rrpc.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423
  1. /*
  2. * Copyright (C) 2015 IT University of Copenhagen
  3. * Initial release: Matias Bjorling <m@bjorling.me>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License version
  7. * 2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
  15. */
  16. #include "rrpc.h"
  17. static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
  18. static DECLARE_RWSEM(rrpc_lock);
  19. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  20. struct nvm_rq *rqd, unsigned long flags);
  21. #define rrpc_for_each_lun(rrpc, rlun, i) \
  22. for ((i) = 0, rlun = &(rrpc)->luns[0]; \
  23. (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
  24. static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
  25. {
  26. struct rrpc_block *rblk = a->rblk;
  27. unsigned int pg_offset;
  28. lockdep_assert_held(&rrpc->rev_lock);
  29. if (a->addr == ADDR_EMPTY || !rblk)
  30. return;
  31. spin_lock(&rblk->lock);
  32. div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
  33. WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
  34. rblk->nr_invalid_pages++;
  35. spin_unlock(&rblk->lock);
  36. rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
  37. }
  38. static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
  39. unsigned len)
  40. {
  41. sector_t i;
  42. spin_lock(&rrpc->rev_lock);
  43. for (i = slba; i < slba + len; i++) {
  44. struct rrpc_addr *gp = &rrpc->trans_map[i];
  45. rrpc_page_invalidate(rrpc, gp);
  46. gp->rblk = NULL;
  47. }
  48. spin_unlock(&rrpc->rev_lock);
  49. }
  50. static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
  51. sector_t laddr, unsigned int pages)
  52. {
  53. struct nvm_rq *rqd;
  54. struct rrpc_inflight_rq *inf;
  55. rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
  56. if (!rqd)
  57. return ERR_PTR(-ENOMEM);
  58. inf = rrpc_get_inflight_rq(rqd);
  59. if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
  60. mempool_free(rqd, rrpc->rq_pool);
  61. return NULL;
  62. }
  63. return rqd;
  64. }
  65. static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
  66. {
  67. struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
  68. rrpc_unlock_laddr(rrpc, inf);
  69. mempool_free(rqd, rrpc->rq_pool);
  70. }
  71. static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
  72. {
  73. sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
  74. sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
  75. struct nvm_rq *rqd;
  76. do {
  77. rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
  78. schedule();
  79. } while (!rqd);
  80. if (IS_ERR(rqd)) {
  81. pr_err("rrpc: unable to acquire inflight IO\n");
  82. bio_io_error(bio);
  83. return;
  84. }
  85. rrpc_invalidate_range(rrpc, slba, len);
  86. rrpc_inflight_laddr_release(rrpc, rqd);
  87. }
  88. static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
  89. {
  90. return (rblk->next_page == rrpc->dev->pgs_per_blk);
  91. }
  92. static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  93. {
  94. struct nvm_block *blk = rblk->parent;
  95. return blk->id * rrpc->dev->pgs_per_blk;
  96. }
  97. static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
  98. struct ppa_addr r)
  99. {
  100. struct ppa_addr l;
  101. int secs, pgs, blks, luns;
  102. sector_t ppa = r.ppa;
  103. l.ppa = 0;
  104. div_u64_rem(ppa, dev->sec_per_pg, &secs);
  105. l.g.sec = secs;
  106. sector_div(ppa, dev->sec_per_pg);
  107. div_u64_rem(ppa, dev->sec_per_blk, &pgs);
  108. l.g.pg = pgs;
  109. sector_div(ppa, dev->pgs_per_blk);
  110. div_u64_rem(ppa, dev->blks_per_lun, &blks);
  111. l.g.blk = blks;
  112. sector_div(ppa, dev->blks_per_lun);
  113. div_u64_rem(ppa, dev->luns_per_chnl, &luns);
  114. l.g.lun = luns;
  115. sector_div(ppa, dev->luns_per_chnl);
  116. l.g.ch = ppa;
  117. return l;
  118. }
  119. static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
  120. {
  121. struct ppa_addr paddr;
  122. paddr.ppa = addr;
  123. return linear_to_generic_addr(dev, paddr);
  124. }
  125. /* requires lun->lock taken */
  126. static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
  127. {
  128. struct rrpc *rrpc = rlun->rrpc;
  129. BUG_ON(!rblk);
  130. if (rlun->cur) {
  131. spin_lock(&rlun->cur->lock);
  132. WARN_ON(!block_is_full(rrpc, rlun->cur));
  133. spin_unlock(&rlun->cur->lock);
  134. }
  135. rlun->cur = rblk;
  136. }
  137. static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
  138. unsigned long flags)
  139. {
  140. struct nvm_lun *lun = rlun->parent;
  141. struct nvm_block *blk;
  142. struct rrpc_block *rblk;
  143. spin_lock(&lun->lock);
  144. blk = nvm_get_blk_unlocked(rrpc->dev, rlun->parent, flags);
  145. if (!blk) {
  146. pr_err("nvm: rrpc: cannot get new block from media manager\n");
  147. spin_unlock(&lun->lock);
  148. return NULL;
  149. }
  150. rblk = &rlun->blocks[blk->id];
  151. list_add_tail(&rblk->list, &rlun->open_list);
  152. spin_unlock(&lun->lock);
  153. blk->priv = rblk;
  154. bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
  155. rblk->next_page = 0;
  156. rblk->nr_invalid_pages = 0;
  157. atomic_set(&rblk->data_cmnt_size, 0);
