Verify that dev is acceptable into mddev.
  768. * The first time, mddev->raid_disks will be 0, and data from
  769. * dev should be merged in. Subsequent calls check that dev
  770. * is new enough. Return 0 or -EINVAL
  771. *
  772. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  773. * Update the superblock for rdev with data in mddev
  774. * This does not write to disc.
  775. *
  776. */
  777. struct super_type {
  778. char *name;
  779. struct module *owner;
  780. int (*load_super)(struct md_rdev *rdev,
  781. struct md_rdev *refdev,
  782. int minor_version);
  783. int (*validate_super)(struct mddev *mddev,
  784. struct md_rdev *rdev);
  785. void (*sync_super)(struct mddev *mddev,
  786. struct md_rdev *rdev);
  787. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  788. sector_t num_sectors);
  789. int (*allow_new_offset)(struct md_rdev *rdev,
  790. unsigned long long new_offset);
  791. };
  792. /*
  793. * Check that the given mddev has no bitmap.
  794. *
  795. * This function is called from the run method of all personalities that do not
  796. * support bitmaps. It prints an error message and returns non-zero if mddev
  797. * has a bitmap. Otherwise, it returns 0.
  798. *
  799. */
  800. int md_check_no_bitmap(struct mddev *mddev)
  801. {
  802. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  803. return 0;
  804. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  805. mdname(mddev), mddev->pers->name);
  806. return 1;
  807. }
  808. EXPORT_SYMBOL(md_check_no_bitmap);
  809. /*
  810. * load_super for 0.90.0
  811. */
  812. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  813. {
  814. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  815. mdp_super_t *sb;
  816. int ret;
  817. /*
  818. * Calculate the position of the superblock (512byte sectors),
  819. * it's at the end of the disk.
  820. *
  821. * It also happens to be a multiple of 4Kb.
  822. */
  823. rdev->sb_start = calc_dev_sboffset(rdev);
  824. ret = read_disk_sb(rdev, MD_SB_BYTES);
  825. if (ret) return ret;
  826. ret = -EINVAL;
  827. bdevname(rdev->bdev, b);
  828. sb = page_address(rdev->sb_page);
  829. if (sb->md_magic != MD_SB_MAGIC) {
  830. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  831. b);
  832. goto abort;
  833. }
  834. if (sb->major_version != 0 ||
  835. sb->minor_version < 90 ||
  836. sb->minor_version > 91) {
  837. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  838. sb->major_version, sb->minor_version,
  839. b);
  840. goto abort;
  841. }
  842. if (sb->raid_disks <= 0)
  843. goto abort;
  844. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  845. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  846. b);
  847. goto abort;
  848. }
  849. rdev->preferred_minor = sb->md_minor;
  850. rdev->data_offset = 0;
  851. rdev->new_data_offset = 0;
  852. rdev->sb_size = MD_SB_BYTES;
  853. rdev->badblocks.shift = -1;
  854. if (sb->level == LEVEL_MULTIPATH)
  855. rdev->desc_nr = -1;
  856. else
  857. rdev->desc_nr = sb->this_disk.number;
  858. if (!refdev) {
  859. ret = 1;
  860. } else {
  861. __u64 ev1, ev2;
  862. mdp_super_t *refsb = page_address(refdev->sb_page);
  863. if (!uuid_equal(refsb, sb)) {
  864. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  865. b, bdevname(refdev->bdev,b2));
  866. goto abort;
  867. }
  868. if (!sb_equal(refsb, sb)) {
  869. printk(KERN_WARNING "md: %s has same UUID"
  870. " but different superblock to %s\n",
  871. b, bdevname(refdev->bdev, b2));
  872. goto abort;
  873. }
  874. ev1 = md_event(sb);
  875. ev2 = md_event(refsb);
  876. if (ev1 > ev2)
  877. ret = 1;
  878. else
  879. ret = 0;
  880. }
  881. rdev->sectors = rdev->sb_start;
  882. /* Limit to 4TB as metadata cannot record more than that.
  883. * (not needed for Linear and RAID0 as metadata doesn't
  884. * record this size)
  885. */
  886. if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
  887. sb->level >= 1)
  888. rdev->sectors = (sector_t)(2ULL << 32) - 2;
  889. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  890. /* "this cannot possibly happen" ... */
  891. ret = -EINVAL;
  892. abort:
  893. return ret;
  894. }
  895. /*
  896. * validate_super for 0.90.0
  897. */
  898. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  899. {
  900. mdp_disk_t *desc;
  901. mdp_super_t *sb = page_address(rdev->sb_page);
  902. __u64 ev1 = md_event(sb);
  903. rdev->raid_disk = -1;
  904. clear_bit(Faulty, &rdev->flags);
  905. clear_bit(In_sync, &rdev->flags);
  906. clear_bit(Bitmap_sync, &rdev->flags);
  907. clear_bit(WriteMostly, &rdev->flags);
  908. if (mddev->raid_disks == 0) {
  909. mddev->major_version = 0;
  910. mddev->minor_version = sb->minor_version;
  911. mddev->patch_version = sb->patch_version;
  912. mddev->external = 0;
  913. mddev->chunk_sectors = sb->chunk_size >> 9;
  914. mddev->ctime = sb->ctime;
  915. mddev->utime = sb->utime;
  916. mddev->level = sb->level;
  917. mddev->clevel[0] = 0;
  918. mddev->layout = sb->layout;
  919. mddev->raid_disks = sb->raid_disks;
  920. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  921. mddev->events = ev1;
  922. mddev->bitmap_info.offset = 0;
  923. mddev->bitmap_info.space = 0;
  924. /* bitmap can use 60 K after the 4K superblocks */
  925. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  926. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  927. mddev->reshape_backwards = 0;
  928. if (mddev->minor_version >= 91) {
  929. mddev->reshape_position = sb->reshape_position;
  930. mddev->delta_disks = sb->delta_disks;
  931. mddev->new_level = sb->new_level;
  932. mddev->new_layout = sb->new_layout;
  933. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  934. if (mddev->delta_disks < 0)
  935. mddev->reshape_backwards = 1;
  936. } else {
  937. mddev->reshape_position = MaxSector;
  938. mddev->delta_disks = 0;
  939. mddev->new_level = mddev->level;
  940. mddev->new_layout = mddev->layout;
  941. mddev->new_chunk_sectors = mddev->chunk_sectors;
  942. }
  943. if (sb->state & (1<<MD_SB_CLEAN))
  944. mddev->recovery_cp = MaxSector;
  945. else {
  946. if (sb->events_hi == sb->cp_events_hi &&
  947. sb->events_lo == sb->cp_events_lo) {
  948. mddev->recovery_cp = sb->recovery_cp;
  949. } else
  950. mddev->recovery_cp = 0;
  951. }
  952. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  953. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  954. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  955. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  956. mddev->max_disks = MD_SB_DISKS;
  957. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  958. mddev->bitmap_info.file == NULL) {
  959. mddev->bitmap_info.offset =
  960. mddev->bitmap_info.default_offset;
  961. mddev->bitmap_info.space =
  962. mddev->bitmap_info.default_space;
  963. }
  964. } else if (mddev->pers == NULL) {
  965. /* Insist on good event counter while assembling, except
  966. * for spares (which don't need an event count) */
  967. ++ev1;
  968. if (sb->disks[rdev->desc_nr].state & (
  969. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  970. if (ev1 < mddev->events)
  971. return -EINVAL;
  972. } else if (mddev->bitmap) {
  973. /* if adding to array with a bitmap, then we can accept an
  974. * older device ... but not too old.
  975. */
  976. if (ev1 < mddev->bitmap->events_cleared)
  977. return 0;
  978. if (ev1 < mddev->events)
  979. set_bit(Bitmap_sync, &rdev->flags);
  980. } else {
  981. if (ev1 < mddev->events)
  982. /* just a hot-add of a new device, leave raid_disk at -1 */
  983. return 0;
  984. }
  985. if (mddev->level != LEVEL_MULTIPATH) {
  986. desc = sb->disks + rdev->desc_nr;
  987. if (desc->state & (1<<MD_DISK_FAULTY))
  988. set_bit(Faulty, &rdev->flags);
  989. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  990. desc->raid_disk < mddev->raid_disks */) {
  991. set_bit(In_sync, &rdev->flags);
  992. rdev->raid_disk = desc->raid_disk;
  993. rdev->saved_raid_disk = desc->raid_disk;
  994. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  995. /* active but not in sync implies recovery up to
  996. * reshape position. We don't know exactly where
  997. * that is, so set to zero for now */
  998. if (mddev->minor_version >= 91) {
  999. rdev->recovery_offset = 0;
  1000. rdev->raid_disk = desc->raid_disk;
  1001. }
  1002. }
  1003. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1004. set_bit(WriteMostly, &rdev->flags);
  1005. } else /* MULTIPATH are always insync */
  1006. set_bit(In_sync, &rdev->flags);
  1007. return 0;
  1008. }
  1009. /*
  1010. * sync_super for 0.90.0
  1011. */
  1012. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1013. {
  1014. mdp_super_t *sb;
  1015. struct md_rdev *rdev2;
  1016. int next_spare = mddev->raid_disks;
  1017. /* make rdev->sb match mddev data..
  1018. *
  1019. * 1/ zero out disks
  1020. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1021. * 3/ any empty disks < next_spare become removed
  1022. *
  1023. * disks[0] gets initialised to REMOVED because
  1024. * we cannot be sure from other fields if it has
  1025. * been initialised or not.
  1026. */
  1027. int i;
  1028. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1029. rdev->sb_size = MD_SB_BYTES;
  1030. sb = page_address(rdev->sb_page);
  1031. memset(sb, 0, sizeof(*sb));
  1032. sb->md_magic = MD_SB_MAGIC;
  1033. sb->major_version = mddev->major_version;
  1034. sb->patch_version = mddev->patch_version;
  1035. sb->gvalid_words = 0; /* ignored */
  1036. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1037. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1038. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1039. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1040. sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
  1041. sb->level = mddev->level;
  1042. sb->size = mddev->dev_sectors / 2;
  1043. sb->raid_disks = mddev->raid_disks;
  1044. sb->md_minor = mddev->md_minor;
  1045. sb->not_persistent = 0;
  1046. sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
  1047. sb->state = 0;
  1048. sb->events_hi = (mddev->events>>32);
  1049. sb->events_lo = (u32)mddev->events;
  1050. if (mddev->reshape_position == MaxSector)
  1051. sb->minor_version = 90;
  1052. else {
  1053. sb->minor_version = 91;
  1054. sb->reshape_position = mddev->reshape_position;
  1055. sb->new_level = mddev->new_level;
  1056. sb->delta_disks = mddev->delta_disks;
  1057. sb->new_layout = mddev->new_layout;
  1058. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1059. }
  1060. mddev->minor_version = sb->minor_version;
  1061. if (mddev->in_sync)
  1062. {
  1063. sb->recovery_cp = mddev->recovery_cp;
  1064. sb->cp_events_hi = (mddev->events>>32);
  1065. sb->cp_events_lo = (u32)mddev->events;
  1066. if (mddev->recovery_cp == MaxSector)
  1067. sb->state = (1<< MD_SB_CLEAN);
  1068. } else
  1069. sb->recovery_cp = 0;
  1070. sb->layout = mddev->layout;
  1071. sb->chunk_size = mddev->chunk_sectors << 9;
  1072. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1073. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1074. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1075. rdev_for_each(rdev2, mddev) {
  1076. mdp_disk_t *d;
  1077. int desc_nr;
  1078. int is_active = test_bit(In_sync, &rdev2->flags);
  1079. if (rdev2->raid_disk >= 0 &&
  1080. sb->minor_version >= 91)
  1081. /* we have nowhere to store the recovery_offset,
  1082. * but if it is not below the reshape_position,
  1083. * we can piggy-back on that.
  1084. */
  1085. is_active = 1;
  1086. if (rdev2->raid_disk < 0 ||
  1087. test_bit(Faulty, &rdev2->flags))
  1088. is_active = 0;
  1089. if (is_active)
  1090. desc_nr = rdev2->raid_disk;
  1091. else
  1092. desc_nr = next_spare++;
  1093. rdev2->desc_nr = desc_nr;
  1094. d = &sb->disks[rdev2->desc_nr];
  1095. nr_disks++;
  1096. d->number = rdev2->desc_nr;
  1097. d->major = MAJOR(rdev2->bdev->bd_dev);
  1098. d->minor = MINOR(rdev2->bdev->bd_dev);
  1099. if (is_active)
  1100. d->raid_disk = rdev2->raid_disk;
  1101. else
  1102. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1103. if (test_bit(Faulty, &rdev2->flags))
  1104. d->state = (1<<MD_DISK_FAULTY);
  1105. else if (is_active) {
  1106. d->state = (1<<MD_DISK_ACTIVE);
  1107. if (test_bit(In_sync, &rdev2->flags))
  1108. d->state |= (1<<MD_DISK_SYNC);
  1109. active++;
  1110. working++;
  1111. } else {
  1112. d->state = 0;
  1113. spare++;
  1114. working++;
  1115. }
  1116. if (test_bit(WriteMostly, &rdev2->flags))
  1117. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1118. }
  1119. /* now set the "removed" and "faulty" bits on any missing devices */
  1120. for (i=0 ; i < mddev->raid_disks ; i++) {
  1121. mdp_disk_t *d = &sb->disks[i];
  1122. if (d->state == 0 && d->number == 0) {
  1123. d->number = i;
  1124. d->raid_disk = i;
  1125. d->state = (1<<MD_DISK_REMOVED);
  1126. d->state |= (1<<MD_DISK_FAULTY);
  1127. failed++;
  1128. }
  1129. }
  1130. sb->nr_disks = nr_disks;
  1131. sb->active_disks = active;
  1132. sb->working_disks = working;
  1133. sb->failed_disks = failed;
  1134. sb->spare_disks = spare;
  1135. sb->this_disk = sb->disks[rdev->desc_nr];
  1136. sb->sb_csum = calc_sb_csum(sb);
  1137. }
  1138. /*
  1139. * rdev_size_change for 0.90.0
  1140. */
  1141. static unsigned long long
  1142. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1143. {
  1144. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1145. return 0; /* component must fit device */
  1146. if (rdev->mddev->bitmap_info.offset)
  1147. return 0; /* can't move bitmap */
  1148. rdev->sb_start = calc_dev_sboffset(rdev);
  1149. if (!num_sectors || num_sectors > rdev->sb_start)
  1150. num_sectors = rdev->sb_start;
  1151. /* Limit to 4TB as metadata cannot record more than that.
  1152. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1153. */
  1154. if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
  1155. rdev->mddev->level >= 1)
  1156. num_sectors = (sector_t)(2ULL << 32) - 2;
  1157. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1158. rdev->sb_page);
  1159. md_super_wait(rdev->mddev);
  1160. return num_sectors;
  1161. }
  1162. static int
  1163. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1164. {
  1165. /* non-zero offset changes not possible with v0.90 */
  1166. return new_offset == 0;
  1167. }
  1168. /*
  1169. * version 1 superblock
  1170. */
  1171. static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
  1172. {
  1173. __le32 disk_csum;
  1174. u32 csum;
  1175. unsigned long long newcsum;
  1176. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1177. __le32 *isuper = (__le32*)sb;
  1178. disk_csum = sb->sb_csum;
  1179. sb->sb_csum = 0;
  1180. newcsum = 0;
  1181. for (; size >= 4; size -= 4)
  1182. newcsum += le32_to_cpu(*isuper++);
  1183. if (size == 2)
  1184. newcsum += le16_to_cpu(*(__le16*) isuper);
  1185. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1186. sb->sb_csum = disk_csum;
  1187. return cpu_to_le32(csum);
  1188. }
  1189. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1190. {
  1191. struct mdp_superblock_1 *sb;
  1192. int ret;
  1193. sector_t sb_start;
  1194. sector_t sectors;
  1195. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1196. int bmask;
  1197. /*
  1198. * Calculate the position of the superblock in 512byte sectors.
  1199. * It is always aligned to a 4K boundary and
  1200. * depeding on minor_version, it can be:
  1201. * 0: At least 8K, but less than 12K, from end of device
  1202. * 1: At start of device
  1203. * 2: 4K from start of device.
  1204. */
  1205. switch(minor_version) {
  1206. case 0:
  1207. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1208. sb_start -= 8*2;
  1209. sb_start &= ~(sector_t)(4*2-1);
  1210. break;
  1211. case 1:
  1212. sb_start = 0;
  1213. break;
  1214. case 2:
  1215. sb_start = 8;
  1216. break;
  1217. default:
  1218. return -EINVAL;
  1219. }
  1220. rdev->sb_start = sb_start;
  1221. /* superblock is rarely larger than 1K, but it can be larger,
  1222. * and it is safe to read 4k, so we do that
  1223. */
  1224. ret = read_disk_sb(rdev, 4096);
  1225. if (ret) return ret;
  1226. sb = page_address(rdev->sb_page);
  1227. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1228. sb->major_version != cpu_to_le32(1) ||
  1229. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1230. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1231. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1232. return -EINVAL;
  1233. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1234. printk("md: invalid superblock checksum on %s\n",
  1235. bdevname(rdev->bdev,b));
  1236. return -EINVAL;
  1237. }
  1238. if (le64_to_cpu(sb->data_size) < 10) {
  1239. printk("md: data_size too small on %s\n",
  1240. bdevname(rdev->bdev,b));
  1241. return -EINVAL;
  1242. }
  1243. if (sb->pad0 ||
  1244. sb->pad3[0] ||
  1245. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1246. /* Some padding is non-zero, might be a new feature */
  1247. return -EINVAL;
  1248. rdev->preferred_minor = 0xffff;
  1249. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1250. rdev->new_data_offset = rdev->data_offset;
  1251. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1252. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1253. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1254. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1255. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1256. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1257. if (rdev->sb_size & bmask)
  1258. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1259. if (minor_version
  1260. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1261. return -EINVAL;
  1262. if (minor_version
  1263. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1264. return -EINVAL;
  1265. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1266. rdev->desc_nr = -1;
  1267. else
  1268. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1269. if (!rdev->bb_page) {
  1270. rdev->bb_page = alloc_page(GFP_KERNEL);
  1271. if (!rdev->bb_page)
  1272. return -ENOMEM;
  1273. }
  1274. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1275. rdev->badblocks.count == 0) {
  1276. /* need to load the bad block list.
  1277. * Currently we limit it to one page.
  1278. */
  1279. s32 offset;
  1280. sector_t bb_sector;
  1281. u64 *bbp;
  1282. int i;
  1283. int sectors = le16_to_cpu(sb->bblog_size);
  1284. if (sectors > (PAGE_SIZE / 512))
  1285. return -EINVAL;
  1286. offset = le32_to_cpu(sb->bblog_offset);
  1287. if (offset == 0)
  1288. return -EINVAL;
  1289. bb_sector = (long long)offset;
  1290. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1291. rdev->bb_page, READ, true))
  1292. return -EIO;
  1293. bbp = (u64 *)page_address(rdev->bb_page);
  1294. rdev->badblocks.shift = sb->bblog_shift;
  1295. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1296. u64 bb = le64_to_cpu(*bbp);
  1297. int count = bb & (0x3ff);
  1298. u64 sector = bb >> 10;
  1299. sector <<= sb->bblog_shift;
  1300. count <<= sb->bblog_shift;
  1301. if (bb + 1 == 0)
  1302. break;
  1303. if (badblocks_set(&rdev->badblocks, sector, count, 1))
  1304. return -EINVAL;
  1305. }
  1306. } else if (sb->bblog_offset != 0)
  1307. rdev->badblocks.shift = 0;
  1308. if (!refdev) {
  1309. ret = 1;
  1310. } else {
  1311. __u64 ev1, ev2;
  1312. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1313. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1314. sb->level != refsb->level ||
  1315. sb->layout != refsb->layout ||
  1316. sb->chunksize != refsb->chunksize) {
  1317. printk(KERN_WARNING "md: %s has strangely different"
  1318. " superblock to %s\n",
  1319. bdevname(rdev->bdev,b),
  1320. bdevname(refdev->bdev,b2));
  1321. return -EINVAL;
  1322. }
  1323. ev1 = le64_to_cpu(sb->events);
  1324. ev2 = le64_to_cpu(refsb->events);
  1325. if (ev1 > ev2)
  1326. ret = 1;
  1327. else
  1328. ret = 0;
  1329. }
  1330. if (minor_version) {
  1331. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1332. sectors -= rdev->data_offset;
  1333. } else
  1334. sectors = rdev->sb_start;
  1335. if (sectors < le64_to_cpu(sb->data_size))
  1336. return -EINVAL;
  1337. rdev->sectors = le64_to_cpu(sb->data_size);
  1338. return ret;
  1339. }
  1340. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1341. {
  1342. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1343. __u64 ev1 = le64_to_cpu(sb->events);
  1344. rdev->raid_disk = -1;
  1345. clear_bit(Faulty, &rdev->flags);
  1346. clear_bit(In_sync, &rdev->flags);
  1347. clear_bit(Bitmap_sync, &rdev->flags);
  1348. clear_bit(WriteMostly, &rdev->flags);
  1349. if (mddev->raid_disks == 0) {
  1350. mddev->major_version = 1;
  1351. mddev->patch_version = 0;
  1352. mddev->external = 0;
  1353. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1354. mddev->ctime = le64_to_cpu(sb->ctime);
  1355. mddev->utime = le64_to_cpu(sb->utime);
  1356. mddev->level = le32_to_cpu(sb->level);
  1357. mddev->clevel[0] = 0;
  1358. mddev->layout = le32_to_cpu(sb->layout);
  1359. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1360. mddev->dev_sectors = le64_to_cpu(sb->size);
  1361. mddev->events = ev1;
  1362. mddev->bitmap_info.offset = 0;
  1363. mddev->bitmap_info.space = 0;
  1364. /* Default location for bitmap is 1K after superblock
  1365. * using 3K - total of 4K
  1366. */
  1367. mddev->bitmap_info.default_offset = 1024 >> 9;
  1368. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1369. mddev->reshape_backwards = 0;
  1370. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1371. memcpy(mddev->uuid, sb->set_uuid, 16);
  1372. mddev->max_disks = (4096-256)/2;
  1373. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1374. mddev->bitmap_info.file == NULL) {
  1375. mddev->bitmap_info.offset =
  1376. (__s32)le32_to_cpu(sb->bitmap_offset);
  1377. /* Metadata doesn't record how much space is available.
  1378. * For 1.0, we assume we can use up to the superblock
  1379. * if before, else to 4K beyond superblock.
  1380. * For others, assume no change is possible.
  1381. */
  1382. if (mddev->minor_version > 0)
  1383. mddev->bitmap_info.space = 0;
  1384. else if (mddev->bitmap_info.offset > 0)
  1385. mddev->bitmap_info.space =
  1386. 8 - mddev->bitmap_info.offset;
  1387. else
  1388. mddev->bitmap_info.space =
  1389. -mddev->bitmap_info.offset;
  1390. }
  1391. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1392. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1393. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1394. mddev->new_level = le32_to_cpu(sb->new_level);
  1395. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1396. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1397. if (mddev->delta_disks < 0 ||
  1398. (mddev->delta_disks == 0 &&
  1399. (le32_to_cpu(sb->feature_map)
  1400. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1401. mddev->reshape_backwards = 1;
  1402. } else {
  1403. mddev->reshape_position = MaxSector;
  1404. mddev->delta_disks = 0;
  1405. mddev->new_level = mddev->level;
  1406. mddev->new_layout = mddev->layout;
  1407. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1408. }
  1409. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
  1410. set_bit(MD_HAS_JOURNAL, &mddev->flags);
  1411. if (mddev->recovery_cp == MaxSector)
  1412. set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
  1413. }
  1414. } else if (mddev->pers == NULL) {
  1415. /* Insist of good event counter while assembling, except for
  1416. * spares (which don't need an event count) */
  1417. ++ev1;
  1418. if (rdev->desc_nr >= 0 &&
  1419. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1420. (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
  1421. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
  1422. if (ev1 < mddev->events)
  1423. return -EINVAL;
  1424. } else if (mddev->bitmap) {
  1425. /* If adding to array with a bitmap, then we can accept an
  1426. * older device, but not too old.
  1427. */
  1428. if (ev1 < mddev->bitmap->events_cleared)
  1429. return 0;
  1430. if (ev1 < mddev->events)
  1431. set_bit(Bitmap_sync, &rdev->flags);
  1432. } else {
  1433. if (ev1 < mddev->events)
  1434. /* just a hot-add of a new device, leave raid_disk at -1 */
  1435. return 0;
  1436. }
  1437. if (mddev->level != LEVEL_MULTIPATH) {
  1438. int role;
  1439. if (rdev->desc_nr < 0 ||
  1440. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1441. role = MD_DISK_ROLE_SPARE;
  1442. rdev->desc_nr = -1;
  1443. } else
  1444. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1445. switch(role) {
  1446. case MD_DISK_ROLE_SPARE: /* spare */
  1447. break;
  1448. case MD_DISK_ROLE_FAULTY: /* faulty */
  1449. set_bit(Faulty, &rdev->flags);
  1450. break;
  1451. case MD_DISK_ROLE_JOURNAL: /* journal device */
  1452. if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
  1453. /* journal device without journal feature */
  1454. printk(KERN_WARNING
  1455. "md: journal device provided without journal feature, ignoring the device\n");
  1456. return -EINVAL;
  1457. }
  1458. set_bit(Journal, &rdev->flags);
  1459. rdev->journal_tail = le64_to_cpu(sb->journal_tail);
  1460. rdev->raid_disk = 0;
  1461. break;
  1462. default:
  1463. rdev->saved_raid_disk = role;
  1464. if ((le32_to_cpu(sb->feature_map) &
  1465. MD_FEATURE_RECOVERY_OFFSET)) {
  1466. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1467. if (!(le32_to_cpu(sb->feature_map) &
  1468. MD_FEATURE_RECOVERY_BITMAP))
  1469. rdev->saved_raid_disk = -1;
  1470. } else
  1471. set_bit(In_sync, &rdev->flags);
  1472. rdev->raid_disk = role;
  1473. break;
  1474. }
  1475. if (sb->devflags & WriteMostly1)
  1476. set_bit(WriteMostly, &rdev->flags);
  1477. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1478. set_bit(Replacement, &rdev->flags);
  1479. } else /* MULTIPATH are always insync */
  1480. set_bit(In_sync, &rdev->flags);
  1481. return 0;
  1482. }
  1483. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1484. {
  1485. struct mdp_superblock_1 *sb;
  1486. struct md_rdev *rdev2;
  1487. int max_dev, i;
  1488. /* make rdev->sb match mddev and rdev data. */
  1489. sb = page_address(rdev->sb_page);
  1490. sb->feature_map = 0;
  1491. sb->pad0 = 0;
  1492. sb->recovery_offset = cpu_to_le64(0);
  1493. memset(sb->pad3, 0, sizeof(sb->pad3));
  1494. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1495. sb->events = cpu_to_le64(mddev->events);
  1496. if (mddev->in_sync)
  1497. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1498. else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
  1499. sb->resync_offset = cpu_to_le64(MaxSector);
  1500. else
  1501. sb->resync_offset = cpu_to_le64(0);
  1502. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1503. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1504. sb->size = cpu_to_le64(mddev->dev_sectors);
  1505. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1506. sb->level = cpu_to_le32(mddev->level);
  1507. sb->layout = cpu_to_le32(mddev->layout);
  1508. if (test_bit(WriteMostly, &rdev->flags))
  1509. sb->devflags |= WriteMostly1;
  1510. else
  1511. sb->devflags &= ~WriteMostly1;
  1512. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1513. sb->data_size = cpu_to_le64(rdev->sectors);
  1514. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1515. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1516. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1517. }
  1518. if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
  1519. !test_bit(In_sync, &rdev->flags)) {
  1520. sb->feature_map |=
  1521. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1522. sb->recovery_offset =
  1523. cpu_to_le64(rdev->recovery_offset);
  1524. if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
  1525. sb->feature_map |=
  1526. cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
  1527. }
  1528. /* Note: recovery_offset and journal_tail share space */
  1529. if (test_bit(Journal, &rdev->flags))
  1530. sb->journal_tail = cpu_to_le64(rdev->journal_tail);
  1531. if (test_bit(Replacement, &rdev->flags))
  1532. sb->feature_map |=
  1533. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1534. if (mddev->reshape_position != MaxSector) {
  1535. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1536. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1537. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1538. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1539. sb->new_level = cpu_to_le32(mddev->new_level);
  1540. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1541. if (mddev->delta_disks == 0 &&
  1542. mddev->reshape_backwards)
  1543. sb->feature_map
  1544. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1545. if (rdev->new_data_offset != rdev->data_offset) {
  1546. sb->feature_map
  1547. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1548. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1549. - rdev->data_offset));
  1550. }
  1551. }
  1552. if (mddev_is_clustered(mddev))
  1553. sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
  1554. if (rdev->badblocks.count == 0)
  1555. /* Nothing to do for bad blocks*/ ;
  1556. else if (sb->bblog_offset == 0)
  1557. /* Cannot record bad blocks on this device */
  1558. md_error(mddev, rdev);
  1559. else {
  1560. struct badblocks *bb = &rdev->badblocks;
  1561. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1562. u64 *p = bb->page;
  1563. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1564. if (bb->changed) {
  1565. unsigned seq;
  1566. retry:
  1567. seq = read_seqbegin(&bb->lock);
  1568. memset(bbp, 0xff, PAGE_SIZE);
  1569. for (i = 0 ; i < bb->count ; i++) {
  1570. u64 internal_bb = p[i];
  1571. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1572. | BB_LEN(internal_bb));
  1573. bbp[i] = cpu_to_le64(store_bb);
  1574. }
  1575. bb->changed = 0;
  1576. if (read_seqretry(&bb->lock, seq))
  1577. goto retry;
  1578. bb->sector = (rdev->sb_start +
  1579. (int)le32_to_cpu(sb->bblog_offset));
  1580. bb->size = le16_to_cpu(sb->bblog_size);
  1581. }
  1582. }
  1583. max_dev = 0;
  1584. rdev_for_each(rdev2, mddev)
  1585. if (rdev2->desc_nr+1 > max_dev)
  1586. max_dev = rdev2->desc_nr+1;
  1587. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1588. int bmask;
  1589. sb->max_dev = cpu_to_le32(max_dev);
  1590. rdev->sb_size = max_dev * 2 + 256;
  1591. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1592. if (rdev->sb_size & bmask)
  1593. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1594. } else
  1595. max_dev = le32_to_cpu(sb->max_dev);
  1596. for (i=0; i<max_dev;i++)
  1597. sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
  1598. if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
  1599. sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
  1600. rdev_for_each(rdev2, mddev) {
  1601. i = rdev2->desc_nr;
  1602. if (test_bit(Faulty, &rdev2->flags))
  1603. sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
  1604. else if (test_bit(In_sync, &rdev2->flags))
  1605. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1606. else if (test_bit(Journal, &rdev2->flags))
  1607. sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
  1608. else if (rdev2->raid_disk >= 0)
  1609. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1610. else
  1611. sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
  1612. }
  1613. sb->sb_csum = calc_sb_1_csum(sb);
  1614. }
  1615. static unsigned long long
  1616. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1617. {
  1618. struct mdp_superblock_1 *sb;
  1619. sector_t max_sectors;
  1620. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1621. return 0; /* component must fit device */
  1622. if (rdev->data_offset != rdev->new_data_offset)
  1623. return 0; /* too confusing */
  1624. if (rdev->sb_start < rdev->data_offset) {
  1625. /* minor versions 1 and 2; superblock before data */
  1626. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1627. max_sectors -= rdev->data_offset;
  1628. if (!num_sectors || num_sectors > max_sectors)
  1629. num_sectors = max_sectors;
  1630. } else if (rdev->mddev->bitmap_info.offset) {
  1631. /* minor version 0 with bitmap we can't move */
  1632. return 0;
  1633. } else {
  1634. /* minor version 0; superblock after data */
  1635. sector_t sb_start;
  1636. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1637. sb_start &= ~(sector_t)(4*2 - 1);
  1638. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1639. if (!num_sectors || num_sectors > max_sectors)
  1640. num_sectors = max_sectors;
  1641. rdev->sb_start = sb_start;
  1642. }
  1643. sb = page_address(rdev->sb_page);
  1644. sb->data_size = cpu_to_le64(num_sectors);
  1645. sb->super_offset = rdev->sb_start;
  1646. sb->sb_csum = calc_sb_1_csum(sb);
  1647. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1648. rdev->sb_page);
  1649. md_super_wait(rdev->mddev);
  1650. return num_sectors;
  1651. }
  1652. static int
  1653. super_1_allow_new_offset(struct md_rdev *rdev,
  1654. unsigned long long new_offset)
  1655. {
  1656. /* All necessary checks on new >= old have been done */
  1657. struct bitmap *bitmap;
  1658. if (new_offset >= rdev->data_offset)
  1659. return 1;
  1660. /* with 1.0 metadata, there is no metadata to tread on
  1661. * so we can always move back */
  1662. if (rdev->mddev->minor_version == 0)
  1663. return 1;
  1664. /* otherwise we must be sure not to step on
  1665. * any metadata, so stay:
  1666. * 36K beyond start of superblock
  1667. * beyond end of badblocks
  1668. * beyond write-intent bitmap
  1669. */
  1670. if (rdev->sb_start + (32+4)*2 > new_offset)
  1671. return 0;
  1672. bitmap = rdev->mddev->bitmap;
  1673. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1674. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1675. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1676. return 0;
  1677. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1678. return 0;
  1679. return 1;
  1680. }
  1681. static struct super_type super_types[] = {
  1682. [0] = {
  1683. .name = "0.90.0",
  1684. .owner = THIS_MODULE,
  1685. .load_super = super_90_load,
  1686. .validate_super = super_90_validate,
  1687. .sync_super = super_90_sync,
  1688. .rdev_size_change = super_90_rdev_size_change,
  1689. .allow_new_offset = super_90_allow_new_offset,
  1690. },
  1691. [1] = {
  1692. .name = "md-1",
  1693. .owner = THIS_MODULE,
  1694. .load_super = super_1_load,
  1695. .validate_super = super_1_validate,
  1696. .sync_super = super_1_sync,
  1697. .rdev_size_change = super_1_rdev_size_change,
  1698. .allow_new_offset = super_1_allow_new_offset,
  1699. },
  1700. };
  1701. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1702. {
  1703. if (mddev->sync_super) {
  1704. mddev->sync_super(mddev, rdev);
  1705. return;
  1706. }
  1707. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1708. super_types[mddev->major_version].sync_super(mddev, rdev);
  1709. }
  1710. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1711. {
  1712. struct md_rdev *rdev, *rdev2;
  1713. rcu_read_lock();
  1714. rdev_for_each_rcu(rdev, mddev1) {
  1715. if (test_bit(Faulty, &rdev->flags) ||
  1716. test_bit(Journal, &rdev->flags) ||
  1717. rdev->raid_disk == -1)
  1718. continue;
  1719. rdev_for_each_rcu(rdev2, mddev2) {
  1720. if (test_bit(Faulty, &rdev2->flags) ||
  1721. test_bit(Journal, &rdev2->flags) ||
  1722. rdev2->raid_disk == -1)
  1723. continue;
  1724. if (rdev->bdev->bd_contains ==
  1725. rdev2->bdev->bd_contains) {
  1726. rcu_read_unlock();
  1727. return 1;
  1728. }
  1729. }
  1730. }
  1731. rcu_read_unlock();
  1732. return 0;
  1733. }
  1734. static LIST_HEAD(pending_raid_disks);
  1735. /*
  1736. * Try to register data integrity profile for an mddev
  1737. *
  1738. * This is called when an array is started and after a disk has been kicked
  1739. * from the array. It only succeeds if all working and active component devices
  1740. * are integrity capable with matching profiles.
