mm.h 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/bit_spinlock.h>
  17. #include <linux/shrinker.h>
  18. #include <linux/resource.h>
  19. #include <linux/page_ext.h>
  20. struct mempolicy;
  21. struct anon_vma;
  22. struct anon_vma_chain;
  23. struct file_ra_state;
  24. struct user_struct;
  25. struct writeback_control;
  26. struct bdi_writeback;
  27. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  28. extern unsigned long max_mapnr;
  29. static inline void set_max_mapnr(unsigned long limit)
  30. {
  31. max_mapnr = limit;
  32. }
  33. #else
  34. static inline void set_max_mapnr(unsigned long limit) { }
  35. #endif
  36. extern unsigned long totalram_pages;
  37. extern void * high_memory;
  38. extern int page_cluster;
  39. #ifdef CONFIG_SYSCTL
  40. extern int sysctl_legacy_va_layout;
  41. #else
  42. #define sysctl_legacy_va_layout 0
  43. #endif
  44. #include <asm/page.h>
  45. #include <asm/pgtable.h>
  46. #include <asm/processor.h>
  47. #ifndef __pa_symbol
  48. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  49. #endif
  50. /*
  51. * To prevent common memory management code establishing
  52. * a zero page mapping on a read fault.
  53. * This macro should be defined within <asm/pgtable.h>.
  54. * s390 does this to prevent multiplexing of hardware bits
  55. * related to the physical page in case of virtualization.
  56. */
  57. #ifndef mm_forbids_zeropage
  58. #define mm_forbids_zeropage(X) (0)
  59. #endif
  60. extern unsigned long sysctl_user_reserve_kbytes;
  61. extern unsigned long sysctl_admin_reserve_kbytes;
  62. extern int sysctl_overcommit_memory;
  63. extern int sysctl_overcommit_ratio;
  64. extern unsigned long sysctl_overcommit_kbytes;
  65. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  66. size_t *, loff_t *);
  67. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  68. size_t *, loff_t *);
  69. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  70. /* to align the pointer to the (next) page boundary */
  71. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  72. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  73. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  74. /*
  75. * Linux kernel virtual memory manager primitives.
  76. * The idea being to have a "virtual" mm in the same way
  77. * we have a virtual fs - giving a cleaner interface to the
  78. * mm details, and allowing different kinds of memory mappings
  79. * (from shared memory to executable loading to arbitrary
  80. * mmap() functions).
  81. */
  82. extern struct kmem_cache *vm_area_cachep;
  83. #ifndef CONFIG_MMU
  84. extern struct rb_root nommu_region_tree;
  85. extern struct rw_semaphore nommu_region_sem;
  86. extern unsigned int kobjsize(const void *objp);
  87. #endif
  88. /*
  89. * vm_flags in vm_area_struct, see mm_types.h.
  90. */
  91. #define VM_NONE 0x00000000
  92. #define VM_READ 0x00000001 /* currently active flags */
  93. #define VM_WRITE 0x00000002
  94. #define VM_EXEC 0x00000004
  95. #define VM_SHARED 0x00000008
  96. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  97. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  98. #define VM_MAYWRITE 0x00000020
  99. #define VM_MAYEXEC 0x00000040
  100. #define VM_MAYSHARE 0x00000080
  101. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  102. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  103. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  104. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  105. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  106. #define VM_LOCKED 0x00002000
  107. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  108. /* Used by sys_madvise() */
  109. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  110. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  111. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  112. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  113. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  114. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  115. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  116. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  117. #define VM_ARCH_2 0x02000000
  118. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  119. #ifdef CONFIG_MEM_SOFT_DIRTY
  120. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  121. #else
  122. # define VM_SOFTDIRTY 0
  123. #endif
  124. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  125. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  126. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  127. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  128. #if defined(CONFIG_X86)
  129. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  130. #elif defined(CONFIG_PPC)
  131. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  132. #elif defined(CONFIG_PARISC)
  133. # define VM_GROWSUP VM_ARCH_1
  134. #elif defined(CONFIG_METAG)
  135. # define VM_GROWSUP VM_ARCH_1
  136. #elif defined(CONFIG_IA64)
  137. # define VM_GROWSUP VM_ARCH_1
  138. #elif !defined(CONFIG_MMU)
  139. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  140. #endif
  141. #if defined(CONFIG_X86)
  142. /* MPX specific bounds table or bounds directory */
  143. # define VM_MPX VM_ARCH_2
  144. #endif
  145. #ifndef VM_GROWSUP
  146. # define VM_GROWSUP VM_NONE
  147. #endif
  148. /* Bits set in the VMA until the stack is in its final location */
  149. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  150. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  151. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  152. #endif
  153. #ifdef CONFIG_STACK_GROWSUP
  154. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  155. #else
  156. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  157. #endif
  158. /*
  159. * Special vmas that are non-mergable, non-mlock()able.
  160. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  161. */
  162. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  163. /* This mask defines which mm->def_flags a process can inherit its parent */
  164. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  165. /*
  166. * mapping from the currently active vm_flags protection bits (the
  167. * low four bits) to a page protection mask..
  168. */
  169. extern pgprot_t protection_map[16];
  170. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  171. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  172. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  173. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  174. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  175. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  176. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  177. /*
  178. * vm_fault is filled by the the pagefault handler and passed to the vma's
  179. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  180. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  181. *
  182. * pgoff should be used in favour of virtual_address, if possible.
  183. */
  184. struct vm_fault {
  185. unsigned int flags; /* FAULT_FLAG_xxx flags */
  186. pgoff_t pgoff; /* Logical page offset based on vma */
  187. void __user *virtual_address; /* Faulting virtual address */
  188. struct page *cow_page; /* Handler may choose to COW */
  189. struct page *page; /* ->fault handlers should return a
  190. * page here, unless VM_FAULT_NOPAGE
  191. * is set (which is also implied by
  192. * VM_FAULT_ERROR).
  193. */
  194. /* for ->map_pages() only */
  195. pgoff_t max_pgoff; /* map pages for offset from pgoff till
  196. * max_pgoff inclusive */
  197. pte_t *pte; /* pte entry associated with ->pgoff */
  198. };
  199. /*
  200. * These are the virtual MM functions - opening of an area, closing and
  201. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  202. * to the functions called when a no-page or a wp-page exception occurs.
  203. */
  204. struct vm_operations_struct {
  205. void (*open)(struct vm_area_struct * area);
  206. void (*close)(struct vm_area_struct * area);
  207. int (*mremap)(struct vm_area_struct * area);
  208. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  209. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  210. pmd_t *, unsigned int flags);
  211. void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
  212. /* notification that a previously read-only page is about to become
  213. * writable, if an error is returned it will cause a SIGBUS */
  214. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  215. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  216. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  217. /* called by access_process_vm when get_user_pages() fails, typically
  218. * for use by special VMAs that can switch between memory and hardware
  219. */
  220. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  221. void *buf, int len, int write);
  222. /* Called by the /proc/PID/maps code to ask the vma whether it
  223. * has a special name. Returning non-NULL will also cause this
  224. * vma to be dumped unconditionally. */
  225. const char *(*name)(struct vm_area_struct *vma);
  226. #ifdef CONFIG_NUMA
  227. /*
  228. * set_policy() op must add a reference to any non-NULL @new mempolicy
  229. * to hold the policy upon return. Caller should pass NULL @new to
  230. * remove a policy and fall back to surrounding context--i.e. do not
  231. * install a MPOL_DEFAULT policy, nor the task or system default
  232. * mempolicy.
  233. */
  234. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  235. /*
  236. * get_policy() op must add reference [mpol_get()] to any policy at
  237. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  238. * in mm/mempolicy.c will do this automatically.
  239. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  240. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  241. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  242. * must return NULL--i.e., do not "fallback" to task or system default
  243. * policy.
  244. */
  245. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  246. unsigned long addr);
  247. #endif
  248. /*
  249. * Called by vm_normal_page() for special PTEs to find the
  250. * page for @addr. This is useful if the default behavior
  251. * (using pte_page()) would not find the correct page.