  158. return rblk;
  159. }
  160. static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
  161. {
  162. struct rrpc_lun *rlun = rblk->rlun;
  163. struct nvm_lun *lun = rlun->parent;
  164. spin_lock(&lun->lock);
  165. nvm_put_blk_unlocked(rrpc->dev, rblk->parent);
  166. list_del(&rblk->list);
  167. spin_unlock(&lun->lock);
  168. }
  169. static void rrpc_put_blks(struct rrpc *rrpc)
  170. {
  171. struct rrpc_lun *rlun;
  172. int i;
  173. for (i = 0; i < rrpc->nr_luns; i++) {
  174. rlun = &rrpc->luns[i];
  175. if (rlun->cur)
  176. rrpc_put_blk(rrpc, rlun->cur);
  177. if (rlun->gc_cur)
  178. rrpc_put_blk(rrpc, rlun->gc_cur);
  179. }
  180. }
  181. static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
  182. {
  183. int next = atomic_inc_return(&rrpc->next_lun);
  184. return &rrpc->luns[next % rrpc->nr_luns];
  185. }
  186. static void rrpc_gc_kick(struct rrpc *rrpc)
  187. {
  188. struct rrpc_lun *rlun;
  189. unsigned int i;
  190. for (i = 0; i < rrpc->nr_luns; i++) {
  191. rlun = &rrpc->luns[i];
  192. queue_work(rrpc->krqd_wq, &rlun->ws_gc);
  193. }
  194. }
  195. /*
  196. * timed GC every interval.
  197. */
  198. static void rrpc_gc_timer(unsigned long data)
  199. {
  200. struct rrpc *rrpc = (struct rrpc *)data;
  201. rrpc_gc_kick(rrpc);
  202. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  203. }
  204. static void rrpc_end_sync_bio(struct bio *bio)
  205. {
  206. struct completion *waiting = bio->bi_private;
  207. if (bio->bi_error)
  208. pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
  209. complete(waiting);
  210. }
  211. /*
  212. * rrpc_move_valid_pages -- migrate live data off the block
  213. * @rrpc: the 'rrpc' structure
  214. * @block: the block from which to migrate live pages
  215. *
  216. * Description:
  217. * GC algorithms may call this function to migrate remaining live
  218. * pages off the block prior to erasing it. This function blocks
  219. * further execution until the operation is complete.
  220. */
  221. static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
  222. {
  223. struct request_queue *q = rrpc->dev->q;
  224. struct rrpc_rev_addr *rev;
  225. struct nvm_rq *rqd;
  226. struct bio *bio;
  227. struct page *page;
  228. int slot;
  229. int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
  230. u64 phys_addr;
  231. DECLARE_COMPLETION_ONSTACK(wait);
  232. if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
  233. return 0;
  234. bio = bio_alloc(GFP_NOIO, 1);
  235. if (!bio) {
  236. pr_err("nvm: could not alloc bio to gc\n");
  237. return -ENOMEM;
  238. }
  239. page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
  240. if (!page)
  241. return -ENOMEM;
  242. while ((slot = find_first_zero_bit(rblk->invalid_pages,
  243. nr_pgs_per_blk)) < nr_pgs_per_blk) {
  244. /* Lock laddr */
  245. phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
  246. try:
  247. spin_lock(&rrpc->rev_lock);
  248. /* Get logical address from physical to logical table */
  249. rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
  250. /* already updated by previous regular write */
  251. if (rev->addr == ADDR_EMPTY) {
  252. spin_unlock(&rrpc->rev_lock);
  253. continue;
  254. }
  255. rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
  256. if (IS_ERR_OR_NULL(rqd)) {
  257. spin_unlock(&rrpc->rev_lock);
  258. schedule();
  259. goto try;
  260. }
  261. spin_unlock(&rrpc->rev_lock);
  262. /* Perform read to do GC */
  263. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  264. bio->bi_rw = READ;
  265. bio->bi_private = &wait;
  266. bio->bi_end_io = rrpc_end_sync_bio;
  267. /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
  268. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  269. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  270. pr_err("rrpc: gc read failed.\n");
  271. rrpc_inflight_laddr_release(rrpc, rqd);
  272. goto finished;
  273. }
  274. wait_for_completion_io(&wait);
  275. if (bio->bi_error) {
  276. rrpc_inflight_laddr_release(rrpc, rqd);
  277. goto finished;
  278. }
  279. bio_reset(bio);
  280. reinit_completion(&wait);
  281. bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
  282. bio->bi_rw = WRITE;
  283. bio->bi_private = &wait;
  284. bio->bi_end_io = rrpc_end_sync_bio;
  285. bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
  286. /* turn the command around and write the data back to a new
  287. * address
  288. */
  289. if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
  290. pr_err("rrpc: gc write failed.\n");
  291. rrpc_inflight_laddr_release(rrpc, rqd);
  292. goto finished;
  293. }
  294. wait_for_completion_io(&wait);
  295. rrpc_inflight_laddr_release(rrpc, rqd);
  296. if (bio->bi_error)
  297. goto finished;
  298. bio_reset(bio);
  299. }
  300. finished:
  301. mempool_free(page, rrpc->page_pool);
  302. bio_put(bio);
  303. if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
  304. pr_err("nvm: failed to garbage collect block\n");
  305. return -EIO;
  306. }
  307. return 0;
  308. }
  309. static void rrpc_block_gc(struct work_struct *work)
  310. {
  311. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  312. ws_gc);