  1741. */
  1742. int md_integrity_register(struct mddev *mddev)
  1743. {
  1744. struct md_rdev *rdev, *reference = NULL;
  1745. if (list_empty(&mddev->disks))
  1746. return 0; /* nothing to do */
  1747. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1748. return 0; /* shouldn't register, or already is */
  1749. rdev_for_each(rdev, mddev) {
  1750. /* skip spares and non-functional disks */
  1751. if (test_bit(Faulty, &rdev->flags))
  1752. continue;
  1753. if (rdev->raid_disk < 0)
  1754. continue;
  1755. if (!reference) {
  1756. /* Use the first rdev as the reference */
  1757. reference = rdev;
  1758. continue;
  1759. }
  1760. /* does this rdev's profile match the reference profile? */
  1761. if (blk_integrity_compare(reference->bdev->bd_disk,
  1762. rdev->bdev->bd_disk) < 0)
  1763. return -EINVAL;
  1764. }
  1765. if (!reference || !bdev_get_integrity(reference->bdev))
  1766. return 0;
  1767. /*
  1768. * All component devices are integrity capable and have matching
  1769. * profiles, register the common profile for the md device.
  1770. */
  1771. blk_integrity_register(mddev->gendisk,
  1772. bdev_get_integrity(reference->bdev));
  1773. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1774. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1775. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1776. mdname(mddev));
  1777. return -EINVAL;
  1778. }
  1779. return 0;
  1780. }
  1781. EXPORT_SYMBOL(md_integrity_register);
  1782. /*
  1783. * Attempt to add an rdev, but only if it is consistent with the current
  1784. * integrity profile
  1785. */
  1786. int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1787. {
  1788. struct blk_integrity *bi_rdev;
  1789. struct blk_integrity *bi_mddev;
  1790. char name[BDEVNAME_SIZE];
  1791. if (!mddev->gendisk)
  1792. return 0;
  1793. bi_rdev = bdev_get_integrity(rdev->bdev);
  1794. bi_mddev = blk_get_integrity(mddev->gendisk);
  1795. if (!bi_mddev) /* nothing to do */
  1796. return 0;
  1797. if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
  1798. printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
  1799. mdname(mddev), bdevname(rdev->bdev, name));
  1800. return -ENXIO;
  1801. }
  1802. return 0;
  1803. }
  1804. EXPORT_SYMBOL(md_integrity_add_rdev);
  1805. static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
  1806. {
  1807. char b[BDEVNAME_SIZE];
  1808. struct kobject *ko;
  1809. int err;
  1810. /* prevent duplicates */
  1811. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1812. return -EEXIST;
  1813. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1814. if (!test_bit(Journal, &rdev->flags) &&
  1815. rdev->sectors &&
  1816. (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
  1817. if (mddev->pers) {
  1818. /* Cannot change size, so fail
  1819. * If mddev->level <= 0, then we don't care
  1820. * about aligning sizes (e.g. linear)
  1821. */
  1822. if (mddev->level > 0)
  1823. return -ENOSPC;
  1824. } else
  1825. mddev->dev_sectors = rdev->sectors;
  1826. }
  1827. /* Verify rdev->desc_nr is unique.
  1828. * If it is -1, assign a free number, else
  1829. * check number is not in use
  1830. */
  1831. rcu_read_lock();
  1832. if (rdev->desc_nr < 0) {
  1833. int choice = 0;
  1834. if (mddev->pers)
  1835. choice = mddev->raid_disks;
  1836. while (md_find_rdev_nr_rcu(mddev, choice))
  1837. choice++;
  1838. rdev->desc_nr = choice;
  1839. } else {
  1840. if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
  1841. rcu_read_unlock();
  1842. return -EBUSY;
  1843. }
  1844. }
  1845. rcu_read_unlock();
  1846. if (!test_bit(Journal, &rdev->flags) &&
  1847. mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1848. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1849. mdname(mddev), mddev->max_disks);
  1850. return -EBUSY;
  1851. }
  1852. bdevname(rdev->bdev,b);
  1853. strreplace(b, '/', '!');
  1854. rdev->mddev = mddev;
  1855. printk(KERN_INFO "md: bind<%s>\n", b);
  1856. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1857. goto fail;
  1858. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1859. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1860. /* failure here is OK */;
  1861. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1862. list_add_rcu(&rdev->same_set, &mddev->disks);
  1863. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1864. /* May as well allow recovery to be retried once */
  1865. mddev->recovery_disabled++;
  1866. return 0;
  1867. fail:
  1868. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1869. b, mdname(mddev));
  1870. return err;
  1871. }
  1872. static void md_delayed_delete(struct work_struct *ws)
  1873. {
  1874. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1875. kobject_del(&rdev->kobj);
  1876. kobject_put(&rdev->kobj);
  1877. }
  1878. static void unbind_rdev_from_array(struct md_rdev *rdev)
  1879. {
  1880. char b[BDEVNAME_SIZE];
  1881. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1882. list_del_rcu(&rdev->same_set);
  1883. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1884. rdev->mddev = NULL;
  1885. sysfs_remove_link(&rdev->kobj, "block");
  1886. sysfs_put(rdev->sysfs_state);
  1887. rdev->sysfs_state = NULL;
  1888. rdev->badblocks.count = 0;
  1889. /* We need to delay this, otherwise we can deadlock when
  1890. * writing to 'remove' to "dev/state". We also need
  1891. * to delay it due to rcu usage.
  1892. */
  1893. synchronize_rcu();
  1894. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1895. kobject_get(&rdev->kobj);
  1896. queue_work(md_misc_wq, &rdev->del_work);
  1897. }
  1898. /*
  1899. * prevent the device from being mounted, repartitioned or
  1900. * otherwise reused by a RAID array (or any other kernel
  1901. * subsystem), by bd_claiming the device.
  1902. */
  1903. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1904. {
  1905. int err = 0;
  1906. struct block_device *bdev;
  1907. char b[BDEVNAME_SIZE];
  1908. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1909. shared ? (struct md_rdev *)lock_rdev : rdev);
  1910. if (IS_ERR(bdev)) {
  1911. printk(KERN_ERR "md: could not open %s.\n",
  1912. __bdevname(dev, b));
  1913. return PTR_ERR(bdev);
  1914. }
  1915. rdev->bdev = bdev;
  1916. return err;
  1917. }
  1918. static void unlock_rdev(struct md_rdev *rdev)
  1919. {
  1920. struct block_device *bdev = rdev->bdev;
  1921. rdev->bdev = NULL;
  1922. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1923. }
  1924. void md_autodetect_dev(dev_t dev);
  1925. static void export_rdev(struct md_rdev *rdev)
  1926. {
  1927. char b[BDEVNAME_SIZE];
  1928. printk(KERN_INFO "md: export_rdev(%s)\n",
  1929. bdevname(rdev->bdev,b));
  1930. md_rdev_clear(rdev);
  1931. #ifndef MODULE
  1932. if (test_bit(AutoDetected, &rdev->flags))
  1933. md_autodetect_dev(rdev->bdev->bd_dev);
  1934. #endif
  1935. unlock_rdev(rdev);
  1936. kobject_put(&rdev->kobj);
  1937. }
  1938. void md_kick_rdev_from_array(struct md_rdev *rdev)
  1939. {
  1940. unbind_rdev_from_array(rdev);
  1941. export_rdev(rdev);
  1942. }
  1943. EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
  1944. static void export_array(struct mddev *mddev)
  1945. {
  1946. struct md_rdev *rdev;
  1947. while (!list_empty(&mddev->disks)) {
  1948. rdev = list_first_entry(&mddev->disks, struct md_rdev,
  1949. same_set);
  1950. md_kick_rdev_from_array(rdev);
  1951. }
  1952. mddev->raid_disks = 0;
  1953. mddev->major_version = 0;
  1954. }
  1955. static void sync_sbs(struct mddev *mddev, int nospares)
  1956. {
  1957. /* Update each superblock (in-memory image), but
  1958. * if we are allowed to, skip spares which already
  1959. * have the right event counter, or have one earlier
  1960. * (which would mean they aren't being marked as dirty
  1961. * with the rest of the array)
  1962. */
  1963. struct md_rdev *rdev;
  1964. rdev_for_each(rdev, mddev) {
  1965. if (rdev->sb_events == mddev->events ||
  1966. (nospares &&
  1967. rdev->raid_disk < 0 &&
  1968. rdev->sb_events+1 == mddev->events)) {
  1969. /* Don't update this superblock */
  1970. rdev->sb_loaded = 2;
  1971. } else {
  1972. sync_super(mddev, rdev);
  1973. rdev->sb_loaded = 1;
  1974. }
  1975. }
  1976. }
  1977. static bool does_sb_need_changing(struct mddev *mddev)
  1978. {
  1979. struct md_rdev *rdev;
  1980. struct mdp_superblock_1 *sb;
  1981. int role;
  1982. /* Find a good rdev */
  1983. rdev_for_each(rdev, mddev)
  1984. if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
  1985. break;
  1986. /* No good device found. */
  1987. if (!rdev)
  1988. return false;
  1989. sb = page_address(rdev->sb_page);
  1990. /* Check if a device has become faulty or a spare become active */
  1991. rdev_for_each(rdev, mddev) {
  1992. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1993. /* Device activated? */
  1994. if (role == 0xffff && rdev->raid_disk >=0 &&
  1995. !test_bit(Faulty, &rdev->flags))
  1996. return true;
  1997. /* Device turned faulty? */
  1998. if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
  1999. return true;
  2000. }
  2001. /* Check if any mddev parameters have changed */
  2002. if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
  2003. (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
  2004. (mddev->layout != le64_to_cpu(sb->layout)) ||
  2005. (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
  2006. (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
  2007. return true;
  2008. return false;
  2009. }
  2010. void md_update_sb(struct mddev *mddev, int force_change)
  2011. {
  2012. struct md_rdev *rdev;
  2013. int sync_req;
  2014. int nospares = 0;
  2015. int any_badblocks_changed = 0;
  2016. int ret = -1;
  2017. if (mddev->ro) {
  2018. if (force_change)
  2019. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2020. return;
  2021. }
  2022. if (mddev_is_clustered(mddev)) {
  2023. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2024. force_change = 1;
  2025. ret = md_cluster_ops->metadata_update_start(mddev);
  2026. /* Has someone else has updated the sb */
  2027. if (!does_sb_need_changing(mddev)) {
  2028. if (ret == 0)
  2029. md_cluster_ops->metadata_update_cancel(mddev);
  2030. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2031. return;
  2032. }
  2033. }
  2034. repeat:
  2035. /* First make sure individual recovery_offsets are correct */
  2036. rdev_for_each(rdev, mddev) {
  2037. if (rdev->raid_disk >= 0 &&
  2038. mddev->delta_disks >= 0 &&
  2039. !test_bit(Journal, &rdev->flags) &&
  2040. !test_bit(In_sync, &rdev->flags) &&
  2041. mddev->curr_resync_completed > rdev->recovery_offset)
  2042. rdev->recovery_offset = mddev->curr_resync_completed;
  2043. }
  2044. if (!mddev->persistent) {
  2045. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2046. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2047. if (!mddev->external) {
  2048. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2049. rdev_for_each(rdev, mddev) {
  2050. if (rdev->badblocks.changed) {
  2051. rdev->badblocks.changed = 0;
  2052. ack_all_badblocks(&rdev->badblocks);
  2053. md_error(mddev, rdev);
  2054. }
  2055. clear_bit(Blocked, &rdev->flags);
  2056. clear_bit(BlockedBadBlocks, &rdev->flags);
  2057. wake_up(&rdev->blocked_wait);
  2058. }
  2059. }
  2060. wake_up(&mddev->sb_wait);
  2061. return;
  2062. }
  2063. spin_lock(&mddev->lock);
  2064. mddev->utime = ktime_get_real_seconds();
  2065. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2066. force_change = 1;
  2067. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2068. /* just a clean<-> dirty transition, possibly leave spares alone,
  2069. * though if events isn't the right even/odd, we will have to do
  2070. * spares after all
  2071. */
  2072. nospares = 1;
  2073. if (force_change)
  2074. nospares = 0;
  2075. if (mddev->degraded)
  2076. /* If the array is degraded, then skipping spares is both
  2077. * dangerous and fairly pointless.
  2078. * Dangerous because a device that was removed from the array
  2079. * might have a event_count that still looks up-to-date,
  2080. * so it can be re-added without a resync.
  2081. * Pointless because if there are any spares to skip,
  2082. * then a recovery will happen and soon that array won't
  2083. * be degraded any more and the spare can go back to sleep then.
  2084. */
  2085. nospares = 0;
  2086. sync_req = mddev->in_sync;
  2087. /* If this is just a dirty<->clean transition, and the array is clean
  2088. * and 'events' is odd, we can roll back to the previous clean state */
  2089. if (nospares
  2090. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2091. && mddev->can_decrease_events
  2092. && mddev->events != 1) {
  2093. mddev->events--;
  2094. mddev->can_decrease_events = 0;
  2095. } else {
  2096. /* otherwise we have to go forward and ... */
  2097. mddev->events ++;
  2098. mddev->can_decrease_events = nospares;
  2099. }
  2100. /*
  2101. * This 64-bit counter should never wrap.
  2102. * Either we are in around ~1 trillion A.C., assuming
  2103. * 1 reboot per second, or we have a bug...
  2104. */
  2105. WARN_ON(mddev->events == 0);
  2106. rdev_for_each(rdev, mddev) {
  2107. if (rdev->badblocks.changed)
  2108. any_badblocks_changed++;
  2109. if (test_bit(Faulty, &rdev->flags))
  2110. set_bit(FaultRecorded, &rdev->flags);
  2111. }
  2112. sync_sbs(mddev, nospares);
  2113. spin_unlock(&mddev->lock);
  2114. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2115. mdname(mddev), mddev->in_sync);
  2116. bitmap_update_sb(mddev->bitmap);
  2117. rdev_for_each(rdev, mddev) {
  2118. char b[BDEVNAME_SIZE];
  2119. if (rdev->sb_loaded != 1)
  2120. continue; /* no noise on spare devices */
  2121. if (!test_bit(Faulty, &rdev->flags)) {
  2122. md_super_write(mddev,rdev,
  2123. rdev->sb_start, rdev->sb_size,
  2124. rdev->sb_page);
  2125. pr_debug("md: (write) %s's sb offset: %llu\n",
  2126. bdevname(rdev->bdev, b),
  2127. (unsigned long long)rdev->sb_start);
  2128. rdev->sb_events = mddev->events;
  2129. if (rdev->badblocks.size) {
  2130. md_super_write(mddev, rdev,
  2131. rdev->badblocks.sector,
  2132. rdev->badblocks.size << 9,
  2133. rdev->bb_page);
  2134. rdev->badblocks.size = 0;
  2135. }
  2136. } else
  2137. pr_debug("md: %s (skipping faulty)\n",
  2138. bdevname(rdev->bdev, b));
  2139. if (mddev->level == LEVEL_MULTIPATH)
  2140. /* only need to write one superblock... */
  2141. break;
  2142. }
  2143. md_super_wait(mddev);
  2144. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2145. spin_lock(&mddev->lock);
  2146. if (mddev->in_sync != sync_req ||
  2147. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2148. /* have to write it out again */
  2149. spin_unlock(&mddev->lock);
  2150. goto repeat;
  2151. }
  2152. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2153. spin_unlock(&mddev->lock);
  2154. wake_up(&mddev->sb_wait);
  2155. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2156. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2157. rdev_for_each(rdev, mddev) {
  2158. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2159. clear_bit(Blocked, &rdev->flags);
  2160. if (any_badblocks_changed)
  2161. ack_all_badblocks(&rdev->badblocks);
  2162. clear_bit(BlockedBadBlocks, &rdev->flags);
  2163. wake_up(&rdev->blocked_wait);
  2164. }
  2165. if (mddev_is_clustered(mddev) && ret == 0)
  2166. md_cluster_ops->metadata_update_finish(mddev);
  2167. }
  2168. EXPORT_SYMBOL(md_update_sb);
  2169. static int add_bound_rdev(struct md_rdev *rdev)
  2170. {
  2171. struct mddev *mddev = rdev->mddev;
  2172. int err = 0;
  2173. bool add_journal = test_bit(Journal, &rdev->flags);
  2174. if (!mddev->pers->hot_remove_disk || add_journal) {
  2175. /* If there is hot_add_disk but no hot_remove_disk
  2176. * then added disks for geometry changes,
  2177. * and should be added immediately.
  2178. */
  2179. super_types[mddev->major_version].
  2180. validate_super(mddev, rdev);
  2181. if (add_journal)
  2182. mddev_suspend(mddev);
  2183. err = mddev->pers->hot_add_disk(mddev, rdev);
  2184. if (add_journal)
  2185. mddev_resume(mddev);
  2186. if (err) {
  2187. unbind_rdev_from_array(rdev);
  2188. export_rdev(rdev);
  2189. return err;
  2190. }
  2191. }
  2192. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2193. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2194. if (mddev->degraded)
  2195. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2196. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2197. md_new_event(mddev);
  2198. md_wakeup_thread(mddev->thread);
  2199. return 0;
  2200. }
  2201. /* words written to sysfs files may, or may not, be \n terminated.
  2202. * We want to accept with case. For this we use cmd_match.
  2203. */
  2204. static int cmd_match(const char *cmd, const char *str)
  2205. {
  2206. /* See if cmd, written into a sysfs file, matches
  2207. * str. They must either be the same, or cmd can
  2208. * have a trailing newline
  2209. */
  2210. while (*cmd && *str && *cmd == *str) {
  2211. cmd++;
  2212. str++;
  2213. }
  2214. if (*cmd == '\n')
  2215. cmd++;
  2216. if (*str || *cmd)
  2217. return 0;
  2218. return 1;
  2219. }
  2220. struct rdev_sysfs_entry {
  2221. struct attribute attr;
  2222. ssize_t (*show)(struct md_rdev *, char *);
  2223. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2224. };
  2225. static ssize_t
  2226. state_show(struct md_rdev *rdev, char *page)
  2227. {
  2228. char *sep = "";
  2229. size_t len = 0;
  2230. unsigned long flags = ACCESS_ONCE(rdev->flags);
  2231. if (test_bit(Faulty, &flags) ||
  2232. rdev->badblocks.unacked_exist) {
  2233. len+= sprintf(page+len, "%sfaulty",sep);
  2234. sep = ",";
  2235. }
  2236. if (test_bit(In_sync, &flags)) {
  2237. len += sprintf(page+len, "%sin_sync",sep);
  2238. sep = ",";
  2239. }
  2240. if (test_bit(Journal, &flags)) {
  2241. len += sprintf(page+len, "%sjournal",sep);
  2242. sep = ",";
  2243. }
  2244. if (test_bit(WriteMostly, &flags)) {
  2245. len += sprintf(page+len, "%swrite_mostly",sep);
  2246. sep = ",";
  2247. }
  2248. if (test_bit(Blocked, &flags) ||
  2249. (rdev->badblocks.unacked_exist
  2250. && !test_bit(Faulty, &flags))) {
  2251. len += sprintf(page+len, "%sblocked", sep);
  2252. sep = ",";
  2253. }
  2254. if (!test_bit(Faulty, &flags) &&
  2255. !test_bit(Journal, &flags) &&
  2256. !test_bit(In_sync, &flags)) {
  2257. len += sprintf(page+len, "%sspare", sep);
  2258. sep = ",";
  2259. }
  2260. if (test_bit(WriteErrorSeen, &flags)) {
  2261. len += sprintf(page+len, "%swrite_error", sep);
  2262. sep = ",";
  2263. }
  2264. if (test_bit(WantReplacement, &flags)) {
  2265. len += sprintf(page+len, "%swant_replacement", sep);
  2266. sep = ",";
  2267. }
  2268. if (test_bit(Replacement, &flags)) {
  2269. len += sprintf(page+len, "%sreplacement", sep);
  2270. sep = ",";
  2271. }
  2272. return len+sprintf(page+len, "\n");
  2273. }
  2274. static ssize_t
  2275. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2276. {
  2277. /* can write
  2278. * faulty - simulates an error
  2279. * remove - disconnects the device
  2280. * writemostly - sets write_mostly
  2281. * -writemostly - clears write_mostly
  2282. * blocked - sets the Blocked flags
  2283. * -blocked - clears the Blocked and possibly simulates an error
  2284. * insync - sets Insync providing device isn't active
  2285. * -insync - clear Insync for a device with a slot assigned,
  2286. * so that it gets rebuilt based on bitmap
  2287. * write_error - sets WriteErrorSeen
  2288. * -write_error - clears WriteErrorSeen
  2289. */
  2290. int err = -EINVAL;
  2291. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2292. md_error(rdev->mddev, rdev);
  2293. if (test_bit(Faulty, &rdev->flags))
  2294. err = 0;
  2295. else
  2296. err = -EBUSY;
  2297. } else if (cmd_match(buf, "remove")) {
  2298. if (rdev->raid_disk >= 0)
  2299. err = -EBUSY;
  2300. else {
  2301. struct mddev *mddev = rdev->mddev;
  2302. err = 0;
  2303. if (mddev_is_clustered(mddev))
  2304. err = md_cluster_ops->remove_disk(mddev, rdev);
  2305. if (err == 0) {
  2306. md_kick_rdev_from_array(rdev);
  2307. if (mddev->pers)
  2308. md_update_sb(mddev, 1);
  2309. md_new_event(mddev);
  2310. }
  2311. }
  2312. } else if (cmd_match(buf, "writemostly")) {
  2313. set_bit(WriteMostly, &rdev->flags);
  2314. err = 0;
  2315. } else if (cmd_match(buf, "-writemostly")) {
  2316. clear_bit(WriteMostly, &rdev->flags);
  2317. err = 0;
  2318. } else if (cmd_match(buf, "blocked")) {
  2319. set_bit(Blocked, &rdev->flags);
  2320. err = 0;
  2321. } else if (cmd_match(buf, "-blocked")) {
  2322. if (!test_bit(Faulty, &rdev->flags) &&
  2323. rdev->badblocks.unacked_exist) {
  2324. /* metadata handler doesn't understand badblocks,
  2325. * so we need to fail the device
  2326. */
  2327. md_error(rdev->mddev, rdev);
  2328. }
  2329. clear_bit(Blocked, &rdev->flags);
  2330. clear_bit(BlockedBadBlocks, &rdev->flags);
  2331. wake_up(&rdev->blocked_wait);
  2332. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2333. md_wakeup_thread(rdev->mddev->thread);
  2334. err = 0;
  2335. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2336. set_bit(In_sync, &rdev->flags);
  2337. err = 0;
  2338. } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
  2339. !test_bit(Journal, &rdev->flags)) {
  2340. if (rdev->mddev->pers == NULL) {
  2341. clear_bit(In_sync, &rdev->flags);
  2342. rdev->saved_raid_disk = rdev->raid_disk;
  2343. rdev->raid_disk = -1;
  2344. err = 0;
  2345. }
  2346. } else if (cmd_match(buf, "write_error")) {
  2347. set_bit(WriteErrorSeen, &rdev->flags);
  2348. err = 0;
  2349. } else if (cmd_match(buf, "-write_error")) {
  2350. clear_bit(WriteErrorSeen, &rdev->flags);
  2351. err = 0;
  2352. } else if (cmd_match(buf, "want_replacement")) {
  2353. /* Any non-spare device that is not a replacement can
  2354. * become want_replacement at any time, but we then need to
  2355. * check if recovery is needed.
  2356. */
  2357. if (rdev->raid_disk >= 0 &&
  2358. !test_bit(Journal, &rdev->flags) &&
  2359. !test_bit(Replacement, &rdev->flags))
  2360. set_bit(WantReplacement, &rdev->flags);
  2361. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2362. md_wakeup_thread(rdev->mddev->thread);
  2363. err = 0;
  2364. } else if (cmd_match(buf, "-want_replacement")) {
  2365. /* Clearing 'want_replacement' is always allowed.
  2366. * Once replacements starts it is too late though.
  2367. */
  2368. err = 0;
  2369. clear_bit(WantReplacement, &rdev->flags);
  2370. } else if (cmd_match(buf, "replacement")) {
  2371. /* Can only set a device as a replacement when array has not
  2372. * yet been started. Once running, replacement is automatic
  2373. * from spares, or by assigning 'slot'.
  2374. */
  2375. if (rdev->mddev->pers)
  2376. err = -EBUSY;
  2377. else {
  2378. set_bit(Replacement, &rdev->flags);
  2379. err = 0;
  2380. }
  2381. } else if (cmd_match(buf, "-replacement")) {
  2382. /* Similarly, can only clear Replacement before start */
  2383. if (rdev->mddev->pers)
  2384. err = -EBUSY;
  2385. else {
  2386. clear_bit(Replacement, &rdev->flags);
  2387. err = 0;
  2388. }
  2389. } else if (cmd_match(buf, "re-add")) {
  2390. if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
  2391. /* clear_bit is performed _after_ all the devices
  2392. * have their local Faulty bit cleared. If any writes
  2393. * happen in the meantime in the local node, they
  2394. * will land in the local bitmap, which will be synced
  2395. * by this node eventually
  2396. */
  2397. if (!mddev_is_clustered(rdev->mddev) ||
  2398. (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
  2399. clear_bit(Faulty, &rdev->flags);
  2400. err = add_bound_rdev(rdev);
  2401. }
  2402. } else
  2403. err = -EBUSY;
  2404. }
  2405. if (!err)
  2406. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2407. return err ? err : len;
  2408. }
  2409. static struct rdev_sysfs_entry rdev_state =
  2410. __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2411. static ssize_t
  2412. errors_show(struct md_rdev *rdev, char *page)
  2413. {
  2414. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2415. }
  2416. static ssize_t
  2417. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2418. {
  2419. unsigned int n;
  2420. int rv;
  2421. rv = kstrtouint(buf, 10, &n);
  2422. if (rv < 0)
  2423. return rv;
  2424. atomic_set(&rdev->corrected_errors, n);
  2425. return len;
  2426. }
  2427. static struct rdev_sysfs_entry rdev_errors =
  2428. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2429. static ssize_t
  2430. slot_show(struct md_rdev *rdev, char *page)
  2431. {
  2432. if (test_bit(Journal, &rdev->flags))
  2433. return sprintf(page, "journal\n");
  2434. else if (rdev->raid_disk < 0)
  2435. return sprintf(page, "none\n");
  2436. else
  2437. return sprintf(page, "%d\n", rdev->raid_disk);
  2438. }
  2439. static ssize_t
  2440. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2441. {
  2442. int slot;
  2443. int err;
  2444. if (test_bit(Journal, &rdev->flags))
  2445. return -EBUSY;
  2446. if (strncmp(buf, "none", 4)==0)
  2447. slot = -1;
  2448. else {
  2449. err = kstrtouint(buf, 10, (unsigned int *)&slot);
  2450. if (err < 0)
  2451. return err;
  2452. }
  2453. if (rdev->mddev->pers && slot == -1) {
  2454. /* Setting 'slot' on an active array requires also
  2455. * updating the 'rd%d' link, and communicating
  2456. * with the personality with ->hot_*_disk.
  2457. * For now we only support removing
  2458. * failed/spare devices. This normally happens automatically,
  2459. * but not when the metadata is externally managed.
  2460. */
  2461. if (rdev->raid_disk == -1)
  2462. return -EEXIST;
  2463. /* personality does all needed checks */
  2464. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2465. return -EINVAL;
  2466. clear_bit(Blocked, &rdev->flags);
  2467. remove_and_add_spares(rdev->mddev, rdev);
  2468. if (rdev->raid_disk >= 0)
  2469. return -EBUSY;
  2470. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2471. md_wakeup_thread(rdev->mddev->thread);
  2472. } else if (rdev->mddev->pers) {
  2473. /* Activating a spare .. or possibly reactivating
  2474. * if we ever get bitmaps working here.