  252. */
  253. struct page *(*find_special_page)(struct vm_area_struct *vma,
  254. unsigned long addr);
  255. };
  256. struct mmu_gather;
  257. struct inode;
  258. #define page_private(page) ((page)->private)
  259. #define set_page_private(page, v) ((page)->private = (v))
  260. /*
  261. * FIXME: take this include out, include page-flags.h in
  262. * files which need it (119 of them)
  263. */
  264. #include <linux/page-flags.h>
  265. #include <linux/huge_mm.h>
  266. /*
  267. * Methods to modify the page usage count.
  268. *
  269. * What counts for a page usage:
  270. * - cache mapping (page->mapping)
  271. * - private data (page->private)
  272. * - page mapped in a task's page tables, each mapping
  273. * is counted separately
  274. *
  275. * Also, many kernel routines increase the page count before a critical
  276. * routine so they can be sure the page doesn't go away from under them.
  277. */
  278. /*
  279. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  280. */
  281. static inline int put_page_testzero(struct page *page)
  282. {
  283. VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
  284. return atomic_dec_and_test(&page->_count);
  285. }
  286. /*
  287. * Try to grab a ref unless the page has a refcount of zero, return false if
  288. * that is the case.
  289. * This can be called when MMU is off so it must not access
  290. * any of the virtual mappings.
  291. */
  292. static inline int get_page_unless_zero(struct page *page)
  293. {
  294. return atomic_inc_not_zero(&page->_count);
  295. }
  296. extern int page_is_ram(unsigned long pfn);
  297. extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
  298. /* Support for virtually mapped pages */
  299. struct page *vmalloc_to_page(const void *addr);
  300. unsigned long vmalloc_to_pfn(const void *addr);
  301. /*
  302. * Determine if an address is within the vmalloc range
  303. *
  304. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  305. * is no special casing required.
  306. */
  307. static inline int is_vmalloc_addr(const void *x)
  308. {
  309. #ifdef CONFIG_MMU
  310. unsigned long addr = (unsigned long)x;
  311. return addr >= VMALLOC_START && addr < VMALLOC_END;
  312. #else
  313. return 0;
  314. #endif
  315. }
  316. #ifdef CONFIG_MMU
  317. extern int is_vmalloc_or_module_addr(const void *x);
  318. #else
  319. static inline int is_vmalloc_or_module_addr(const void *x)
  320. {
  321. return 0;
  322. }
  323. #endif
  324. extern void kvfree(const void *addr);
  325. static inline void compound_lock(struct page *page)
  326. {
  327. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  328. VM_BUG_ON_PAGE(PageSlab(page), page);
  329. bit_spin_lock(PG_compound_lock, &page->flags);
  330. #endif
  331. }
  332. static inline void compound_unlock(struct page *page)
  333. {
  334. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  335. VM_BUG_ON_PAGE(PageSlab(page), page);
  336. bit_spin_unlock(PG_compound_lock, &page->flags);
  337. #endif
  338. }
  339. static inline unsigned long compound_lock_irqsave(struct page *page)
  340. {
  341. unsigned long uninitialized_var(flags);
  342. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  343. local_irq_save(flags);
  344. compound_lock(page);
  345. #endif
  346. return flags;
  347. }
  348. static inline void compound_unlock_irqrestore(struct page *page,
  349. unsigned long flags)
  350. {
  351. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  352. compound_unlock(page);
  353. local_irq_restore(flags);
  354. #endif
  355. }
  356. static inline struct page *compound_head_by_tail(struct page *tail)
  357. {
  358. struct page *head = tail->first_page;
  359. /*
  360. * page->first_page may be a dangling pointer to an old
  361. * compound page, so recheck that it is still a tail
  362. * page before returning.
  363. */
  364. smp_rmb();
  365. if (likely(PageTail(tail)))
  366. return head;
  367. return tail;
  368. }
  369. /*
  370. * Since either compound page could be dismantled asynchronously in THP
  371. * or we access asynchronously arbitrary positioned struct page, there
  372. * would be tail flag race. To handle this race, we should call
  373. * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
  374. */
  375. static inline struct page *compound_head(struct page *page)
  376. {
  377. if (unlikely(PageTail(page)))
  378. return compound_head_by_tail(page);
  379. return page;
  380. }
  381. /*
  382. * If we access compound page synchronously such as access to
  383. * allocated page, there is no need to handle tail flag race, so we can
  384. * check tail flag directly without any synchronization primitive.
  385. */
  386. static inline struct page *compound_head_fast(struct page *page)
  387. {
  388. if (unlikely(PageTail(page)))
  389. return page->first_page;
  390. return page;
  391. }
  392. /*
  393. * The atomic page->_mapcount, starts from -1: so that transitions
  394. * both from it and to it can be tracked, using atomic_inc_and_test
  395. * and atomic_add_negative(-1).
  396. */
  397. static inline void page_mapcount_reset(struct page *page)
  398. {
  399. atomic_set(&(page)->_mapcount, -1);
  400. }
  401. static inline int page_mapcount(struct page *page)
  402. {
  403. VM_BUG_ON_PAGE(PageSlab(page), page);
  404. return atomic_read(&page->_mapcount) + 1;
  405. }
  406. static inline int page_count(struct page *page)
  407. {
  408. return atomic_read(&compound_head(page)->_count);
  409. }
  410. static inline bool __compound_tail_refcounted(struct page *page)
  411. {
  412. return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
  413. }
  414. /*
  415. * This takes a head page as parameter and tells if the
  416. * tail page reference counting can be skipped.
  417. *
  418. * For this to be safe, PageSlab and PageHeadHuge must remain true on
  419. * any given page where they return true here, until all tail pins
  420. * have been released.
  421. */
  422. static inline bool compound_tail_refcounted(struct page *page)
  423. {
  424. VM_BUG_ON_PAGE(!PageHead(page), page);
  425. return __compound_tail_refcounted(page);
  426. }
  427. static inline void get_huge_page_tail(struct page *page)
  428. {
  429. /*
  430. * __split_huge_page_refcount() cannot run from under us.
  431. */
  432. VM_BUG_ON_PAGE(!PageTail(page), page);
  433. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  434. VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
  435. if (compound_tail_refcounted(page->first_page))
  436. atomic_inc(&page->_mapcount);
  437. }
  438. extern bool __get_page_tail(struct page *page);
  439. static inline void get_page(struct page *page)
  440. {
  441. if (unlikely(PageTail(page)))
  442. if (likely(__get_page_tail(page)))
  443. return;
  444. /*
  445. * Getting a normal page or the head of a compound page
  446. * requires to already have an elevated page->_count.
  447. */
  448. VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
  449. atomic_inc(&page->_count);
  450. }
  451. static inline struct page *virt_to_head_page(const void *x)
  452. {
  453. struct page *page = virt_to_page(x);
  454. /*
  455. * We don't need to worry about synchronization of tail flag
  456. * when we call virt_to_head_page() since it is only called for
  457. * already allocated page and this page won't be freed until
  458. * this virt_to_head_page() is finished. So use _fast variant.
  459. */
  460. return compound_head_fast(page);
  461. }
  462. /*
  463. * Setup the page count before being freed into the page allocator for
  464. * the first time (boot or memory hotplug)
  465. */
  466. static inline void init_page_count(struct page *page)
  467. {
  468. atomic_set(&page->_count, 1);
  469. }
  470. void put_page(struct page *page);
  471. void put_pages_list(struct list_head *pages);
  472. void split_page(struct page *page, unsigned int order);
  473. int split_free_page(struct page *page);
  474. /*
  475. * Compound pages have a destructor function. Provide a
  476. * prototype for that function and accessor functions.
  477. * These are _only_ valid on the head of a PG_compound page.