  313. struct rrpc *rrpc = gcb->rrpc;
  314. struct rrpc_block *rblk = gcb->rblk;
  315. struct nvm_dev *dev = rrpc->dev;
  316. struct nvm_lun *lun = rblk->parent->lun;
  317. struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
  318. mempool_free(gcb, rrpc->gcb_pool);
  319. pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
  320. if (rrpc_move_valid_pages(rrpc, rblk))
  321. goto put_back;
  322. if (nvm_erase_blk(dev, rblk->parent))
  323. goto put_back;
  324. rrpc_put_blk(rrpc, rblk);
  325. return;
  326. put_back:
  327. spin_lock(&rlun->lock);
  328. list_add_tail(&rblk->prio, &rlun->prio_list);
  329. spin_unlock(&rlun->lock);
  330. }
  331. /* the block with highest number of invalid pages, will be in the beginning
  332. * of the list
  333. */
  334. static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
  335. struct rrpc_block *rb)
  336. {
  337. if (ra->nr_invalid_pages == rb->nr_invalid_pages)
  338. return ra;
  339. return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
  340. }
  341. /* linearly find the block with highest number of invalid pages
  342. * requires lun->lock
  343. */
  344. static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
  345. {
  346. struct list_head *prio_list = &rlun->prio_list;
  347. struct rrpc_block *rblock, *max;
  348. BUG_ON(list_empty(prio_list));
  349. max = list_first_entry(prio_list, struct rrpc_block, prio);
  350. list_for_each_entry(rblock, prio_list, prio)
  351. max = rblock_max_invalid(max, rblock);
  352. return max;
  353. }
  354. static void rrpc_lun_gc(struct work_struct *work)
  355. {
  356. struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
  357. struct rrpc *rrpc = rlun->rrpc;
  358. struct nvm_lun *lun = rlun->parent;
  359. struct rrpc_block_gc *gcb;
  360. unsigned int nr_blocks_need;
  361. nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
  362. if (nr_blocks_need < rrpc->nr_luns)
  363. nr_blocks_need = rrpc->nr_luns;
  364. spin_lock(&rlun->lock);
  365. while (nr_blocks_need > lun->nr_free_blocks &&
  366. !list_empty(&rlun->prio_list)) {
  367. struct rrpc_block *rblock = block_prio_find_max(rlun);
  368. struct nvm_block *block = rblock->parent;
  369. if (!rblock->nr_invalid_pages)
  370. break;
  371. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  372. if (!gcb)
  373. break;
  374. list_del_init(&rblock->prio);
  375. BUG_ON(!block_is_full(rrpc, rblock));
  376. pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
  377. gcb->rrpc = rrpc;
  378. gcb->rblk = rblock;
  379. INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
  380. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  381. nr_blocks_need--;
  382. }
  383. spin_unlock(&rlun->lock);
  384. /* TODO: Hint that request queue can be started again */
  385. }
  386. static void rrpc_gc_queue(struct work_struct *work)
  387. {
  388. struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
  389. ws_gc);
  390. struct rrpc *rrpc = gcb->rrpc;
  391. struct rrpc_block *rblk = gcb->rblk;
  392. struct nvm_lun *lun = rblk->parent->lun;
  393. struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
  394. spin_lock(&rlun->lock);
  395. list_add_tail(&rblk->prio, &rlun->prio_list);
  396. spin_unlock(&rlun->lock);
  397. mempool_free(gcb, rrpc->gcb_pool);
  398. pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
  399. rblk->parent->id);
  400. }
  401. static const struct block_device_operations rrpc_fops = {
  402. .owner = THIS_MODULE,
  403. };
  404. static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
  405. {
  406. unsigned int i;
  407. struct rrpc_lun *rlun, *max_free;
  408. if (!is_gc)
  409. return get_next_lun(rrpc);
  410. /* during GC, we don't care about RR, instead we want to make
  411. * sure that we maintain evenness between the block luns.
  412. */
  413. max_free = &rrpc->luns[0];
  414. /* prevent GC-ing lun from devouring pages of a lun with
  415. * little free blocks. We don't take the lock as we only need an
  416. * estimate.
  417. */
  418. rrpc_for_each_lun(rrpc, rlun, i) {
  419. if (rlun->parent->nr_free_blocks >
  420. max_free->parent->nr_free_blocks)
  421. max_free = rlun;
  422. }
  423. return max_free;
  424. }
  425. static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
  426. struct rrpc_block *rblk, u64 paddr)
  427. {
  428. struct rrpc_addr *gp;
  429. struct rrpc_rev_addr *rev;
  430. BUG_ON(laddr >= rrpc->nr_pages);
  431. gp = &rrpc->trans_map[laddr];
  432. spin_lock(&rrpc->rev_lock);
  433. if (gp->rblk)
  434. rrpc_page_invalidate(rrpc, gp);
  435. gp->addr = paddr;
  436. gp->rblk = rblk;
  437. rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
  438. rev->addr = laddr;
  439. spin_unlock(&rrpc->rev_lock);
  440. return gp;
  441. }
  442. static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
  443. {
  444. u64 addr = ADDR_EMPTY;
  445. spin_lock(&rblk->lock);
  446. if (block_is_full(rrpc, rblk))
  447. goto out;
  448. addr = block_to_addr(rrpc, rblk) + rblk->next_page;
  449. rblk->next_page++;
  450. out:
  451. spin_unlock(&rblk->lock);
  452. return addr;
  453. }
  454. /* Simple round-robin Logical to physical address translation.