  2475. */
  2476. int err;
  2477. if (rdev->raid_disk != -1)
  2478. return -EBUSY;
  2479. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2480. return -EBUSY;
  2481. if (rdev->mddev->pers->hot_add_disk == NULL)
  2482. return -EINVAL;
  2483. if (slot >= rdev->mddev->raid_disks &&
  2484. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2485. return -ENOSPC;
  2486. rdev->raid_disk = slot;
  2487. if (test_bit(In_sync, &rdev->flags))
  2488. rdev->saved_raid_disk = slot;
  2489. else
  2490. rdev->saved_raid_disk = -1;
  2491. clear_bit(In_sync, &rdev->flags);
  2492. clear_bit(Bitmap_sync, &rdev->flags);
  2493. err = rdev->mddev->pers->
  2494. hot_add_disk(rdev->mddev, rdev);
  2495. if (err) {
  2496. rdev->raid_disk = -1;
  2497. return err;
  2498. } else
  2499. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2500. if (sysfs_link_rdev(rdev->mddev, rdev))
  2501. /* failure here is OK */;
  2502. /* don't wakeup anyone, leave that to userspace. */
  2503. } else {
  2504. if (slot >= rdev->mddev->raid_disks &&
  2505. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2506. return -ENOSPC;
  2507. rdev->raid_disk = slot;
  2508. /* assume it is working */
  2509. clear_bit(Faulty, &rdev->flags);
  2510. clear_bit(WriteMostly, &rdev->flags);
  2511. set_bit(In_sync, &rdev->flags);
  2512. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2513. }
  2514. return len;
  2515. }
  2516. static struct rdev_sysfs_entry rdev_slot =
  2517. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2518. static ssize_t
  2519. offset_show(struct md_rdev *rdev, char *page)
  2520. {
  2521. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2522. }
  2523. static ssize_t
  2524. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2525. {
  2526. unsigned long long offset;
  2527. if (kstrtoull(buf, 10, &offset) < 0)
  2528. return -EINVAL;
  2529. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2530. return -EBUSY;
  2531. if (rdev->sectors && rdev->mddev->external)
  2532. /* Must set offset before size, so overlap checks
  2533. * can be sane */
  2534. return -EBUSY;
  2535. rdev->data_offset = offset;
  2536. rdev->new_data_offset = offset;
  2537. return len;
  2538. }
  2539. static struct rdev_sysfs_entry rdev_offset =
  2540. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2541. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2542. {
  2543. return sprintf(page, "%llu\n",
  2544. (unsigned long long)rdev->new_data_offset);
  2545. }
  2546. static ssize_t new_offset_store(struct md_rdev *rdev,
  2547. const char *buf, size_t len)
  2548. {
  2549. unsigned long long new_offset;
  2550. struct mddev *mddev = rdev->mddev;
  2551. if (kstrtoull(buf, 10, &new_offset) < 0)
  2552. return -EINVAL;
  2553. if (mddev->sync_thread ||
  2554. test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
  2555. return -EBUSY;
  2556. if (new_offset == rdev->data_offset)
  2557. /* reset is always permitted */
  2558. ;
  2559. else if (new_offset > rdev->data_offset) {
  2560. /* must not push array size beyond rdev_sectors */
  2561. if (new_offset - rdev->data_offset
  2562. + mddev->dev_sectors > rdev->sectors)
  2563. return -E2BIG;
  2564. }
  2565. /* Metadata worries about other space details. */
  2566. /* decreasing the offset is inconsistent with a backwards
  2567. * reshape.
  2568. */
  2569. if (new_offset < rdev->data_offset &&
  2570. mddev->reshape_backwards)
  2571. return -EINVAL;
  2572. /* Increasing offset is inconsistent with forwards
  2573. * reshape. reshape_direction should be set to
  2574. * 'backwards' first.
  2575. */
  2576. if (new_offset > rdev->data_offset &&
  2577. !mddev->reshape_backwards)
  2578. return -EINVAL;
  2579. if (mddev->pers && mddev->persistent &&
  2580. !super_types[mddev->major_version]
  2581. .allow_new_offset(rdev, new_offset))
  2582. return -E2BIG;
  2583. rdev->new_data_offset = new_offset;
  2584. if (new_offset > rdev->data_offset)
  2585. mddev->reshape_backwards = 1;
  2586. else if (new_offset < rdev->data_offset)
  2587. mddev->reshape_backwards = 0;
  2588. return len;
  2589. }
  2590. static struct rdev_sysfs_entry rdev_new_offset =
  2591. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2592. static ssize_t
  2593. rdev_size_show(struct md_rdev *rdev, char *page)
  2594. {
  2595. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2596. }
  2597. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2598. {
  2599. /* check if two start/length pairs overlap */
  2600. if (s1+l1 <= s2)
  2601. return 0;
  2602. if (s2+l2 <= s1)
  2603. return 0;
  2604. return 1;
  2605. }
  2606. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2607. {
  2608. unsigned long long blocks;
  2609. sector_t new;
  2610. if (kstrtoull(buf, 10, &blocks) < 0)
  2611. return -EINVAL;
  2612. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2613. return -EINVAL; /* sector conversion overflow */
  2614. new = blocks * 2;
  2615. if (new != blocks * 2)
  2616. return -EINVAL; /* unsigned long long to sector_t overflow */
  2617. *sectors = new;
  2618. return 0;
  2619. }
  2620. static ssize_t
  2621. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2622. {
  2623. struct mddev *my_mddev = rdev->mddev;
  2624. sector_t oldsectors = rdev->sectors;
  2625. sector_t sectors;
  2626. if (test_bit(Journal, &rdev->flags))
  2627. return -EBUSY;
  2628. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2629. return -EINVAL;
  2630. if (rdev->data_offset != rdev->new_data_offset)
  2631. return -EINVAL; /* too confusing */
  2632. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2633. if (my_mddev->persistent) {
  2634. sectors = super_types[my_mddev->major_version].
  2635. rdev_size_change(rdev, sectors);
  2636. if (!sectors)
  2637. return -EBUSY;
  2638. } else if (!sectors)
  2639. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2640. rdev->data_offset;
  2641. if (!my_mddev->pers->resize)
  2642. /* Cannot change size for RAID0 or Linear etc */
  2643. return -EINVAL;
  2644. }
  2645. if (sectors < my_mddev->dev_sectors)
  2646. return -EINVAL; /* component must fit device */
  2647. rdev->sectors = sectors;
  2648. if (sectors > oldsectors && my_mddev->external) {
  2649. /* Need to check that all other rdevs with the same
  2650. * ->bdev do not overlap. 'rcu' is sufficient to walk
  2651. * the rdev lists safely.
  2652. * This check does not provide a hard guarantee, it
  2653. * just helps avoid dangerous mistakes.
  2654. */
  2655. struct mddev *mddev;
  2656. int overlap = 0;
  2657. struct list_head *tmp;
  2658. rcu_read_lock();
  2659. for_each_mddev(mddev, tmp) {
  2660. struct md_rdev *rdev2;
  2661. rdev_for_each(rdev2, mddev)
  2662. if (rdev->bdev == rdev2->bdev &&
  2663. rdev != rdev2 &&
  2664. overlaps(rdev->data_offset, rdev->sectors,
  2665. rdev2->data_offset,
  2666. rdev2->sectors)) {
  2667. overlap = 1;
  2668. break;
  2669. }
  2670. if (overlap) {
  2671. mddev_put(mddev);
  2672. break;
  2673. }
  2674. }
  2675. rcu_read_unlock();
  2676. if (overlap) {
  2677. /* Someone else could have slipped in a size
  2678. * change here, but doing so is just silly.
  2679. * We put oldsectors back because we *know* it is
  2680. * safe, and trust userspace not to race with
  2681. * itself
  2682. */
  2683. rdev->sectors = oldsectors;
  2684. return -EBUSY;
  2685. }
  2686. }
  2687. return len;
  2688. }
  2689. static struct rdev_sysfs_entry rdev_size =
  2690. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2691. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2692. {
  2693. unsigned long long recovery_start = rdev->recovery_offset;
  2694. if (test_bit(In_sync, &rdev->flags) ||
  2695. recovery_start == MaxSector)
  2696. return sprintf(page, "none\n");
  2697. return sprintf(page, "%llu\n", recovery_start);
  2698. }
  2699. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2700. {
  2701. unsigned long long recovery_start;
  2702. if (cmd_match(buf, "none"))
  2703. recovery_start = MaxSector;
  2704. else if (kstrtoull(buf, 10, &recovery_start))
  2705. return -EINVAL;
  2706. if (rdev->mddev->pers &&
  2707. rdev->raid_disk >= 0)
  2708. return -EBUSY;
  2709. rdev->recovery_offset = recovery_start;
  2710. if (recovery_start == MaxSector)
  2711. set_bit(In_sync, &rdev->flags);
  2712. else
  2713. clear_bit(In_sync, &rdev->flags);
  2714. return len;
  2715. }
  2716. static struct rdev_sysfs_entry rdev_recovery_start =
  2717. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2718. /* sysfs access to bad-blocks list.
  2719. * We present two files.
  2720. * 'bad-blocks' lists sector numbers and lengths of ranges that
  2721. * are recorded as bad. The list is truncated to fit within
  2722. * the one-page limit of sysfs.
  2723. * Writing "sector length" to this file adds an acknowledged
  2724. * bad block list.
  2725. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  2726. * been acknowledged. Writing to this file adds bad blocks
  2727. * without acknowledging them. This is largely for testing.
  2728. */
  2729. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2730. {
  2731. return badblocks_show(&rdev->badblocks, page, 0);
  2732. }
  2733. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2734. {
  2735. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2736. /* Maybe that ack was all we needed */
  2737. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2738. wake_up(&rdev->blocked_wait);
  2739. return rv;
  2740. }
  2741. static struct rdev_sysfs_entry rdev_bad_blocks =
  2742. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2743. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2744. {
  2745. return badblocks_show(&rdev->badblocks, page, 1);
  2746. }
  2747. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2748. {
  2749. return badblocks_store(&rdev->badblocks, page, len, 1);
  2750. }
  2751. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2752. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2753. static struct attribute *rdev_default_attrs[] = {
  2754. &rdev_state.attr,
  2755. &rdev_errors.attr,
  2756. &rdev_slot.attr,
  2757. &rdev_offset.attr,
  2758. &rdev_new_offset.attr,
  2759. &rdev_size.attr,
  2760. &rdev_recovery_start.attr,
  2761. &rdev_bad_blocks.attr,
  2762. &rdev_unack_bad_blocks.attr,
  2763. NULL,
  2764. };
  2765. static ssize_t
  2766. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2767. {
  2768. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2769. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2770. if (!entry->show)
  2771. return -EIO;
  2772. if (!rdev->mddev)
  2773. return -EBUSY;
  2774. return entry->show(rdev, page);
  2775. }
  2776. static ssize_t
  2777. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2778. const char *page, size_t length)
  2779. {
  2780. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2781. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2782. ssize_t rv;
  2783. struct mddev *mddev = rdev->mddev;
  2784. if (!entry->store)
  2785. return -EIO;
  2786. if (!capable(CAP_SYS_ADMIN))
  2787. return -EACCES;
  2788. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2789. if (!rv) {
  2790. if (rdev->mddev == NULL)
  2791. rv = -EBUSY;
  2792. else
  2793. rv = entry->store(rdev, page, length);
  2794. mddev_unlock(mddev);
  2795. }
  2796. return rv;
  2797. }
  2798. static void rdev_free(struct kobject *ko)
  2799. {
  2800. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2801. kfree(rdev);
  2802. }
  2803. static const struct sysfs_ops rdev_sysfs_ops = {
  2804. .show = rdev_attr_show,
  2805. .store = rdev_attr_store,
  2806. };
  2807. static struct kobj_type rdev_ktype = {
  2808. .release = rdev_free,
  2809. .sysfs_ops = &rdev_sysfs_ops,
  2810. .default_attrs = rdev_default_attrs,
  2811. };
  2812. int md_rdev_init(struct md_rdev *rdev)
  2813. {
  2814. rdev->desc_nr = -1;
  2815. rdev->saved_raid_disk = -1;
  2816. rdev->raid_disk = -1;
  2817. rdev->flags = 0;
  2818. rdev->data_offset = 0;
  2819. rdev->new_data_offset = 0;
  2820. rdev->sb_events = 0;
  2821. rdev->last_read_error.tv_sec = 0;
  2822. rdev->last_read_error.tv_nsec = 0;
  2823. rdev->sb_loaded = 0;
  2824. rdev->bb_page = NULL;
  2825. atomic_set(&rdev->nr_pending, 0);
  2826. atomic_set(&rdev->read_errors, 0);
  2827. atomic_set(&rdev->corrected_errors, 0);
  2828. INIT_LIST_HEAD(&rdev->same_set);
  2829. init_waitqueue_head(&rdev->blocked_wait);
  2830. /* Add space to store bad block list.
  2831. * This reserves the space even on arrays where it cannot
  2832. * be used - I wonder if that matters
  2833. */
  2834. return badblocks_init(&rdev->badblocks, 0);
  2835. }
  2836. EXPORT_SYMBOL_GPL(md_rdev_init);
  2837. /*
  2838. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2839. *
  2840. * mark the device faulty if:
  2841. *
  2842. * - the device is nonexistent (zero size)
  2843. * - the device has no valid superblock
  2844. *
  2845. * a faulty rdev _never_ has rdev->sb set.
  2846. */
  2847. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2848. {
  2849. char b[BDEVNAME_SIZE];
  2850. int err;
  2851. struct md_rdev *rdev;
  2852. sector_t size;
  2853. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2854. if (!rdev) {
  2855. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2856. return ERR_PTR(-ENOMEM);
  2857. }
  2858. err = md_rdev_init(rdev);
  2859. if (err)
  2860. goto abort_free;
  2861. err = alloc_disk_sb(rdev);
  2862. if (err)
  2863. goto abort_free;
  2864. err = lock_rdev(rdev, newdev, super_format == -2);
  2865. if (err)
  2866. goto abort_free;
  2867. kobject_init(&rdev->kobj, &rdev_ktype);
  2868. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2869. if (!size) {
  2870. printk(KERN_WARNING
  2871. "md: %s has zero or unknown size, marking faulty!\n",
  2872. bdevname(rdev->bdev,b));
  2873. err = -EINVAL;
  2874. goto abort_free;
  2875. }
  2876. if (super_format >= 0) {
  2877. err = super_types[super_format].
  2878. load_super(rdev, NULL, super_minor);
  2879. if (err == -EINVAL) {
  2880. printk(KERN_WARNING
  2881. "md: %s does not have a valid v%d.%d "
  2882. "superblock, not importing!\n",
  2883. bdevname(rdev->bdev,b),
  2884. super_format, super_minor);
  2885. goto abort_free;
  2886. }
  2887. if (err < 0) {
  2888. printk(KERN_WARNING
  2889. "md: could not read %s's sb, not importing!\n",
  2890. bdevname(rdev->bdev,b));
  2891. goto abort_free;
  2892. }
  2893. }
  2894. return rdev;
  2895. abort_free:
  2896. if (rdev->bdev)
  2897. unlock_rdev(rdev);
  2898. md_rdev_clear(rdev);
  2899. kfree(rdev);
  2900. return ERR_PTR(err);
  2901. }
  2902. /*
  2903. * Check a full RAID array for plausibility
  2904. */
  2905. static void analyze_sbs(struct mddev *mddev)
  2906. {
  2907. int i;
  2908. struct md_rdev *rdev, *freshest, *tmp;
  2909. char b[BDEVNAME_SIZE];
  2910. freshest = NULL;
  2911. rdev_for_each_safe(rdev, tmp, mddev)
  2912. switch (super_types[mddev->major_version].
  2913. load_super(rdev, freshest, mddev->minor_version)) {
  2914. case 1:
  2915. freshest = rdev;
  2916. break;
  2917. case 0:
  2918. break;
  2919. default:
  2920. printk( KERN_ERR \
  2921. "md: fatal superblock inconsistency in %s"
  2922. " -- removing from array\n",
  2923. bdevname(rdev->bdev,b));
  2924. md_kick_rdev_from_array(rdev);
  2925. }
  2926. super_types[mddev->major_version].
  2927. validate_super(mddev, freshest);
  2928. i = 0;
  2929. rdev_for_each_safe(rdev, tmp, mddev) {
  2930. if (mddev->max_disks &&
  2931. (rdev->desc_nr >= mddev->max_disks ||
  2932. i > mddev->max_disks)) {
  2933. printk(KERN_WARNING
  2934. "md: %s: %s: only %d devices permitted\n",
  2935. mdname(mddev), bdevname(rdev->bdev, b),
  2936. mddev->max_disks);
  2937. md_kick_rdev_from_array(rdev);
  2938. continue;
  2939. }
  2940. if (rdev != freshest) {
  2941. if (super_types[mddev->major_version].
  2942. validate_super(mddev, rdev)) {
  2943. printk(KERN_WARNING "md: kicking non-fresh %s"
  2944. " from array!\n",
  2945. bdevname(rdev->bdev,b));
  2946. md_kick_rdev_from_array(rdev);
  2947. continue;
  2948. }
  2949. }
  2950. if (mddev->level == LEVEL_MULTIPATH) {
  2951. rdev->desc_nr = i++;
  2952. rdev->raid_disk = rdev->desc_nr;
  2953. set_bit(In_sync, &rdev->flags);
  2954. } else if (rdev->raid_disk >=
  2955. (mddev->raid_disks - min(0, mddev->delta_disks)) &&
  2956. !test_bit(Journal, &rdev->flags)) {
  2957. rdev->raid_disk = -1;
  2958. clear_bit(In_sync, &rdev->flags);
  2959. }
  2960. }
  2961. }
  2962. /* Read a fixed-point number.
  2963. * Numbers in sysfs attributes should be in "standard" units where
  2964. * possible, so time should be in seconds.
  2965. * However we internally use a a much smaller unit such as
  2966. * milliseconds or jiffies.
  2967. * This function takes a decimal number with a possible fractional
  2968. * component, and produces an integer which is the result of
  2969. * multiplying that number by 10^'scale'.
  2970. * all without any floating-point arithmetic.
  2971. */
  2972. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2973. {
  2974. unsigned long result = 0;
  2975. long decimals = -1;
  2976. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2977. if (*cp == '.')
  2978. decimals = 0;
  2979. else if (decimals < scale) {
  2980. unsigned int value;
  2981. value = *cp - '0';
  2982. result = result * 10 + value;
  2983. if (decimals >= 0)
  2984. decimals++;
  2985. }
  2986. cp++;
  2987. }
  2988. if (*cp == '\n')
  2989. cp++;
  2990. if (*cp)
  2991. return -EINVAL;
  2992. if (decimals < 0)
  2993. decimals = 0;
  2994. while (decimals < scale) {
  2995. result *= 10;
  2996. decimals ++;
  2997. }
  2998. *res = result;
  2999. return 0;
  3000. }
  3001. static ssize_t
  3002. safe_delay_show(struct mddev *mddev, char *page)
  3003. {
  3004. int msec = (mddev->safemode_delay*1000)/HZ;
  3005. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3006. }
  3007. static ssize_t
  3008. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3009. {
  3010. unsigned long msec;
  3011. if (mddev_is_clustered(mddev)) {
  3012. pr_info("md: Safemode is disabled for clustered mode\n");
  3013. return -EINVAL;
  3014. }
  3015. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3016. return -EINVAL;
  3017. if (msec == 0)
  3018. mddev->safemode_delay = 0;
  3019. else {
  3020. unsigned long old_delay = mddev->safemode_delay;
  3021. unsigned long new_delay = (msec*HZ)/1000;
  3022. if (new_delay == 0)
  3023. new_delay = 1;
  3024. mddev->safemode_delay = new_delay;
  3025. if (new_delay < old_delay || old_delay == 0)
  3026. mod_timer(&mddev->safemode_timer, jiffies+1);
  3027. }
  3028. return len;
  3029. }
  3030. static struct md_sysfs_entry md_safe_delay =
  3031. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3032. static ssize_t
  3033. level_show(struct mddev *mddev, char *page)
  3034. {
  3035. struct md_personality *p;
  3036. int ret;
  3037. spin_lock(&mddev->lock);
  3038. p = mddev->pers;
  3039. if (p)
  3040. ret = sprintf(page, "%s\n", p->name);
  3041. else if (mddev->clevel[0])
  3042. ret = sprintf(page, "%s\n", mddev->clevel);
  3043. else if (mddev->level != LEVEL_NONE)
  3044. ret = sprintf(page, "%d\n", mddev->level);
  3045. else
  3046. ret = 0;
  3047. spin_unlock(&mddev->lock);
  3048. return ret;
  3049. }
  3050. static ssize_t
  3051. level_store(struct mddev *mddev, const char *buf, size_t len)
  3052. {
  3053. char clevel[16];
  3054. ssize_t rv;
  3055. size_t slen = len;
  3056. struct md_personality *pers, *oldpers;
  3057. long level;
  3058. void *priv, *oldpriv;
  3059. struct md_rdev *rdev;
  3060. if (slen == 0 || slen >= sizeof(clevel))
  3061. return -EINVAL;
  3062. rv = mddev_lock(mddev);
  3063. if (rv)
  3064. return rv;
  3065. if (mddev->pers == NULL) {
  3066. strncpy(mddev->clevel, buf, slen);
  3067. if (mddev->clevel[slen-1] == '\n')
  3068. slen--;
  3069. mddev->clevel[slen] = 0;
  3070. mddev->level = LEVEL_NONE;
  3071. rv = len;
  3072. goto out_unlock;
  3073. }
  3074. rv = -EROFS;
  3075. if (mddev->ro)
  3076. goto out_unlock;
  3077. /* request to change the personality. Need to ensure:
  3078. * - array is not engaged in resync/recovery/reshape
  3079. * - old personality can be suspended
  3080. * - new personality will access other array.
  3081. */
  3082. rv = -EBUSY;
  3083. if (mddev->sync_thread ||
  3084. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3085. mddev->reshape_position != MaxSector ||
  3086. mddev->sysfs_active)
  3087. goto out_unlock;
  3088. rv = -EINVAL;
  3089. if (!mddev->pers->quiesce) {
  3090. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3091. mdname(mddev), mddev->pers->name);
  3092. goto out_unlock;
  3093. }
  3094. /* Now find the new personality */
  3095. strncpy(clevel, buf, slen);
  3096. if (clevel[slen-1] == '\n')
  3097. slen--;
  3098. clevel[slen] = 0;
  3099. if (kstrtol(clevel, 10, &level))
  3100. level = LEVEL_NONE;
  3101. if (request_module("md-%s", clevel) != 0)
  3102. request_module("md-level-%s", clevel);
  3103. spin_lock(&pers_lock);
  3104. pers = find_pers(level, clevel);
  3105. if (!pers || !try_module_get(pers->owner)) {
  3106. spin_unlock(&pers_lock);
  3107. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3108. rv = -EINVAL;
  3109. goto out_unlock;
  3110. }
  3111. spin_unlock(&pers_lock);
  3112. if (pers == mddev->pers) {
  3113. /* Nothing to do! */
  3114. module_put(pers->owner);
  3115. rv = len;
  3116. goto out_unlock;
  3117. }
  3118. if (!pers->takeover) {
  3119. module_put(pers->owner);
  3120. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3121. mdname(mddev), clevel);
  3122. rv = -EINVAL;
  3123. goto out_unlock;
  3124. }
  3125. rdev_for_each(rdev, mddev)
  3126. rdev->new_raid_disk = rdev->raid_disk;
  3127. /* ->takeover must set new_* and/or delta_disks
  3128. * if it succeeds, and may set them when it fails.
  3129. */
  3130. priv = pers->takeover(mddev);
  3131. if (IS_ERR(priv)) {
  3132. mddev->new_level = mddev->level;
  3133. mddev->new_layout = mddev->layout;
  3134. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3135. mddev->raid_disks -= mddev->delta_disks;
  3136. mddev->delta_disks = 0;
  3137. mddev->reshape_backwards = 0;
  3138. module_put(pers->owner);
  3139. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3140. mdname(mddev), clevel);
  3141. rv = PTR_ERR(priv);
  3142. goto out_unlock;
  3143. }
  3144. /* Looks like we have a winner */
  3145. mddev_suspend(mddev);
  3146. mddev_detach(mddev);
  3147. spin_lock(&mddev->lock);
  3148. oldpers = mddev->pers;
  3149. oldpriv = mddev->private;
  3150. mddev->pers = pers;
  3151. mddev->private = priv;
  3152. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3153. mddev->level = mddev->new_level;
  3154. mddev->layout = mddev->new_layout;
  3155. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3156. mddev->delta_disks = 0;
  3157. mddev->reshape_backwards = 0;
  3158. mddev->degraded = 0;
  3159. spin_unlock(&mddev->lock);
  3160. if (oldpers->sync_request == NULL &&
  3161. mddev->external) {
  3162. /* We are converting from a no-redundancy array
  3163. * to a redundancy array and metadata is managed
  3164. * externally so we need to be sure that writes
  3165. * won't block due to a need to transition
  3166. * clean->dirty
  3167. * until external management is started.
  3168. */
  3169. mddev->in_sync = 0;
  3170. mddev->safemode_delay = 0;
  3171. mddev->safemode = 0;
  3172. }
  3173. oldpers->free(mddev, oldpriv);
  3174. if (oldpers->sync_request == NULL &&
  3175. pers->sync_request != NULL) {
  3176. /* need to add the md_redundancy_group */
  3177. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3178. printk(KERN_WARNING
  3179. "md: cannot register extra attributes for %s\n",
  3180. mdname(mddev));
  3181. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3182. }
  3183. if (oldpers->sync_request != NULL &&
  3184. pers->sync_request == NULL) {
  3185. /* need to remove the md_redundancy_group */
  3186. if (mddev->to_remove == NULL)
  3187. mddev->to_remove = &md_redundancy_group;
  3188. }
  3189. rdev_for_each(rdev, mddev) {
  3190. if (rdev->raid_disk < 0)
  3191. continue;
  3192. if (rdev->new_raid_disk >= mddev->raid_disks)
  3193. rdev->new_raid_disk = -1;
  3194. if (rdev->new_raid_disk == rdev->raid_disk)
  3195. continue;
  3196. sysfs_unlink_rdev(mddev, rdev);
  3197. }
  3198. rdev_for_each(rdev, mddev) {
  3199. if (rdev->raid_disk < 0)
  3200. continue;
  3201. if (rdev->new_raid_disk == rdev->raid_disk)
  3202. continue;
  3203. rdev->raid_disk = rdev->new_raid_disk;
  3204. if (rdev->raid_disk < 0)
  3205. clear_bit(In_sync, &rdev->flags);
  3206. else {
  3207. if (sysfs_link_rdev(mddev, rdev))
  3208. printk(KERN_WARNING "md: cannot register rd%d"
  3209. " for %s after level change\n",
  3210. rdev->raid_disk, mdname(mddev));
  3211. }
  3212. }
  3213. if (pers->sync_request == NULL) {
  3214. /* this is now an array without redundancy, so
  3215. * it must always be in_sync
  3216. */
  3217. mddev->in_sync = 1;
  3218. del_timer_sync(&mddev->safemode_timer);
  3219. }
  3220. blk_set_stacking_limits(&mddev->queue->limits);
  3221. pers->run(mddev);
  3222. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3223. mddev_resume(mddev);
  3224. if (!mddev->thread)
  3225. md_update_sb(mddev, 1);
  3226. sysfs_notify(&mddev->kobj, NULL, "level");
  3227. md_new_event(mddev);
  3228. rv = len;
  3229. out_unlock:
  3230. mddev_unlock(mddev);
  3231. return rv;
  3232. }
  3233. static struct md_sysfs_entry md_level =
  3234. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3235. static ssize_t
  3236. layout_show(struct mddev *mddev, char *page)
  3237. {
  3238. /* just a number, not meaningful for all levels */
  3239. if (mddev->reshape_position != MaxSector &&
  3240. mddev->layout != mddev->new_layout)
  3241. return sprintf(page, "%d (%d)\n",
  3242. mddev->new_layout, mddev->layout);
  3243. return sprintf(page, "%d\n", mddev->layout);
  3244. }
  3245. static ssize_t
  3246. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3247. {
  3248. unsigned int n;
  3249. int err;
  3250. err = kstrtouint(buf, 10, &n);
  3251. if (err < 0)
  3252. return err;
  3253. err = mddev_lock(mddev);
  3254. if (err)
  3255. return err;
  3256. if (mddev->pers) {
  3257. if (mddev->pers->check_reshape == NULL)
  3258. err = -EBUSY;
  3259. else if (mddev->ro)
  3260. err = -EROFS;
  3261. else {
  3262. mddev->new_layout = n;
  3263. err = mddev->pers->check_reshape(mddev);
  3264. if (err)
  3265. mddev->new_layout = mddev->layout;
  3266. }
  3267. } else {
  3268. mddev->new_layout = n;
  3269. if (mddev->reshape_position == MaxSector)
  3270. mddev->layout = n;
  3271. }
  3272. mddev_unlock(mddev);
  3273. return err ?: len;
  3274. }
  3275. static struct md_sysfs_entry md_layout =
  3276. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3277. static ssize_t
  3278. raid_disks_show(struct mddev *mddev, char *page)
  3279. {
  3280. if (mddev->raid_disks == 0)
  3281. return 0;
  3282. if (mddev->reshape_position != MaxSector &&
  3283. mddev->delta_disks != 0)
  3284. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3285. mddev->raid_disks - mddev->delta_disks);
  3286. return sprintf(page, "%d\n", mddev->raid_disks);
  3287. }
  3288. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3289. static ssize_t
  3290. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3291. {
  3292. unsigned int n;
  3293. int err;
  3294. err = kstrtouint(buf, 10, &n);
  3295. if (err < 0)
  3296. return err;
  3297. err = mddev_lock(mddev);
  3298. if (err)
  3299. return err;
  3300. if (mddev->pers)
  3301. err = update_raid_disks(mddev, n);
  3302. else if (mddev->reshape_position != MaxSector) {
  3303. struct md_rdev *rdev;
  3304. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3305. err = -EINVAL;
  3306. rdev_for_each(rdev, mddev) {
  3307. if (olddisks < n &&
  3308. rdev->data_offset < rdev->new_data_offset)
  3309. goto out_unlock;
  3310. if (olddisks > n &&
  3311. rdev->data_offset > rdev->new_data_offset)
  3312. goto out_unlock;
  3313. }
  3314. err = 0;
  3315. mddev->delta_disks = n - olddisks;
  3316. mddev->raid_disks = n;
  3317. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3318. } else
  3319. mddev->raid_disks = n;
  3320. out_unlock:
  3321. mddev_unlock(mddev);
  3322. return err ? err : len;
  3323. }
  3324. static struct md_sysfs_entry md_raid_disks =
  3325. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3326. static ssize_t
  3327. chunk_size_show(struct mddev *mddev, char *page)
  3328. {
  3329. if (mddev->reshape_position != MaxSector &&
  3330. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3331. return sprintf(page, "%d (%d)\n",
  3332. mddev->new_chunk_sectors << 9,
  3333. mddev->chunk_sectors << 9);
  3334. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3335. }
  3336. static ssize_t
  3337. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3338. {
  3339. unsigned long n;
  3340. int err;
  3341. err = kstrtoul(buf, 10, &n);
  3342. if (err < 0)
  3343. return err;
  3344. err = mddev_lock(mddev);
  3345. if (err)
  3346. return err;
  3347. if (mddev->pers) {
  3348. if (mddev->pers->check_reshape == NULL)
  3349. err = -EBUSY;
  3350. else if (mddev->ro)
  3351. err = -EROFS;
  3352. else {
  3353. mddev->new_chunk_sectors = n >> 9;
  3354. err = mddev->pers->check_reshape(mddev);
  3355. if (err)
  3356. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3357. }
  3358. } else {
  3359. mddev->new_chunk_sectors = n >> 9;
  3360. if (mddev->reshape_position == MaxSector)
  3361. mddev->chunk_sectors = n >> 9;
  3362. }
  3363. mddev_unlock(mddev);
  3364. return err ?: len;
  3365. }
  3366. static struct md_sysfs_entry md_chunk_size =
  3367. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3368. static ssize_t
  3369. resync_start_show(struct mddev *mddev, char *page)
  3370. {
  3371. if (mddev->recovery_cp == MaxSector)
  3372. return sprintf(page, "none\n");
  3373. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3374. }
  3375. static ssize_t
  3376. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3377. {
  3378. unsigned long long n;
  3379. int err;
  3380. if (cmd_match(buf, "none"))
  3381. n = MaxSector;
  3382. else {
  3383. err = kstrtoull(buf, 10, &n);
  3384. if (err < 0)
  3385. return err;
  3386. if (n != (sector_t)n)
  3387. return -EINVAL;
  3388. }
  3389. err = mddev_lock(mddev);
  3390. if (err)
  3391. return err;
  3392. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3393. err = -EBUSY;
  3394. if (!err) {
  3395. mddev->recovery_cp = n;
  3396. if (mddev->pers)
  3397. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3398. }
  3399. mddev_unlock(mddev);
  3400. return err ?: len;
  3401. }
  3402. static struct md_sysfs_entry md_resync_start =
  3403. __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
  3404. resync_start_show, resync_start_store);
  3405. /*
  3406. * The array state can be:
  3407. *
  3408. * clear
  3409. * No devices, no size, no level
  3410. * Equivalent to STOP_ARRAY ioctl
  3411. * inactive
  3412. * May have some settings, but array is not active
  3413. * all IO results in error
  3414. * When written, doesn't tear down array, but just stops it
  3415. * suspended (not supported yet)
  3416. * All IO requests will block. The array can be reconfigured.
