disk-io.c 112 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  69. static void btrfs_error_commit_super(struct btrfs_root *root);
  70. /*
  71. * end_io_wq structs are used to do processing in task context when an IO is
  72. * complete. This is used during reads to verify checksums, and it is used
  73. * by writes to insert metadata for new file extents after IO is complete.
  74. */
  75. struct end_io_wq {
  76. struct bio *bio;
  77. bio_end_io_t *end_io;
  78. void *private;
  79. struct btrfs_fs_info *info;
  80. int error;
  81. int metadata;
  82. struct list_head list;
  83. struct btrfs_work work;
  84. };
  85. /*
  86. * async submit bios are used to offload expensive checksumming
  87. * onto the worker threads. They checksum file and metadata bios
  88. * just before they are sent down the IO stack.
  89. */
  90. struct async_submit_bio {
  91. struct inode *inode;
  92. struct bio *bio;
  93. struct list_head list;
  94. extent_submit_bio_hook_t *submit_bio_start;
  95. extent_submit_bio_hook_t *submit_bio_done;
  96. int rw;
  97. int mirror_num;
  98. unsigned long bio_flags;
  99. /*
  100. * bio_offset is optional, can be used if the pages in the bio
  101. * can't tell us where in the file the bio should go
  102. */
  103. u64 bio_offset;
  104. struct btrfs_work work;
  105. int error;
  106. };
  107. /*
  108. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  109. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  110. * the level the eb occupies in the tree.
  111. *
  112. * Different roots are used for different purposes and may nest inside each
  113. * other and they require separate keysets. As lockdep keys should be
  114. * static, assign keysets according to the purpose of the root as indicated
  115. * by btrfs_root->objectid. This ensures that all special purpose roots
  116. * have separate keysets.
  117. *
  118. * Lock-nesting across peer nodes is always done with the immediate parent
  119. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  120. * subclass to avoid triggering lockdep warning in such cases.
  121. *
  122. * The key is set by the readpage_end_io_hook after the buffer has passed
  123. * csum validation but before the pages are unlocked. It is also set by
  124. * btrfs_init_new_buffer on freshly allocated blocks.
  125. *
  126. * We also add a check to make sure the highest level of the tree is the
  127. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  128. * needs update as well.
  129. */
  130. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  131. # if BTRFS_MAX_LEVEL != 8
  132. # error
  133. # endif
  134. static struct btrfs_lockdep_keyset {
  135. u64 id; /* root objectid */
  136. const char *name_stem; /* lock name stem */
  137. char names[BTRFS_MAX_LEVEL + 1][20];
  138. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  139. } btrfs_lockdep_keysets[] = {
  140. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  141. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  142. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  143. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  144. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  145. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  146. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  147. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  148. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  149. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  150. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  151. { .id = 0, .name_stem = "tree" },
  152. };
  153. void __init btrfs_init_lockdep(void)
  154. {
  155. int i, j;
  156. /* initialize lockdep class names */
  157. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  158. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  159. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  160. snprintf(ks->names[j], sizeof(ks->names[j]),
  161. "btrfs-%s-%02d", ks->name_stem, j);
  162. }
  163. }
  164. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  165. int level)
  166. {
  167. struct btrfs_lockdep_keyset *ks;
  168. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  169. /* find the matching keyset, id 0 is the default entry */
  170. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  171. if (ks->id == objectid)
  172. break;
  173. lockdep_set_class_and_name(&eb->lock,
  174. &ks->keys[level], ks->names[level]);
  175. }
  176. #endif
  177. /*
  178. * extents on the btree inode are pretty simple, there's one extent
  179. * that covers the entire device
  180. */
  181. static struct extent_map *btree_get_extent(struct inode *inode,
  182. struct page *page, size_t pg_offset, u64 start, u64 len,
  183. int create)
  184. {
  185. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  186. struct extent_map *em;
  187. int ret;
  188. read_lock(&em_tree->lock);
  189. em = lookup_extent_mapping(em_tree, start, len);
  190. if (em) {
  191. em->bdev =
  192. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  193. read_unlock(&em_tree->lock);
  194. goto out;
  195. }
  196. read_unlock(&em_tree->lock);
  197. em = alloc_extent_map();
  198. if (!em) {
  199. em = ERR_PTR(-ENOMEM);
  200. goto out;
  201. }
  202. em->start = 0;
  203. em->len = (u64)-1;
  204. em->block_len = (u64)-1;
  205. em->block_start = 0;
  206. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  207. write_lock(&em_tree->lock);
  208. ret = add_extent_mapping(em_tree, em, 0);
  209. if (ret == -EEXIST) {
  210. free_extent_map(em);
  211. em = lookup_extent_mapping(em_tree, start, len);
  212. if (!em)
  213. em = ERR_PTR(-EIO);
  214. } else if (ret) {
  215. free_extent_map(em);
  216. em = ERR_PTR(ret);
  217. }
  218. write_unlock(&em_tree->lock);
  219. out:
  220. return em;
  221. }
  222. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  223. {
  224. return btrfs_crc32c(seed, data, len);
  225. }
  226. void btrfs_csum_final(u32 crc, char *result)
  227. {
  228. put_unaligned_le32(~crc, result);
  229. }
  230. /*
  231. * compute the csum for a btree block, and either verify it or write it
  232. * into the csum field of the block.