  455. *
  456. * Retrieve the mapping using the active append point. Then update the ap for
  457. * the next write to the disk.
  458. *
  459. * Returns rrpc_addr with the physical address and block. Remember to return to
  460. * rrpc->addr_cache when request is finished.
  461. */
  462. static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
  463. int is_gc)
  464. {
  465. struct rrpc_lun *rlun;
  466. struct rrpc_block *rblk;
  467. struct nvm_lun *lun;
  468. u64 paddr;
  469. rlun = rrpc_get_lun_rr(rrpc, is_gc);
  470. lun = rlun->parent;
  471. if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
  472. return NULL;
  473. spin_lock(&rlun->lock);
  474. rblk = rlun->cur;
  475. retry:
  476. paddr = rrpc_alloc_addr(rrpc, rblk);
  477. if (paddr == ADDR_EMPTY) {
  478. rblk = rrpc_get_blk(rrpc, rlun, 0);
  479. if (rblk) {
  480. rrpc_set_lun_cur(rlun, rblk);
  481. goto retry;
  482. }
  483. if (is_gc) {
  484. /* retry from emergency gc block */
  485. paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
  486. if (paddr == ADDR_EMPTY) {
  487. rblk = rrpc_get_blk(rrpc, rlun, 1);
  488. if (!rblk) {
  489. pr_err("rrpc: no more blocks");
  490. goto err;
  491. }
  492. rlun->gc_cur = rblk;
  493. paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
  494. }
  495. rblk = rlun->gc_cur;
  496. }
  497. }
  498. spin_unlock(&rlun->lock);
  499. return rrpc_update_map(rrpc, laddr, rblk, paddr);
  500. err:
  501. spin_unlock(&rlun->lock);
  502. return NULL;
  503. }
  504. static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
  505. {
  506. struct rrpc_block_gc *gcb;
  507. gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
  508. if (!gcb) {
  509. pr_err("rrpc: unable to queue block for gc.");
  510. return;
  511. }
  512. gcb->rrpc = rrpc;
  513. gcb->rblk = rblk;
  514. INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
  515. queue_work(rrpc->kgc_wq, &gcb->ws_gc);
  516. }
  517. static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
  518. sector_t laddr, uint8_t npages)
  519. {
  520. struct rrpc_addr *p;
  521. struct rrpc_block *rblk;
  522. struct nvm_lun *lun;
  523. int cmnt_size, i;
  524. for (i = 0; i < npages; i++) {
  525. p = &rrpc->trans_map[laddr + i];
  526. rblk = p->rblk;
  527. lun = rblk->parent->lun;
  528. cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
  529. if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk)) {
  530. struct nvm_block *blk = rblk->parent;
  531. struct rrpc_lun *rlun = rblk->rlun;
  532. spin_lock(&lun->lock);
  533. lun->nr_open_blocks--;
  534. lun->nr_closed_blocks++;
  535. blk->state &= ~NVM_BLK_ST_OPEN;
  536. blk->state |= NVM_BLK_ST_CLOSED;
  537. list_move_tail(&rblk->list, &rlun->closed_list);
  538. spin_unlock(&lun->lock);
  539. rrpc_run_gc(rrpc, rblk);
  540. }
  541. }
  542. }
  543. static void rrpc_end_io(struct nvm_rq *rqd)
  544. {
  545. struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
  546. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  547. uint8_t npages = rqd->nr_pages;
  548. sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
  549. if (bio_data_dir(rqd->bio) == WRITE)
  550. rrpc_end_io_write(rrpc, rrqd, laddr, npages);
  551. bio_put(rqd->bio);
  552. if (rrqd->flags & NVM_IOTYPE_GC)
  553. return;
  554. rrpc_unlock_rq(rrpc, rqd);
  555. if (npages > 1)
  556. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  557. if (rqd->metadata)
  558. nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
  559. mempool_free(rqd, rrpc->rq_pool);
  560. }
  561. static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  562. struct nvm_rq *rqd, unsigned long flags, int npages)
  563. {
  564. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  565. struct rrpc_addr *gp;
  566. sector_t laddr = rrpc_get_laddr(bio);
  567. int is_gc = flags & NVM_IOTYPE_GC;
  568. int i;
  569. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  570. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  571. return NVM_IO_REQUEUE;
  572. }
  573. for (i = 0; i < npages; i++) {
  574. /* We assume that mapping occurs at 4KB granularity */