  478. */
  479. static inline void set_compound_page_dtor(struct page *page,
  480. compound_page_dtor *dtor)
  481. {
  482. page[1].compound_dtor = dtor;
  483. }
  484. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  485. {
  486. return page[1].compound_dtor;
  487. }
  488. static inline int compound_order(struct page *page)
  489. {
  490. if (!PageHead(page))
  491. return 0;
  492. return page[1].compound_order;
  493. }
  494. static inline void set_compound_order(struct page *page, unsigned long order)
  495. {
  496. page[1].compound_order = order;
  497. }
  498. #ifdef CONFIG_MMU
  499. /*
  500. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  501. * servicing faults for write access. In the normal case, do always want
  502. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  503. * that do not have writing enabled, when used by access_process_vm.
  504. */
  505. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  506. {
  507. if (likely(vma->vm_flags & VM_WRITE))
  508. pte = pte_mkwrite(pte);
  509. return pte;
  510. }
  511. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  512. struct page *page, pte_t *pte, bool write, bool anon);
  513. #endif
  514. /*
  515. * Multiple processes may "see" the same page. E.g. for untouched
  516. * mappings of /dev/null, all processes see the same page full of
  517. * zeroes, and text pages of executables and shared libraries have
  518. * only one copy in memory, at most, normally.
  519. *
  520. * For the non-reserved pages, page_count(page) denotes a reference count.
  521. * page_count() == 0 means the page is free. page->lru is then used for
  522. * freelist management in the buddy allocator.
  523. * page_count() > 0 means the page has been allocated.
  524. *
  525. * Pages are allocated by the slab allocator in order to provide memory
  526. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  527. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  528. * unless a particular usage is carefully commented. (the responsibility of
  529. * freeing the kmalloc memory is the caller's, of course).
  530. *
  531. * A page may be used by anyone else who does a __get_free_page().
  532. * In this case, page_count still tracks the references, and should only
  533. * be used through the normal accessor functions. The top bits of page->flags
  534. * and page->virtual store page management information, but all other fields
  535. * are unused and could be used privately, carefully. The management of this
  536. * page is the responsibility of the one who allocated it, and those who have
  537. * subsequently been given references to it.
  538. *
  539. * The other pages (we may call them "pagecache pages") are completely
  540. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  541. * The following discussion applies only to them.
  542. *
  543. * A pagecache page contains an opaque `private' member, which belongs to the
  544. * page's address_space. Usually, this is the address of a circular list of
  545. * the page's disk buffers. PG_private must be set to tell the VM to call
  546. * into the filesystem to release these pages.
  547. *
  548. * A page may belong to an inode's memory mapping. In this case, page->mapping
  549. * is the pointer to the inode, and page->index is the file offset of the page,
  550. * in units of PAGE_CACHE_SIZE.
  551. *
  552. * If pagecache pages are not associated with an inode, they are said to be
  553. * anonymous pages. These may become associated with the swapcache, and in that
  554. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  555. *
  556. * In either case (swapcache or inode backed), the pagecache itself holds one
  557. * reference to the page. Setting PG_private should also increment the
  558. * refcount. The each user mapping also has a reference to the page.
  559. *
  560. * The pagecache pages are stored in a per-mapping radix tree, which is
  561. * rooted at mapping->page_tree, and indexed by offset.
  562. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  563. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  564. *
  565. * All pagecache pages may be subject to I/O:
  566. * - inode pages may need to be read from disk,
  567. * - inode pages which have been modified and are MAP_SHARED may need
  568. * to be written back to the inode on disk,
  569. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  570. * modified may need to be swapped out to swap space and (later) to be read
  571. * back into memory.
  572. */
  573. /*
  574. * The zone field is never updated after free_area_init_core()
  575. * sets it, so none of the operations on it need to be atomic.
  576. */
  577. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  578. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  579. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  580. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  581. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  582. /*
  583. * Define the bit shifts to access each section. For non-existent
  584. * sections we define the shift as 0; that plus a 0 mask ensures
  585. * the compiler will optimise away reference to them.
  586. */
  587. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  588. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  589. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  590. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  591. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  592. #ifdef NODE_NOT_IN_PAGE_FLAGS
  593. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  594. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  595. SECTIONS_PGOFF : ZONES_PGOFF)
  596. #else
  597. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  598. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  599. NODES_PGOFF : ZONES_PGOFF)
  600. #endif
  601. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  602. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  603. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  604. #endif
  605. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  606. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  607. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  608. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  609. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  610. static inline enum zone_type page_zonenum(const struct page *page)
  611. {
  612. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  613. }
  614. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  615. #define SECTION_IN_PAGE_FLAGS
  616. #endif
  617. /*
  618. * The identification function is mainly used by the buddy allocator for
  619. * determining if two pages could be buddies. We are not really identifying
  620. * the zone since we could be using the section number id if we do not have
  621. * node id available in page flags.
  622. * We only guarantee that it will return the same value for two combinable
  623. * pages in a zone.
  624. */
  625. static inline int page_zone_id(struct page *page)
  626. {
  627. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  628. }
  629. static inline int zone_to_nid(struct zone *zone)
  630. {
  631. #ifdef CONFIG_NUMA
  632. return zone->node;
  633. #else
  634. return 0;
  635. #endif
  636. }
  637. #ifdef NODE_NOT_IN_PAGE_FLAGS
  638. extern int page_to_nid(const struct page *page);
  639. #else
  640. static inline int page_to_nid(const struct page *page)
  641. {
  642. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  643. }
  644. #endif
  645. #ifdef CONFIG_NUMA_BALANCING
  646. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  647. {
  648. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  649. }
  650. static inline int cpupid_to_pid(int cpupid)
  651. {
  652. return cpupid & LAST__PID_MASK;
  653. }
  654. static inline int cpupid_to_cpu(int cpupid)
  655. {
  656. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  657. }
  658. static inline int cpupid_to_nid(int cpupid)
  659. {
  660. return cpu_to_node(cpupid_to_cpu(cpupid));
  661. }
  662. static inline bool cpupid_pid_unset(int cpupid)
  663. {
  664. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  665. }
  666. static inline bool cpupid_cpu_unset(int cpupid)
  667. {
  668. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  669. }
  670. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  671. {
  672. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  673. }
  674. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  675. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  676. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  677. {
  678. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  679. }
  680. static inline int page_cpupid_last(struct page *page)
  681. {
  682. return page->_last_cpupid;
  683. }
  684. static inline void page_cpupid_reset_last(struct page *page)
  685. {
  686. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  687. }
  688. #else
  689. static inline int page_cpupid_last(struct page *page)
  690. {
  691. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  692. }
  693. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  694. static inline void page_cpupid_reset_last(struct page *page)
  695. {
  696. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  697. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  698. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  699. }