  3417. * Writing this, if accepted, will block until array is quiescent
  3418. * readonly
  3419. * no resync can happen. no superblocks get written.
  3420. * write requests fail
  3421. * read-auto
  3422. * like readonly, but behaves like 'clean' on a write request.
  3423. *
  3424. * clean - no pending writes, but otherwise active.
  3425. * When written to inactive array, starts without resync
  3426. * If a write request arrives then
  3427. * if metadata is known, mark 'dirty' and switch to 'active'.
  3428. * if not known, block and switch to write-pending
  3429. * If written to an active array that has pending writes, then fails.
  3430. * active
  3431. * fully active: IO and resync can be happening.
  3432. * When written to inactive array, starts with resync
  3433. *
  3434. * write-pending
  3435. * clean, but writes are blocked waiting for 'active' to be written.
  3436. *
  3437. * active-idle
  3438. * like active, but no writes have been seen for a while (100msec).
  3439. *
  3440. */
  3441. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3442. write_pending, active_idle, bad_word};
  3443. static char *array_states[] = {
  3444. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3445. "write-pending", "active-idle", NULL };
  3446. static int match_word(const char *word, char **list)
  3447. {
  3448. int n;
  3449. for (n=0; list[n]; n++)
  3450. if (cmd_match(word, list[n]))
  3451. break;
  3452. return n;
  3453. }
  3454. static ssize_t
  3455. array_state_show(struct mddev *mddev, char *page)
  3456. {
  3457. enum array_state st = inactive;
  3458. if (mddev->pers)
  3459. switch(mddev->ro) {
  3460. case 1:
  3461. st = readonly;
  3462. break;
  3463. case 2:
  3464. st = read_auto;
  3465. break;
  3466. case 0:
  3467. if (mddev->in_sync)
  3468. st = clean;
  3469. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3470. st = write_pending;
  3471. else if (mddev->safemode)
  3472. st = active_idle;
  3473. else
  3474. st = active;
  3475. }
  3476. else {
  3477. if (list_empty(&mddev->disks) &&
  3478. mddev->raid_disks == 0 &&
  3479. mddev->dev_sectors == 0)
  3480. st = clear;
  3481. else
  3482. st = inactive;
  3483. }
  3484. return sprintf(page, "%s\n", array_states[st]);
  3485. }
  3486. static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
  3487. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
  3488. static int do_md_run(struct mddev *mddev);
  3489. static int restart_array(struct mddev *mddev);
  3490. static ssize_t
  3491. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3492. {
  3493. int err;
  3494. enum array_state st = match_word(buf, array_states);
  3495. if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
  3496. /* don't take reconfig_mutex when toggling between
  3497. * clean and active
  3498. */
  3499. spin_lock(&mddev->lock);
  3500. if (st == active) {
  3501. restart_array(mddev);
  3502. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3503. wake_up(&mddev->sb_wait);
  3504. err = 0;
  3505. } else /* st == clean */ {
  3506. restart_array(mddev);
  3507. if (atomic_read(&mddev->writes_pending) == 0) {
  3508. if (mddev->in_sync == 0) {
  3509. mddev->in_sync = 1;
  3510. if (mddev->safemode == 1)
  3511. mddev->safemode = 0;
  3512. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3513. }
  3514. err = 0;
  3515. } else
  3516. err = -EBUSY;
  3517. }
  3518. spin_unlock(&mddev->lock);
  3519. return err ?: len;
  3520. }
  3521. err = mddev_lock(mddev);
  3522. if (err)
  3523. return err;
  3524. err = -EINVAL;
  3525. switch(st) {
  3526. case bad_word:
  3527. break;
  3528. case clear:
  3529. /* stopping an active array */
  3530. err = do_md_stop(mddev, 0, NULL);
  3531. break;
  3532. case inactive:
  3533. /* stopping an active array */
  3534. if (mddev->pers)
  3535. err = do_md_stop(mddev, 2, NULL);
  3536. else
  3537. err = 0; /* already inactive */
  3538. break;
  3539. case suspended:
  3540. break; /* not supported yet */
  3541. case readonly:
  3542. if (mddev->pers)
  3543. err = md_set_readonly(mddev, NULL);
  3544. else {
  3545. mddev->ro = 1;
  3546. set_disk_ro(mddev->gendisk, 1);
  3547. err = do_md_run(mddev);
  3548. }
  3549. break;
  3550. case read_auto:
  3551. if (mddev->pers) {
  3552. if (mddev->ro == 0)
  3553. err = md_set_readonly(mddev, NULL);
  3554. else if (mddev->ro == 1)
  3555. err = restart_array(mddev);
  3556. if (err == 0) {
  3557. mddev->ro = 2;
  3558. set_disk_ro(mddev->gendisk, 0);
  3559. }
  3560. } else {
  3561. mddev->ro = 2;
  3562. err = do_md_run(mddev);
  3563. }
  3564. break;
  3565. case clean:
  3566. if (mddev->pers) {
  3567. err = restart_array(mddev);
  3568. if (err)
  3569. break;
  3570. spin_lock(&mddev->lock);
  3571. if (atomic_read(&mddev->writes_pending) == 0) {
  3572. if (mddev->in_sync == 0) {
  3573. mddev->in_sync = 1;
  3574. if (mddev->safemode == 1)
  3575. mddev->safemode = 0;
  3576. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3577. }
  3578. err = 0;
  3579. } else
  3580. err = -EBUSY;
  3581. spin_unlock(&mddev->lock);
  3582. } else
  3583. err = -EINVAL;
  3584. break;
  3585. case active:
  3586. if (mddev->pers) {
  3587. err = restart_array(mddev);
  3588. if (err)
  3589. break;
  3590. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3591. wake_up(&mddev->sb_wait);
  3592. err = 0;
  3593. } else {
  3594. mddev->ro = 0;
  3595. set_disk_ro(mddev->gendisk, 0);
  3596. err = do_md_run(mddev);
  3597. }
  3598. break;
  3599. case write_pending:
  3600. case active_idle:
  3601. /* these cannot be set */
  3602. break;
  3603. }
  3604. if (!err) {
  3605. if (mddev->hold_active == UNTIL_IOCTL)
  3606. mddev->hold_active = 0;
  3607. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3608. }
  3609. mddev_unlock(mddev);
  3610. return err ?: len;
  3611. }
  3612. static struct md_sysfs_entry md_array_state =
  3613. __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3614. static ssize_t
  3615. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3616. return sprintf(page, "%d\n",
  3617. atomic_read(&mddev->max_corr_read_errors));
  3618. }
  3619. static ssize_t
  3620. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3621. {
  3622. unsigned int n;
  3623. int rv;
  3624. rv = kstrtouint(buf, 10, &n);
  3625. if (rv < 0)
  3626. return rv;
  3627. atomic_set(&mddev->max_corr_read_errors, n);
  3628. return len;
  3629. }
  3630. static struct md_sysfs_entry max_corr_read_errors =
  3631. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3632. max_corrected_read_errors_store);
  3633. static ssize_t
  3634. null_show(struct mddev *mddev, char *page)
  3635. {
  3636. return -EINVAL;
  3637. }
  3638. static ssize_t
  3639. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3640. {
  3641. /* buf must be %d:%d\n? giving major and minor numbers */
  3642. /* The new device is added to the array.
  3643. * If the array has a persistent superblock, we read the
  3644. * superblock to initialise info and check validity.
  3645. * Otherwise, only checking done is that in bind_rdev_to_array,
  3646. * which mainly checks size.
  3647. */
  3648. char *e;
  3649. int major = simple_strtoul(buf, &e, 10);
  3650. int minor;
  3651. dev_t dev;
  3652. struct md_rdev *rdev;
  3653. int err;
  3654. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3655. return -EINVAL;
  3656. minor = simple_strtoul(e+1, &e, 10);
  3657. if (*e && *e != '\n')
  3658. return -EINVAL;
  3659. dev = MKDEV(major, minor);
  3660. if (major != MAJOR(dev) ||
  3661. minor != MINOR(dev))
  3662. return -EOVERFLOW;
  3663. flush_workqueue(md_misc_wq);
  3664. err = mddev_lock(mddev);
  3665. if (err)
  3666. return err;
  3667. if (mddev->persistent) {
  3668. rdev = md_import_device(dev, mddev->major_version,
  3669. mddev->minor_version);
  3670. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3671. struct md_rdev *rdev0
  3672. = list_entry(mddev->disks.next,
  3673. struct md_rdev, same_set);
  3674. err = super_types[mddev->major_version]
  3675. .load_super(rdev, rdev0, mddev->minor_version);
  3676. if (err < 0)
  3677. goto out;
  3678. }
  3679. } else if (mddev->external)
  3680. rdev = md_import_device(dev, -2, -1);
  3681. else
  3682. rdev = md_import_device(dev, -1, -1);
  3683. if (IS_ERR(rdev)) {
  3684. mddev_unlock(mddev);
  3685. return PTR_ERR(rdev);
  3686. }
  3687. err = bind_rdev_to_array(rdev, mddev);
  3688. out:
  3689. if (err)
  3690. export_rdev(rdev);
  3691. mddev_unlock(mddev);
  3692. return err ? err : len;
  3693. }
  3694. static struct md_sysfs_entry md_new_device =
  3695. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3696. static ssize_t
  3697. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3698. {
  3699. char *end;
  3700. unsigned long chunk, end_chunk;
  3701. int err;
  3702. err = mddev_lock(mddev);
  3703. if (err)
  3704. return err;
  3705. if (!mddev->bitmap)
  3706. goto out;
  3707. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3708. while (*buf) {
  3709. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3710. if (buf == end) break;
  3711. if (*end == '-') { /* range */
  3712. buf = end + 1;
  3713. end_chunk = simple_strtoul(buf, &end, 0);
  3714. if (buf == end) break;
  3715. }
  3716. if (*end && !isspace(*end)) break;
  3717. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3718. buf = skip_spaces(end);
  3719. }
  3720. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3721. out:
  3722. mddev_unlock(mddev);
  3723. return len;
  3724. }
  3725. static struct md_sysfs_entry md_bitmap =
  3726. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3727. static ssize_t
  3728. size_show(struct mddev *mddev, char *page)
  3729. {
  3730. return sprintf(page, "%llu\n",
  3731. (unsigned long long)mddev->dev_sectors / 2);
  3732. }
  3733. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3734. static ssize_t
  3735. size_store(struct mddev *mddev, const char *buf, size_t len)
  3736. {
  3737. /* If array is inactive, we can reduce the component size, but
  3738. * not increase it (except from 0).
  3739. * If array is active, we can try an on-line resize
  3740. */
  3741. sector_t sectors;
  3742. int err = strict_blocks_to_sectors(buf, &sectors);
  3743. if (err < 0)
  3744. return err;
  3745. err = mddev_lock(mddev);
  3746. if (err)
  3747. return err;
  3748. if (mddev->pers) {
  3749. err = update_size(mddev, sectors);
  3750. md_update_sb(mddev, 1);
  3751. } else {
  3752. if (mddev->dev_sectors == 0 ||
  3753. mddev->dev_sectors > sectors)
  3754. mddev->dev_sectors = sectors;
  3755. else
  3756. err = -ENOSPC;
  3757. }
  3758. mddev_unlock(mddev);
  3759. return err ? err : len;
  3760. }
  3761. static struct md_sysfs_entry md_size =
  3762. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3763. /* Metadata version.
  3764. * This is one of
  3765. * 'none' for arrays with no metadata (good luck...)
  3766. * 'external' for arrays with externally managed metadata,
  3767. * or N.M for internally known formats
  3768. */
  3769. static ssize_t
  3770. metadata_show(struct mddev *mddev, char *page)
  3771. {
  3772. if (mddev->persistent)
  3773. return sprintf(page, "%d.%d\n",
  3774. mddev->major_version, mddev->minor_version);
  3775. else if (mddev->external)
  3776. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3777. else
  3778. return sprintf(page, "none\n");
  3779. }
  3780. static ssize_t
  3781. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3782. {
  3783. int major, minor;
  3784. char *e;
  3785. int err;
  3786. /* Changing the details of 'external' metadata is
  3787. * always permitted. Otherwise there must be
  3788. * no devices attached to the array.
  3789. */
  3790. err = mddev_lock(mddev);
  3791. if (err)
  3792. return err;
  3793. err = -EBUSY;
  3794. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3795. ;
  3796. else if (!list_empty(&mddev->disks))
  3797. goto out_unlock;
  3798. err = 0;
  3799. if (cmd_match(buf, "none")) {
  3800. mddev->persistent = 0;
  3801. mddev->external = 0;
  3802. mddev->major_version = 0;
  3803. mddev->minor_version = 90;
  3804. goto out_unlock;
  3805. }
  3806. if (strncmp(buf, "external:", 9) == 0) {
  3807. size_t namelen = len-9;
  3808. if (namelen >= sizeof(mddev->metadata_type))
  3809. namelen = sizeof(mddev->metadata_type)-1;
  3810. strncpy(mddev->metadata_type, buf+9, namelen);
  3811. mddev->metadata_type[namelen] = 0;
  3812. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3813. mddev->metadata_type[--namelen] = 0;
  3814. mddev->persistent = 0;
  3815. mddev->external = 1;
  3816. mddev->major_version = 0;
  3817. mddev->minor_version = 90;
  3818. goto out_unlock;
  3819. }
  3820. major = simple_strtoul(buf, &e, 10);
  3821. err = -EINVAL;
  3822. if (e==buf || *e != '.')
  3823. goto out_unlock;
  3824. buf = e+1;
  3825. minor = simple_strtoul(buf, &e, 10);
  3826. if (e==buf || (*e && *e != '\n') )
  3827. goto out_unlock;
  3828. err = -ENOENT;
  3829. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3830. goto out_unlock;
  3831. mddev->major_version = major;
  3832. mddev->minor_version = minor;
  3833. mddev->persistent = 1;
  3834. mddev->external = 0;
  3835. err = 0;
  3836. out_unlock:
  3837. mddev_unlock(mddev);
  3838. return err ?: len;
  3839. }
  3840. static struct md_sysfs_entry md_metadata =
  3841. __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3842. static ssize_t
  3843. action_show(struct mddev *mddev, char *page)
  3844. {
  3845. char *type = "idle";
  3846. unsigned long recovery = mddev->recovery;
  3847. if (test_bit(MD_RECOVERY_FROZEN, &recovery))
  3848. type = "frozen";
  3849. else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
  3850. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
  3851. if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
  3852. type = "reshape";
  3853. else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
  3854. if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
  3855. type = "resync";
  3856. else if (test_bit(MD_RECOVERY_CHECK, &recovery))
  3857. type = "check";
  3858. else
  3859. type = "repair";
  3860. } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
  3861. type = "recover";
  3862. else if (mddev->reshape_position != MaxSector)
  3863. type = "reshape";
  3864. }
  3865. return sprintf(page, "%s\n", type);
  3866. }
  3867. static ssize_t
  3868. action_store(struct mddev *mddev, const char *page, size_t len)
  3869. {
  3870. if (!mddev->pers || !mddev->pers->sync_request)
  3871. return -EINVAL;
  3872. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3873. if (cmd_match(page, "frozen"))
  3874. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3875. else
  3876. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3877. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3878. mddev_lock(mddev) == 0) {
  3879. flush_workqueue(md_misc_wq);
  3880. if (mddev->sync_thread) {
  3881. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3882. md_reap_sync_thread(mddev);
  3883. }
  3884. mddev_unlock(mddev);
  3885. }
  3886. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3887. return -EBUSY;
  3888. else if (cmd_match(page, "resync"))
  3889. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3890. else if (cmd_match(page, "recover")) {
  3891. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3892. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3893. } else if (cmd_match(page, "reshape")) {
  3894. int err;
  3895. if (mddev->pers->start_reshape == NULL)
  3896. return -EINVAL;
  3897. err = mddev_lock(mddev);
  3898. if (!err) {
  3899. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3900. err = -EBUSY;
  3901. else {
  3902. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3903. err = mddev->pers->start_reshape(mddev);
  3904. }
  3905. mddev_unlock(mddev);
  3906. }
  3907. if (err)
  3908. return err;
  3909. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3910. } else {
  3911. if (cmd_match(page, "check"))
  3912. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3913. else if (!cmd_match(page, "repair"))
  3914. return -EINVAL;
  3915. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3916. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3917. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3918. }
  3919. if (mddev->ro == 2) {
  3920. /* A write to sync_action is enough to justify
  3921. * canceling read-auto mode
  3922. */
  3923. mddev->ro = 0;
  3924. md_wakeup_thread(mddev->sync_thread);
  3925. }
  3926. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3927. md_wakeup_thread(mddev->thread);
  3928. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3929. return len;
  3930. }
  3931. static struct md_sysfs_entry md_scan_mode =
  3932. __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3933. static ssize_t
  3934. last_sync_action_show(struct mddev *mddev, char *page)
  3935. {
  3936. return sprintf(page, "%s\n", mddev->last_sync_action);
  3937. }
  3938. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3939. static ssize_t
  3940. mismatch_cnt_show(struct mddev *mddev, char *page)
  3941. {
  3942. return sprintf(page, "%llu\n",
  3943. (unsigned long long)
  3944. atomic64_read(&mddev->resync_mismatches));
  3945. }
  3946. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3947. static ssize_t
  3948. sync_min_show(struct mddev *mddev, char *page)
  3949. {
  3950. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3951. mddev->sync_speed_min ? "local": "system");
  3952. }
  3953. static ssize_t
  3954. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3955. {
  3956. unsigned int min;
  3957. int rv;
  3958. if (strncmp(buf, "system", 6)==0) {
  3959. min = 0;
  3960. } else {
  3961. rv = kstrtouint(buf, 10, &min);
  3962. if (rv < 0)
  3963. return rv;
  3964. if (min == 0)
  3965. return -EINVAL;
  3966. }
  3967. mddev->sync_speed_min = min;
  3968. return len;
  3969. }
  3970. static struct md_sysfs_entry md_sync_min =
  3971. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3972. static ssize_t
  3973. sync_max_show(struct mddev *mddev, char *page)
  3974. {
  3975. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3976. mddev->sync_speed_max ? "local": "system");
  3977. }
  3978. static ssize_t
  3979. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3980. {
  3981. unsigned int max;
  3982. int rv;
  3983. if (strncmp(buf, "system", 6)==0) {
  3984. max = 0;
  3985. } else {
  3986. rv = kstrtouint(buf, 10, &max);
  3987. if (rv < 0)
  3988. return rv;
  3989. if (max == 0)
  3990. return -EINVAL;
  3991. }
  3992. mddev->sync_speed_max = max;
  3993. return len;
  3994. }
  3995. static struct md_sysfs_entry md_sync_max =
  3996. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3997. static ssize_t
  3998. degraded_show(struct mddev *mddev, char *page)
  3999. {
  4000. return sprintf(page, "%d\n", mddev->degraded);
  4001. }
  4002. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  4003. static ssize_t
  4004. sync_force_parallel_show(struct mddev *mddev, char *page)
  4005. {
  4006. return sprintf(page, "%d\n", mddev->parallel_resync);
  4007. }
  4008. static ssize_t
  4009. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  4010. {
  4011. long n;
  4012. if (kstrtol(buf, 10, &n))
  4013. return -EINVAL;
  4014. if (n != 0 && n != 1)
  4015. return -EINVAL;
  4016. mddev->parallel_resync = n;
  4017. if (mddev->sync_thread)
  4018. wake_up(&resync_wait);
  4019. return len;
  4020. }
  4021. /* force parallel resync, even with shared block devices */
  4022. static struct md_sysfs_entry md_sync_force_parallel =
  4023. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  4024. sync_force_parallel_show, sync_force_parallel_store);
  4025. static ssize_t
  4026. sync_speed_show(struct mddev *mddev, char *page)
  4027. {
  4028. unsigned long resync, dt, db;
  4029. if (mddev->curr_resync == 0)
  4030. return sprintf(page, "none\n");
  4031. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  4032. dt = (jiffies - mddev->resync_mark) / HZ;
  4033. if (!dt) dt++;
  4034. db = resync - mddev->resync_mark_cnt;
  4035. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  4036. }
  4037. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  4038. static ssize_t
  4039. sync_completed_show(struct mddev *mddev, char *page)
  4040. {
  4041. unsigned long long max_sectors, resync;
  4042. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4043. return sprintf(page, "none\n");
  4044. if (mddev->curr_resync == 1 ||
  4045. mddev->curr_resync == 2)
  4046. return sprintf(page, "delayed\n");
  4047. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  4048. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4049. max_sectors = mddev->resync_max_sectors;
  4050. else
  4051. max_sectors = mddev->dev_sectors;
  4052. resync = mddev->curr_resync_completed;
  4053. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  4054. }
  4055. static struct md_sysfs_entry md_sync_completed =
  4056. __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
  4057. static ssize_t
  4058. min_sync_show(struct mddev *mddev, char *page)
  4059. {
  4060. return sprintf(page, "%llu\n",
  4061. (unsigned long long)mddev->resync_min);
  4062. }
  4063. static ssize_t
  4064. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  4065. {
  4066. unsigned long long min;
  4067. int err;
  4068. if (kstrtoull(buf, 10, &min))
  4069. return -EINVAL;
  4070. spin_lock(&mddev->lock);
  4071. err = -EINVAL;
  4072. if (min > mddev->resync_max)
  4073. goto out_unlock;
  4074. err = -EBUSY;
  4075. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4076. goto out_unlock;
  4077. /* Round down to multiple of 4K for safety */
  4078. mddev->resync_min = round_down(min, 8);
  4079. err = 0;
  4080. out_unlock:
  4081. spin_unlock(&mddev->lock);
  4082. return err ?: len;
  4083. }
  4084. static struct md_sysfs_entry md_min_sync =
  4085. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  4086. static ssize_t
  4087. max_sync_show(struct mddev *mddev, char *page)
  4088. {
  4089. if (mddev->resync_max == MaxSector)
  4090. return sprintf(page, "max\n");
  4091. else
  4092. return sprintf(page, "%llu\n",
  4093. (unsigned long long)mddev->resync_max);
  4094. }
  4095. static ssize_t
  4096. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  4097. {
  4098. int err;
  4099. spin_lock(&mddev->lock);
  4100. if (strncmp(buf, "max", 3) == 0)
  4101. mddev->resync_max = MaxSector;
  4102. else {
  4103. unsigned long long max;
  4104. int chunk;
  4105. err = -EINVAL;
  4106. if (kstrtoull(buf, 10, &max))
  4107. goto out_unlock;
  4108. if (max < mddev->resync_min)
  4109. goto out_unlock;
  4110. err = -EBUSY;
  4111. if (max < mddev->resync_max &&
  4112. mddev->ro == 0 &&
  4113. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4114. goto out_unlock;
  4115. /* Must be a multiple of chunk_size */
  4116. chunk = mddev->chunk_sectors;
  4117. if (chunk) {
  4118. sector_t temp = max;
  4119. err = -EINVAL;
  4120. if (sector_div(temp, chunk))
  4121. goto out_unlock;
  4122. }
  4123. mddev->resync_max = max;
  4124. }
  4125. wake_up(&mddev->recovery_wait);
  4126. err = 0;
  4127. out_unlock:
  4128. spin_unlock(&mddev->lock);
  4129. return err ?: len;
  4130. }
  4131. static struct md_sysfs_entry md_max_sync =
  4132. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4133. static ssize_t
  4134. suspend_lo_show(struct mddev *mddev, char *page)
  4135. {
  4136. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4137. }
  4138. static ssize_t
  4139. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4140. {
  4141. unsigned long long old, new;
  4142. int err;
  4143. err = kstrtoull(buf, 10, &new);
  4144. if (err < 0)
  4145. return err;
  4146. if (new != (sector_t)new)
  4147. return -EINVAL;
  4148. err = mddev_lock(mddev);
  4149. if (err)
  4150. return err;
  4151. err = -EINVAL;
  4152. if (mddev->pers == NULL ||
  4153. mddev->pers->quiesce == NULL)
  4154. goto unlock;
  4155. old = mddev->suspend_lo;
  4156. mddev->suspend_lo = new;
  4157. if (new >= old)
  4158. /* Shrinking suspended region */
  4159. mddev->pers->quiesce(mddev, 2);
  4160. else {
  4161. /* Expanding suspended region - need to wait */
  4162. mddev->pers->quiesce(mddev, 1);
  4163. mddev->pers->quiesce(mddev, 0);
  4164. }
  4165. err = 0;
  4166. unlock:
  4167. mddev_unlock(mddev);
  4168. return err ?: len;
  4169. }
  4170. static struct md_sysfs_entry md_suspend_lo =
  4171. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4172. static ssize_t
  4173. suspend_hi_show(struct mddev *mddev, char *page)
  4174. {
  4175. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4176. }
  4177. static ssize_t
  4178. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4179. {
  4180. unsigned long long old, new;
  4181. int err;
  4182. err = kstrtoull(buf, 10, &new);
  4183. if (err < 0)
  4184. return err;
  4185. if (new != (sector_t)new)
  4186. return -EINVAL;
  4187. err = mddev_lock(mddev);
  4188. if (err)
  4189. return err;
  4190. err = -EINVAL;
  4191. if (mddev->pers == NULL ||
  4192. mddev->pers->quiesce == NULL)
  4193. goto unlock;
  4194. old = mddev->suspend_hi;
  4195. mddev->suspend_hi = new;
  4196. if (new <= old)
  4197. /* Shrinking suspended region */
  4198. mddev->pers->quiesce(mddev, 2);
  4199. else {
  4200. /* Expanding suspended region - need to wait */
  4201. mddev->pers->quiesce(mddev, 1);
  4202. mddev->pers->quiesce(mddev, 0);
  4203. }
  4204. err = 0;
  4205. unlock:
  4206. mddev_unlock(mddev);
  4207. return err ?: len;
  4208. }
  4209. static struct md_sysfs_entry md_suspend_hi =
  4210. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4211. static ssize_t
  4212. reshape_position_show(struct mddev *mddev, char *page)
  4213. {
  4214. if (mddev->reshape_position != MaxSector)
  4215. return sprintf(page, "%llu\n",
  4216. (unsigned long long)mddev->reshape_position);
  4217. strcpy(page, "none\n");
  4218. return 5;
  4219. }
  4220. static ssize_t
  4221. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4222. {
  4223. struct md_rdev *rdev;
  4224. unsigned long long new;
  4225. int err;
  4226. err = kstrtoull(buf, 10, &new);
  4227. if (err < 0)
  4228. return err;
  4229. if (new != (sector_t)new)
  4230. return -EINVAL;
  4231. err = mddev_lock(mddev);
  4232. if (err)
  4233. return err;
  4234. err = -EBUSY;
  4235. if (mddev->pers)
  4236. goto unlock;
  4237. mddev->reshape_position = new;
  4238. mddev->delta_disks = 0;
  4239. mddev->reshape_backwards = 0;
  4240. mddev->new_level = mddev->level;
  4241. mddev->new_layout = mddev->layout;
  4242. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4243. rdev_for_each(rdev, mddev)
  4244. rdev->new_data_offset = rdev->data_offset;
  4245. err = 0;
  4246. unlock:
  4247. mddev_unlock(mddev);
  4248. return err ?: len;
  4249. }
  4250. static struct md_sysfs_entry md_reshape_position =
  4251. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4252. reshape_position_store);
  4253. static ssize_t
  4254. reshape_direction_show(struct mddev *mddev, char *page)
  4255. {
  4256. return sprintf(page, "%s\n",
  4257. mddev->reshape_backwards ? "backwards" : "forwards");
  4258. }
  4259. static ssize_t
  4260. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4261. {
  4262. int backwards = 0;
  4263. int err;
  4264. if (cmd_match(buf, "forwards"))
  4265. backwards = 0;
  4266. else if (cmd_match(buf, "backwards"))
  4267. backwards = 1;
  4268. else
  4269. return -EINVAL;
  4270. if (mddev->reshape_backwards == backwards)
  4271. return len;
  4272. err = mddev_lock(mddev);
  4273. if (err)
  4274. return err;
  4275. /* check if we are allowed to change */
  4276. if (mddev->delta_disks)
  4277. err = -EBUSY;
  4278. else if (mddev->persistent &&
  4279. mddev->major_version == 0)
  4280. err = -EINVAL;
  4281. else
  4282. mddev->reshape_backwards = backwards;
  4283. mddev_unlock(mddev);
  4284. return err ?: len;
  4285. }
  4286. static struct md_sysfs_entry md_reshape_direction =
  4287. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4288. reshape_direction_store);
  4289. static ssize_t
  4290. array_size_show(struct mddev *mddev, char *page)
  4291. {
  4292. if (mddev->external_size)
  4293. return sprintf(page, "%llu\n",
  4294. (unsigned long long)mddev->array_sectors/2);
  4295. else
  4296. return sprintf(page, "default\n");
  4297. }
  4298. static ssize_t
  4299. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4300. {
  4301. sector_t sectors;
  4302. int err;
  4303. err = mddev_lock(mddev);
  4304. if (err)
  4305. return err;
  4306. if (strncmp(buf, "default", 7) == 0) {
  4307. if (mddev->pers)
  4308. sectors = mddev->pers->size(mddev, 0, 0);
  4309. else
  4310. sectors = mddev->array_sectors;
  4311. mddev->external_size = 0;
  4312. } else {
  4313. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4314. err = -EINVAL;
  4315. else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4316. err = -E2BIG;
  4317. else
  4318. mddev->external_size = 1;
  4319. }
  4320. if (!err) {
  4321. mddev->array_sectors = sectors;
  4322. if (mddev->pers) {
  4323. set_capacity(mddev->gendisk, mddev->array_sectors);
  4324. revalidate_disk(mddev->gendisk);
  4325. }
  4326. }
  4327. mddev_unlock(mddev);
  4328. return err ?: len;
  4329. }
  4330. static struct md_sysfs_entry md_array_size =
  4331. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4332. array_size_store);
  4333. static struct attribute *md_default_attrs[] = {
  4334. &md_level.attr,
  4335. &md_layout.attr,
  4336. &md_raid_disks.attr,
  4337. &md_chunk_size.attr,
  4338. &md_size.attr,
  4339. &md_resync_start.attr,
  4340. &md_metadata.attr,
  4341. &md_new_device.attr,
  4342. &md_safe_delay.attr,
  4343. &md_array_state.attr,
  4344. &md_reshape_position.attr,
  4345. &md_reshape_direction.attr,
  4346. &md_array_size.attr,
  4347. &max_corr_read_errors.attr,
  4348. NULL,
  4349. };
  4350. static struct attribute *md_redundancy_attrs[] = {
  4351. &md_scan_mode.attr,
  4352. &md_last_scan_mode.attr,
  4353. &md_mismatches.attr,
  4354. &md_sync_min.attr,
  4355. &md_sync_max.attr,
  4356. &md_sync_speed.attr,
  4357. &md_sync_force_parallel.attr,
  4358. &md_sync_completed.attr,
  4359. &md_min_sync.attr,
  4360. &md_max_sync.attr,
  4361. &md_suspend_lo.attr,
  4362. &md_suspend_hi.attr,
  4363. &md_bitmap.attr,
  4364. &md_degraded.attr,
  4365. NULL,
  4366. };
  4367. static struct attribute_group md_redundancy_group = {
  4368. .name = NULL,
  4369. .attrs = md_redundancy_attrs,
  4370. };
  4371. static ssize_t
  4372. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4373. {
  4374. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4375. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4376. ssize_t rv;
  4377. if (!entry->show)
  4378. return -EIO;
  4379. spin_lock(&all_mddevs_lock);
  4380. if (list_empty(&mddev->all_mddevs)) {
  4381. spin_unlock(&all_mddevs_lock);
  4382. return -EBUSY;
  4383. }
  4384. mddev_get(mddev);
  4385. spin_unlock(&all_mddevs_lock);
  4386. rv = entry->show(mddev, page);
  4387. mddev_put(mddev);
  4388. return rv;
  4389. }
  4390. static ssize_t
  4391. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4392. const char *page, size_t length)
  4393. {
  4394. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4395. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4396. ssize_t rv;
  4397. if (!entry->store)
  4398. return -EIO;
  4399. if (!capable(CAP_SYS_ADMIN))
  4400. return -EACCES;
  4401. spin_lock(&all_mddevs_lock);
  4402. if (list_empty(&mddev->all_mddevs)) {
  4403. spin_unlock(&all_mddevs_lock);
  4404. return -EBUSY;
  4405. }
  4406. mddev_get(mddev);
  4407. spin_unlock(&all_mddevs_lock);
  4408. rv = entry->store(mddev, page, length);
  4409. mddev_put(mddev);
  4410. return rv;
  4411. }
  4412. static void md_free(struct kobject *ko)
  4413. {
  4414. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4415. if (mddev->sysfs_state)
  4416. sysfs_put(mddev->sysfs_state);
  4417. if (mddev->queue)
  4418. blk_cleanup_queue(mddev->queue);
  4419. if (mddev->gendisk) {
  4420. del_gendisk(mddev->gendisk);
  4421. put_disk(mddev->gendisk);
  4422. }
  4423. kfree(mddev);
  4424. }
  4425. static const struct sysfs_ops md_sysfs_ops = {
  4426. .show = md_attr_show,
  4427. .store = md_attr_store,
  4428. };
  4429. static struct kobj_type md_ktype = {
  4430. .release = md_free,
  4431. .sysfs_ops = &md_sysfs_ops,
  4432. .default_attrs = md_default_attrs,
  4433. };
  4434. int mdp_major = 0;
  4435. static void mddev_delayed_delete(struct work_struct *ws)
  4436. {
  4437. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4438. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4439. kobject_del(&mddev->kobj);
  4440. kobject_put(&mddev->kobj);
  4441. }
  4442. static int md_alloc(dev_t dev, char *name)
  4443. {
  4444. static DEFINE_MUTEX(disks_mutex);
  4445. struct mddev *mddev = mddev_find(dev);
  4446. struct gendisk *disk;
  4447. int partitioned;
  4448. int shift;
  4449. int unit;
  4450. int error;
  4451. if (!mddev)
  4452. return -ENODEV;
  4453. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4454. shift = partitioned ? MdpMinorShift : 0;
  4455. unit = MINOR(mddev->unit) >> shift;
  4456. /* wait for any previous instance of this device to be
  4457. * completely removed (mddev_delayed_delete).