  575. BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
  576. gp = &rrpc->trans_map[laddr + i];
  577. if (gp->rblk) {
  578. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
  579. gp->addr);
  580. } else {
  581. BUG_ON(is_gc);
  582. rrpc_unlock_laddr(rrpc, r);
  583. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
  584. rqd->dma_ppa_list);
  585. return NVM_IO_DONE;
  586. }
  587. }
  588. rqd->opcode = NVM_OP_HBREAD;
  589. return NVM_IO_OK;
  590. }
  591. static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
  592. unsigned long flags)
  593. {
  594. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  595. int is_gc = flags & NVM_IOTYPE_GC;
  596. sector_t laddr = rrpc_get_laddr(bio);
  597. struct rrpc_addr *gp;
  598. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  599. return NVM_IO_REQUEUE;
  600. BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
  601. gp = &rrpc->trans_map[laddr];
  602. if (gp->rblk) {
  603. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
  604. } else {
  605. BUG_ON(is_gc);
  606. rrpc_unlock_rq(rrpc, rqd);
  607. return NVM_IO_DONE;
  608. }
  609. rqd->opcode = NVM_OP_HBREAD;
  610. rrqd->addr = gp;
  611. return NVM_IO_OK;
  612. }
  613. static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
  614. struct nvm_rq *rqd, unsigned long flags, int npages)
  615. {
  616. struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
  617. struct rrpc_addr *p;
  618. sector_t laddr = rrpc_get_laddr(bio);
  619. int is_gc = flags & NVM_IOTYPE_GC;
  620. int i;
  621. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
  622. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
  623. return NVM_IO_REQUEUE;
  624. }
  625. for (i = 0; i < npages; i++) {
  626. /* We assume that mapping occurs at 4KB granularity */
  627. p = rrpc_map_page(rrpc, laddr + i, is_gc);
  628. if (!p) {
  629. BUG_ON(is_gc);
  630. rrpc_unlock_laddr(rrpc, r);
  631. nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
  632. rqd->dma_ppa_list);
  633. rrpc_gc_kick(rrpc);
  634. return NVM_IO_REQUEUE;
  635. }
  636. rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
  637. p->addr);
  638. }
  639. rqd->opcode = NVM_OP_HBWRITE;
  640. return NVM_IO_OK;
  641. }
  642. static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
  643. struct nvm_rq *rqd, unsigned long flags)
  644. {
  645. struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
  646. struct rrpc_addr *p;
  647. int is_gc = flags & NVM_IOTYPE_GC;
  648. sector_t laddr = rrpc_get_laddr(bio);
  649. if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
  650. return NVM_IO_REQUEUE;
  651. p = rrpc_map_page(rrpc, laddr, is_gc);
  652. if (!p) {
  653. BUG_ON(is_gc);
  654. rrpc_unlock_rq(rrpc, rqd);
  655. rrpc_gc_kick(rrpc);
  656. return NVM_IO_REQUEUE;
  657. }
  658. rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
  659. rqd->opcode = NVM_OP_HBWRITE;
  660. rrqd->addr = p;
  661. return NVM_IO_OK;
  662. }
  663. static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
  664. struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
  665. {
  666. if (npages > 1) {
  667. rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
  668. &rqd->dma_ppa_list);
  669. if (!rqd->ppa_list) {
  670. pr_err("rrpc: not able to allocate ppa list\n");
  671. return NVM_IO_ERR;
  672. }
  673. if (bio_rw(bio) == WRITE)
  674. return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
  675. npages);
  676. return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
  677. }
  678. if (bio_rw(bio) == WRITE)
  679. return rrpc_write_rq(rrpc, bio, rqd, flags);
  680. return rrpc_read_rq(rrpc, bio, rqd, flags);
  681. }
  682. static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
  683. struct nvm_rq *rqd, unsigned long flags)
  684. {
  685. int err;
  686. struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
  687. uint8_t nr_pages = rrpc_get_pages(bio);
  688. int bio_size = bio_sectors(bio) << 9;
  689. if (bio_size < rrpc->dev->sec_size)
  690. return NVM_IO_ERR;
  691. else if (bio_size > rrpc->dev->max_rq_size)
  692. return NVM_IO_ERR;
  693. err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