  700. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  701. #else /* !CONFIG_NUMA_BALANCING */
  702. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  703. {
  704. return page_to_nid(page); /* XXX */
  705. }
  706. static inline int page_cpupid_last(struct page *page)
  707. {
  708. return page_to_nid(page); /* XXX */
  709. }
  710. static inline int cpupid_to_nid(int cpupid)
  711. {
  712. return -1;
  713. }
  714. static inline int cpupid_to_pid(int cpupid)
  715. {
  716. return -1;
  717. }
  718. static inline int cpupid_to_cpu(int cpupid)
  719. {
  720. return -1;
  721. }
  722. static inline int cpu_pid_to_cpupid(int nid, int pid)
  723. {
  724. return -1;
  725. }
  726. static inline bool cpupid_pid_unset(int cpupid)
  727. {
  728. return 1;
  729. }
  730. static inline void page_cpupid_reset_last(struct page *page)
  731. {
  732. }
  733. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  734. {
  735. return false;
  736. }
  737. #endif /* CONFIG_NUMA_BALANCING */
  738. static inline struct zone *page_zone(const struct page *page)
  739. {
  740. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  741. }
  742. #ifdef SECTION_IN_PAGE_FLAGS
  743. static inline void set_page_section(struct page *page, unsigned long section)
  744. {
  745. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  746. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  747. }
  748. static inline unsigned long page_to_section(const struct page *page)
  749. {
  750. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  751. }
  752. #endif
  753. static inline void set_page_zone(struct page *page, enum zone_type zone)
  754. {
  755. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  756. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  757. }
  758. static inline void set_page_node(struct page *page, unsigned long node)
  759. {
  760. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  761. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  762. }
  763. static inline void set_page_links(struct page *page, enum zone_type zone,
  764. unsigned long node, unsigned long pfn)
  765. {
  766. set_page_zone(page, zone);
  767. set_page_node(page, node);
  768. #ifdef SECTION_IN_PAGE_FLAGS
  769. set_page_section(page, pfn_to_section_nr(pfn));
  770. #endif
  771. }
  772. /*
  773. * Some inline functions in vmstat.h depend on page_zone()
  774. */
  775. #include <linux/vmstat.h>
  776. static __always_inline void *lowmem_page_address(const struct page *page)
  777. {
  778. return __va(PFN_PHYS(page_to_pfn(page)));
  779. }
  780. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  781. #define HASHED_PAGE_VIRTUAL
  782. #endif
  783. #if defined(WANT_PAGE_VIRTUAL)
  784. static inline void *page_address(const struct page *page)
  785. {
  786. return page->virtual;
  787. }
  788. static inline void set_page_address(struct page *page, void *address)
  789. {
  790. page->virtual = address;
  791. }
  792. #define page_address_init() do { } while(0)
  793. #endif
  794. #if defined(HASHED_PAGE_VIRTUAL)
  795. void *page_address(const struct page *page);
  796. void set_page_address(struct page *page, void *virtual);
  797. void page_address_init(void);
  798. #endif
  799. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  800. #define page_address(page) lowmem_page_address(page)
  801. #define set_page_address(page, address) do { } while(0)
  802. #define page_address_init() do { } while(0)
  803. #endif
  804. extern void *page_rmapping(struct page *page);
  805. extern struct anon_vma *page_anon_vma(struct page *page);
  806. extern struct address_space *page_mapping(struct page *page);
  807. extern struct address_space *__page_file_mapping(struct page *);
  808. static inline
  809. struct address_space *page_file_mapping(struct page *page)
  810. {
  811. if (unlikely(PageSwapCache(page)))
  812. return __page_file_mapping(page);
  813. return page->mapping;
  814. }
  815. /*
  816. * Return the pagecache index of the passed page. Regular pagecache pages
  817. * use ->index whereas swapcache pages use ->private
  818. */
  819. static inline pgoff_t page_index(struct page *page)
  820. {
  821. if (unlikely(PageSwapCache(page)))
  822. return page_private(page);
  823. return page->index;
  824. }
  825. extern pgoff_t __page_file_index(struct page *page);
  826. /*
  827. * Return the file index of the page. Regular pagecache pages use ->index
  828. * whereas swapcache pages use swp_offset(->private)
  829. */
  830. static inline pgoff_t page_file_index(struct page *page)
  831. {
  832. if (unlikely(PageSwapCache(page)))
  833. return __page_file_index(page);
  834. return page->index;
  835. }
  836. /*
  837. * Return true if this page is mapped into pagetables.
  838. */
  839. static inline int page_mapped(struct page *page)
  840. {
  841. return atomic_read(&(page)->_mapcount) >= 0;
  842. }
  843. /*
  844. * Return true only if the page has been allocated with
  845. * ALLOC_NO_WATERMARKS and the low watermark was not
  846. * met implying that the system is under some pressure.
  847. */
  848. static inline bool page_is_pfmemalloc(struct page *page)
  849. {
  850. /*
  851. * Page index cannot be this large so this must be
  852. * a pfmemalloc page.
  853. */
  854. return page->index == -1UL;
  855. }
  856. /*
  857. * Only to be called by the page allocator on a freshly allocated
  858. * page.
  859. */
  860. static inline void set_page_pfmemalloc(struct page *page)
  861. {
  862. page->index = -1UL;
  863. }
  864. static inline void clear_page_pfmemalloc(struct page *page)
  865. {
  866. page->index = 0;
  867. }
  868. /*
  869. * Different kinds of faults, as returned by handle_mm_fault().
  870. * Used to decide whether a process gets delivered SIGBUS or
  871. * just gets major/minor fault counters bumped up.
  872. */
  873. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  874. #define VM_FAULT_OOM 0x0001
  875. #define VM_FAULT_SIGBUS 0x0002
  876. #define VM_FAULT_MAJOR 0x0004
  877. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  878. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  879. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  880. #define VM_FAULT_SIGSEGV 0x0040
  881. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  882. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  883. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  884. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  885. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  886. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  887. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  888. VM_FAULT_FALLBACK)
  889. /* Encode hstate index for a hwpoisoned large page */
  890. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  891. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  892. /*
  893. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  894. */
  895. extern void pagefault_out_of_memory(void);
  896. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  897. /*
  898. * Flags passed to show_mem() and show_free_areas() to suppress output in
  899. * various contexts.
  900. */
  901. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  902. extern void show_free_areas(unsigned int flags);
  903. extern bool skip_free_areas_node(unsigned int flags, int nid);
  904. int shmem_zero_setup(struct vm_area_struct *);
  905. #ifdef CONFIG_SHMEM
  906. bool shmem_mapping(struct address_space *mapping);
  907. #else
  908. static inline bool shmem_mapping(struct address_space *mapping)
  909. {
  910. return false;
  911. }
  912. #endif
  913. extern int can_do_mlock(void);
  914. extern int user_shm_lock(size_t, struct user_struct *);
  915. extern void user_shm_unlock(size_t, struct user_struct *);
  916. /*
  917. * Parameter block passed down to zap_pte_range in exceptional cases.
  918. */
  919. struct zap_details {
  920. struct address_space *check_mapping; /* Check page->mapping if set */
  921. pgoff_t first_index; /* Lowest page->index to unmap */
  922. pgoff_t last_index; /* Highest page->index to unmap */
  923. };
  924. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  925. pte_t pte);
  926. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  927. unsigned long size);
  928. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  929. unsigned long size, struct zap_details *);
  930. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  931. unsigned long start, unsigned long end);
  932. /**
  933. * mm_walk - callbacks for walk_page_range
  934. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  935. * this handler is required to be able to handle
  936. * pmd_trans_huge() pmds. They may simply choose to
  937. * split_huge_page() instead of handling it explicitly.
  938. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  939. * @pte_hole: if set, called for each hole at all levels
  940. * @hugetlb_entry: if set, called for each hugetlb entry
  941. * @test_walk: caller specific callback function to determine whether
  942. * we walk over the current vma or not. A positive returned
  943. * value means "do page table walk over the current vma,"
  944. * and a negative one means "abort current page table walk
  945. * right now." 0 means "skip the current vma."