  4458. */
  4459. flush_workqueue(md_misc_wq);
  4460. mutex_lock(&disks_mutex);
  4461. error = -EEXIST;
  4462. if (mddev->gendisk)
  4463. goto abort;
  4464. if (name) {
  4465. /* Need to ensure that 'name' is not a duplicate.
  4466. */
  4467. struct mddev *mddev2;
  4468. spin_lock(&all_mddevs_lock);
  4469. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4470. if (mddev2->gendisk &&
  4471. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4472. spin_unlock(&all_mddevs_lock);
  4473. goto abort;
  4474. }
  4475. spin_unlock(&all_mddevs_lock);
  4476. }
  4477. error = -ENOMEM;
  4478. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4479. if (!mddev->queue)
  4480. goto abort;
  4481. mddev->queue->queuedata = mddev;
  4482. blk_queue_make_request(mddev->queue, md_make_request);
  4483. blk_set_stacking_limits(&mddev->queue->limits);
  4484. disk = alloc_disk(1 << shift);
  4485. if (!disk) {
  4486. blk_cleanup_queue(mddev->queue);
  4487. mddev->queue = NULL;
  4488. goto abort;
  4489. }
  4490. disk->major = MAJOR(mddev->unit);
  4491. disk->first_minor = unit << shift;
  4492. if (name)
  4493. strcpy(disk->disk_name, name);
  4494. else if (partitioned)
  4495. sprintf(disk->disk_name, "md_d%d", unit);
  4496. else
  4497. sprintf(disk->disk_name, "md%d", unit);
  4498. disk->fops = &md_fops;
  4499. disk->private_data = mddev;
  4500. disk->queue = mddev->queue;
  4501. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4502. /* Allow extended partitions. This makes the
  4503. * 'mdp' device redundant, but we can't really
  4504. * remove it now.
  4505. */
  4506. disk->flags |= GENHD_FL_EXT_DEVT;
  4507. mddev->gendisk = disk;
  4508. /* As soon as we call add_disk(), another thread could get
  4509. * through to md_open, so make sure it doesn't get too far
  4510. */
  4511. mutex_lock(&mddev->open_mutex);
  4512. add_disk(disk);
  4513. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4514. &disk_to_dev(disk)->kobj, "%s", "md");
  4515. if (error) {
  4516. /* This isn't possible, but as kobject_init_and_add is marked
  4517. * __must_check, we must do something with the result
  4518. */
  4519. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4520. disk->disk_name);
  4521. error = 0;
  4522. }
  4523. if (mddev->kobj.sd &&
  4524. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4525. printk(KERN_DEBUG "pointless warning\n");
  4526. mutex_unlock(&mddev->open_mutex);
  4527. abort:
  4528. mutex_unlock(&disks_mutex);
  4529. if (!error && mddev->kobj.sd) {
  4530. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4531. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4532. }
  4533. mddev_put(mddev);
  4534. return error;
  4535. }
  4536. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4537. {
  4538. md_alloc(dev, NULL);
  4539. return NULL;
  4540. }
  4541. static int add_named_array(const char *val, struct kernel_param *kp)
  4542. {
  4543. /* val must be "md_*" where * is not all digits.
  4544. * We allocate an array with a large free minor number, and
  4545. * set the name to val. val must not already be an active name.
  4546. */
  4547. int len = strlen(val);
  4548. char buf[DISK_NAME_LEN];
  4549. while (len && val[len-1] == '\n')
  4550. len--;
  4551. if (len >= DISK_NAME_LEN)
  4552. return -E2BIG;
  4553. strlcpy(buf, val, len+1);
  4554. if (strncmp(buf, "md_", 3) != 0)
  4555. return -EINVAL;
  4556. return md_alloc(0, buf);
  4557. }
  4558. static void md_safemode_timeout(unsigned long data)
  4559. {
  4560. struct mddev *mddev = (struct mddev *) data;
  4561. if (!atomic_read(&mddev->writes_pending)) {
  4562. mddev->safemode = 1;
  4563. if (mddev->external)
  4564. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4565. }
  4566. md_wakeup_thread(mddev->thread);
  4567. }
  4568. static int start_dirty_degraded;
  4569. int md_run(struct mddev *mddev)
  4570. {
  4571. int err;
  4572. struct md_rdev *rdev;
  4573. struct md_personality *pers;
  4574. if (list_empty(&mddev->disks))
  4575. /* cannot run an array with no devices.. */
  4576. return -EINVAL;
  4577. if (mddev->pers)
  4578. return -EBUSY;
  4579. /* Cannot run until previous stop completes properly */
  4580. if (mddev->sysfs_active)
  4581. return -EBUSY;
  4582. /*
  4583. * Analyze all RAID superblock(s)
  4584. */
  4585. if (!mddev->raid_disks) {
  4586. if (!mddev->persistent)
  4587. return -EINVAL;
  4588. analyze_sbs(mddev);
  4589. }
  4590. if (mddev->level != LEVEL_NONE)
  4591. request_module("md-level-%d", mddev->level);
  4592. else if (mddev->clevel[0])
  4593. request_module("md-%s", mddev->clevel);
  4594. /*
  4595. * Drop all container device buffers, from now on
  4596. * the only valid external interface is through the md
  4597. * device.
  4598. */
  4599. rdev_for_each(rdev, mddev) {
  4600. if (test_bit(Faulty, &rdev->flags))
  4601. continue;
  4602. sync_blockdev(rdev->bdev);
  4603. invalidate_bdev(rdev->bdev);
  4604. /* perform some consistency tests on the device.
  4605. * We don't want the data to overlap the metadata,
  4606. * Internal Bitmap issues have been handled elsewhere.
  4607. */
  4608. if (rdev->meta_bdev) {
  4609. /* Nothing to check */;
  4610. } else if (rdev->data_offset < rdev->sb_start) {
  4611. if (mddev->dev_sectors &&
  4612. rdev->data_offset + mddev->dev_sectors
  4613. > rdev->sb_start) {
  4614. printk("md: %s: data overlaps metadata\n",
  4615. mdname(mddev));
  4616. return -EINVAL;
  4617. }
  4618. } else {
  4619. if (rdev->sb_start + rdev->sb_size/512
  4620. > rdev->data_offset) {
  4621. printk("md: %s: metadata overlaps data\n",
  4622. mdname(mddev));
  4623. return -EINVAL;
  4624. }
  4625. }
  4626. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4627. }
  4628. if (mddev->bio_set == NULL)
  4629. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4630. spin_lock(&pers_lock);
  4631. pers = find_pers(mddev->level, mddev->clevel);
  4632. if (!pers || !try_module_get(pers->owner)) {
  4633. spin_unlock(&pers_lock);
  4634. if (mddev->level != LEVEL_NONE)
  4635. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4636. mddev->level);
  4637. else
  4638. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4639. mddev->clevel);
  4640. return -EINVAL;
  4641. }
  4642. spin_unlock(&pers_lock);
  4643. if (mddev->level != pers->level) {
  4644. mddev->level = pers->level;
  4645. mddev->new_level = pers->level;
  4646. }
  4647. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4648. if (mddev->reshape_position != MaxSector &&
  4649. pers->start_reshape == NULL) {
  4650. /* This personality cannot handle reshaping... */
  4651. module_put(pers->owner);
  4652. return -EINVAL;
  4653. }
  4654. if (pers->sync_request) {
  4655. /* Warn if this is a potentially silly
  4656. * configuration.
  4657. */
  4658. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4659. struct md_rdev *rdev2;
  4660. int warned = 0;
  4661. rdev_for_each(rdev, mddev)
  4662. rdev_for_each(rdev2, mddev) {
  4663. if (rdev < rdev2 &&
  4664. rdev->bdev->bd_contains ==
  4665. rdev2->bdev->bd_contains) {
  4666. printk(KERN_WARNING
  4667. "%s: WARNING: %s appears to be"
  4668. " on the same physical disk as"
  4669. " %s.\n",
  4670. mdname(mddev),
  4671. bdevname(rdev->bdev,b),
  4672. bdevname(rdev2->bdev,b2));
  4673. warned = 1;
  4674. }
  4675. }
  4676. if (warned)
  4677. printk(KERN_WARNING
  4678. "True protection against single-disk"
  4679. " failure might be compromised.\n");
  4680. }
  4681. mddev->recovery = 0;
  4682. /* may be over-ridden by personality */
  4683. mddev->resync_max_sectors = mddev->dev_sectors;
  4684. mddev->ok_start_degraded = start_dirty_degraded;
  4685. if (start_readonly && mddev->ro == 0)
  4686. mddev->ro = 2; /* read-only, but switch on first write */
  4687. err = pers->run(mddev);
  4688. if (err)
  4689. printk(KERN_ERR "md: pers->run() failed ...\n");
  4690. else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4691. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4692. " but 'external_size' not in effect?\n", __func__);
  4693. printk(KERN_ERR
  4694. "md: invalid array_size %llu > default size %llu\n",
  4695. (unsigned long long)mddev->array_sectors / 2,
  4696. (unsigned long long)pers->size(mddev, 0, 0) / 2);
  4697. err = -EINVAL;
  4698. }
  4699. if (err == 0 && pers->sync_request &&
  4700. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4701. struct bitmap *bitmap;
  4702. bitmap = bitmap_create(mddev, -1);
  4703. if (IS_ERR(bitmap)) {
  4704. err = PTR_ERR(bitmap);
  4705. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4706. mdname(mddev), err);
  4707. } else
  4708. mddev->bitmap = bitmap;
  4709. }
  4710. if (err) {
  4711. mddev_detach(mddev);
  4712. if (mddev->private)
  4713. pers->free(mddev, mddev->private);
  4714. mddev->private = NULL;
  4715. module_put(pers->owner);
  4716. bitmap_destroy(mddev);
  4717. return err;
  4718. }
  4719. if (mddev->queue) {
  4720. mddev->queue->backing_dev_info.congested_data = mddev;
  4721. mddev->queue->backing_dev_info.congested_fn = md_congested;
  4722. }
  4723. if (pers->sync_request) {
  4724. if (mddev->kobj.sd &&
  4725. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4726. printk(KERN_WARNING
  4727. "md: cannot register extra attributes for %s\n",
  4728. mdname(mddev));
  4729. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4730. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4731. mddev->ro = 0;
  4732. atomic_set(&mddev->writes_pending,0);
  4733. atomic_set(&mddev->max_corr_read_errors,
  4734. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4735. mddev->safemode = 0;
  4736. if (mddev_is_clustered(mddev))
  4737. mddev->safemode_delay = 0;
  4738. else
  4739. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4740. mddev->in_sync = 1;
  4741. smp_wmb();
  4742. spin_lock(&mddev->lock);
  4743. mddev->pers = pers;
  4744. spin_unlock(&mddev->lock);
  4745. rdev_for_each(rdev, mddev)
  4746. if (rdev->raid_disk >= 0)
  4747. if (sysfs_link_rdev(mddev, rdev))
  4748. /* failure here is OK */;
  4749. if (mddev->degraded && !mddev->ro)
  4750. /* This ensures that recovering status is reported immediately
  4751. * via sysfs - until a lack of spares is confirmed.
  4752. */
  4753. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4754. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4755. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4756. md_update_sb(mddev, 0);
  4757. md_new_event(mddev);
  4758. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4759. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4760. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4761. return 0;
  4762. }
  4763. EXPORT_SYMBOL_GPL(md_run);
  4764. static int do_md_run(struct mddev *mddev)
  4765. {
  4766. int err;
  4767. err = md_run(mddev);
  4768. if (err)
  4769. goto out;
  4770. err = bitmap_load(mddev);
  4771. if (err) {
  4772. bitmap_destroy(mddev);
  4773. goto out;
  4774. }
  4775. if (mddev_is_clustered(mddev))
  4776. md_allow_write(mddev);
  4777. md_wakeup_thread(mddev->thread);
  4778. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4779. set_capacity(mddev->gendisk, mddev->array_sectors);
  4780. revalidate_disk(mddev->gendisk);
  4781. mddev->changed = 1;
  4782. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4783. out:
  4784. return err;
  4785. }
  4786. static int restart_array(struct mddev *mddev)
  4787. {
  4788. struct gendisk *disk = mddev->gendisk;
  4789. /* Complain if it has no devices */
  4790. if (list_empty(&mddev->disks))
  4791. return -ENXIO;
  4792. if (!mddev->pers)
  4793. return -EINVAL;
  4794. if (!mddev->ro)
  4795. return -EBUSY;
  4796. if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
  4797. struct md_rdev *rdev;
  4798. bool has_journal = false;
  4799. rcu_read_lock();
  4800. rdev_for_each_rcu(rdev, mddev) {
  4801. if (test_bit(Journal, &rdev->flags) &&
  4802. !test_bit(Faulty, &rdev->flags)) {
  4803. has_journal = true;
  4804. break;
  4805. }
  4806. }
  4807. rcu_read_unlock();
  4808. /* Don't restart rw with journal missing/faulty */
  4809. if (!has_journal)
  4810. return -EINVAL;
  4811. }
  4812. mddev->safemode = 0;
  4813. mddev->ro = 0;
  4814. set_disk_ro(disk, 0);
  4815. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4816. mdname(mddev));
  4817. /* Kick recovery or resync if necessary */
  4818. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4819. md_wakeup_thread(mddev->thread);
  4820. md_wakeup_thread(mddev->sync_thread);
  4821. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4822. return 0;
  4823. }
  4824. static void md_clean(struct mddev *mddev)
  4825. {
  4826. mddev->array_sectors = 0;
  4827. mddev->external_size = 0;
  4828. mddev->dev_sectors = 0;
  4829. mddev->raid_disks = 0;
  4830. mddev->recovery_cp = 0;
  4831. mddev->resync_min = 0;
  4832. mddev->resync_max = MaxSector;
  4833. mddev->reshape_position = MaxSector;
  4834. mddev->external = 0;
  4835. mddev->persistent = 0;
  4836. mddev->level = LEVEL_NONE;
  4837. mddev->clevel[0] = 0;
  4838. mddev->flags = 0;
  4839. mddev->ro = 0;
  4840. mddev->metadata_type[0] = 0;
  4841. mddev->chunk_sectors = 0;
  4842. mddev->ctime = mddev->utime = 0;
  4843. mddev->layout = 0;
  4844. mddev->max_disks = 0;
  4845. mddev->events = 0;
  4846. mddev->can_decrease_events = 0;
  4847. mddev->delta_disks = 0;
  4848. mddev->reshape_backwards = 0;
  4849. mddev->new_level = LEVEL_NONE;
  4850. mddev->new_layout = 0;
  4851. mddev->new_chunk_sectors = 0;
  4852. mddev->curr_resync = 0;
  4853. atomic64_set(&mddev->resync_mismatches, 0);
  4854. mddev->suspend_lo = mddev->suspend_hi = 0;
  4855. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4856. mddev->recovery = 0;
  4857. mddev->in_sync = 0;
  4858. mddev->changed = 0;
  4859. mddev->degraded = 0;
  4860. mddev->safemode = 0;
  4861. mddev->private = NULL;
  4862. mddev->bitmap_info.offset = 0;
  4863. mddev->bitmap_info.default_offset = 0;
  4864. mddev->bitmap_info.default_space = 0;
  4865. mddev->bitmap_info.chunksize = 0;
  4866. mddev->bitmap_info.daemon_sleep = 0;
  4867. mddev->bitmap_info.max_write_behind = 0;
  4868. }
  4869. static void __md_stop_writes(struct mddev *mddev)
  4870. {
  4871. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4872. flush_workqueue(md_misc_wq);
  4873. if (mddev->sync_thread) {
  4874. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4875. md_reap_sync_thread(mddev);
  4876. }
  4877. del_timer_sync(&mddev->safemode_timer);
  4878. bitmap_flush(mddev);
  4879. md_super_wait(mddev);
  4880. if (mddev->ro == 0 &&
  4881. ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
  4882. (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4883. /* mark array as shutdown cleanly */
  4884. if (!mddev_is_clustered(mddev))
  4885. mddev->in_sync = 1;
  4886. md_update_sb(mddev, 1);
  4887. }
  4888. }
  4889. void md_stop_writes(struct mddev *mddev)
  4890. {
  4891. mddev_lock_nointr(mddev);
  4892. __md_stop_writes(mddev);
  4893. mddev_unlock(mddev);
  4894. }
  4895. EXPORT_SYMBOL_GPL(md_stop_writes);
  4896. static void mddev_detach(struct mddev *mddev)
  4897. {
  4898. struct bitmap *bitmap = mddev->bitmap;
  4899. /* wait for behind writes to complete */
  4900. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  4901. printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
  4902. mdname(mddev));
  4903. /* need to kick something here to make sure I/O goes? */
  4904. wait_event(bitmap->behind_wait,
  4905. atomic_read(&bitmap->behind_writes) == 0);
  4906. }
  4907. if (mddev->pers && mddev->pers->quiesce) {
  4908. mddev->pers->quiesce(mddev, 1);
  4909. mddev->pers->quiesce(mddev, 0);
  4910. }
  4911. md_unregister_thread(&mddev->thread);
  4912. if (mddev->queue)
  4913. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  4914. }
  4915. static void __md_stop(struct mddev *mddev)
  4916. {
  4917. struct md_personality *pers = mddev->pers;
  4918. mddev_detach(mddev);
  4919. /* Ensure ->event_work is done */
  4920. flush_workqueue(md_misc_wq);
  4921. spin_lock(&mddev->lock);
  4922. mddev->pers = NULL;
  4923. spin_unlock(&mddev->lock);
  4924. pers->free(mddev, mddev->private);
  4925. mddev->private = NULL;
  4926. if (pers->sync_request && mddev->to_remove == NULL)
  4927. mddev->to_remove = &md_redundancy_group;
  4928. module_put(pers->owner);
  4929. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4930. }
  4931. void md_stop(struct mddev *mddev)
  4932. {
  4933. /* stop the array and free an attached data structures.
  4934. * This is called from dm-raid
  4935. */
  4936. __md_stop(mddev);
  4937. bitmap_destroy(mddev);
  4938. if (mddev->bio_set)
  4939. bioset_free(mddev->bio_set);
  4940. }
  4941. EXPORT_SYMBOL_GPL(md_stop);
  4942. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4943. {
  4944. int err = 0;
  4945. int did_freeze = 0;
  4946. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4947. did_freeze = 1;
  4948. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4949. md_wakeup_thread(mddev->thread);
  4950. }
  4951. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  4952. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4953. if (mddev->sync_thread)
  4954. /* Thread might be blocked waiting for metadata update
  4955. * which will now never happen */
  4956. wake_up_process(mddev->sync_thread->tsk);
  4957. if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
  4958. return -EBUSY;
  4959. mddev_unlock(mddev);
  4960. wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
  4961. &mddev->recovery));
  4962. wait_event(mddev->sb_wait,
  4963. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  4964. mddev_lock_nointr(mddev);
  4965. mutex_lock(&mddev->open_mutex);
  4966. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  4967. mddev->sync_thread ||
  4968. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  4969. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4970. printk("md: %s still in use.\n",mdname(mddev));
  4971. if (did_freeze) {
  4972. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4973. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4974. md_wakeup_thread(mddev->thread);
  4975. }
  4976. err = -EBUSY;
  4977. goto out;
  4978. }
  4979. if (mddev->pers) {
  4980. __md_stop_writes(mddev);
  4981. err = -ENXIO;
  4982. if (mddev->ro==1)
  4983. goto out;
  4984. mddev->ro = 1;
  4985. set_disk_ro(mddev->gendisk, 1);
  4986. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4987. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4988. md_wakeup_thread(mddev->thread);
  4989. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4990. err = 0;
  4991. }
  4992. out:
  4993. mutex_unlock(&mddev->open_mutex);
  4994. return err;
  4995. }
  4996. /* mode:
  4997. * 0 - completely stop and dis-assemble array
  4998. * 2 - stop but do not disassemble array
  4999. */
  5000. static int do_md_stop(struct mddev *mddev, int mode,
  5001. struct block_device *bdev)
  5002. {
  5003. struct gendisk *disk = mddev->gendisk;
  5004. struct md_rdev *rdev;
  5005. int did_freeze = 0;
  5006. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  5007. did_freeze = 1;
  5008. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  5009. md_wakeup_thread(mddev->thread);
  5010. }
  5011. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  5012. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5013. if (mddev->sync_thread)
  5014. /* Thread might be blocked waiting for metadata update
  5015. * which will now never happen */
  5016. wake_up_process(mddev->sync_thread->tsk);
  5017. mddev_unlock(mddev);
  5018. wait_event(resync_wait, (mddev->sync_thread == NULL &&
  5019. !test_bit(MD_RECOVERY_RUNNING,
  5020. &mddev->recovery)));
  5021. mddev_lock_nointr(mddev);
  5022. mutex_lock(&mddev->open_mutex);
  5023. if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
  5024. mddev->sysfs_active ||
  5025. mddev->sync_thread ||
  5026. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5027. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  5028. printk("md: %s still in use.\n",mdname(mddev));
  5029. mutex_unlock(&mddev->open_mutex);
  5030. if (did_freeze) {
  5031. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  5032. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5033. md_wakeup_thread(mddev->thread);
  5034. }
  5035. return -EBUSY;
  5036. }
  5037. if (mddev->pers) {
  5038. if (mddev->ro)
  5039. set_disk_ro(disk, 0);
  5040. __md_stop_writes(mddev);
  5041. __md_stop(mddev);
  5042. mddev->queue->backing_dev_info.congested_fn = NULL;
  5043. /* tell userspace to handle 'inactive' */
  5044. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5045. rdev_for_each(rdev, mddev)
  5046. if (rdev->raid_disk >= 0)
  5047. sysfs_unlink_rdev(mddev, rdev);
  5048. set_capacity(disk, 0);
  5049. mutex_unlock(&mddev->open_mutex);
  5050. mddev->changed = 1;
  5051. revalidate_disk(disk);
  5052. if (mddev->ro)
  5053. mddev->ro = 0;
  5054. } else
  5055. mutex_unlock(&mddev->open_mutex);
  5056. /*
  5057. * Free resources if final stop
  5058. */
  5059. if (mode == 0) {
  5060. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  5061. bitmap_destroy(mddev);
  5062. if (mddev->bitmap_info.file) {
  5063. struct file *f = mddev->bitmap_info.file;
  5064. spin_lock(&mddev->lock);
  5065. mddev->bitmap_info.file = NULL;
  5066. spin_unlock(&mddev->lock);
  5067. fput(f);
  5068. }
  5069. mddev->bitmap_info.offset = 0;
  5070. export_array(mddev);
  5071. md_clean(mddev);
  5072. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  5073. if (mddev->hold_active == UNTIL_STOP)
  5074. mddev->hold_active = 0;
  5075. }
  5076. md_new_event(mddev);
  5077. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5078. return 0;
  5079. }
  5080. #ifndef MODULE
  5081. static void autorun_array(struct mddev *mddev)
  5082. {
  5083. struct md_rdev *rdev;
  5084. int err;
  5085. if (list_empty(&mddev->disks))
  5086. return;
  5087. printk(KERN_INFO "md: running: ");
  5088. rdev_for_each(rdev, mddev) {
  5089. char b[BDEVNAME_SIZE];
  5090. printk("<%s>", bdevname(rdev->bdev,b));
  5091. }
  5092. printk("\n");
  5093. err = do_md_run(mddev);
  5094. if (err) {
  5095. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  5096. do_md_stop(mddev, 0, NULL);
  5097. }
  5098. }
  5099. /*
  5100. * lets try to run arrays based on all disks that have arrived
  5101. * until now. (those are in pending_raid_disks)
  5102. *
  5103. * the method: pick the first pending disk, collect all disks with
  5104. * the same UUID, remove all from the pending list and put them into
  5105. * the 'same_array' list. Then order this list based on superblock
  5106. * update time (freshest comes first), kick out 'old' disks and
  5107. * compare superblocks. If everything's fine then run it.
  5108. *
  5109. * If "unit" is allocated, then bump its reference count
  5110. */
  5111. static void autorun_devices(int part)
  5112. {
  5113. struct md_rdev *rdev0, *rdev, *tmp;
  5114. struct mddev *mddev;
  5115. char b[BDEVNAME_SIZE];
  5116. printk(KERN_INFO "md: autorun ...\n");
  5117. while (!list_empty(&pending_raid_disks)) {
  5118. int unit;
  5119. dev_t dev;
  5120. LIST_HEAD(candidates);
  5121. rdev0 = list_entry(pending_raid_disks.next,
  5122. struct md_rdev, same_set);
  5123. printk(KERN_INFO "md: considering %s ...\n",
  5124. bdevname(rdev0->bdev,b));
  5125. INIT_LIST_HEAD(&candidates);
  5126. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  5127. if (super_90_load(rdev, rdev0, 0) >= 0) {
  5128. printk(KERN_INFO "md: adding %s ...\n",
  5129. bdevname(rdev->bdev,b));
  5130. list_move(&rdev->same_set, &candidates);
  5131. }
  5132. /*
  5133. * now we have a set of devices, with all of them having
  5134. * mostly sane superblocks. It's time to allocate the
  5135. * mddev.
  5136. */
  5137. if (part) {
  5138. dev = MKDEV(mdp_major,
  5139. rdev0->preferred_minor << MdpMinorShift);
  5140. unit = MINOR(dev) >> MdpMinorShift;
  5141. } else {
  5142. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  5143. unit = MINOR(dev);
  5144. }
  5145. if (rdev0->preferred_minor != unit) {
  5146. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  5147. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  5148. break;
  5149. }
  5150. md_probe(dev, NULL, NULL);
  5151. mddev = mddev_find(dev);
  5152. if (!mddev || !mddev->gendisk) {
  5153. if (mddev)
  5154. mddev_put(mddev);
  5155. printk(KERN_ERR
  5156. "md: cannot allocate memory for md drive.\n");
  5157. break;
  5158. }
  5159. if (mddev_lock(mddev))
  5160. printk(KERN_WARNING "md: %s locked, cannot run\n",
  5161. mdname(mddev));
  5162. else if (mddev->raid_disks || mddev->major_version
  5163. || !list_empty(&mddev->disks)) {
  5164. printk(KERN_WARNING
  5165. "md: %s already running, cannot run %s\n",
  5166. mdname(mddev), bdevname(rdev0->bdev,b));
  5167. mddev_unlock(mddev);
  5168. } else {
  5169. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  5170. mddev->persistent = 1;
  5171. rdev_for_each_list(rdev, tmp, &candidates) {
  5172. list_del_init(&rdev->same_set);
  5173. if (bind_rdev_to_array(rdev, mddev))
  5174. export_rdev(rdev);
  5175. }
  5176. autorun_array(mddev);
  5177. mddev_unlock(mddev);
  5178. }
  5179. /* on success, candidates will be empty, on error
  5180. * it won't...