  694. if (err)
  695. return err;
  696. bio_get(bio);
  697. rqd->bio = bio;
  698. rqd->ins = &rrpc->instance;
  699. rqd->nr_pages = nr_pages;
  700. rrq->flags = flags;
  701. err = nvm_submit_io(rrpc->dev, rqd);
  702. if (err) {
  703. pr_err("rrpc: I/O submission failed: %d\n", err);
  704. bio_put(bio);
  705. if (!(flags & NVM_IOTYPE_GC)) {
  706. rrpc_unlock_rq(rrpc, rqd);
  707. if (rqd->nr_pages > 1)
  708. nvm_dev_dma_free(rrpc->dev,
  709. rqd->ppa_list, rqd->dma_ppa_list);
  710. }
  711. return NVM_IO_ERR;
  712. }
  713. return NVM_IO_OK;
  714. }
  715. static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
  716. {
  717. struct rrpc *rrpc = q->queuedata;
  718. struct nvm_rq *rqd;
  719. int err;
  720. if (bio->bi_rw & REQ_DISCARD) {
  721. rrpc_discard(rrpc, bio);
  722. return BLK_QC_T_NONE;
  723. }
  724. rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
  725. if (!rqd) {
  726. pr_err_ratelimited("rrpc: not able to queue bio.");
  727. bio_io_error(bio);
  728. return BLK_QC_T_NONE;
  729. }
  730. memset(rqd, 0, sizeof(struct nvm_rq));
  731. err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
  732. switch (err) {
  733. case NVM_IO_OK:
  734. return BLK_QC_T_NONE;
  735. case NVM_IO_ERR:
  736. bio_io_error(bio);
  737. break;
  738. case NVM_IO_DONE:
  739. bio_endio(bio);
  740. break;
  741. case NVM_IO_REQUEUE:
  742. spin_lock(&rrpc->bio_lock);
  743. bio_list_add(&rrpc->requeue_bios, bio);
  744. spin_unlock(&rrpc->bio_lock);
  745. queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
  746. break;
  747. }
  748. mempool_free(rqd, rrpc->rq_pool);
  749. return BLK_QC_T_NONE;
  750. }
  751. static void rrpc_requeue(struct work_struct *work)
  752. {
  753. struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
  754. struct bio_list bios;
  755. struct bio *bio;
  756. bio_list_init(&bios);
  757. spin_lock(&rrpc->bio_lock);
  758. bio_list_merge(&bios, &rrpc->requeue_bios);
  759. bio_list_init(&rrpc->requeue_bios);
  760. spin_unlock(&rrpc->bio_lock);
  761. while ((bio = bio_list_pop(&bios)))
  762. rrpc_make_rq(rrpc->disk->queue, bio);
  763. }
  764. static void rrpc_gc_free(struct rrpc *rrpc)
  765. {
  766. struct rrpc_lun *rlun;
  767. int i;
  768. if (rrpc->krqd_wq)
  769. destroy_workqueue(rrpc->krqd_wq);
  770. if (rrpc->kgc_wq)
  771. destroy_workqueue(rrpc->kgc_wq);
  772. if (!rrpc->luns)
  773. return;
  774. for (i = 0; i < rrpc->nr_luns; i++) {
  775. rlun = &rrpc->luns[i];
  776. if (!rlun->blocks)
  777. break;
  778. vfree(rlun->blocks);
  779. }
  780. }
  781. static int rrpc_gc_init(struct rrpc *rrpc)
  782. {
  783. rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
  784. rrpc->nr_luns);
  785. if (!rrpc->krqd_wq)
  786. return -ENOMEM;
  787. rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
  788. if (!rrpc->kgc_wq)
  789. return -ENOMEM;
  790. setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
  791. return 0;
  792. }
  793. static void rrpc_map_free(struct rrpc *rrpc)
  794. {
  795. vfree(rrpc->rev_trans_map);
  796. vfree(rrpc->trans_map);
  797. }
  798. static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
  799. {
  800. struct rrpc *rrpc = (struct rrpc *)private;
  801. struct nvm_dev *dev = rrpc->dev;
  802. struct rrpc_addr *addr = rrpc->trans_map + slba;
  803. struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
  804. sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
  805. u64 elba = slba + nlb;
  806. u64 i;
  807. if (unlikely(elba > dev->total_pages)) {
  808. pr_err("nvm: L2P data from device is out of bounds!\n");
  809. return -EINVAL;
  810. }
  811. for (i = 0; i < nlb; i++) {
  812. u64 pba = le64_to_cpu(entries[i]);
  813. /* LNVM treats address-spaces as silos, LBA and PBA are
  814. * equally large and zero-indexed.
  815. */
  816. if (unlikely(pba >= max_pages && pba != U64_MAX)) {
  817. pr_err("nvm: L2P data entry is out of bounds!\n");
  818. return -EINVAL;
  819. }
  820. /* Address zero is a special one. The first page on a disk is
  821. * protected. As it often holds internal device boot
  822. * information.