  233. */
  234. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  235. int verify)
  236. {
  237. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO
  275. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id, buf->start,
  278. val, found, btrfs_header_level(buf));
  279. if (result != (char *)&inline_result)
  280. kfree(result);
  281. return 1;
  282. }
  283. } else {
  284. write_extent_buffer(buf, result, 0, csum_size);
  285. }
  286. if (result != (char *)&inline_result)
  287. kfree(result);
  288. return 0;
  289. }
  290. /*
  291. * we can't consider a given block up to date unless the transid of the
  292. * block matches the transid in the parent node's pointer. This is how we
  293. * detect blocks that either didn't get written at all or got written
  294. * in the wrong place.
  295. */
  296. static int verify_parent_transid(struct extent_io_tree *io_tree,
  297. struct extent_buffer *eb, u64 parent_transid,
  298. int atomic)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. bool need_lock = (current->journal_info ==
  303. (void *)BTRFS_SEND_TRANS_STUB);
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. if (need_lock) {
  309. btrfs_tree_read_lock(eb);
  310. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  311. }
  312. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  313. 0, &cached_state);
  314. if (extent_buffer_uptodate(eb) &&
  315. btrfs_header_generation(eb) == parent_transid) {
  316. ret = 0;
  317. goto out;
  318. }
  319. printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
  320. eb->fs_info->sb->s_id, eb->start,
  321. parent_transid, btrfs_header_generation(eb));
  322. ret = 1;
  323. /*
  324. * Things reading via commit roots that don't have normal protection,
  325. * like send, can have a really old block in cache that may point at a
  326. * block that has been free'd and re-allocated. So don't clear uptodate
  327. * if we find an eb that is under IO (dirty/writeback) because we could
  328. * end up reading in the stale data and then writing it back out and
  329. * making everybody very sad.
  330. */
  331. if (!extent_buffer_under_io(eb))
  332. clear_extent_buffer_uptodate(eb);
  333. out:
  334. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  335. &cached_state, GFP_NOFS);
  336. if (need_lock)
  337. btrfs_tree_read_unlock_blocking(eb);
  338. return ret;
  339. }
  340. /*
  341. * Return 0 if the superblock checksum type matches the checksum value of that
  342. * algorithm. Pass the raw disk superblock data.
  343. */
  344. static int btrfs_check_super_csum(char *raw_disk_sb)
  345. {
  346. struct btrfs_super_block *disk_sb =
  347. (struct btrfs_super_block *)raw_disk_sb;
  348. u16 csum_type = btrfs_super_csum_type(disk_sb);
  349. int ret = 0;
  350. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  351. u32 crc = ~(u32)0;
  352. const int csum_size = sizeof(crc);
  353. char result[csum_size];
  354. /*
  355. * The super_block structure does not span the whole
  356. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  357. * is filled with zeros and is included in the checkum.
  358. */
  359. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  360. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  361. btrfs_csum_final(crc, result);
  362. if (memcmp(raw_disk_sb, result, csum_size))
  363. ret = 1;
  364. if (ret && btrfs_super_generation(disk_sb) < 10) {
  365. printk(KERN_WARNING
  366. "BTRFS: super block crcs don't match, older mkfs detected\n");
  367. ret = 0;
  368. }
  369. }
  370. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  371. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  372. csum_type);
  373. ret = 1;
  374. }
  375. return ret;
  376. }
  377. /*
  378. * helper to read a given tree block, doing retries as required when
  379. * the checksums don't match and we have alternate mirrors to try.