  946. * @mm: mm_struct representing the target process of page table walk
  947. * @vma: vma currently walked (NULL if walking outside vmas)
  948. * @private: private data for callbacks' usage
  949. *
  950. * (see the comment on walk_page_range() for more details)
  951. */
  952. struct mm_walk {
  953. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  954. unsigned long next, struct mm_walk *walk);
  955. int (*pte_entry)(pte_t *pte, unsigned long addr,
  956. unsigned long next, struct mm_walk *walk);
  957. int (*pte_hole)(unsigned long addr, unsigned long next,
  958. struct mm_walk *walk);
  959. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  960. unsigned long addr, unsigned long next,
  961. struct mm_walk *walk);
  962. int (*test_walk)(unsigned long addr, unsigned long next,
  963. struct mm_walk *walk);
  964. struct mm_struct *mm;
  965. struct vm_area_struct *vma;
  966. void *private;
  967. };
  968. int walk_page_range(unsigned long addr, unsigned long end,
  969. struct mm_walk *walk);
  970. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  971. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  972. unsigned long end, unsigned long floor, unsigned long ceiling);
  973. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  974. struct vm_area_struct *vma);
  975. void unmap_mapping_range(struct address_space *mapping,
  976. loff_t const holebegin, loff_t const holelen, int even_cows);
  977. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  978. unsigned long *pfn);
  979. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  980. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  981. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  982. void *buf, int len, int write);
  983. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  984. loff_t const holebegin, loff_t const holelen)
  985. {
  986. unmap_mapping_range(mapping, holebegin, holelen, 0);
  987. }
  988. extern void truncate_pagecache(struct inode *inode, loff_t new);
  989. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  990. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  991. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  992. int truncate_inode_page(struct address_space *mapping, struct page *page);
  993. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  994. int invalidate_inode_page(struct page *page);
  995. #ifdef CONFIG_MMU
  996. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  997. unsigned long address, unsigned int flags);
  998. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  999. unsigned long address, unsigned int fault_flags);
  1000. #else
  1001. static inline int handle_mm_fault(struct mm_struct *mm,
  1002. struct vm_area_struct *vma, unsigned long address,
  1003. unsigned int flags)
  1004. {
  1005. /* should never happen if there's no MMU */
  1006. BUG();
  1007. return VM_FAULT_SIGBUS;
  1008. }
  1009. static inline int fixup_user_fault(struct task_struct *tsk,
  1010. struct mm_struct *mm, unsigned long address,
  1011. unsigned int fault_flags)
  1012. {
  1013. /* should never happen if there's no MMU */
  1014. BUG();
  1015. return -EFAULT;
  1016. }
  1017. #endif
  1018. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  1019. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1020. void *buf, int len, int write);
  1021. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1022. unsigned long start, unsigned long nr_pages,
  1023. unsigned int foll_flags, struct page **pages,
  1024. struct vm_area_struct **vmas, int *nonblocking);
  1025. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1026. unsigned long start, unsigned long nr_pages,
  1027. int write, int force, struct page **pages,
  1028. struct vm_area_struct **vmas);
  1029. long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
  1030. unsigned long start, unsigned long nr_pages,
  1031. int write, int force, struct page **pages,
  1032. int *locked);
  1033. long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1034. unsigned long start, unsigned long nr_pages,
  1035. int write, int force, struct page **pages,
  1036. unsigned int gup_flags);
  1037. long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1038. unsigned long start, unsigned long nr_pages,
  1039. int write, int force, struct page **pages);
  1040. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1041. struct page **pages);
  1042. struct kvec;
  1043. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1044. struct page **pages);
  1045. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1046. struct page *get_dump_page(unsigned long addr);
  1047. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1048. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1049. unsigned int length);
  1050. int __set_page_dirty_nobuffers(struct page *page);
  1051. int __set_page_dirty_no_writeback(struct page *page);
  1052. int redirty_page_for_writepage(struct writeback_control *wbc,
  1053. struct page *page);
  1054. void account_page_dirtied(struct page *page, struct address_space *mapping,
  1055. struct mem_cgroup *memcg);
  1056. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1057. struct mem_cgroup *memcg, struct bdi_writeback *wb);
  1058. int set_page_dirty(struct page *page);
  1059. int set_page_dirty_lock(struct page *page);
  1060. void cancel_dirty_page(struct page *page);
  1061. int clear_page_dirty_for_io(struct page *page);
  1062. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1063. /* Is the vma a continuation of the stack vma above it? */
  1064. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1065. {
  1066. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1067. }
  1068. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1069. {
  1070. return !vma->vm_ops;
  1071. }
  1072. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1073. unsigned long addr)
  1074. {
  1075. return (vma->vm_flags & VM_GROWSDOWN) &&
  1076. (vma->vm_start == addr) &&
  1077. !vma_growsdown(vma->vm_prev, addr);
  1078. }
  1079. /* Is the vma a continuation of the stack vma below it? */
  1080. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1081. {
  1082. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1083. }
  1084. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1085. unsigned long addr)
  1086. {
  1087. return (vma->vm_flags & VM_GROWSUP) &&
  1088. (vma->vm_end == addr) &&
  1089. !vma_growsup(vma->vm_next, addr);
  1090. }
  1091. extern struct task_struct *task_of_stack(struct task_struct *task,
  1092. struct vm_area_struct *vma, bool in_group);
  1093. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1094. unsigned long old_addr, struct vm_area_struct *new_vma,
  1095. unsigned long new_addr, unsigned long len,
  1096. bool need_rmap_locks);
  1097. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1098. unsigned long end, pgprot_t newprot,
  1099. int dirty_accountable, int prot_numa);
  1100. extern int mprotect_fixup(struct vm_area_struct *vma,
  1101. struct vm_area_struct **pprev, unsigned long start,
  1102. unsigned long end, unsigned long newflags);
  1103. /*
  1104. * doesn't attempt to fault and will return short.
  1105. */
  1106. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1107. struct page **pages);
  1108. /*
  1109. * per-process(per-mm_struct) statistics.
  1110. */
  1111. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1112. {
  1113. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1114. #ifdef SPLIT_RSS_COUNTING
  1115. /*
  1116. * counter is updated in asynchronous manner and may go to minus.
  1117. * But it's never be expected number for users.
  1118. */
  1119. if (val < 0)
  1120. val = 0;
  1121. #endif
  1122. return (unsigned long)val;
  1123. }
  1124. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1125. {
  1126. atomic_long_add(value, &mm->rss_stat.count[member]);
  1127. }
  1128. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1129. {
  1130. atomic_long_inc(&mm->rss_stat.count[member]);
  1131. }
  1132. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1133. {
  1134. atomic_long_dec(&mm->rss_stat.count[member]);
  1135. }
  1136. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1137. {
  1138. return get_mm_counter(mm, MM_FILEPAGES) +
  1139. get_mm_counter(mm, MM_ANONPAGES);
  1140. }
  1141. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1142. {
  1143. return max(mm->hiwater_rss, get_mm_rss(mm));
  1144. }
  1145. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1146. {
  1147. return max(mm->hiwater_vm, mm->total_vm);
  1148. }
  1149. static inline void update_hiwater_rss(struct mm_struct *mm)
  1150. {
  1151. unsigned long _rss = get_mm_rss(mm);
  1152. if ((mm)->hiwater_rss < _rss)
  1153. (mm)->hiwater_rss = _rss;
  1154. }
  1155. static inline void update_hiwater_vm(struct mm_struct *mm)
  1156. {
  1157. if (mm->hiwater_vm < mm->total_vm)
  1158. mm->hiwater_vm = mm->total_vm;
  1159. }
  1160. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1161. {
  1162. mm->hiwater_rss = get_mm_rss(mm);
  1163. }
  1164. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1165. struct mm_struct *mm)
  1166. {
  1167. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1168. if (*maxrss < hiwater_rss)
  1169. *maxrss = hiwater_rss;
  1170. }
  1171. #if defined(SPLIT_RSS_COUNTING)
  1172. void sync_mm_rss(struct mm_struct *mm);
  1173. #else
  1174. static inline void sync_mm_rss(struct mm_struct *mm)
  1175. {
  1176. }
  1177. #endif
  1178. int vma_wants_writenotify(struct vm_area_struct *vma);
  1179. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1180. spinlock_t **ptl);
  1181. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1182. spinlock_t **ptl)
  1183. {
  1184. pte_t *ptep;
  1185. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1186. return ptep;
  1187. }
  1188. #ifdef __PAGETABLE_PUD_FOLDED
  1189. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1190. unsigned long address)
  1191. {
  1192. return 0;
  1193. }
  1194. #else
  1195. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1196. #endif
  1197. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1198. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1199. unsigned long address)
  1200. {
  1201. return 0;
  1202. }
  1203. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1204. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1205. {
  1206. return 0;
  1207. }
  1208. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1209. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1210. #else
  1211. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1212. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1213. {
  1214. atomic_long_set(&mm->nr_pmds, 0);
  1215. }
  1216. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1217. {
  1218. return atomic_long_read(&mm->nr_pmds);
  1219. }
  1220. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1221. {
  1222. atomic_long_inc(&mm->nr_pmds);
  1223. }
  1224. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1225. {
  1226. atomic_long_dec(&mm->nr_pmds);
  1227. }
  1228. #endif
  1229. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1230. pmd_t *pmd, unsigned long address);
  1231. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1232. /*
  1233. * The following ifdef needed to get the 4level-fixup.h header to work.
  1234. * Remove it when 4level-fixup.h has been removed.