  823. */
  824. if (!pba)
  825. continue;
  826. addr[i].addr = pba;
  827. raddr[pba].addr = slba + i;
  828. }
  829. return 0;
  830. }
  831. static int rrpc_map_init(struct rrpc *rrpc)
  832. {
  833. struct nvm_dev *dev = rrpc->dev;
  834. sector_t i;
  835. int ret;
  836. rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
  837. if (!rrpc->trans_map)
  838. return -ENOMEM;
  839. rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
  840. * rrpc->nr_pages);
  841. if (!rrpc->rev_trans_map)
  842. return -ENOMEM;
  843. for (i = 0; i < rrpc->nr_pages; i++) {
  844. struct rrpc_addr *p = &rrpc->trans_map[i];
  845. struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
  846. p->addr = ADDR_EMPTY;
  847. r->addr = ADDR_EMPTY;
  848. }
  849. if (!dev->ops->get_l2p_tbl)
  850. return 0;
  851. /* Bring up the mapping table from device */
  852. ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_pages,
  853. rrpc_l2p_update, rrpc);
  854. if (ret) {
  855. pr_err("nvm: rrpc: could not read L2P table.\n");
  856. return -EINVAL;
  857. }
  858. return 0;
  859. }
  860. /* Minimum pages needed within a lun */
  861. #define PAGE_POOL_SIZE 16
  862. #define ADDR_POOL_SIZE 64
  863. static int rrpc_core_init(struct rrpc *rrpc)
  864. {
  865. down_write(&rrpc_lock);
  866. if (!rrpc_gcb_cache) {
  867. rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
  868. sizeof(struct rrpc_block_gc), 0, 0, NULL);
  869. if (!rrpc_gcb_cache) {
  870. up_write(&rrpc_lock);
  871. return -ENOMEM;
  872. }
  873. rrpc_rq_cache = kmem_cache_create("rrpc_rq",
  874. sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
  875. 0, 0, NULL);
  876. if (!rrpc_rq_cache) {
  877. kmem_cache_destroy(rrpc_gcb_cache);
  878. up_write(&rrpc_lock);
  879. return -ENOMEM;
  880. }
  881. }
  882. up_write(&rrpc_lock);
  883. rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
  884. if (!rrpc->page_pool)
  885. return -ENOMEM;
  886. rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
  887. rrpc_gcb_cache);
  888. if (!rrpc->gcb_pool)
  889. return -ENOMEM;
  890. rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
  891. if (!rrpc->rq_pool)
  892. return -ENOMEM;
  893. spin_lock_init(&rrpc->inflights.lock);
  894. INIT_LIST_HEAD(&rrpc->inflights.reqs);
  895. return 0;
  896. }
  897. static void rrpc_core_free(struct rrpc *rrpc)
  898. {
  899. mempool_destroy(rrpc->page_pool);
  900. mempool_destroy(rrpc->gcb_pool);
  901. mempool_destroy(rrpc->rq_pool);
  902. }
  903. static void rrpc_luns_free(struct rrpc *rrpc)
  904. {
  905. kfree(rrpc->luns);
  906. }
  907. static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
  908. {
  909. struct nvm_dev *dev = rrpc->dev;
  910. struct rrpc_lun *rlun;
  911. int i, j;
  912. if (dev->pgs_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
  913. pr_err("rrpc: number of pages per block too high.");
  914. return -EINVAL;
  915. }
  916. spin_lock_init(&rrpc->rev_lock);
  917. rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
  918. GFP_KERNEL);
  919. if (!rrpc->luns)
  920. return -ENOMEM;
  921. /* 1:1 mapping */
  922. for (i = 0; i < rrpc->nr_luns; i++) {
  923. struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
  924. rlun = &rrpc->luns[i];
  925. rlun->rrpc = rrpc;
  926. rlun->parent = lun;
  927. INIT_LIST_HEAD(&rlun->prio_list);
  928. INIT_LIST_HEAD(&rlun->open_list);
  929. INIT_LIST_HEAD(&rlun->closed_list);
  930. INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
  931. spin_lock_init(&rlun->lock);
  932. rrpc->total_blocks += dev->blks_per_lun;
  933. rrpc->nr_pages += dev->sec_per_lun;
  934. rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
  935. rrpc->dev->blks_per_lun);
  936. if (!rlun->blocks)
  937. goto err;
  938. for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
  939. struct rrpc_block *rblk = &rlun->blocks[j];
  940. struct nvm_block *blk = &lun->blocks[j];
  941. rblk->parent = blk;
  942. rblk->rlun = rlun;
  943. INIT_LIST_HEAD(&rblk->prio);
  944. spin_lock_init(&rblk->lock);
  945. }
  946. }
  947. return 0;
  948. err:
  949. return -ENOMEM;
  950. }
  951. static void rrpc_free(struct rrpc *rrpc)
  952. {
  953. rrpc_gc_free(rrpc);
  954. rrpc_map_free(rrpc);
  955. rrpc_core_free(rrpc);
  956. rrpc_luns_free(rrpc);
  957. kfree(rrpc);
  958. }
  959. static void rrpc_exit(void *private)
  960. {
  961. struct rrpc *rrpc = private;
  962. del_timer(&rrpc->gc_timer);
  963. flush_workqueue(rrpc->krqd_wq);
  964. flush_workqueue(rrpc->kgc_wq);
  965. rrpc_free(rrpc);
  966. }
  967. static sector_t rrpc_capacity(void *private)
  968. {
  969. struct rrpc *rrpc = private;
  970. struct nvm_dev *dev = rrpc->dev;
  971. sector_t reserved, provisioned;
  972. /* cur, gc, and two emergency blocks for each lun */
  973. reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
  974. provisioned = rrpc->nr_pages - reserved;
  975. if (reserved > rrpc->nr_pages) {
  976. pr_err("rrpc: not enough space available to expose storage.\n");
  977. return 0;
  978. }
  979. sector_div(provisioned, 10);
  980. return provisioned * 9 * NR_PHY_IN_LOG;
  981. }
  982. /*
  983. * Looks up the logical address from reverse trans map and check if its valid by
  984. * comparing the logical to physical address with the physical address.