  5181. */
  5182. rdev_for_each_list(rdev, tmp, &candidates) {
  5183. list_del_init(&rdev->same_set);
  5184. export_rdev(rdev);
  5185. }
  5186. mddev_put(mddev);
  5187. }
  5188. printk(KERN_INFO "md: ... autorun DONE.\n");
  5189. }
  5190. #endif /* !MODULE */
  5191. static int get_version(void __user *arg)
  5192. {
  5193. mdu_version_t ver;
  5194. ver.major = MD_MAJOR_VERSION;
  5195. ver.minor = MD_MINOR_VERSION;
  5196. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  5197. if (copy_to_user(arg, &ver, sizeof(ver)))
  5198. return -EFAULT;
  5199. return 0;
  5200. }
  5201. static int get_array_info(struct mddev *mddev, void __user *arg)
  5202. {
  5203. mdu_array_info_t info;
  5204. int nr,working,insync,failed,spare;
  5205. struct md_rdev *rdev;
  5206. nr = working = insync = failed = spare = 0;
  5207. rcu_read_lock();
  5208. rdev_for_each_rcu(rdev, mddev) {
  5209. nr++;
  5210. if (test_bit(Faulty, &rdev->flags))
  5211. failed++;
  5212. else {
  5213. working++;
  5214. if (test_bit(In_sync, &rdev->flags))
  5215. insync++;
  5216. else
  5217. spare++;
  5218. }
  5219. }
  5220. rcu_read_unlock();
  5221. info.major_version = mddev->major_version;
  5222. info.minor_version = mddev->minor_version;
  5223. info.patch_version = MD_PATCHLEVEL_VERSION;
  5224. info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
  5225. info.level = mddev->level;
  5226. info.size = mddev->dev_sectors / 2;
  5227. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5228. info.size = -1;
  5229. info.nr_disks = nr;
  5230. info.raid_disks = mddev->raid_disks;
  5231. info.md_minor = mddev->md_minor;
  5232. info.not_persistent= !mddev->persistent;
  5233. info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
  5234. info.state = 0;
  5235. if (mddev->in_sync)
  5236. info.state = (1<<MD_SB_CLEAN);
  5237. if (mddev->bitmap && mddev->bitmap_info.offset)
  5238. info.state |= (1<<MD_SB_BITMAP_PRESENT);
  5239. if (mddev_is_clustered(mddev))
  5240. info.state |= (1<<MD_SB_CLUSTERED);
  5241. info.active_disks = insync;
  5242. info.working_disks = working;
  5243. info.failed_disks = failed;
  5244. info.spare_disks = spare;
  5245. info.layout = mddev->layout;
  5246. info.chunk_size = mddev->chunk_sectors << 9;
  5247. if (copy_to_user(arg, &info, sizeof(info)))
  5248. return -EFAULT;
  5249. return 0;
  5250. }
  5251. static int get_bitmap_file(struct mddev *mddev, void __user * arg)
  5252. {
  5253. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5254. char *ptr;
  5255. int err;
  5256. file = kzalloc(sizeof(*file), GFP_NOIO);
  5257. if (!file)
  5258. return -ENOMEM;
  5259. err = 0;
  5260. spin_lock(&mddev->lock);
  5261. /* bitmap enabled */
  5262. if (mddev->bitmap_info.file) {
  5263. ptr = file_path(mddev->bitmap_info.file, file->pathname,
  5264. sizeof(file->pathname));
  5265. if (IS_ERR(ptr))
  5266. err = PTR_ERR(ptr);
  5267. else
  5268. memmove(file->pathname, ptr,
  5269. sizeof(file->pathname)-(ptr-file->pathname));
  5270. }
  5271. spin_unlock(&mddev->lock);
  5272. if (err == 0 &&
  5273. copy_to_user(arg, file, sizeof(*file)))
  5274. err = -EFAULT;
  5275. kfree(file);
  5276. return err;
  5277. }
  5278. static int get_disk_info(struct mddev *mddev, void __user * arg)
  5279. {
  5280. mdu_disk_info_t info;
  5281. struct md_rdev *rdev;
  5282. if (copy_from_user(&info, arg, sizeof(info)))
  5283. return -EFAULT;
  5284. rcu_read_lock();
  5285. rdev = md_find_rdev_nr_rcu(mddev, info.number);
  5286. if (rdev) {
  5287. info.major = MAJOR(rdev->bdev->bd_dev);
  5288. info.minor = MINOR(rdev->bdev->bd_dev);
  5289. info.raid_disk = rdev->raid_disk;
  5290. info.state = 0;
  5291. if (test_bit(Faulty, &rdev->flags))
  5292. info.state |= (1<<MD_DISK_FAULTY);
  5293. else if (test_bit(In_sync, &rdev->flags)) {
  5294. info.state |= (1<<MD_DISK_ACTIVE);
  5295. info.state |= (1<<MD_DISK_SYNC);
  5296. }
  5297. if (test_bit(Journal, &rdev->flags))
  5298. info.state |= (1<<MD_DISK_JOURNAL);
  5299. if (test_bit(WriteMostly, &rdev->flags))
  5300. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5301. } else {
  5302. info.major = info.minor = 0;
  5303. info.raid_disk = -1;
  5304. info.state = (1<<MD_DISK_REMOVED);
  5305. }
  5306. rcu_read_unlock();
  5307. if (copy_to_user(arg, &info, sizeof(info)))
  5308. return -EFAULT;
  5309. return 0;
  5310. }
  5311. static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
  5312. {
  5313. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5314. struct md_rdev *rdev;
  5315. dev_t dev = MKDEV(info->major,info->minor);
  5316. if (mddev_is_clustered(mddev) &&
  5317. !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
  5318. pr_err("%s: Cannot add to clustered mddev.\n",
  5319. mdname(mddev));
  5320. return -EINVAL;
  5321. }
  5322. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5323. return -EOVERFLOW;
  5324. if (!mddev->raid_disks) {
  5325. int err;
  5326. /* expecting a device which has a superblock */
  5327. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5328. if (IS_ERR(rdev)) {
  5329. printk(KERN_WARNING
  5330. "md: md_import_device returned %ld\n",
  5331. PTR_ERR(rdev));
  5332. return PTR_ERR(rdev);
  5333. }
  5334. if (!list_empty(&mddev->disks)) {
  5335. struct md_rdev *rdev0
  5336. = list_entry(mddev->disks.next,
  5337. struct md_rdev, same_set);
  5338. err = super_types[mddev->major_version]
  5339. .load_super(rdev, rdev0, mddev->minor_version);
  5340. if (err < 0) {
  5341. printk(KERN_WARNING
  5342. "md: %s has different UUID to %s\n",
  5343. bdevname(rdev->bdev,b),
  5344. bdevname(rdev0->bdev,b2));
  5345. export_rdev(rdev);
  5346. return -EINVAL;
  5347. }
  5348. }
  5349. err = bind_rdev_to_array(rdev, mddev);
  5350. if (err)
  5351. export_rdev(rdev);
  5352. return err;
  5353. }
  5354. /*
  5355. * add_new_disk can be used once the array is assembled
  5356. * to add "hot spares". They must already have a superblock
  5357. * written
  5358. */
  5359. if (mddev->pers) {
  5360. int err;
  5361. if (!mddev->pers->hot_add_disk) {
  5362. printk(KERN_WARNING
  5363. "%s: personality does not support diskops!\n",
  5364. mdname(mddev));
  5365. return -EINVAL;
  5366. }
  5367. if (mddev->persistent)
  5368. rdev = md_import_device(dev, mddev->major_version,
  5369. mddev->minor_version);
  5370. else
  5371. rdev = md_import_device(dev, -1, -1);
  5372. if (IS_ERR(rdev)) {
  5373. printk(KERN_WARNING
  5374. "md: md_import_device returned %ld\n",
  5375. PTR_ERR(rdev));
  5376. return PTR_ERR(rdev);
  5377. }
  5378. /* set saved_raid_disk if appropriate */
  5379. if (!mddev->persistent) {
  5380. if (info->state & (1<<MD_DISK_SYNC) &&
  5381. info->raid_disk < mddev->raid_disks) {
  5382. rdev->raid_disk = info->raid_disk;
  5383. set_bit(In_sync, &rdev->flags);
  5384. clear_bit(Bitmap_sync, &rdev->flags);
  5385. } else
  5386. rdev->raid_disk = -1;
  5387. rdev->saved_raid_disk = rdev->raid_disk;
  5388. } else
  5389. super_types[mddev->major_version].
  5390. validate_super(mddev, rdev);
  5391. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5392. rdev->raid_disk != info->raid_disk) {
  5393. /* This was a hot-add request, but events doesn't
  5394. * match, so reject it.
  5395. */
  5396. export_rdev(rdev);
  5397. return -EINVAL;
  5398. }
  5399. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5400. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5401. set_bit(WriteMostly, &rdev->flags);
  5402. else
  5403. clear_bit(WriteMostly, &rdev->flags);
  5404. if (info->state & (1<<MD_DISK_JOURNAL)) {
  5405. struct md_rdev *rdev2;
  5406. bool has_journal = false;
  5407. /* make sure no existing journal disk */
  5408. rdev_for_each(rdev2, mddev) {
  5409. if (test_bit(Journal, &rdev2->flags)) {
  5410. has_journal = true;
  5411. break;
  5412. }
  5413. }
  5414. if (has_journal) {
  5415. export_rdev(rdev);
  5416. return -EBUSY;
  5417. }
  5418. set_bit(Journal, &rdev->flags);
  5419. }
  5420. /*
  5421. * check whether the device shows up in other nodes
  5422. */
  5423. if (mddev_is_clustered(mddev)) {
  5424. if (info->state & (1 << MD_DISK_CANDIDATE))
  5425. set_bit(Candidate, &rdev->flags);
  5426. else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
  5427. /* --add initiated by this node */
  5428. err = md_cluster_ops->add_new_disk(mddev, rdev);
  5429. if (err) {
  5430. export_rdev(rdev);
  5431. return err;
  5432. }
  5433. }
  5434. }
  5435. rdev->raid_disk = -1;
  5436. err = bind_rdev_to_array(rdev, mddev);
  5437. if (err)
  5438. export_rdev(rdev);
  5439. if (mddev_is_clustered(mddev)) {
  5440. if (info->state & (1 << MD_DISK_CANDIDATE))
  5441. md_cluster_ops->new_disk_ack(mddev, (err == 0));
  5442. else {
  5443. if (err)
  5444. md_cluster_ops->add_new_disk_cancel(mddev);
  5445. else
  5446. err = add_bound_rdev(rdev);
  5447. }
  5448. } else if (!err)
  5449. err = add_bound_rdev(rdev);
  5450. return err;
  5451. }
  5452. /* otherwise, add_new_disk is only allowed
  5453. * for major_version==0 superblocks
  5454. */
  5455. if (mddev->major_version != 0) {
  5456. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5457. mdname(mddev));
  5458. return -EINVAL;
  5459. }
  5460. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5461. int err;
  5462. rdev = md_import_device(dev, -1, 0);
  5463. if (IS_ERR(rdev)) {
  5464. printk(KERN_WARNING
  5465. "md: error, md_import_device() returned %ld\n",
  5466. PTR_ERR(rdev));
  5467. return PTR_ERR(rdev);
  5468. }
  5469. rdev->desc_nr = info->number;
  5470. if (info->raid_disk < mddev->raid_disks)
  5471. rdev->raid_disk = info->raid_disk;
  5472. else
  5473. rdev->raid_disk = -1;
  5474. if (rdev->raid_disk < mddev->raid_disks)
  5475. if (info->state & (1<<MD_DISK_SYNC))
  5476. set_bit(In_sync, &rdev->flags);
  5477. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5478. set_bit(WriteMostly, &rdev->flags);
  5479. if (!mddev->persistent) {
  5480. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5481. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5482. } else
  5483. rdev->sb_start = calc_dev_sboffset(rdev);
  5484. rdev->sectors = rdev->sb_start;
  5485. err = bind_rdev_to_array(rdev, mddev);
  5486. if (err) {
  5487. export_rdev(rdev);
  5488. return err;
  5489. }
  5490. }
  5491. return 0;
  5492. }
  5493. static int hot_remove_disk(struct mddev *mddev, dev_t dev)
  5494. {
  5495. char b[BDEVNAME_SIZE];
  5496. struct md_rdev *rdev;
  5497. rdev = find_rdev(mddev, dev);
  5498. if (!rdev)
  5499. return -ENXIO;
  5500. if (rdev->raid_disk < 0)
  5501. goto kick_rdev;
  5502. clear_bit(Blocked, &rdev->flags);
  5503. remove_and_add_spares(mddev, rdev);
  5504. if (rdev->raid_disk >= 0)
  5505. goto busy;
  5506. kick_rdev:
  5507. if (mddev_is_clustered(mddev))
  5508. md_cluster_ops->remove_disk(mddev, rdev);
  5509. md_kick_rdev_from_array(rdev);
  5510. md_update_sb(mddev, 1);
  5511. md_new_event(mddev);
  5512. return 0;
  5513. busy:
  5514. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5515. bdevname(rdev->bdev,b), mdname(mddev));
  5516. return -EBUSY;
  5517. }
  5518. static int hot_add_disk(struct mddev *mddev, dev_t dev)
  5519. {
  5520. char b[BDEVNAME_SIZE];
  5521. int err;
  5522. struct md_rdev *rdev;
  5523. if (!mddev->pers)
  5524. return -ENODEV;
  5525. if (mddev->major_version != 0) {
  5526. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5527. " version-0 superblocks.\n",
  5528. mdname(mddev));
  5529. return -EINVAL;
  5530. }
  5531. if (!mddev->pers->hot_add_disk) {
  5532. printk(KERN_WARNING
  5533. "%s: personality does not support diskops!\n",
  5534. mdname(mddev));
  5535. return -EINVAL;
  5536. }
  5537. rdev = md_import_device(dev, -1, 0);
  5538. if (IS_ERR(rdev)) {
  5539. printk(KERN_WARNING
  5540. "md: error, md_import_device() returned %ld\n",
  5541. PTR_ERR(rdev));
  5542. return -EINVAL;
  5543. }
  5544. if (mddev->persistent)
  5545. rdev->sb_start = calc_dev_sboffset(rdev);
  5546. else
  5547. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5548. rdev->sectors = rdev->sb_start;
  5549. if (test_bit(Faulty, &rdev->flags)) {
  5550. printk(KERN_WARNING
  5551. "md: can not hot-add faulty %s disk to %s!\n",
  5552. bdevname(rdev->bdev,b), mdname(mddev));
  5553. err = -EINVAL;
  5554. goto abort_export;
  5555. }
  5556. clear_bit(In_sync, &rdev->flags);
  5557. rdev->desc_nr = -1;
  5558. rdev->saved_raid_disk = -1;
  5559. err = bind_rdev_to_array(rdev, mddev);
  5560. if (err)
  5561. goto abort_export;
  5562. /*
  5563. * The rest should better be atomic, we can have disk failures
  5564. * noticed in interrupt contexts ...
  5565. */
  5566. rdev->raid_disk = -1;
  5567. md_update_sb(mddev, 1);
  5568. /*
  5569. * Kick recovery, maybe this spare has to be added to the
  5570. * array immediately.
  5571. */
  5572. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5573. md_wakeup_thread(mddev->thread);
  5574. md_new_event(mddev);
  5575. return 0;
  5576. abort_export:
  5577. export_rdev(rdev);
  5578. return err;
  5579. }
  5580. static int set_bitmap_file(struct mddev *mddev, int fd)
  5581. {
  5582. int err = 0;
  5583. if (mddev->pers) {
  5584. if (!mddev->pers->quiesce || !mddev->thread)
  5585. return -EBUSY;
  5586. if (mddev->recovery || mddev->sync_thread)
  5587. return -EBUSY;
  5588. /* we should be able to change the bitmap.. */
  5589. }
  5590. if (fd >= 0) {
  5591. struct inode *inode;
  5592. struct file *f;
  5593. if (mddev->bitmap || mddev->bitmap_info.file)
  5594. return -EEXIST; /* cannot add when bitmap is present */
  5595. f = fget(fd);
  5596. if (f == NULL) {
  5597. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5598. mdname(mddev));
  5599. return -EBADF;
  5600. }
  5601. inode = f->f_mapping->host;
  5602. if (!S_ISREG(inode->i_mode)) {
  5603. printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
  5604. mdname(mddev));
  5605. err = -EBADF;
  5606. } else if (!(f->f_mode & FMODE_WRITE)) {
  5607. printk(KERN_ERR "%s: error: bitmap file must open for write\n",
  5608. mdname(mddev));
  5609. err = -EBADF;
  5610. } else if (atomic_read(&inode->i_writecount) != 1) {
  5611. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5612. mdname(mddev));
  5613. err = -EBUSY;
  5614. }
  5615. if (err) {
  5616. fput(f);
  5617. return err;
  5618. }
  5619. mddev->bitmap_info.file = f;
  5620. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5621. } else if (mddev->bitmap == NULL)
  5622. return -ENOENT; /* cannot remove what isn't there */
  5623. err = 0;
  5624. if (mddev->pers) {
  5625. mddev->pers->quiesce(mddev, 1);
  5626. if (fd >= 0) {
  5627. struct bitmap *bitmap;
  5628. bitmap = bitmap_create(mddev, -1);
  5629. if (!IS_ERR(bitmap)) {
  5630. mddev->bitmap = bitmap;
  5631. err = bitmap_load(mddev);
  5632. } else
  5633. err = PTR_ERR(bitmap);
  5634. }
  5635. if (fd < 0 || err) {
  5636. bitmap_destroy(mddev);
  5637. fd = -1; /* make sure to put the file */
  5638. }
  5639. mddev->pers->quiesce(mddev, 0);
  5640. }
  5641. if (fd < 0) {
  5642. struct file *f = mddev->bitmap_info.file;
  5643. if (f) {
  5644. spin_lock(&mddev->lock);
  5645. mddev->bitmap_info.file = NULL;
  5646. spin_unlock(&mddev->lock);
  5647. fput(f);
  5648. }
  5649. }
  5650. return err;
  5651. }
  5652. /*
  5653. * set_array_info is used two different ways
  5654. * The original usage is when creating a new array.
  5655. * In this usage, raid_disks is > 0 and it together with
  5656. * level, size, not_persistent,layout,chunksize determine the
  5657. * shape of the array.
  5658. * This will always create an array with a type-0.90.0 superblock.
  5659. * The newer usage is when assembling an array.
  5660. * In this case raid_disks will be 0, and the major_version field is
  5661. * use to determine which style super-blocks are to be found on the devices.
  5662. * The minor and patch _version numbers are also kept incase the
  5663. * super_block handler wishes to interpret them.
  5664. */
  5665. static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5666. {
  5667. if (info->raid_disks == 0) {
  5668. /* just setting version number for superblock loading */
  5669. if (info->major_version < 0 ||
  5670. info->major_version >= ARRAY_SIZE(super_types) ||
  5671. super_types[info->major_version].name == NULL) {
  5672. /* maybe try to auto-load a module? */
  5673. printk(KERN_INFO
  5674. "md: superblock version %d not known\n",
  5675. info->major_version);
  5676. return -EINVAL;
  5677. }
  5678. mddev->major_version = info->major_version;
  5679. mddev->minor_version = info->minor_version;
  5680. mddev->patch_version = info->patch_version;
  5681. mddev->persistent = !info->not_persistent;
  5682. /* ensure mddev_put doesn't delete this now that there
  5683. * is some minimal configuration.
  5684. */
  5685. mddev->ctime = ktime_get_real_seconds();
  5686. return 0;
  5687. }
  5688. mddev->major_version = MD_MAJOR_VERSION;
  5689. mddev->minor_version = MD_MINOR_VERSION;
  5690. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5691. mddev->ctime = ktime_get_real_seconds();
  5692. mddev->level = info->level;
  5693. mddev->clevel[0] = 0;
  5694. mddev->dev_sectors = 2 * (sector_t)info->size;
  5695. mddev->raid_disks = info->raid_disks;
  5696. /* don't set md_minor, it is determined by which /dev/md* was
  5697. * openned
  5698. */
  5699. if (info->state & (1<<MD_SB_CLEAN))
  5700. mddev->recovery_cp = MaxSector;
  5701. else
  5702. mddev->recovery_cp = 0;
  5703. mddev->persistent = ! info->not_persistent;
  5704. mddev->external = 0;
  5705. mddev->layout = info->layout;
  5706. mddev->chunk_sectors = info->chunk_size >> 9;
  5707. mddev->max_disks = MD_SB_DISKS;
  5708. if (mddev->persistent)
  5709. mddev->flags = 0;
  5710. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5711. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5712. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5713. mddev->bitmap_info.offset = 0;
  5714. mddev->reshape_position = MaxSector;
  5715. /*
  5716. * Generate a 128 bit UUID
  5717. */
  5718. get_random_bytes(mddev->uuid, 16);
  5719. mddev->new_level = mddev->level;
  5720. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5721. mddev->new_layout = mddev->layout;
  5722. mddev->delta_disks = 0;
  5723. mddev->reshape_backwards = 0;
  5724. return 0;
  5725. }
  5726. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5727. {
  5728. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5729. if (mddev->external_size)
  5730. return;
  5731. mddev->array_sectors = array_sectors;
  5732. }
  5733. EXPORT_SYMBOL(md_set_array_sectors);
  5734. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5735. {
  5736. struct md_rdev *rdev;
  5737. int rv;
  5738. int fit = (num_sectors == 0);
  5739. if (mddev->pers->resize == NULL)
  5740. return -EINVAL;
  5741. /* The "num_sectors" is the number of sectors of each device that
  5742. * is used. This can only make sense for arrays with redundancy.
  5743. * linear and raid0 always use whatever space is available. We can only
  5744. * consider changing this number if no resync or reconstruction is
  5745. * happening, and if the new size is acceptable. It must fit before the
  5746. * sb_start or, if that is <data_offset, it must fit before the size
  5747. * of each device. If num_sectors is zero, we find the largest size
  5748. * that fits.
  5749. */
  5750. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5751. mddev->sync_thread)
  5752. return -EBUSY;
  5753. if (mddev->ro)
  5754. return -EROFS;
  5755. rdev_for_each(rdev, mddev) {
  5756. sector_t avail = rdev->sectors;
  5757. if (fit && (num_sectors == 0 || num_sectors > avail))
  5758. num_sectors = avail;
  5759. if (avail < num_sectors)
  5760. return -ENOSPC;
  5761. }
  5762. rv = mddev->pers->resize(mddev, num_sectors);
  5763. if (!rv)
  5764. revalidate_disk(mddev->gendisk);
  5765. return rv;
  5766. }
  5767. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5768. {
  5769. int rv;
  5770. struct md_rdev *rdev;
  5771. /* change the number of raid disks */
  5772. if (mddev->pers->check_reshape == NULL)
  5773. return -EINVAL;
  5774. if (mddev->ro)
  5775. return -EROFS;
  5776. if (raid_disks <= 0 ||
  5777. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5778. return -EINVAL;
  5779. if (mddev->sync_thread ||
  5780. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  5781. mddev->reshape_position != MaxSector)
  5782. return -EBUSY;
  5783. rdev_for_each(rdev, mddev) {
  5784. if (mddev->raid_disks < raid_disks &&
  5785. rdev->data_offset < rdev->new_data_offset)
  5786. return -EINVAL;
  5787. if (mddev->raid_disks > raid_disks &&
  5788. rdev->data_offset > rdev->new_data_offset)
  5789. return -EINVAL;
  5790. }
  5791. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5792. if (mddev->delta_disks < 0)
  5793. mddev->reshape_backwards = 1;
  5794. else if (mddev->delta_disks > 0)
  5795. mddev->reshape_backwards = 0;
  5796. rv = mddev->pers->check_reshape(mddev);
  5797. if (rv < 0) {
  5798. mddev->delta_disks = 0;
  5799. mddev->reshape_backwards = 0;
  5800. }
  5801. return rv;
  5802. }
  5803. /*
  5804. * update_array_info is used to change the configuration of an
  5805. * on-line array.
  5806. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5807. * fields in the info are checked against the array.
  5808. * Any differences that cannot be handled will cause an error.
  5809. * Normally, only one change can be managed at a time.
  5810. */
  5811. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5812. {
  5813. int rv = 0;
  5814. int cnt = 0;
  5815. int state = 0;
  5816. /* calculate expected state,ignoring low bits */
  5817. if (mddev->bitmap && mddev->bitmap_info.offset)
  5818. state |= (1 << MD_SB_BITMAP_PRESENT);
  5819. if (mddev->major_version != info->major_version ||
  5820. mddev->minor_version != info->minor_version ||
  5821. /* mddev->patch_version != info->patch_version || */
  5822. mddev->ctime != info->ctime ||
  5823. mddev->level != info->level ||
  5824. /* mddev->layout != info->layout || */
  5825. mddev->persistent != !info->not_persistent ||
  5826. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5827. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5828. ((state^info->state) & 0xfffffe00)
  5829. )
  5830. return -EINVAL;
  5831. /* Check there is only one change */
  5832. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5833. cnt++;
  5834. if (mddev->raid_disks != info->raid_disks)
  5835. cnt++;
  5836. if (mddev->layout != info->layout)
  5837. cnt++;
  5838. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5839. cnt++;
  5840. if (cnt == 0)
  5841. return 0;
  5842. if (cnt > 1)
  5843. return -EINVAL;
  5844. if (mddev->layout != info->layout) {
  5845. /* Change layout
  5846. * we don't need to do anything at the md level, the
  5847. * personality will take care of it all.
  5848. */
  5849. if (mddev->pers->check_reshape == NULL)
  5850. return -EINVAL;
  5851. else {
  5852. mddev->new_layout = info->layout;
  5853. rv = mddev->pers->check_reshape(mddev);
  5854. if (rv)
  5855. mddev->new_layout = mddev->layout;
  5856. return rv;
  5857. }
  5858. }
  5859. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5860. rv = update_size(mddev, (sector_t)info->size * 2);
  5861. if (mddev->raid_disks != info->raid_disks)
  5862. rv = update_raid_disks(mddev, info->raid_disks);
  5863. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5864. if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
  5865. rv = -EINVAL;
  5866. goto err;
  5867. }
  5868. if (mddev->recovery || mddev->sync_thread) {
  5869. rv = -EBUSY;
  5870. goto err;
  5871. }
  5872. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5873. struct bitmap *bitmap;
  5874. /* add the bitmap */
  5875. if (mddev->bitmap) {
  5876. rv = -EEXIST;
  5877. goto err;
  5878. }
  5879. if (mddev->bitmap_info.default_offset == 0) {
  5880. rv = -EINVAL;
  5881. goto err;
  5882. }
  5883. mddev->bitmap_info.offset =
  5884. mddev->bitmap_info.default_offset;
  5885. mddev->bitmap_info.space =
  5886. mddev->bitmap_info.default_space;
  5887. mddev->pers->quiesce(mddev, 1);
  5888. bitmap = bitmap_create(mddev, -1);
  5889. if (!IS_ERR(bitmap)) {
  5890. mddev->bitmap = bitmap;
  5891. rv = bitmap_load(mddev);
  5892. } else
  5893. rv = PTR_ERR(bitmap);
  5894. if (rv)
  5895. bitmap_destroy(mddev);
  5896. mddev->pers->quiesce(mddev, 0);
  5897. } else {
  5898. /* remove the bitmap */
  5899. if (!mddev->bitmap) {
  5900. rv = -ENOENT;
  5901. goto err;
  5902. }
  5903. if (mddev->bitmap->storage.file) {
  5904. rv = -EINVAL;
  5905. goto err;
  5906. }
  5907. if (mddev->bitmap_info.nodes) {
  5908. /* hold PW on all the bitmap lock */
  5909. if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
  5910. printk("md: can't change bitmap to none since the"
  5911. " array is in use by more than one node\n");
  5912. rv = -EPERM;
  5913. md_cluster_ops->unlock_all_bitmaps(mddev);
  5914. goto err;
  5915. }
  5916. mddev->bitmap_info.nodes = 0;
  5917. md_cluster_ops->leave(mddev);
  5918. }
  5919. mddev->pers->quiesce(mddev, 1);
  5920. bitmap_destroy(mddev);
  5921. mddev->pers->quiesce(mddev, 0);
  5922. mddev->bitmap_info.offset = 0;
  5923. }
  5924. }
  5925. md_update_sb(mddev, 1);
  5926. return rv;
  5927. err:
  5928. return rv;
  5929. }
  5930. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5931. {
  5932. struct md_rdev *rdev;
  5933. int err = 0;
  5934. if (mddev->pers == NULL)
  5935. return -ENODEV;
  5936. rcu_read_lock();
  5937. rdev = find_rdev_rcu(mddev, dev);
  5938. if (!rdev)
  5939. err = -ENODEV;
  5940. else {
  5941. md_error(mddev, rdev);
  5942. if (!test_bit(Faulty, &rdev->flags))
  5943. err = -EBUSY;
  5944. }
  5945. rcu_read_unlock();
  5946. return err;
  5947. }
  5948. /*
  5949. * We have a problem here : there is no easy way to give a CHS
  5950. * virtual geometry. We currently pretend that we have a 2 heads
  5951. * 4 sectors (with a BIG number of cylinders...). This drives
  5952. * dosfs just mad... ;-)
  5953. */
  5954. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5955. {
  5956. struct mddev *mddev = bdev->bd_disk->private_data;
  5957. geo->heads = 2;
  5958. geo->sectors = 4;
  5959. geo->cylinders = mddev->array_sectors / 8;
  5960. return 0;
  5961. }
  5962. static inline bool md_ioctl_valid(unsigned int cmd)
  5963. {
  5964. switch (cmd) {
  5965. case ADD_NEW_DISK:
  5966. case BLKROSET:
  5967. case GET_ARRAY_INFO:
  5968. case GET_BITMAP_FILE:
  5969. case GET_DISK_INFO:
  5970. case HOT_ADD_DISK:
  5971. case HOT_REMOVE_DISK:
  5972. case RAID_AUTORUN:
  5973. case RAID_VERSION:
  5974. case RESTART_ARRAY_RW:
  5975. case RUN_ARRAY:
  5976. case SET_ARRAY_INFO:
  5977. case SET_BITMAP_FILE:
  5978. case SET_DISK_FAULTY:
  5979. case STOP_ARRAY:
  5980. case STOP_ARRAY_RO:
  5981. case CLUSTERED_DISK_NACK:
  5982. return true;
  5983. default:
  5984. return false;
  5985. }
  5986. }
  5987. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5988. unsigned int cmd, unsigned long arg)
  5989. {
  5990. int err = 0;
  5991. void __user *argp = (void __user *)arg;
  5992. struct mddev *mddev = NULL;
  5993. int ro;
  5994. if (!md_ioctl_valid(cmd))
  5995. return -ENOTTY;
  5996. switch (cmd) {
  5997. case RAID_VERSION:
  5998. case GET_ARRAY_INFO:
  5999. case GET_DISK_INFO:
  6000. break;
  6001. default:
  6002. if (!capable(CAP_SYS_ADMIN))
  6003. return -EACCES;
  6004. }
  6005. /*
  6006. * Commands dealing with the RAID driver but not any
  6007. * particular array:
  6008. */
  6009. switch (cmd) {
  6010. case RAID_VERSION:
  6011. err = get_version(argp);
  6012. goto out;
  6013. #ifndef MODULE
  6014. case RAID_AUTORUN:
  6015. err = 0;
  6016. autostart_arrays(arg);
  6017. goto out;
  6018. #endif
  6019. default:;
  6020. }
  6021. /*
  6022. * Commands creating/starting a new array:
  6023. */
  6024. mddev = bdev->bd_disk->private_data;
  6025. if (!mddev) {
  6026. BUG();
  6027. goto out;
  6028. }
  6029. /* Some actions do not requires the mutex */
  6030. switch (cmd) {
  6031. case GET_ARRAY_INFO:
  6032. if (!mddev->raid_disks && !mddev->external)
  6033. err = -ENODEV;
  6034. else
  6035. err = get_array_info(mddev, argp);
  6036. goto out;
  6037. case GET_DISK_INFO:
  6038. if (!mddev->raid_disks && !mddev->external)
  6039. err = -ENODEV;
  6040. else
  6041. err = get_disk_info(mddev, argp);
  6042. goto out;
  6043. case SET_DISK_FAULTY:
  6044. err = set_disk_faulty(mddev, new_decode_dev(arg));
  6045. goto out;
  6046. case GET_BITMAP_FILE:
  6047. err = get_bitmap_file(mddev, argp);
  6048. goto out;
  6049. }
  6050. if (cmd == ADD_NEW_DISK)
  6051. /* need to ensure md_delayed_delete() has completed */
  6052. flush_workqueue(md_misc_wq);
  6053. if (cmd == HOT_REMOVE_DISK)
  6054. /* need to ensure recovery thread has run */
  6055. wait_event_interruptible_timeout(mddev->sb_wait,
  6056. !test_bit(MD_RECOVERY_NEEDED,
  6057. &mddev->flags),
  6058. msecs_to_jiffies(5000));
  6059. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  6060. /* Need to flush page cache, and ensure no-one else opens
  6061. * and writes
  6062. */
  6063. mutex_lock(&mddev->open_mutex);
  6064. if (mddev->pers && atomic_read(&mddev->openers) > 1) {
  6065. mutex_unlock(&mddev->open_mutex);
  6066. err = -EBUSY;
  6067. goto out;
  6068. }
  6069. set_bit(MD_STILL_CLOSED, &mddev->flags);
  6070. mutex_unlock(&mddev->open_mutex);
  6071. sync_blockdev(bdev);
  6072. }
  6073. err = mddev_lock(mddev);
  6074. if (err) {
  6075. printk(KERN_INFO
  6076. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  6077. err, cmd);
  6078. goto out;
  6079. }
  6080. if (cmd == SET_ARRAY_INFO) {
  6081. mdu_array_info_t info;
  6082. if (!arg)
  6083. memset(&info, 0, sizeof(info));
  6084. else if (copy_from_user(&info, argp, sizeof(info))) {
  6085. err = -EFAULT;
  6086. goto unlock;
  6087. }
  6088. if (mddev->pers) {
  6089. err = update_array_info(mddev, &info);
  6090. if (err) {
  6091. printk(KERN_WARNING "md: couldn't update"
  6092. " array info. %d\n", err);
  6093. goto unlock;
  6094. }
  6095. goto unlock;
  6096. }
  6097. if (!list_empty(&mddev->disks)) {
  6098. printk(KERN_WARNING
  6099. "md: array %s already has disks!\n",
  6100. mdname(mddev));
  6101. err = -EBUSY;
  6102. goto unlock;
  6103. }
  6104. if (mddev->raid_disks) {
  6105. printk(KERN_WARNING
  6106. "md: array %s already initialised!\n",
  6107. mdname(mddev));
  6108. err = -EBUSY;
  6109. goto unlock;
  6110. }
  6111. err = set_array_info(mddev, &info);
  6112. if (err) {
  6113. printk(KERN_WARNING "md: couldn't set"
  6114. " array info. %d\n", err);
  6115. goto unlock;
  6116. }
  6117. goto unlock;
  6118. }
  6119. /*
  6120. * Commands querying/configuring an existing array:
  6121. */
  6122. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  6123. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  6124. if ((!mddev->raid_disks && !mddev->external)
  6125. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  6126. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  6127. && cmd != GET_BITMAP_FILE) {
  6128. err = -ENODEV;
  6129. goto unlock;
  6130. }
  6131. /*
  6132. * Commands even a read-only array can execute:
  6133. */
  6134. switch (cmd) {
  6135. case RESTART_ARRAY_RW:
  6136. err = restart_array(mddev);
  6137. goto unlock;
  6138. case STOP_ARRAY:
  6139. err = do_md_stop(mddev, 0, bdev);
  6140. goto unlock;
  6141. case STOP_ARRAY_RO:
  6142. err = md_set_readonly(mddev, bdev);
  6143. goto unlock;
  6144. case HOT_REMOVE_DISK:
  6145. err = hot_remove_disk(mddev, new_decode_dev(arg));
  6146. goto unlock;
  6147. case ADD_NEW_DISK:
  6148. /* We can support ADD_NEW_DISK on read-only arrays
  6149. * on if we are re-adding a preexisting device.