  1235. */
  1236. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1237. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1238. {
  1239. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1240. NULL: pud_offset(pgd, address);
  1241. }
  1242. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1243. {
  1244. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1245. NULL: pmd_offset(pud, address);
  1246. }
  1247. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1248. #if USE_SPLIT_PTE_PTLOCKS
  1249. #if ALLOC_SPLIT_PTLOCKS
  1250. void __init ptlock_cache_init(void);
  1251. extern bool ptlock_alloc(struct page *page);
  1252. extern void ptlock_free(struct page *page);
  1253. static inline spinlock_t *ptlock_ptr(struct page *page)
  1254. {
  1255. return page->ptl;
  1256. }
  1257. #else /* ALLOC_SPLIT_PTLOCKS */
  1258. static inline void ptlock_cache_init(void)
  1259. {
  1260. }
  1261. static inline bool ptlock_alloc(struct page *page)
  1262. {
  1263. return true;
  1264. }
  1265. static inline void ptlock_free(struct page *page)
  1266. {
  1267. }
  1268. static inline spinlock_t *ptlock_ptr(struct page *page)
  1269. {
  1270. return &page->ptl;
  1271. }
  1272. #endif /* ALLOC_SPLIT_PTLOCKS */
  1273. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1274. {
  1275. return ptlock_ptr(pmd_page(*pmd));
  1276. }
  1277. static inline bool ptlock_init(struct page *page)
  1278. {
  1279. /*
  1280. * prep_new_page() initialize page->private (and therefore page->ptl)
  1281. * with 0. Make sure nobody took it in use in between.
  1282. *
  1283. * It can happen if arch try to use slab for page table allocation:
  1284. * slab code uses page->slab_cache and page->first_page (for tail
  1285. * pages), which share storage with page->ptl.
  1286. */
  1287. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1288. if (!ptlock_alloc(page))
  1289. return false;
  1290. spin_lock_init(ptlock_ptr(page));
  1291. return true;
  1292. }
  1293. /* Reset page->mapping so free_pages_check won't complain. */
  1294. static inline void pte_lock_deinit(struct page *page)
  1295. {
  1296. page->mapping = NULL;
  1297. ptlock_free(page);
  1298. }
  1299. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1300. /*
  1301. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1302. */
  1303. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1304. {
  1305. return &mm->page_table_lock;
  1306. }
  1307. static inline void ptlock_cache_init(void) {}
  1308. static inline bool ptlock_init(struct page *page) { return true; }
  1309. static inline void pte_lock_deinit(struct page *page) {}
  1310. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1311. static inline void pgtable_init(void)
  1312. {
  1313. ptlock_cache_init();
  1314. pgtable_cache_init();
  1315. }
  1316. static inline bool pgtable_page_ctor(struct page *page)
  1317. {
  1318. inc_zone_page_state(page, NR_PAGETABLE);
  1319. return ptlock_init(page);
  1320. }
  1321. static inline void pgtable_page_dtor(struct page *page)
  1322. {
  1323. pte_lock_deinit(page);
  1324. dec_zone_page_state(page, NR_PAGETABLE);
  1325. }
  1326. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1327. ({ \
  1328. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1329. pte_t *__pte = pte_offset_map(pmd, address); \
  1330. *(ptlp) = __ptl; \
  1331. spin_lock(__ptl); \
  1332. __pte; \
  1333. })
  1334. #define pte_unmap_unlock(pte, ptl) do { \
  1335. spin_unlock(ptl); \
  1336. pte_unmap(pte); \
  1337. } while (0)
  1338. #define pte_alloc_map(mm, vma, pmd, address) \
  1339. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1340. pmd, address))? \
  1341. NULL: pte_offset_map(pmd, address))
  1342. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1343. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1344. pmd, address))? \
  1345. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1346. #define pte_alloc_kernel(pmd, address) \
  1347. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1348. NULL: pte_offset_kernel(pmd, address))
  1349. #if USE_SPLIT_PMD_PTLOCKS
  1350. static struct page *pmd_to_page(pmd_t *pmd)
  1351. {
  1352. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1353. return virt_to_page((void *)((unsigned long) pmd & mask));
  1354. }
  1355. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1356. {
  1357. return ptlock_ptr(pmd_to_page(pmd));
  1358. }
  1359. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1360. {
  1361. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1362. page->pmd_huge_pte = NULL;
  1363. #endif
  1364. return ptlock_init(page);
  1365. }
  1366. static inline void pgtable_pmd_page_dtor(struct page *page)
  1367. {
  1368. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1369. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1370. #endif
  1371. ptlock_free(page);
  1372. }
  1373. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1374. #else
  1375. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1376. {
  1377. return &mm->page_table_lock;
  1378. }
  1379. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1380. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1381. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1382. #endif
  1383. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1384. {
  1385. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1386. spin_lock(ptl);
  1387. return ptl;
  1388. }
  1389. extern void free_area_init(unsigned long * zones_size);
  1390. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1391. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1392. extern void free_initmem(void);
  1393. /*
  1394. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1395. * into the buddy system. The freed pages will be poisoned with pattern
  1396. * "poison" if it's within range [0, UCHAR_MAX].
  1397. * Return pages freed into the buddy system.
  1398. */
  1399. extern unsigned long free_reserved_area(void *start, void *end,
  1400. int poison, char *s);
  1401. #ifdef CONFIG_HIGHMEM
  1402. /*
  1403. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1404. * and totalram_pages.
  1405. */
  1406. extern void free_highmem_page(struct page *page);
  1407. #endif
  1408. extern void adjust_managed_page_count(struct page *page, long count);
  1409. extern void mem_init_print_info(const char *str);
  1410. extern void reserve_bootmem_region(unsigned long start, unsigned long end);
  1411. /* Free the reserved page into the buddy system, so it gets managed. */
  1412. static inline void __free_reserved_page(struct page *page)
  1413. {
  1414. ClearPageReserved(page);
  1415. init_page_count(page);
  1416. __free_page(page);
  1417. }
  1418. static inline void free_reserved_page(struct page *page)
  1419. {
  1420. __free_reserved_page(page);
  1421. adjust_managed_page_count(page, 1);
  1422. }
  1423. static inline void mark_page_reserved(struct page *page)
  1424. {
  1425. SetPageReserved(page);
  1426. adjust_managed_page_count(page, -1);
  1427. }
  1428. /*
  1429. * Default method to free all the __init memory into the buddy system.
  1430. * The freed pages will be poisoned with pattern "poison" if it's within
  1431. * range [0, UCHAR_MAX].
  1432. * Return pages freed into the buddy system.
  1433. */
  1434. static inline unsigned long free_initmem_default(int poison)
  1435. {
  1436. extern char __init_begin[], __init_end[];
  1437. return free_reserved_area(&__init_begin, &__init_end,
  1438. poison, "unused kernel");
  1439. }
  1440. static inline unsigned long get_num_physpages(void)
  1441. {
  1442. int nid;
  1443. unsigned long phys_pages = 0;
  1444. for_each_online_node(nid)
  1445. phys_pages += node_present_pages(nid);
  1446. return phys_pages;
  1447. }
  1448. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1449. /*
  1450. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1451. * zones, allocate the backing mem_map and account for memory holes in a more
  1452. * architecture independent manner. This is a substitute for creating the
  1453. * zone_sizes[] and zholes_size[] arrays and passing them to
  1454. * free_area_init_node()
  1455. *
  1456. * An architecture is expected to register range of page frames backed by
  1457. * physical memory with memblock_add[_node]() before calling
  1458. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1459. * usage, an architecture is expected to do something like
  1460. *
  1461. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1462. * max_highmem_pfn};
  1463. * for_each_valid_physical_page_range()
  1464. * memblock_add_node(base, size, nid)
  1465. * free_area_init_nodes(max_zone_pfns);
  1466. *
  1467. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1468. * registered physical page range. Similarly
  1469. * sparse_memory_present_with_active_regions() calls memory_present() for
  1470. * each range when SPARSEMEM is enabled.