  985. * Returns 0 on free, otherwise 1 if in use
  986. */
  987. static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
  988. {
  989. struct nvm_dev *dev = rrpc->dev;
  990. int offset;
  991. struct rrpc_addr *laddr;
  992. u64 paddr, pladdr;
  993. for (offset = 0; offset < dev->pgs_per_blk; offset++) {
  994. paddr = block_to_addr(rrpc, rblk) + offset;
  995. pladdr = rrpc->rev_trans_map[paddr].addr;
  996. if (pladdr == ADDR_EMPTY)
  997. continue;
  998. laddr = &rrpc->trans_map[pladdr];
  999. if (paddr == laddr->addr) {
  1000. laddr->rblk = rblk;
  1001. } else {
  1002. set_bit(offset, rblk->invalid_pages);
  1003. rblk->nr_invalid_pages++;
  1004. }
  1005. }
  1006. }
  1007. static int rrpc_blocks_init(struct rrpc *rrpc)
  1008. {
  1009. struct rrpc_lun *rlun;
  1010. struct rrpc_block *rblk;
  1011. int lun_iter, blk_iter;
  1012. for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
  1013. rlun = &rrpc->luns[lun_iter];
  1014. for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
  1015. blk_iter++) {
  1016. rblk = &rlun->blocks[blk_iter];
  1017. rrpc_block_map_update(rrpc, rblk);
  1018. }
  1019. }
  1020. return 0;
  1021. }
  1022. static int rrpc_luns_configure(struct rrpc *rrpc)
  1023. {
  1024. struct rrpc_lun *rlun;
  1025. struct rrpc_block *rblk;
  1026. int i;
  1027. for (i = 0; i < rrpc->nr_luns; i++) {
  1028. rlun = &rrpc->luns[i];
  1029. rblk = rrpc_get_blk(rrpc, rlun, 0);
  1030. if (!rblk)
  1031. goto err;
  1032. rrpc_set_lun_cur(rlun, rblk);
  1033. /* Emergency gc block */
  1034. rblk = rrpc_get_blk(rrpc, rlun, 1);
  1035. if (!rblk)
  1036. goto err;
  1037. rlun->gc_cur = rblk;
  1038. }
  1039. return 0;
  1040. err:
  1041. rrpc_put_blks(rrpc);
  1042. return -EINVAL;
  1043. }
  1044. static struct nvm_tgt_type tt_rrpc;
  1045. static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
  1046. int lun_begin, int lun_end)
  1047. {
  1048. struct request_queue *bqueue = dev->q;
  1049. struct request_queue *tqueue = tdisk->queue;
  1050. struct rrpc *rrpc;
  1051. int ret;
  1052. if (!(dev->identity.dom & NVM_RSP_L2P)) {
  1053. pr_err("nvm: rrpc: device does not support l2p (%x)\n",
  1054. dev->identity.dom);
  1055. return ERR_PTR(-EINVAL);
  1056. }
  1057. rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
  1058. if (!rrpc)
  1059. return ERR_PTR(-ENOMEM);
  1060. rrpc->instance.tt = &tt_rrpc;
  1061. rrpc->dev = dev;
  1062. rrpc->disk = tdisk;
  1063. bio_list_init(&rrpc->requeue_bios);
  1064. spin_lock_init(&rrpc->bio_lock);
  1065. INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
  1066. rrpc->nr_luns = lun_end - lun_begin + 1;
  1067. /* simple round-robin strategy */
  1068. atomic_set(&rrpc->next_lun, -1);
  1069. ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
  1070. if (ret) {
  1071. pr_err("nvm: rrpc: could not initialize luns\n");
  1072. goto err;
  1073. }
  1074. rrpc->poffset = dev->sec_per_lun * lun_begin;
  1075. rrpc->lun_offset = lun_begin;
  1076. ret = rrpc_core_init(rrpc);
  1077. if (ret) {
  1078. pr_err("nvm: rrpc: could not initialize core\n");
  1079. goto err;
  1080. }
  1081. ret = rrpc_map_init(rrpc);
  1082. if (ret) {
  1083. pr_err("nvm: rrpc: could not initialize maps\n");
  1084. goto err;
  1085. }
  1086. ret = rrpc_blocks_init(rrpc);
  1087. if (ret) {
  1088. pr_err("nvm: rrpc: could not initialize state for blocks\n");
  1089. goto err;
  1090. }
  1091. ret = rrpc_luns_configure(rrpc);
  1092. if (ret) {
  1093. pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
  1094. goto err;
  1095. }
  1096. ret = rrpc_gc_init(rrpc);
  1097. if (ret) {
  1098. pr_err("nvm: rrpc: could not initialize gc\n");
  1099. goto err;
  1100. }
  1101. /* inherit the size from the underlying device */
  1102. blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
  1103. blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
  1104. pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
  1105. rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
  1106. mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
  1107. return rrpc;
  1108. err:
  1109. rrpc_free(rrpc);
  1110. return ERR_PTR(ret);
  1111. }
  1112. /* round robin, page-based FTL, and cost-based GC */
  1113. static struct nvm_tgt_type tt_rrpc = {
  1114. .name = "rrpc",
  1115. .version = {1, 0, 0},
  1116. .make_rq = rrpc_make_rq,
  1117. .capacity = rrpc_capacity,
  1118. .end_io = rrpc_end_io,
  1119. .init = rrpc_init,
  1120. .exit = rrpc_exit,
  1121. };
  1122. static int __init rrpc_module_init(void)
  1123. {
  1124. return nvm_register_target(&tt_rrpc);
  1125. }
  1126. static void rrpc_module_exit(void)
  1127. {
  1128. nvm_unregister_target(&tt_rrpc);
  1129. }
  1130. module_init(rrpc_module_init);
  1131. module_exit(rrpc_module_exit);
  1132. MODULE_LICENSE("GPL v2");
  1133. MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");