  6150. * So require mddev->pers and MD_DISK_SYNC.
  6151. */
  6152. if (mddev->pers) {
  6153. mdu_disk_info_t info;
  6154. if (copy_from_user(&info, argp, sizeof(info)))
  6155. err = -EFAULT;
  6156. else if (!(info.state & (1<<MD_DISK_SYNC)))
  6157. /* Need to clear read-only for this */
  6158. break;
  6159. else
  6160. err = add_new_disk(mddev, &info);
  6161. goto unlock;
  6162. }
  6163. break;
  6164. case BLKROSET:
  6165. if (get_user(ro, (int __user *)(arg))) {
  6166. err = -EFAULT;
  6167. goto unlock;
  6168. }
  6169. err = -EINVAL;
  6170. /* if the bdev is going readonly the value of mddev->ro
  6171. * does not matter, no writes are coming
  6172. */
  6173. if (ro)
  6174. goto unlock;
  6175. /* are we are already prepared for writes? */
  6176. if (mddev->ro != 1)
  6177. goto unlock;
  6178. /* transitioning to readauto need only happen for
  6179. * arrays that call md_write_start
  6180. */
  6181. if (mddev->pers) {
  6182. err = restart_array(mddev);
  6183. if (err == 0) {
  6184. mddev->ro = 2;
  6185. set_disk_ro(mddev->gendisk, 0);
  6186. }
  6187. }
  6188. goto unlock;
  6189. }
  6190. /*
  6191. * The remaining ioctls are changing the state of the
  6192. * superblock, so we do not allow them on read-only arrays.
  6193. */
  6194. if (mddev->ro && mddev->pers) {
  6195. if (mddev->ro == 2) {
  6196. mddev->ro = 0;
  6197. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6198. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6199. /* mddev_unlock will wake thread */
  6200. /* If a device failed while we were read-only, we
  6201. * need to make sure the metadata is updated now.
  6202. */
  6203. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  6204. mddev_unlock(mddev);
  6205. wait_event(mddev->sb_wait,
  6206. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  6207. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6208. mddev_lock_nointr(mddev);
  6209. }
  6210. } else {
  6211. err = -EROFS;
  6212. goto unlock;
  6213. }
  6214. }
  6215. switch (cmd) {
  6216. case ADD_NEW_DISK:
  6217. {
  6218. mdu_disk_info_t info;
  6219. if (copy_from_user(&info, argp, sizeof(info)))
  6220. err = -EFAULT;
  6221. else
  6222. err = add_new_disk(mddev, &info);
  6223. goto unlock;
  6224. }
  6225. case CLUSTERED_DISK_NACK:
  6226. if (mddev_is_clustered(mddev))
  6227. md_cluster_ops->new_disk_ack(mddev, false);
  6228. else
  6229. err = -EINVAL;
  6230. goto unlock;
  6231. case HOT_ADD_DISK:
  6232. err = hot_add_disk(mddev, new_decode_dev(arg));
  6233. goto unlock;
  6234. case RUN_ARRAY:
  6235. err = do_md_run(mddev);
  6236. goto unlock;
  6237. case SET_BITMAP_FILE:
  6238. err = set_bitmap_file(mddev, (int)arg);
  6239. goto unlock;
  6240. default:
  6241. err = -EINVAL;
  6242. goto unlock;
  6243. }
  6244. unlock:
  6245. if (mddev->hold_active == UNTIL_IOCTL &&
  6246. err != -EINVAL)
  6247. mddev->hold_active = 0;
  6248. mddev_unlock(mddev);
  6249. out:
  6250. return err;
  6251. }
  6252. #ifdef CONFIG_COMPAT
  6253. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  6254. unsigned int cmd, unsigned long arg)
  6255. {
  6256. switch (cmd) {
  6257. case HOT_REMOVE_DISK:
  6258. case HOT_ADD_DISK:
  6259. case SET_DISK_FAULTY:
  6260. case SET_BITMAP_FILE:
  6261. /* These take in integer arg, do not convert */
  6262. break;
  6263. default:
  6264. arg = (unsigned long)compat_ptr(arg);
  6265. break;
  6266. }
  6267. return md_ioctl(bdev, mode, cmd, arg);
  6268. }
  6269. #endif /* CONFIG_COMPAT */
  6270. static int md_open(struct block_device *bdev, fmode_t mode)
  6271. {
  6272. /*
  6273. * Succeed if we can lock the mddev, which confirms that
  6274. * it isn't being stopped right now.
  6275. */
  6276. struct mddev *mddev = mddev_find(bdev->bd_dev);
  6277. int err;
  6278. if (!mddev)
  6279. return -ENODEV;
  6280. if (mddev->gendisk != bdev->bd_disk) {
  6281. /* we are racing with mddev_put which is discarding this
  6282. * bd_disk.
  6283. */
  6284. mddev_put(mddev);
  6285. /* Wait until bdev->bd_disk is definitely gone */
  6286. flush_workqueue(md_misc_wq);
  6287. /* Then retry the open from the top */
  6288. return -ERESTARTSYS;
  6289. }
  6290. BUG_ON(mddev != bdev->bd_disk->private_data);
  6291. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  6292. goto out;
  6293. err = 0;
  6294. atomic_inc(&mddev->openers);
  6295. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  6296. mutex_unlock(&mddev->open_mutex);
  6297. check_disk_change(bdev);
  6298. out:
  6299. return err;
  6300. }
  6301. static void md_release(struct gendisk *disk, fmode_t mode)
  6302. {
  6303. struct mddev *mddev = disk->private_data;
  6304. BUG_ON(!mddev);
  6305. atomic_dec(&mddev->openers);
  6306. mddev_put(mddev);
  6307. }
  6308. static int md_media_changed(struct gendisk *disk)
  6309. {
  6310. struct mddev *mddev = disk->private_data;
  6311. return mddev->changed;
  6312. }
  6313. static int md_revalidate(struct gendisk *disk)
  6314. {
  6315. struct mddev *mddev = disk->private_data;
  6316. mddev->changed = 0;
  6317. return 0;
  6318. }
  6319. static const struct block_device_operations md_fops =
  6320. {
  6321. .owner = THIS_MODULE,
  6322. .open = md_open,
  6323. .release = md_release,
  6324. .ioctl = md_ioctl,
  6325. #ifdef CONFIG_COMPAT
  6326. .compat_ioctl = md_compat_ioctl,
  6327. #endif
  6328. .getgeo = md_getgeo,
  6329. .media_changed = md_media_changed,
  6330. .revalidate_disk= md_revalidate,
  6331. };
  6332. static int md_thread(void *arg)
  6333. {
  6334. struct md_thread *thread = arg;
  6335. /*
  6336. * md_thread is a 'system-thread', it's priority should be very
  6337. * high. We avoid resource deadlocks individually in each
  6338. * raid personality. (RAID5 does preallocation) We also use RR and
  6339. * the very same RT priority as kswapd, thus we will never get
  6340. * into a priority inversion deadlock.
  6341. *
  6342. * we definitely have to have equal or higher priority than
  6343. * bdflush, otherwise bdflush will deadlock if there are too
  6344. * many dirty RAID5 blocks.
  6345. */
  6346. allow_signal(SIGKILL);
  6347. while (!kthread_should_stop()) {
  6348. /* We need to wait INTERRUPTIBLE so that
  6349. * we don't add to the load-average.
  6350. * That means we need to be sure no signals are
  6351. * pending
  6352. */
  6353. if (signal_pending(current))
  6354. flush_signals(current);
  6355. wait_event_interruptible_timeout
  6356. (thread->wqueue,
  6357. test_bit(THREAD_WAKEUP, &thread->flags)
  6358. || kthread_should_stop(),
  6359. thread->timeout);
  6360. clear_bit(THREAD_WAKEUP, &thread->flags);
  6361. if (!kthread_should_stop())
  6362. thread->run(thread);
  6363. }
  6364. return 0;
  6365. }
  6366. void md_wakeup_thread(struct md_thread *thread)
  6367. {
  6368. if (thread) {
  6369. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6370. set_bit(THREAD_WAKEUP, &thread->flags);
  6371. wake_up(&thread->wqueue);
  6372. }
  6373. }
  6374. EXPORT_SYMBOL(md_wakeup_thread);
  6375. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6376. struct mddev *mddev, const char *name)
  6377. {
  6378. struct md_thread *thread;
  6379. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6380. if (!thread)
  6381. return NULL;
  6382. init_waitqueue_head(&thread->wqueue);
  6383. thread->run = run;
  6384. thread->mddev = mddev;
  6385. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6386. thread->tsk = kthread_run(md_thread, thread,
  6387. "%s_%s",
  6388. mdname(thread->mddev),
  6389. name);
  6390. if (IS_ERR(thread->tsk)) {
  6391. kfree(thread);
  6392. return NULL;
  6393. }
  6394. return thread;
  6395. }
  6396. EXPORT_SYMBOL(md_register_thread);
  6397. void md_unregister_thread(struct md_thread **threadp)
  6398. {
  6399. struct md_thread *thread = *threadp;
  6400. if (!thread)
  6401. return;
  6402. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6403. /* Locking ensures that mddev_unlock does not wake_up a
  6404. * non-existent thread
  6405. */
  6406. spin_lock(&pers_lock);
  6407. *threadp = NULL;
  6408. spin_unlock(&pers_lock);
  6409. kthread_stop(thread->tsk);
  6410. kfree(thread);
  6411. }
  6412. EXPORT_SYMBOL(md_unregister_thread);
  6413. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6414. {
  6415. if (!rdev || test_bit(Faulty, &rdev->flags))
  6416. return;
  6417. if (!mddev->pers || !mddev->pers->error_handler)
  6418. return;
  6419. mddev->pers->error_handler(mddev,rdev);
  6420. if (mddev->degraded)
  6421. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6422. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6423. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6424. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6425. md_wakeup_thread(mddev->thread);
  6426. if (mddev->event_work.func)
  6427. queue_work(md_misc_wq, &mddev->event_work);
  6428. md_new_event(mddev);
  6429. }
  6430. EXPORT_SYMBOL(md_error);
  6431. /* seq_file implementation /proc/mdstat */
  6432. static void status_unused(struct seq_file *seq)
  6433. {
  6434. int i = 0;
  6435. struct md_rdev *rdev;
  6436. seq_printf(seq, "unused devices: ");
  6437. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6438. char b[BDEVNAME_SIZE];
  6439. i++;
  6440. seq_printf(seq, "%s ",
  6441. bdevname(rdev->bdev,b));
  6442. }
  6443. if (!i)
  6444. seq_printf(seq, "<none>");
  6445. seq_printf(seq, "\n");
  6446. }
  6447. static int status_resync(struct seq_file *seq, struct mddev *mddev)
  6448. {
  6449. sector_t max_sectors, resync, res;
  6450. unsigned long dt, db;
  6451. sector_t rt;
  6452. int scale;
  6453. unsigned int per_milli;
  6454. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6455. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6456. max_sectors = mddev->resync_max_sectors;
  6457. else
  6458. max_sectors = mddev->dev_sectors;
  6459. resync = mddev->curr_resync;
  6460. if (resync <= 3) {
  6461. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6462. /* Still cleaning up */
  6463. resync = max_sectors;
  6464. } else
  6465. resync -= atomic_read(&mddev->recovery_active);
  6466. if (resync == 0) {
  6467. if (mddev->recovery_cp < MaxSector) {
  6468. seq_printf(seq, "\tresync=PENDING");
  6469. return 1;
  6470. }
  6471. return 0;
  6472. }
  6473. if (resync < 3) {
  6474. seq_printf(seq, "\tresync=DELAYED");
  6475. return 1;
  6476. }
  6477. WARN_ON(max_sectors == 0);
  6478. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6479. * in a sector_t, and (max_sectors>>scale) will fit in a
  6480. * u32, as those are the requirements for sector_div.
  6481. * Thus 'scale' must be at least 10
  6482. */
  6483. scale = 10;
  6484. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6485. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6486. scale++;
  6487. }
  6488. res = (resync>>scale)*1000;
  6489. sector_div(res, (u32)((max_sectors>>scale)+1));
  6490. per_milli = res;
  6491. {
  6492. int i, x = per_milli/50, y = 20-x;
  6493. seq_printf(seq, "[");
  6494. for (i = 0; i < x; i++)
  6495. seq_printf(seq, "=");
  6496. seq_printf(seq, ">");
  6497. for (i = 0; i < y; i++)
  6498. seq_printf(seq, ".");
  6499. seq_printf(seq, "] ");
  6500. }
  6501. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6502. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6503. "reshape" :
  6504. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6505. "check" :
  6506. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6507. "resync" : "recovery"))),
  6508. per_milli/10, per_milli % 10,
  6509. (unsigned long long) resync/2,
  6510. (unsigned long long) max_sectors/2);
  6511. /*
  6512. * dt: time from mark until now
  6513. * db: blocks written from mark until now
  6514. * rt: remaining time
  6515. *
  6516. * rt is a sector_t, so could be 32bit or 64bit.
  6517. * So we divide before multiply in case it is 32bit and close
  6518. * to the limit.
  6519. * We scale the divisor (db) by 32 to avoid losing precision
  6520. * near the end of resync when the number of remaining sectors
  6521. * is close to 'db'.
  6522. * We then divide rt by 32 after multiplying by db to compensate.
  6523. * The '+1' avoids division by zero if db is very small.
  6524. */
  6525. dt = ((jiffies - mddev->resync_mark) / HZ);
  6526. if (!dt) dt++;
  6527. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6528. - mddev->resync_mark_cnt;
  6529. rt = max_sectors - resync; /* number of remaining sectors */
  6530. sector_div(rt, db/32+1);
  6531. rt *= dt;
  6532. rt >>= 5;
  6533. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6534. ((unsigned long)rt % 60)/6);
  6535. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6536. return 1;
  6537. }
  6538. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6539. {
  6540. struct list_head *tmp;
  6541. loff_t l = *pos;
  6542. struct mddev *mddev;
  6543. if (l >= 0x10000)
  6544. return NULL;
  6545. if (!l--)
  6546. /* header */
  6547. return (void*)1;
  6548. spin_lock(&all_mddevs_lock);
  6549. list_for_each(tmp,&all_mddevs)
  6550. if (!l--) {
  6551. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6552. mddev_get(mddev);
  6553. spin_unlock(&all_mddevs_lock);
  6554. return mddev;
  6555. }
  6556. spin_unlock(&all_mddevs_lock);
  6557. if (!l--)
  6558. return (void*)2;/* tail */
  6559. return NULL;
  6560. }
  6561. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6562. {
  6563. struct list_head *tmp;
  6564. struct mddev *next_mddev, *mddev = v;
  6565. ++*pos;
  6566. if (v == (void*)2)
  6567. return NULL;
  6568. spin_lock(&all_mddevs_lock);
  6569. if (v == (void*)1)
  6570. tmp = all_mddevs.next;
  6571. else
  6572. tmp = mddev->all_mddevs.next;
  6573. if (tmp != &all_mddevs)
  6574. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6575. else {
  6576. next_mddev = (void*)2;
  6577. *pos = 0x10000;
  6578. }
  6579. spin_unlock(&all_mddevs_lock);
  6580. if (v != (void*)1)
  6581. mddev_put(mddev);
  6582. return next_mddev;
  6583. }
  6584. static void md_seq_stop(struct seq_file *seq, void *v)
  6585. {
  6586. struct mddev *mddev = v;
  6587. if (mddev && v != (void*)1 && v != (void*)2)
  6588. mddev_put(mddev);
  6589. }
  6590. static int md_seq_show(struct seq_file *seq, void *v)
  6591. {
  6592. struct mddev *mddev = v;
  6593. sector_t sectors;
  6594. struct md_rdev *rdev;
  6595. if (v == (void*)1) {
  6596. struct md_personality *pers;
  6597. seq_printf(seq, "Personalities : ");
  6598. spin_lock(&pers_lock);
  6599. list_for_each_entry(pers, &pers_list, list)
  6600. seq_printf(seq, "[%s] ", pers->name);
  6601. spin_unlock(&pers_lock);
  6602. seq_printf(seq, "\n");
  6603. seq->poll_event = atomic_read(&md_event_count);
  6604. return 0;
  6605. }
  6606. if (v == (void*)2) {
  6607. status_unused(seq);
  6608. return 0;
  6609. }
  6610. spin_lock(&mddev->lock);
  6611. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6612. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6613. mddev->pers ? "" : "in");
  6614. if (mddev->pers) {
  6615. if (mddev->ro==1)
  6616. seq_printf(seq, " (read-only)");
  6617. if (mddev->ro==2)
  6618. seq_printf(seq, " (auto-read-only)");
  6619. seq_printf(seq, " %s", mddev->pers->name);
  6620. }
  6621. sectors = 0;
  6622. rcu_read_lock();
  6623. rdev_for_each_rcu(rdev, mddev) {
  6624. char b[BDEVNAME_SIZE];
  6625. seq_printf(seq, " %s[%d]",
  6626. bdevname(rdev->bdev,b), rdev->desc_nr);
  6627. if (test_bit(WriteMostly, &rdev->flags))
  6628. seq_printf(seq, "(W)");
  6629. if (test_bit(Journal, &rdev->flags))
  6630. seq_printf(seq, "(J)");
  6631. if (test_bit(Faulty, &rdev->flags)) {
  6632. seq_printf(seq, "(F)");
  6633. continue;
  6634. }
  6635. if (rdev->raid_disk < 0)
  6636. seq_printf(seq, "(S)"); /* spare */
  6637. if (test_bit(Replacement, &rdev->flags))
  6638. seq_printf(seq, "(R)");
  6639. sectors += rdev->sectors;
  6640. }
  6641. rcu_read_unlock();
  6642. if (!list_empty(&mddev->disks)) {
  6643. if (mddev->pers)
  6644. seq_printf(seq, "\n %llu blocks",
  6645. (unsigned long long)
  6646. mddev->array_sectors / 2);
  6647. else
  6648. seq_printf(seq, "\n %llu blocks",
  6649. (unsigned long long)sectors / 2);
  6650. }
  6651. if (mddev->persistent) {
  6652. if (mddev->major_version != 0 ||
  6653. mddev->minor_version != 90) {
  6654. seq_printf(seq," super %d.%d",
  6655. mddev->major_version,
  6656. mddev->minor_version);
  6657. }
  6658. } else if (mddev->external)
  6659. seq_printf(seq, " super external:%s",
  6660. mddev->metadata_type);
  6661. else
  6662. seq_printf(seq, " super non-persistent");
  6663. if (mddev->pers) {
  6664. mddev->pers->status(seq, mddev);
  6665. seq_printf(seq, "\n ");
  6666. if (mddev->pers->sync_request) {
  6667. if (status_resync(seq, mddev))
  6668. seq_printf(seq, "\n ");
  6669. }
  6670. } else
  6671. seq_printf(seq, "\n ");
  6672. bitmap_status(seq, mddev->bitmap);
  6673. seq_printf(seq, "\n");
  6674. }
  6675. spin_unlock(&mddev->lock);
  6676. return 0;
  6677. }
  6678. static const struct seq_operations md_seq_ops = {
  6679. .start = md_seq_start,
  6680. .next = md_seq_next,
  6681. .stop = md_seq_stop,
  6682. .show = md_seq_show,
  6683. };
  6684. static int md_seq_open(struct inode *inode, struct file *file)
  6685. {
  6686. struct seq_file *seq;
  6687. int error;
  6688. error = seq_open(file, &md_seq_ops);
  6689. if (error)
  6690. return error;
  6691. seq = file->private_data;
  6692. seq->poll_event = atomic_read(&md_event_count);
  6693. return error;
  6694. }
  6695. static int md_unloading;
  6696. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6697. {
  6698. struct seq_file *seq = filp->private_data;
  6699. int mask;
  6700. if (md_unloading)
  6701. return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
  6702. poll_wait(filp, &md_event_waiters, wait);
  6703. /* always allow read */
  6704. mask = POLLIN | POLLRDNORM;
  6705. if (seq->poll_event != atomic_read(&md_event_count))
  6706. mask |= POLLERR | POLLPRI;
  6707. return mask;
  6708. }
  6709. static const struct file_operations md_seq_fops = {
  6710. .owner = THIS_MODULE,
  6711. .open = md_seq_open,
  6712. .read = seq_read,
  6713. .llseek = seq_lseek,
  6714. .release = seq_release_private,
  6715. .poll = mdstat_poll,
  6716. };
  6717. int register_md_personality(struct md_personality *p)
  6718. {
  6719. printk(KERN_INFO "md: %s personality registered for level %d\n",
  6720. p->name, p->level);
  6721. spin_lock(&pers_lock);
  6722. list_add_tail(&p->list, &pers_list);
  6723. spin_unlock(&pers_lock);
  6724. return 0;
  6725. }
  6726. EXPORT_SYMBOL(register_md_personality);
  6727. int unregister_md_personality(struct md_personality *p)
  6728. {
  6729. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6730. spin_lock(&pers_lock);
  6731. list_del_init(&p->list);
  6732. spin_unlock(&pers_lock);
  6733. return 0;
  6734. }
  6735. EXPORT_SYMBOL(unregister_md_personality);
  6736. int register_md_cluster_operations(struct md_cluster_operations *ops,
  6737. struct module *module)
  6738. {
  6739. int ret = 0;
  6740. spin_lock(&pers_lock);
  6741. if (md_cluster_ops != NULL)
  6742. ret = -EALREADY;
  6743. else {
  6744. md_cluster_ops = ops;
  6745. md_cluster_mod = module;
  6746. }
  6747. spin_unlock(&pers_lock);
  6748. return ret;
  6749. }
  6750. EXPORT_SYMBOL(register_md_cluster_operations);
  6751. int unregister_md_cluster_operations(void)
  6752. {
  6753. spin_lock(&pers_lock);
  6754. md_cluster_ops = NULL;
  6755. spin_unlock(&pers_lock);
  6756. return 0;
  6757. }
  6758. EXPORT_SYMBOL(unregister_md_cluster_operations);
  6759. int md_setup_cluster(struct mddev *mddev, int nodes)
  6760. {
  6761. int err;
  6762. err = request_module("md-cluster");
  6763. if (err) {
  6764. pr_err("md-cluster module not found.\n");
  6765. return -ENOENT;
  6766. }
  6767. spin_lock(&pers_lock);
  6768. if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
  6769. spin_unlock(&pers_lock);
  6770. return -ENOENT;
  6771. }
  6772. spin_unlock(&pers_lock);
  6773. return md_cluster_ops->join(mddev, nodes);
  6774. }
  6775. void md_cluster_stop(struct mddev *mddev)
  6776. {
  6777. if (!md_cluster_ops)
  6778. return;
  6779. md_cluster_ops->leave(mddev);
  6780. module_put(md_cluster_mod);
  6781. }
  6782. static int is_mddev_idle(struct mddev *mddev, int init)
  6783. {
  6784. struct md_rdev *rdev;
  6785. int idle;
  6786. int curr_events;
  6787. idle = 1;
  6788. rcu_read_lock();
  6789. rdev_for_each_rcu(rdev, mddev) {
  6790. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6791. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6792. (int)part_stat_read(&disk->part0, sectors[1]) -
  6793. atomic_read(&disk->sync_io);
  6794. /* sync IO will cause sync_io to increase before the disk_stats
  6795. * as sync_io is counted when a request starts, and
  6796. * disk_stats is counted when it completes.
  6797. * So resync activity will cause curr_events to be smaller than
  6798. * when there was no such activity.
  6799. * non-sync IO will cause disk_stat to increase without
  6800. * increasing sync_io so curr_events will (eventually)
  6801. * be larger than it was before. Once it becomes
  6802. * substantially larger, the test below will cause
  6803. * the array to appear non-idle, and resync will slow
  6804. * down.
  6805. * If there is a lot of outstanding resync activity when
  6806. * we set last_event to curr_events, then all that activity
  6807. * completing might cause the array to appear non-idle
  6808. * and resync will be slowed down even though there might
  6809. * not have been non-resync activity. This will only
  6810. * happen once though. 'last_events' will soon reflect
  6811. * the state where there is little or no outstanding
  6812. * resync requests, and further resync activity will
  6813. * always make curr_events less than last_events.
  6814. *
  6815. */
  6816. if (init || curr_events - rdev->last_events > 64) {
  6817. rdev->last_events = curr_events;
  6818. idle = 0;
  6819. }
  6820. }
  6821. rcu_read_unlock();
  6822. return idle;
  6823. }
  6824. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6825. {
  6826. /* another "blocks" (512byte) blocks have been synced */
  6827. atomic_sub(blocks, &mddev->recovery_active);
  6828. wake_up(&mddev->recovery_wait);
  6829. if (!ok) {
  6830. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6831. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6832. md_wakeup_thread(mddev->thread);
  6833. // stop recovery, signal do_sync ....
  6834. }
  6835. }
  6836. EXPORT_SYMBOL(md_done_sync);
  6837. /* md_write_start(mddev, bi)
  6838. * If we need to update some array metadata (e.g. 'active' flag
  6839. * in superblock) before writing, schedule a superblock update
  6840. * and wait for it to complete.
  6841. */
  6842. void md_write_start(struct mddev *mddev, struct bio *bi)
  6843. {
  6844. int did_change = 0;
  6845. if (bio_data_dir(bi) != WRITE)
  6846. return;
  6847. BUG_ON(mddev->ro == 1);
  6848. if (mddev->ro == 2) {
  6849. /* need to switch to read/write */
  6850. mddev->ro = 0;
  6851. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6852. md_wakeup_thread(mddev->thread);
  6853. md_wakeup_thread(mddev->sync_thread);
  6854. did_change = 1;
  6855. }
  6856. atomic_inc(&mddev->writes_pending);
  6857. if (mddev->safemode == 1)
  6858. mddev->safemode = 0;
  6859. if (mddev->in_sync) {
  6860. spin_lock(&mddev->lock);
  6861. if (mddev->in_sync) {
  6862. mddev->in_sync = 0;
  6863. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6864. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6865. md_wakeup_thread(mddev->thread);
  6866. did_change = 1;
  6867. }
  6868. spin_unlock(&mddev->lock);
  6869. }
  6870. if (did_change)
  6871. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6872. wait_event(mddev->sb_wait,
  6873. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6874. }
  6875. EXPORT_SYMBOL(md_write_start);
  6876. void md_write_end(struct mddev *mddev)
  6877. {
  6878. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6879. if (mddev->safemode == 2)
  6880. md_wakeup_thread(mddev->thread);
  6881. else if (mddev->safemode_delay)
  6882. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6883. }
  6884. }
  6885. EXPORT_SYMBOL(md_write_end);
  6886. /* md_allow_write(mddev)
  6887. * Calling this ensures that the array is marked 'active' so that writes
  6888. * may proceed without blocking. It is important to call this before
  6889. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6890. * Must be called with mddev_lock held.
  6891. *
  6892. * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
  6893. * is dropped, so return -EAGAIN after notifying userspace.
  6894. */
  6895. int md_allow_write(struct mddev *mddev)
  6896. {
  6897. if (!mddev->pers)
  6898. return 0;
  6899. if (mddev->ro)
  6900. return 0;
  6901. if (!mddev->pers->sync_request)
  6902. return 0;
  6903. spin_lock(&mddev->lock);
  6904. if (mddev->in_sync) {
  6905. mddev->in_sync = 0;
  6906. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6907. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6908. if (mddev->safemode_delay &&
  6909. mddev->safemode == 0)
  6910. mddev->safemode = 1;
  6911. spin_unlock(&mddev->lock);
  6912. md_update_sb(mddev, 0);
  6913. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6914. } else
  6915. spin_unlock(&mddev->lock);
  6916. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6917. return -EAGAIN;
  6918. else
  6919. return 0;
  6920. }
  6921. EXPORT_SYMBOL_GPL(md_allow_write);
  6922. #define SYNC_MARKS 10
  6923. #define SYNC_MARK_STEP (3*HZ)
  6924. #define UPDATE_FREQUENCY (5*60*HZ)
  6925. void md_do_sync(struct md_thread *thread)
  6926. {
  6927. struct mddev *mddev = thread->mddev;
  6928. struct mddev *mddev2;
  6929. unsigned int currspeed = 0,
  6930. window;
  6931. sector_t max_sectors,j, io_sectors, recovery_done;
  6932. unsigned long mark[SYNC_MARKS];
  6933. unsigned long update_time;
  6934. sector_t mark_cnt[SYNC_MARKS];
  6935. int last_mark,m;
  6936. struct list_head *tmp;
  6937. sector_t last_check;
  6938. int skipped = 0;
  6939. struct md_rdev *rdev;
  6940. char *desc, *action = NULL;
  6941. struct blk_plug plug;
  6942. bool cluster_resync_finished = false;
  6943. /* just incase thread restarts... */
  6944. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6945. return;
  6946. if (mddev->ro) {/* never try to sync a read-only array */
  6947. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6948. return;
  6949. }
  6950. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6951. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6952. desc = "data-check";
  6953. action = "check";
  6954. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6955. desc = "requested-resync";
  6956. action = "repair";
  6957. } else
  6958. desc = "resync";
  6959. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6960. desc = "reshape";
  6961. else
  6962. desc = "recovery";
  6963. mddev->last_sync_action = action ?: desc;
  6964. /* we overload curr_resync somewhat here.
  6965. * 0 == not engaged in resync at all
  6966. * 2 == checking that there is no conflict with another sync
  6967. * 1 == like 2, but have yielded to allow conflicting resync to
  6968. * commense
  6969. * other == active in resync - this many blocks
  6970. *
  6971. * Before starting a resync we must have set curr_resync to
  6972. * 2, and then checked that every "conflicting" array has curr_resync
  6973. * less than ours. When we find one that is the same or higher
  6974. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6975. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6976. * This will mean we have to start checking from the beginning again.