  1471. *
  1472. * See mm/page_alloc.c for more information on each function exposed by
  1473. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1474. */
  1475. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1476. unsigned long node_map_pfn_alignment(void);
  1477. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1478. unsigned long end_pfn);
  1479. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1480. unsigned long end_pfn);
  1481. extern void get_pfn_range_for_nid(unsigned int nid,
  1482. unsigned long *start_pfn, unsigned long *end_pfn);
  1483. extern unsigned long find_min_pfn_with_active_regions(void);
  1484. extern void free_bootmem_with_active_regions(int nid,
  1485. unsigned long max_low_pfn);
  1486. extern void sparse_memory_present_with_active_regions(int nid);
  1487. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1488. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1489. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1490. static inline int __early_pfn_to_nid(unsigned long pfn,
  1491. struct mminit_pfnnid_cache *state)
  1492. {
  1493. return 0;
  1494. }
  1495. #else
  1496. /* please see mm/page_alloc.c */
  1497. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1498. /* there is a per-arch backend function. */
  1499. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1500. struct mminit_pfnnid_cache *state);
  1501. #endif
  1502. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1503. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1504. unsigned long, enum memmap_context);
  1505. extern void setup_per_zone_wmarks(void);
  1506. extern int __meminit init_per_zone_wmark_min(void);
  1507. extern void mem_init(void);
  1508. extern void __init mmap_init(void);
  1509. extern void show_mem(unsigned int flags);
  1510. extern void si_meminfo(struct sysinfo * val);
  1511. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1512. extern __printf(3, 4)
  1513. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1514. extern void setup_per_cpu_pageset(void);
  1515. extern void zone_pcp_update(struct zone *zone);
  1516. extern void zone_pcp_reset(struct zone *zone);
  1517. /* page_alloc.c */
  1518. extern int min_free_kbytes;
  1519. /* nommu.c */
  1520. extern atomic_long_t mmap_pages_allocated;
  1521. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1522. /* interval_tree.c */
  1523. void vma_interval_tree_insert(struct vm_area_struct *node,
  1524. struct rb_root *root);
  1525. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1526. struct vm_area_struct *prev,
  1527. struct rb_root *root);
  1528. void vma_interval_tree_remove(struct vm_area_struct *node,
  1529. struct rb_root *root);
  1530. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1531. unsigned long start, unsigned long last);
  1532. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1533. unsigned long start, unsigned long last);
  1534. #define vma_interval_tree_foreach(vma, root, start, last) \
  1535. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1536. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1537. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1538. struct rb_root *root);
  1539. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1540. struct rb_root *root);
  1541. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1542. struct rb_root *root, unsigned long start, unsigned long last);
  1543. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1544. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1545. #ifdef CONFIG_DEBUG_VM_RB
  1546. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1547. #endif
  1548. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1549. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1550. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1551. /* mmap.c */
  1552. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1553. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1554. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1555. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1556. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1557. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1558. struct mempolicy *, struct vm_userfaultfd_ctx);
  1559. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1560. extern int split_vma(struct mm_struct *,
  1561. struct vm_area_struct *, unsigned long addr, int new_below);
  1562. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1563. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1564. struct rb_node **, struct rb_node *);
  1565. extern void unlink_file_vma(struct vm_area_struct *);
  1566. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1567. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1568. bool *need_rmap_locks);
  1569. extern void exit_mmap(struct mm_struct *);
  1570. static inline int check_data_rlimit(unsigned long rlim,
  1571. unsigned long new,
  1572. unsigned long start,
  1573. unsigned long end_data,
  1574. unsigned long start_data)
  1575. {
  1576. if (rlim < RLIM_INFINITY) {
  1577. if (((new - start) + (end_data - start_data)) > rlim)
  1578. return -ENOSPC;
  1579. }
  1580. return 0;
  1581. }
  1582. extern int mm_take_all_locks(struct mm_struct *mm);
  1583. extern void mm_drop_all_locks(struct mm_struct *mm);
  1584. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1585. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1586. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1587. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1588. unsigned long addr, unsigned long len,
  1589. unsigned long flags,
  1590. const struct vm_special_mapping *spec);
  1591. /* This is an obsolete alternative to _install_special_mapping. */
  1592. extern int install_special_mapping(struct mm_struct *mm,
  1593. unsigned long addr, unsigned long len,
  1594. unsigned long flags, struct page **pages);
  1595. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1596. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1597. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1598. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1599. unsigned long len, unsigned long prot, unsigned long flags,
  1600. unsigned long pgoff, unsigned long *populate);
  1601. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1602. #ifdef CONFIG_MMU
  1603. extern int __mm_populate(unsigned long addr, unsigned long len,
  1604. int ignore_errors);
  1605. static inline void mm_populate(unsigned long addr, unsigned long len)
  1606. {
  1607. /* Ignore errors */
  1608. (void) __mm_populate(addr, len, 1);
  1609. }
  1610. #else
  1611. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1612. #endif
  1613. /* These take the mm semaphore themselves */
  1614. extern unsigned long vm_brk(unsigned long, unsigned long);
  1615. extern int vm_munmap(unsigned long, size_t);
  1616. extern unsigned long vm_mmap(struct file *, unsigned long,
  1617. unsigned long, unsigned long,
  1618. unsigned long, unsigned long);
  1619. struct vm_unmapped_area_info {
  1620. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1621. unsigned long flags;
  1622. unsigned long length;
  1623. unsigned long low_limit;
  1624. unsigned long high_limit;
  1625. unsigned long align_mask;
  1626. unsigned long align_offset;
  1627. };
  1628. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1629. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1630. /*
  1631. * Search for an unmapped address range.
  1632. *
  1633. * We are looking for a range that:
  1634. * - does not intersect with any VMA;
  1635. * - is contained within the [low_limit, high_limit) interval;
  1636. * - is at least the desired size.
  1637. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1638. */
  1639. static inline unsigned long
  1640. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1641. {
  1642. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1643. return unmapped_area_topdown(info);
  1644. else
  1645. return unmapped_area(info);
  1646. }
  1647. /* truncate.c */
  1648. extern void truncate_inode_pages(struct address_space *, loff_t);
  1649. extern void truncate_inode_pages_range(struct address_space *,
  1650. loff_t lstart, loff_t lend);
  1651. extern void truncate_inode_pages_final(struct address_space *);
  1652. /* generic vm_area_ops exported for stackable file systems */
  1653. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1654. extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
  1655. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1656. /* mm/page-writeback.c */
  1657. int write_one_page(struct page *page, int wait);
  1658. void task_dirty_inc(struct task_struct *tsk);
  1659. /* readahead.c */
  1660. #define VM_MAX_READAHEAD 128 /* kbytes */
  1661. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1662. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1663. pgoff_t offset, unsigned long nr_to_read);
  1664. void page_cache_sync_readahead(struct address_space *mapping,
  1665. struct file_ra_state *ra,
  1666. struct file *filp,
  1667. pgoff_t offset,
  1668. unsigned long size);
  1669. void page_cache_async_readahead(struct address_space *mapping,
  1670. struct file_ra_state *ra,
  1671. struct file *filp,
  1672. struct page *pg,
  1673. pgoff_t offset,
  1674. unsigned long size);
  1675. unsigned long max_sane_readahead(unsigned long nr);
  1676. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1677. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1678. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1679. extern int expand_downwards(struct vm_area_struct *vma,
  1680. unsigned long address);
  1681. #if VM_GROWSUP
  1682. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1683. #else
  1684. #define expand_upwards(vma, address) (0)
  1685. #endif
  1686. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1687. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1688. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1689. struct vm_area_struct **pprev);