  6977. *
  6978. */
  6979. do {
  6980. mddev->curr_resync = 2;
  6981. try_again:
  6982. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6983. goto skip;
  6984. for_each_mddev(mddev2, tmp) {
  6985. if (mddev2 == mddev)
  6986. continue;
  6987. if (!mddev->parallel_resync
  6988. && mddev2->curr_resync
  6989. && match_mddev_units(mddev, mddev2)) {
  6990. DEFINE_WAIT(wq);
  6991. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6992. /* arbitrarily yield */
  6993. mddev->curr_resync = 1;
  6994. wake_up(&resync_wait);
  6995. }
  6996. if (mddev > mddev2 && mddev->curr_resync == 1)
  6997. /* no need to wait here, we can wait the next
  6998. * time 'round when curr_resync == 2
  6999. */
  7000. continue;
  7001. /* We need to wait 'interruptible' so as not to
  7002. * contribute to the load average, and not to
  7003. * be caught by 'softlockup'
  7004. */
  7005. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  7006. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7007. mddev2->curr_resync >= mddev->curr_resync) {
  7008. printk(KERN_INFO "md: delaying %s of %s"
  7009. " until %s has finished (they"
  7010. " share one or more physical units)\n",
  7011. desc, mdname(mddev), mdname(mddev2));
  7012. mddev_put(mddev2);
  7013. if (signal_pending(current))
  7014. flush_signals(current);
  7015. schedule();
  7016. finish_wait(&resync_wait, &wq);
  7017. goto try_again;
  7018. }
  7019. finish_wait(&resync_wait, &wq);
  7020. }
  7021. }
  7022. } while (mddev->curr_resync < 2);
  7023. j = 0;
  7024. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  7025. /* resync follows the size requested by the personality,
  7026. * which defaults to physical size, but can be virtual size
  7027. */
  7028. max_sectors = mddev->resync_max_sectors;
  7029. atomic64_set(&mddev->resync_mismatches, 0);
  7030. /* we don't use the checkpoint if there's a bitmap */
  7031. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7032. j = mddev->resync_min;
  7033. else if (!mddev->bitmap)
  7034. j = mddev->recovery_cp;
  7035. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  7036. max_sectors = mddev->resync_max_sectors;
  7037. else {
  7038. /* recovery follows the physical size of devices */
  7039. max_sectors = mddev->dev_sectors;
  7040. j = MaxSector;
  7041. rcu_read_lock();
  7042. rdev_for_each_rcu(rdev, mddev)
  7043. if (rdev->raid_disk >= 0 &&
  7044. !test_bit(Journal, &rdev->flags) &&
  7045. !test_bit(Faulty, &rdev->flags) &&
  7046. !test_bit(In_sync, &rdev->flags) &&
  7047. rdev->recovery_offset < j)
  7048. j = rdev->recovery_offset;
  7049. rcu_read_unlock();
  7050. /* If there is a bitmap, we need to make sure all
  7051. * writes that started before we added a spare
  7052. * complete before we start doing a recovery.
  7053. * Otherwise the write might complete and (via
  7054. * bitmap_endwrite) set a bit in the bitmap after the
  7055. * recovery has checked that bit and skipped that
  7056. * region.
  7057. */
  7058. if (mddev->bitmap) {
  7059. mddev->pers->quiesce(mddev, 1);
  7060. mddev->pers->quiesce(mddev, 0);
  7061. }
  7062. }
  7063. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  7064. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  7065. " %d KB/sec/disk.\n", speed_min(mddev));
  7066. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  7067. "(but not more than %d KB/sec) for %s.\n",
  7068. speed_max(mddev), desc);
  7069. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  7070. io_sectors = 0;
  7071. for (m = 0; m < SYNC_MARKS; m++) {
  7072. mark[m] = jiffies;
  7073. mark_cnt[m] = io_sectors;
  7074. }
  7075. last_mark = 0;
  7076. mddev->resync_mark = mark[last_mark];
  7077. mddev->resync_mark_cnt = mark_cnt[last_mark];
  7078. /*
  7079. * Tune reconstruction:
  7080. */
  7081. window = 32*(PAGE_SIZE/512);
  7082. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  7083. window/2, (unsigned long long)max_sectors/2);
  7084. atomic_set(&mddev->recovery_active, 0);
  7085. last_check = 0;
  7086. if (j>2) {
  7087. printk(KERN_INFO
  7088. "md: resuming %s of %s from checkpoint.\n",
  7089. desc, mdname(mddev));
  7090. mddev->curr_resync = j;
  7091. } else
  7092. mddev->curr_resync = 3; /* no longer delayed */
  7093. mddev->curr_resync_completed = j;
  7094. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  7095. md_new_event(mddev);
  7096. update_time = jiffies;
  7097. blk_start_plug(&plug);
  7098. while (j < max_sectors) {
  7099. sector_t sectors;
  7100. skipped = 0;
  7101. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7102. ((mddev->curr_resync > mddev->curr_resync_completed &&
  7103. (mddev->curr_resync - mddev->curr_resync_completed)
  7104. > (max_sectors >> 4)) ||
  7105. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  7106. (j - mddev->curr_resync_completed)*2
  7107. >= mddev->resync_max - mddev->curr_resync_completed ||
  7108. mddev->curr_resync_completed > mddev->resync_max
  7109. )) {
  7110. /* time to update curr_resync_completed */
  7111. wait_event(mddev->recovery_wait,
  7112. atomic_read(&mddev->recovery_active) == 0);
  7113. mddev->curr_resync_completed = j;
  7114. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  7115. j > mddev->recovery_cp)
  7116. mddev->recovery_cp = j;
  7117. update_time = jiffies;
  7118. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7119. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  7120. }
  7121. while (j >= mddev->resync_max &&
  7122. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7123. /* As this condition is controlled by user-space,
  7124. * we can block indefinitely, so use '_interruptible'
  7125. * to avoid triggering warnings.
  7126. */
  7127. flush_signals(current); /* just in case */
  7128. wait_event_interruptible(mddev->recovery_wait,
  7129. mddev->resync_max > j
  7130. || test_bit(MD_RECOVERY_INTR,
  7131. &mddev->recovery));
  7132. }
  7133. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7134. break;
  7135. sectors = mddev->pers->sync_request(mddev, j, &skipped);
  7136. if (sectors == 0) {
  7137. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7138. break;
  7139. }
  7140. if (!skipped) { /* actual IO requested */
  7141. io_sectors += sectors;
  7142. atomic_add(sectors, &mddev->recovery_active);
  7143. }
  7144. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7145. break;
  7146. j += sectors;
  7147. if (j > max_sectors)
  7148. /* when skipping, extra large numbers can be returned. */
  7149. j = max_sectors;
  7150. if (j > 2)
  7151. mddev->curr_resync = j;
  7152. mddev->curr_mark_cnt = io_sectors;
  7153. if (last_check == 0)
  7154. /* this is the earliest that rebuild will be
  7155. * visible in /proc/mdstat
  7156. */
  7157. md_new_event(mddev);
  7158. if (last_check + window > io_sectors || j == max_sectors)
  7159. continue;
  7160. last_check = io_sectors;
  7161. repeat:
  7162. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  7163. /* step marks */
  7164. int next = (last_mark+1) % SYNC_MARKS;
  7165. mddev->resync_mark = mark[next];
  7166. mddev->resync_mark_cnt = mark_cnt[next];
  7167. mark[next] = jiffies;
  7168. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  7169. last_mark = next;
  7170. }
  7171. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7172. break;
  7173. /*
  7174. * this loop exits only if either when we are slower than
  7175. * the 'hard' speed limit, or the system was IO-idle for
  7176. * a jiffy.
  7177. * the system might be non-idle CPU-wise, but we only care
  7178. * about not overloading the IO subsystem. (things like an
  7179. * e2fsck being done on the RAID array should execute fast)
  7180. */
  7181. cond_resched();
  7182. recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
  7183. currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
  7184. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  7185. if (currspeed > speed_min(mddev)) {
  7186. if (currspeed > speed_max(mddev)) {
  7187. msleep(500);
  7188. goto repeat;
  7189. }
  7190. if (!is_mddev_idle(mddev, 0)) {
  7191. /*
  7192. * Give other IO more of a chance.
  7193. * The faster the devices, the less we wait.
  7194. */
  7195. wait_event(mddev->recovery_wait,
  7196. !atomic_read(&mddev->recovery_active));
  7197. }
  7198. }
  7199. }
  7200. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  7201. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  7202. ? "interrupted" : "done");
  7203. /*
  7204. * this also signals 'finished resyncing' to md_stop
  7205. */
  7206. blk_finish_plug(&plug);
  7207. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  7208. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7209. !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7210. mddev->curr_resync > 2) {
  7211. mddev->curr_resync_completed = mddev->curr_resync;
  7212. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  7213. }
  7214. /* tell personality and other nodes that we are finished */
  7215. if (mddev_is_clustered(mddev)) {
  7216. md_cluster_ops->resync_finish(mddev);
  7217. cluster_resync_finished = true;
  7218. }
  7219. mddev->pers->sync_request(mddev, max_sectors, &skipped);
  7220. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  7221. mddev->curr_resync > 2) {
  7222. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  7223. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7224. if (mddev->curr_resync >= mddev->recovery_cp) {
  7225. printk(KERN_INFO
  7226. "md: checkpointing %s of %s.\n",
  7227. desc, mdname(mddev));
  7228. if (test_bit(MD_RECOVERY_ERROR,
  7229. &mddev->recovery))
  7230. mddev->recovery_cp =
  7231. mddev->curr_resync_completed;
  7232. else
  7233. mddev->recovery_cp =
  7234. mddev->curr_resync;
  7235. }
  7236. } else
  7237. mddev->recovery_cp = MaxSector;
  7238. } else {
  7239. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  7240. mddev->curr_resync = MaxSector;
  7241. rcu_read_lock();
  7242. rdev_for_each_rcu(rdev, mddev)
  7243. if (rdev->raid_disk >= 0 &&
  7244. mddev->delta_disks >= 0 &&
  7245. !test_bit(Journal, &rdev->flags) &&
  7246. !test_bit(Faulty, &rdev->flags) &&
  7247. !test_bit(In_sync, &rdev->flags) &&
  7248. rdev->recovery_offset < mddev->curr_resync)
  7249. rdev->recovery_offset = mddev->curr_resync;
  7250. rcu_read_unlock();
  7251. }
  7252. }
  7253. skip:
  7254. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7255. if (mddev_is_clustered(mddev) &&
  7256. test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7257. !cluster_resync_finished)
  7258. md_cluster_ops->resync_finish(mddev);
  7259. spin_lock(&mddev->lock);
  7260. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  7261. /* We completed so min/max setting can be forgotten if used. */
  7262. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7263. mddev->resync_min = 0;
  7264. mddev->resync_max = MaxSector;
  7265. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  7266. mddev->resync_min = mddev->curr_resync_completed;
  7267. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7268. mddev->curr_resync = 0;
  7269. spin_unlock(&mddev->lock);
  7270. wake_up(&resync_wait);
  7271. md_wakeup_thread(mddev->thread);
  7272. return;
  7273. }
  7274. EXPORT_SYMBOL_GPL(md_do_sync);
  7275. static int remove_and_add_spares(struct mddev *mddev,
  7276. struct md_rdev *this)
  7277. {
  7278. struct md_rdev *rdev;
  7279. int spares = 0;
  7280. int removed = 0;
  7281. rdev_for_each(rdev, mddev)
  7282. if ((this == NULL || rdev == this) &&
  7283. rdev->raid_disk >= 0 &&
  7284. !test_bit(Blocked, &rdev->flags) &&
  7285. (test_bit(Faulty, &rdev->flags) ||
  7286. (!test_bit(In_sync, &rdev->flags) &&
  7287. !test_bit(Journal, &rdev->flags))) &&
  7288. atomic_read(&rdev->nr_pending)==0) {
  7289. if (mddev->pers->hot_remove_disk(
  7290. mddev, rdev) == 0) {
  7291. sysfs_unlink_rdev(mddev, rdev);
  7292. rdev->raid_disk = -1;
  7293. removed++;
  7294. }
  7295. }
  7296. if (removed && mddev->kobj.sd)
  7297. sysfs_notify(&mddev->kobj, NULL, "degraded");
  7298. if (this && removed)
  7299. goto no_add;
  7300. rdev_for_each(rdev, mddev) {
  7301. if (this && this != rdev)
  7302. continue;
  7303. if (test_bit(Candidate, &rdev->flags))
  7304. continue;
  7305. if (rdev->raid_disk >= 0 &&
  7306. !test_bit(In_sync, &rdev->flags) &&
  7307. !test_bit(Journal, &rdev->flags) &&
  7308. !test_bit(Faulty, &rdev->flags))
  7309. spares++;
  7310. if (rdev->raid_disk >= 0)
  7311. continue;
  7312. if (test_bit(Faulty, &rdev->flags))
  7313. continue;
  7314. if (!test_bit(Journal, &rdev->flags)) {
  7315. if (mddev->ro &&
  7316. ! (rdev->saved_raid_disk >= 0 &&
  7317. !test_bit(Bitmap_sync, &rdev->flags)))
  7318. continue;
  7319. rdev->recovery_offset = 0;
  7320. }
  7321. if (mddev->pers->
  7322. hot_add_disk(mddev, rdev) == 0) {
  7323. if (sysfs_link_rdev(mddev, rdev))
  7324. /* failure here is OK */;
  7325. if (!test_bit(Journal, &rdev->flags))
  7326. spares++;
  7327. md_new_event(mddev);
  7328. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7329. }
  7330. }
  7331. no_add:
  7332. if (removed)
  7333. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7334. return spares;
  7335. }
  7336. static void md_start_sync(struct work_struct *ws)
  7337. {
  7338. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  7339. int ret = 0;
  7340. if (mddev_is_clustered(mddev)) {
  7341. ret = md_cluster_ops->resync_start(mddev);
  7342. if (ret) {
  7343. mddev->sync_thread = NULL;
  7344. goto out;
  7345. }
  7346. }
  7347. mddev->sync_thread = md_register_thread(md_do_sync,
  7348. mddev,
  7349. "resync");
  7350. out:
  7351. if (!mddev->sync_thread) {
  7352. if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
  7353. printk(KERN_ERR "%s: could not start resync"
  7354. " thread...\n",
  7355. mdname(mddev));
  7356. /* leave the spares where they are, it shouldn't hurt */
  7357. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7358. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7359. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7360. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7361. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7362. wake_up(&resync_wait);
  7363. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7364. &mddev->recovery))
  7365. if (mddev->sysfs_action)
  7366. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7367. } else
  7368. md_wakeup_thread(mddev->sync_thread);
  7369. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7370. md_new_event(mddev);
  7371. }
  7372. /*
  7373. * This routine is regularly called by all per-raid-array threads to
  7374. * deal with generic issues like resync and super-block update.
  7375. * Raid personalities that don't have a thread (linear/raid0) do not
  7376. * need this as they never do any recovery or update the superblock.
  7377. *
  7378. * It does not do any resync itself, but rather "forks" off other threads
  7379. * to do that as needed.
  7380. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  7381. * "->recovery" and create a thread at ->sync_thread.
  7382. * When the thread finishes it sets MD_RECOVERY_DONE
  7383. * and wakeups up this thread which will reap the thread and finish up.
  7384. * This thread also removes any faulty devices (with nr_pending == 0).
  7385. *
  7386. * The overall approach is:
  7387. * 1/ if the superblock needs updating, update it.
  7388. * 2/ If a recovery thread is running, don't do anything else.
  7389. * 3/ If recovery has finished, clean up, possibly marking spares active.
  7390. * 4/ If there are any faulty devices, remove them.
  7391. * 5/ If array is degraded, try to add spares devices
  7392. * 6/ If array has spares or is not in-sync, start a resync thread.
  7393. */
  7394. void md_check_recovery(struct mddev *mddev)
  7395. {
  7396. if (mddev->suspended)
  7397. return;
  7398. if (mddev->bitmap)
  7399. bitmap_daemon_work(mddev);
  7400. if (signal_pending(current)) {
  7401. if (mddev->pers->sync_request && !mddev->external) {
  7402. printk(KERN_INFO "md: %s in immediate safe mode\n",
  7403. mdname(mddev));
  7404. mddev->safemode = 2;
  7405. }
  7406. flush_signals(current);
  7407. }
  7408. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  7409. return;
  7410. if ( ! (
  7411. (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
  7412. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7413. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  7414. test_bit(MD_RELOAD_SB, &mddev->flags) ||
  7415. (mddev->external == 0 && mddev->safemode == 1) ||
  7416. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  7417. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  7418. ))
  7419. return;
  7420. if (mddev_trylock(mddev)) {
  7421. int spares = 0;
  7422. if (mddev->ro) {
  7423. struct md_rdev *rdev;
  7424. if (!mddev->external && mddev->in_sync)
  7425. /* 'Blocked' flag not needed as failed devices
  7426. * will be recorded if array switched to read/write.
  7427. * Leaving it set will prevent the device
  7428. * from being removed.
  7429. */
  7430. rdev_for_each(rdev, mddev)
  7431. clear_bit(Blocked, &rdev->flags);
  7432. /* On a read-only array we can:
  7433. * - remove failed devices
  7434. * - add already-in_sync devices if the array itself
  7435. * is in-sync.
  7436. * As we only add devices that are already in-sync,
  7437. * we can activate the spares immediately.
  7438. */
  7439. remove_and_add_spares(mddev, NULL);
  7440. /* There is no thread, but we need to call
  7441. * ->spare_active and clear saved_raid_disk
  7442. */
  7443. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7444. md_reap_sync_thread(mddev);
  7445. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7446. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7447. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  7448. goto unlock;
  7449. }
  7450. if (mddev_is_clustered(mddev)) {
  7451. struct md_rdev *rdev;
  7452. /* kick the device if another node issued a
  7453. * remove disk.
  7454. */
  7455. rdev_for_each(rdev, mddev) {
  7456. if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
  7457. rdev->raid_disk < 0)
  7458. md_kick_rdev_from_array(rdev);
  7459. }
  7460. if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
  7461. md_reload_sb(mddev, mddev->good_device_nr);
  7462. }
  7463. if (!mddev->external) {
  7464. int did_change = 0;
  7465. spin_lock(&mddev->lock);
  7466. if (mddev->safemode &&
  7467. !atomic_read(&mddev->writes_pending) &&
  7468. !mddev->in_sync &&
  7469. mddev->recovery_cp == MaxSector) {
  7470. mddev->in_sync = 1;
  7471. did_change = 1;
  7472. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  7473. }
  7474. if (mddev->safemode == 1)
  7475. mddev->safemode = 0;
  7476. spin_unlock(&mddev->lock);
  7477. if (did_change)
  7478. sysfs_notify_dirent_safe(mddev->sysfs_state);
  7479. }
  7480. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  7481. md_update_sb(mddev, 0);
  7482. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  7483. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  7484. /* resync/recovery still happening */
  7485. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7486. goto unlock;
  7487. }
  7488. if (mddev->sync_thread) {
  7489. md_reap_sync_thread(mddev);
  7490. goto unlock;
  7491. }
  7492. /* Set RUNNING before clearing NEEDED to avoid
  7493. * any transients in the value of "sync_action".
  7494. */
  7495. mddev->curr_resync_completed = 0;
  7496. spin_lock(&mddev->lock);
  7497. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7498. spin_unlock(&mddev->lock);
  7499. /* Clear some bits that don't mean anything, but
  7500. * might be left set
  7501. */
  7502. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7503. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7504. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7505. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7506. goto not_running;
  7507. /* no recovery is running.
  7508. * remove any failed drives, then
  7509. * add spares if possible.
  7510. * Spares are also removed and re-added, to allow
  7511. * the personality to fail the re-add.
  7512. */
  7513. if (mddev->reshape_position != MaxSector) {
  7514. if (mddev->pers->check_reshape == NULL ||
  7515. mddev->pers->check_reshape(mddev) != 0)
  7516. /* Cannot proceed */
  7517. goto not_running;
  7518. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7519. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7520. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7521. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7522. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7523. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7524. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7525. } else if (mddev->recovery_cp < MaxSector) {
  7526. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7527. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7528. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7529. /* nothing to be done ... */
  7530. goto not_running;
  7531. if (mddev->pers->sync_request) {
  7532. if (spares) {
  7533. /* We are adding a device or devices to an array
  7534. * which has the bitmap stored on all devices.
  7535. * So make sure all bitmap pages get written
  7536. */
  7537. bitmap_write_all(mddev->bitmap);
  7538. }
  7539. INIT_WORK(&mddev->del_work, md_start_sync);
  7540. queue_work(md_misc_wq, &mddev->del_work);
  7541. goto unlock;
  7542. }
  7543. not_running:
  7544. if (!mddev->sync_thread) {
  7545. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7546. wake_up(&resync_wait);
  7547. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7548. &mddev->recovery))
  7549. if (mddev->sysfs_action)
  7550. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7551. }
  7552. unlock:
  7553. wake_up(&mddev->sb_wait);
  7554. mddev_unlock(mddev);
  7555. }
  7556. }
  7557. EXPORT_SYMBOL(md_check_recovery);
  7558. void md_reap_sync_thread(struct mddev *mddev)
  7559. {
  7560. struct md_rdev *rdev;
  7561. /* resync has finished, collect result */
  7562. md_unregister_thread(&mddev->sync_thread);
  7563. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7564. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7565. /* success...*/
  7566. /* activate any spares */
  7567. if (mddev->pers->spare_active(mddev)) {
  7568. sysfs_notify(&mddev->kobj, NULL,
  7569. "degraded");
  7570. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7571. }
  7572. }
  7573. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7574. mddev->pers->finish_reshape)
  7575. mddev->pers->finish_reshape(mddev);
  7576. /* If array is no-longer degraded, then any saved_raid_disk
  7577. * information must be scrapped.
  7578. */
  7579. if (!mddev->degraded)
  7580. rdev_for_each(rdev, mddev)
  7581. rdev->saved_raid_disk = -1;
  7582. md_update_sb(mddev, 1);
  7583. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7584. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7585. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7586. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7587. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7588. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7589. wake_up(&resync_wait);
  7590. /* flag recovery needed just to double check */
  7591. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7592. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7593. md_new_event(mddev);
  7594. if (mddev->event_work.func)
  7595. queue_work(md_misc_wq, &mddev->event_work);
  7596. }
  7597. EXPORT_SYMBOL(md_reap_sync_thread);
  7598. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7599. {
  7600. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7601. wait_event_timeout(rdev->blocked_wait,
  7602. !test_bit(Blocked, &rdev->flags) &&
  7603. !test_bit(BlockedBadBlocks, &rdev->flags),
  7604. msecs_to_jiffies(5000));
  7605. rdev_dec_pending(rdev, mddev);
  7606. }
  7607. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7608. void md_finish_reshape(struct mddev *mddev)
  7609. {
  7610. /* called be personality module when reshape completes. */
  7611. struct md_rdev *rdev;
  7612. rdev_for_each(rdev, mddev) {
  7613. if (rdev->data_offset > rdev->new_data_offset)
  7614. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7615. else
  7616. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7617. rdev->data_offset = rdev->new_data_offset;
  7618. }
  7619. }
  7620. EXPORT_SYMBOL(md_finish_reshape);
  7621. /* Bad block management */
  7622. /* Returns 1 on success, 0 on failure */
  7623. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7624. int is_new)
  7625. {
  7626. int rv;
  7627. if (is_new)
  7628. s += rdev->new_data_offset;
  7629. else
  7630. s += rdev->data_offset;
  7631. rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
  7632. if (rv == 0) {
  7633. /* Make sure they get written out promptly */
  7634. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7635. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7636. set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
  7637. md_wakeup_thread(rdev->mddev->thread);
  7638. return 1;
  7639. } else
  7640. return 0;
  7641. }
  7642. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7643. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7644. int is_new)
  7645. {
  7646. if (is_new)
  7647. s += rdev->new_data_offset;
  7648. else
  7649. s += rdev->data_offset;
  7650. return badblocks_clear(&rdev->badblocks,
  7651. s, sectors);
  7652. }
  7653. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7654. static int md_notify_reboot(struct notifier_block *this,
  7655. unsigned long code, void *x)
  7656. {
  7657. struct list_head *tmp;
  7658. struct mddev *mddev;
  7659. int need_delay = 0;
  7660. for_each_mddev(mddev, tmp) {
  7661. if (mddev_trylock(mddev)) {
  7662. if (mddev->pers)
  7663. __md_stop_writes(mddev);
  7664. if (mddev->persistent)
  7665. mddev->safemode = 2;
  7666. mddev_unlock(mddev);
  7667. }
  7668. need_delay = 1;
  7669. }
  7670. /*
  7671. * certain more exotic SCSI devices are known to be
  7672. * volatile wrt too early system reboots. While the
  7673. * right place to handle this issue is the given
  7674. * driver, we do want to have a safe RAID driver ...
  7675. */
  7676. if (need_delay)
  7677. mdelay(1000*1);
  7678. return NOTIFY_DONE;
  7679. }
  7680. static struct notifier_block md_notifier = {
  7681. .notifier_call = md_notify_reboot,
  7682. .next = NULL,
  7683. .priority = INT_MAX, /* before any real devices */
  7684. };
  7685. static void md_geninit(void)
  7686. {
  7687. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7688. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7689. }
  7690. static int __init md_init(void)
  7691. {
  7692. int ret = -ENOMEM;
  7693. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7694. if (!md_wq)
  7695. goto err_wq;
  7696. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7697. if (!md_misc_wq)
  7698. goto err_misc_wq;
  7699. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7700. goto err_md;
  7701. if ((ret = register_blkdev(0, "mdp")) < 0)
  7702. goto err_mdp;
  7703. mdp_major = ret;
  7704. blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
  7705. md_probe, NULL, NULL);
  7706. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7707. md_probe, NULL, NULL);
  7708. register_reboot_notifier(&md_notifier);
  7709. raid_table_header = register_sysctl_table(raid_root_table);
  7710. md_geninit();
  7711. return 0;
  7712. err_mdp:
  7713. unregister_blkdev(MD_MAJOR, "md");
  7714. err_md:
  7715. destroy_workqueue(md_misc_wq);
  7716. err_misc_wq:
  7717. destroy_workqueue(md_wq);
  7718. err_wq:
  7719. return ret;
  7720. }
  7721. static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
  7722. {
  7723. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  7724. struct md_rdev *rdev2;
  7725. int role, ret;
  7726. char b[BDEVNAME_SIZE];
  7727. /* Check for change of roles in the active devices */
  7728. rdev_for_each(rdev2, mddev) {
  7729. if (test_bit(Faulty, &rdev2->flags))
  7730. continue;
  7731. /* Check if the roles changed */
  7732. role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
  7733. if (test_bit(Candidate, &rdev2->flags)) {
  7734. if (role == 0xfffe) {
  7735. pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
  7736. md_kick_rdev_from_array(rdev2);
  7737. continue;
  7738. }
  7739. else
  7740. clear_bit(Candidate, &rdev2->flags);
  7741. }
  7742. if (role != rdev2->raid_disk) {
  7743. /* got activated */
  7744. if (rdev2->raid_disk == -1 && role != 0xffff) {
  7745. rdev2->saved_raid_disk = role;
  7746. ret = remove_and_add_spares(mddev, rdev2);
  7747. pr_info("Activated spare: %s\n",
  7748. bdevname(rdev2->bdev,b));
  7749. }
  7750. /* device faulty
  7751. * We just want to do the minimum to mark the disk
  7752. * as faulty. The recovery is performed by the
  7753. * one who initiated the error.
  7754. */
  7755. if ((role == 0xfffe) || (role == 0xfffd)) {
  7756. md_error(mddev, rdev2);
  7757. clear_bit(Blocked, &rdev2->flags);
  7758. }
  7759. }
  7760. }
  7761. if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
  7762. update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
  7763. /* Finally set the event to be up to date */
  7764. mddev->events = le64_to_cpu(sb->events);
  7765. }
  7766. static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
  7767. {
  7768. int err;
  7769. struct page *swapout = rdev->sb_page;
  7770. struct mdp_superblock_1 *sb;
  7771. /* Store the sb page of the rdev in the swapout temporary
  7772. * variable in case we err in the future
  7773. */
  7774. rdev->sb_page = NULL;
  7775. alloc_disk_sb(rdev);
  7776. ClearPageUptodate(rdev->sb_page);
  7777. rdev->sb_loaded = 0;
  7778. err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
  7779. if (err < 0) {
  7780. pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
  7781. __func__, __LINE__, rdev->desc_nr, err);
  7782. put_page(rdev->sb_page);
  7783. rdev->sb_page = swapout;
  7784. rdev->sb_loaded = 1;
  7785. return err;
  7786. }
  7787. sb = page_address(rdev->sb_page);
  7788. /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
  7789. * is not set
  7790. */
  7791. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
  7792. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  7793. /* The other node finished recovery, call spare_active to set
  7794. * device In_sync and mddev->degraded
  7795. */
  7796. if (rdev->recovery_offset == MaxSector &&
  7797. !test_bit(In_sync, &rdev->flags) &&
  7798. mddev->pers->spare_active(mddev))
  7799. sysfs_notify(&mddev->kobj, NULL, "degraded");
  7800. put_page(swapout);
  7801. return 0;
  7802. }
  7803. void md_reload_sb(struct mddev *mddev, int nr)
  7804. {
  7805. struct md_rdev *rdev;
  7806. int err;
  7807. /* Find the rdev */
  7808. rdev_for_each_rcu(rdev, mddev) {
  7809. if (rdev->desc_nr == nr)
  7810. break;
  7811. }
  7812. if (!rdev || rdev->desc_nr != nr) {
  7813. pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
  7814. return;
  7815. }
  7816. err = read_rdev(mddev, rdev);
  7817. if (err < 0)
  7818. return;
  7819. check_sb_changes(mddev, rdev);
  7820. /* Read all rdev's to update recovery_offset */
  7821. rdev_for_each_rcu(rdev, mddev)
  7822. read_rdev(mddev, rdev);
  7823. }
  7824. EXPORT_SYMBOL(md_reload_sb);
  7825. #ifndef MODULE
  7826. /*
  7827. * Searches all registered partitions for autorun RAID arrays
  7828. * at boot time.
  7829. */
  7830. static LIST_HEAD(all_detected_devices);
  7831. struct detected_devices_node {
  7832. struct list_head list;
  7833. dev_t dev;
  7834. };
  7835. void md_autodetect_dev(dev_t dev)
  7836. {
  7837. struct detected_devices_node *node_detected_dev;
  7838. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7839. if (node_detected_dev) {
  7840. node_detected_dev->dev = dev;
  7841. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7842. } else {
  7843. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7844. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7845. }
  7846. }
  7847. static void autostart_arrays(int part)
  7848. {
  7849. struct md_rdev *rdev;
  7850. struct detected_devices_node *node_detected_dev;
  7851. dev_t dev;
  7852. int i_scanned, i_passed;
  7853. i_scanned = 0;
  7854. i_passed = 0;
  7855. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7856. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7857. i_scanned++;
  7858. node_detected_dev = list_entry(all_detected_devices.next,
  7859. struct detected_devices_node, list);
  7860. list_del(&node_detected_dev->list);
  7861. dev = node_detected_dev->dev;
  7862. kfree(node_detected_dev);
  7863. rdev = md_import_device(dev,0, 90);
  7864. if (IS_ERR(rdev))
  7865. continue;
  7866. if (test_bit(Faulty, &rdev->flags))
  7867. continue;
  7868. set_bit(AutoDetected, &rdev->flags);
  7869. list_add(&rdev->same_set, &pending_raid_disks);
  7870. i_passed++;
  7871. }
  7872. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7873. i_scanned, i_passed);
  7874. autorun_devices(part);
  7875. }
  7876. #endif /* !MODULE */
  7877. static __exit void md_exit(void)
  7878. {
  7879. struct mddev *mddev;
  7880. struct list_head *tmp;
  7881. int delay = 1;
  7882. blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
  7883. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7884. unregister_blkdev(MD_MAJOR,"md");
  7885. unregister_blkdev(mdp_major, "mdp");
  7886. unregister_reboot_notifier(&md_notifier);
  7887. unregister_sysctl_table(raid_table_header);
  7888. /* We cannot unload the modules while some process is
  7889. * waiting for us in select() or poll() - wake them up
  7890. */
  7891. md_unloading = 1;
  7892. while (waitqueue_active(&md_event_waiters)) {
  7893. /* not safe to leave yet */
  7894. wake_up(&md_event_waiters);
  7895. msleep(delay);
  7896. delay += delay;
  7897. }
  7898. remove_proc_entry("mdstat", NULL);
  7899. for_each_mddev(mddev, tmp) {
  7900. export_array(mddev);
  7901. mddev->hold_active = 0;
  7902. }
  7903. destroy_workqueue(md_misc_wq);
  7904. destroy_workqueue(md_wq);
  7905. }
  7906. subsys_initcall(md_init);
  7907. module_exit(md_exit)
  7908. static int get_ro(char *buffer, struct kernel_param *kp)
  7909. {
  7910. return sprintf(buffer, "%d", start_readonly);
  7911. }
  7912. static int set_ro(const char *val, struct kernel_param *kp)
  7913. {
  7914. return kstrtouint(val, 10, (unsigned int *)&start_readonly);
  7915. }
  7916. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7917. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7918. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7919. MODULE_LICENSE("GPL");
  7920. MODULE_DESCRIPTION("MD RAID framework");
  7921. MODULE_ALIAS("md");
  7922. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);