  1690. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1691. NULL if none. Assume start_addr < end_addr. */
  1692. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1693. {
  1694. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1695. if (vma && end_addr <= vma->vm_start)
  1696. vma = NULL;
  1697. return vma;
  1698. }
  1699. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1700. {
  1701. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1702. }
  1703. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1704. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1705. unsigned long vm_start, unsigned long vm_end)
  1706. {
  1707. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1708. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1709. vma = NULL;
  1710. return vma;
  1711. }
  1712. #ifdef CONFIG_MMU
  1713. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1714. void vma_set_page_prot(struct vm_area_struct *vma);
  1715. #else
  1716. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1717. {
  1718. return __pgprot(0);
  1719. }
  1720. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1721. {
  1722. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1723. }
  1724. #endif
  1725. #ifdef CONFIG_NUMA_BALANCING
  1726. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1727. unsigned long start, unsigned long end);
  1728. #endif
  1729. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1730. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1731. unsigned long pfn, unsigned long size, pgprot_t);
  1732. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1733. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1734. unsigned long pfn);
  1735. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1736. unsigned long pfn);
  1737. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1738. struct page *follow_page_mask(struct vm_area_struct *vma,
  1739. unsigned long address, unsigned int foll_flags,
  1740. unsigned int *page_mask);
  1741. static inline struct page *follow_page(struct vm_area_struct *vma,
  1742. unsigned long address, unsigned int foll_flags)
  1743. {
  1744. unsigned int unused_page_mask;
  1745. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1746. }
  1747. #define FOLL_WRITE 0x01 /* check pte is writable */
  1748. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1749. #define FOLL_GET 0x04 /* do get_page on page */
  1750. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1751. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1752. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1753. * and return without waiting upon it */
  1754. #define FOLL_POPULATE 0x40 /* fault in page */
  1755. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1756. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1757. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1758. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1759. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1760. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1761. void *data);
  1762. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1763. unsigned long size, pte_fn_t fn, void *data);
  1764. #ifdef CONFIG_PROC_FS
  1765. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1766. #else
  1767. static inline void vm_stat_account(struct mm_struct *mm,
  1768. unsigned long flags, struct file *file, long pages)
  1769. {
  1770. mm->total_vm += pages;
  1771. }
  1772. #endif /* CONFIG_PROC_FS */
  1773. #ifdef CONFIG_DEBUG_PAGEALLOC
  1774. extern bool _debug_pagealloc_enabled;
  1775. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1776. static inline bool debug_pagealloc_enabled(void)
  1777. {
  1778. return _debug_pagealloc_enabled;
  1779. }
  1780. static inline void
  1781. kernel_map_pages(struct page *page, int numpages, int enable)
  1782. {
  1783. if (!debug_pagealloc_enabled())
  1784. return;
  1785. __kernel_map_pages(page, numpages, enable);
  1786. }
  1787. #ifdef CONFIG_HIBERNATION
  1788. extern bool kernel_page_present(struct page *page);
  1789. #endif /* CONFIG_HIBERNATION */
  1790. #else
  1791. static inline void
  1792. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1793. #ifdef CONFIG_HIBERNATION
  1794. static inline bool kernel_page_present(struct page *page) { return true; }
  1795. #endif /* CONFIG_HIBERNATION */
  1796. #endif
  1797. #ifdef __HAVE_ARCH_GATE_AREA
  1798. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1799. extern int in_gate_area_no_mm(unsigned long addr);
  1800. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1801. #else
  1802. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1803. {
  1804. return NULL;
  1805. }
  1806. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1807. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1808. {
  1809. return 0;
  1810. }
  1811. #endif /* __HAVE_ARCH_GATE_AREA */
  1812. #ifdef CONFIG_SYSCTL
  1813. extern int sysctl_drop_caches;
  1814. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1815. void __user *, size_t *, loff_t *);
  1816. #endif
  1817. void drop_slab(void);
  1818. void drop_slab_node(int nid);
  1819. #ifndef CONFIG_MMU
  1820. #define randomize_va_space 0
  1821. #else
  1822. extern int randomize_va_space;
  1823. #endif
  1824. const char * arch_vma_name(struct vm_area_struct *vma);
  1825. void print_vma_addr(char *prefix, unsigned long rip);
  1826. void sparse_mem_maps_populate_node(struct page **map_map,
  1827. unsigned long pnum_begin,
  1828. unsigned long pnum_end,
  1829. unsigned long map_count,
  1830. int nodeid);
  1831. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1832. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1833. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1834. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1835. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1836. void *vmemmap_alloc_block(unsigned long size, int node);
  1837. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1838. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1839. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1840. int node);
  1841. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1842. void vmemmap_populate_print_last(void);
  1843. #ifdef CONFIG_MEMORY_HOTPLUG
  1844. void vmemmap_free(unsigned long start, unsigned long end);
  1845. #endif
  1846. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  1847. unsigned long size);
  1848. enum mf_flags {
  1849. MF_COUNT_INCREASED = 1 << 0,
  1850. MF_ACTION_REQUIRED = 1 << 1,
  1851. MF_MUST_KILL = 1 << 2,
  1852. MF_SOFT_OFFLINE = 1 << 3,
  1853. };
  1854. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1855. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1856. extern int unpoison_memory(unsigned long pfn);
  1857. extern int get_hwpoison_page(struct page *page);
  1858. extern void put_hwpoison_page(struct page *page);
  1859. extern int sysctl_memory_failure_early_kill;
  1860. extern int sysctl_memory_failure_recovery;
  1861. extern void shake_page(struct page *p, int access);
  1862. extern atomic_long_t num_poisoned_pages;
  1863. extern int soft_offline_page(struct page *page, int flags);
  1864. /*
  1865. * Error handlers for various types of pages.
  1866. */
  1867. enum mf_result {
  1868. MF_IGNORED, /* Error: cannot be handled */
  1869. MF_FAILED, /* Error: handling failed */
  1870. MF_DELAYED, /* Will be handled later */
  1871. MF_RECOVERED, /* Successfully recovered */
  1872. };
  1873. enum mf_action_page_type {
  1874. MF_MSG_KERNEL,
  1875. MF_MSG_KERNEL_HIGH_ORDER,
  1876. MF_MSG_SLAB,
  1877. MF_MSG_DIFFERENT_COMPOUND,
  1878. MF_MSG_POISONED_HUGE,
  1879. MF_MSG_HUGE,
  1880. MF_MSG_FREE_HUGE,
  1881. MF_MSG_UNMAP_FAILED,
  1882. MF_MSG_DIRTY_SWAPCACHE,
  1883. MF_MSG_CLEAN_SWAPCACHE,
  1884. MF_MSG_DIRTY_MLOCKED_LRU,
  1885. MF_MSG_CLEAN_MLOCKED_LRU,
  1886. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  1887. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  1888. MF_MSG_DIRTY_LRU,
  1889. MF_MSG_CLEAN_LRU,
  1890. MF_MSG_TRUNCATED_LRU,
  1891. MF_MSG_BUDDY,
  1892. MF_MSG_BUDDY_2ND,
  1893. MF_MSG_UNKNOWN,
  1894. };
  1895. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1896. extern void clear_huge_page(struct page *page,
  1897. unsigned long addr,
  1898. unsigned int pages_per_huge_page);
  1899. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1900. unsigned long addr, struct vm_area_struct *vma,
  1901. unsigned int pages_per_huge_page);
  1902. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1903. extern struct page_ext_operations debug_guardpage_ops;
  1904. extern struct page_ext_operations page_poisoning_ops;
  1905. #ifdef CONFIG_DEBUG_PAGEALLOC
  1906. extern unsigned int _debug_guardpage_minorder;
  1907. extern bool _debug_guardpage_enabled;
  1908. static inline unsigned int debug_guardpage_minorder(void)
  1909. {
  1910. return _debug_guardpage_minorder;
  1911. }
  1912. static inline bool debug_guardpage_enabled(void)
  1913. {
  1914. return _debug_guardpage_enabled;
  1915. }
  1916. static inline bool page_is_guard(struct page *page)
  1917. {
  1918. struct page_ext *page_ext;
  1919. if (!debug_guardpage_enabled())
  1920. return false;
  1921. page_ext = lookup_page_ext(page);
  1922. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  1923. }
  1924. #else
  1925. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  1926. static inline bool debug_guardpage_enabled(void) { return false; }
  1927. static inline bool page_is_guard(struct page *page) { return false; }
  1928. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1929. #if MAX_NUMNODES > 1
  1930. void __init setup_nr_node_ids(void);
  1931. #else
  1932. static inline void setup_nr_node_ids(void) {}
  1933. #endif
  1934. #endif /* __KERNEL__ */
  1935. #endif /* _LINUX_MM_H */