  380. */
  381. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  382. struct extent_buffer *eb,
  383. u64 start, u64 parent_transid)
  384. {
  385. struct extent_io_tree *io_tree;
  386. int failed = 0;
  387. int ret;
  388. int num_copies = 0;
  389. int mirror_num = 0;
  390. int failed_mirror = 0;
  391. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  392. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  393. while (1) {
  394. ret = read_extent_buffer_pages(io_tree, eb, start,
  395. WAIT_COMPLETE,
  396. btree_get_extent, mirror_num);
  397. if (!ret) {
  398. if (!verify_parent_transid(io_tree, eb,
  399. parent_transid, 0))
  400. break;
  401. else
  402. ret = -EIO;
  403. }
  404. /*
  405. * This buffer's crc is fine, but its contents are corrupted, so
  406. * there is no reason to read the other copies, they won't be
  407. * any less wrong.
  408. */
  409. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  410. break;
  411. num_copies = btrfs_num_copies(root->fs_info,
  412. eb->start, eb->len);
  413. if (num_copies == 1)
  414. break;
  415. if (!failed_mirror) {
  416. failed = 1;
  417. failed_mirror = eb->read_mirror;
  418. }
  419. mirror_num++;
  420. if (mirror_num == failed_mirror)
  421. mirror_num++;
  422. if (mirror_num > num_copies)
  423. break;
  424. }
  425. if (failed && !ret && failed_mirror)
  426. repair_eb_io_failure(root, eb, failed_mirror);
  427. return ret;
  428. }
  429. /*
  430. * checksum a dirty tree block before IO. This has extra checks to make sure
  431. * we only fill in the checksum field in the first page of a multi-page block
  432. */
  433. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  434. {
  435. u64 start = page_offset(page);
  436. u64 found_start;
  437. struct extent_buffer *eb;
  438. eb = (struct extent_buffer *)page->private;
  439. if (page != eb->pages[0])
  440. return 0;
  441. found_start = btrfs_header_bytenr(eb);
  442. if (WARN_ON(found_start != start || !PageUptodate(page)))
  443. return 0;
  444. csum_tree_block(root, eb, 0);
  445. return 0;
  446. }
  447. static int check_tree_block_fsid(struct btrfs_root *root,
  448. struct extent_buffer *eb)
  449. {
  450. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  451. u8 fsid[BTRFS_UUID_SIZE];
  452. int ret = 1;
  453. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  454. while (fs_devices) {
  455. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  456. ret = 0;
  457. break;
  458. }
  459. fs_devices = fs_devices->seed;
  460. }
  461. return ret;
  462. }
  463. #define CORRUPT(reason, eb, root, slot) \
  464. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  465. "root=%llu, slot=%d", reason, \
  466. btrfs_header_bytenr(eb), root->objectid, slot)
  467. static noinline int check_leaf(struct btrfs_root *root,
  468. struct extent_buffer *leaf)
  469. {
  470. struct btrfs_key key;
  471. struct btrfs_key leaf_key;
  472. u32 nritems = btrfs_header_nritems(leaf);
  473. int slot;
  474. if (nritems == 0)
  475. return 0;
  476. /* Check the 0 item */
  477. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  478. BTRFS_LEAF_DATA_SIZE(root)) {
  479. CORRUPT("invalid item offset size pair", leaf, root, 0);
  480. return -EIO;
  481. }
  482. /*
  483. * Check to make sure each items keys are in the correct order and their
  484. * offsets make sense. We only have to loop through nritems-1 because
  485. * we check the current slot against the next slot, which verifies the
  486. * next slot's offset+size makes sense and that the current's slot
  487. * offset is correct.
  488. */
  489. for (slot = 0; slot < nritems - 1; slot++) {
  490. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  491. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  492. /* Make sure the keys are in the right order */
  493. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  494. CORRUPT("bad key order", leaf, root, slot);
  495. return -EIO;
  496. }
  497. /*
  498. * Make sure the offset and ends are right, remember that the
  499. * item data starts at the end of the leaf and grows towards the
  500. * front.
  501. */
  502. if (btrfs_item_offset_nr(leaf, slot) !=
  503. btrfs_item_end_nr(leaf, slot + 1)) {
  504. CORRUPT("slot offset bad", leaf, root, slot);
  505. return -EIO;
  506. }
  507. /*
  508. * Check to make sure that we don't point outside of the leaf,
  509. * just incase all the items are consistent to eachother, but
  510. * all point outside of the leaf.
  511. */
  512. if (btrfs_item_end_nr(leaf, slot) >
  513. BTRFS_LEAF_DATA_SIZE(root)) {
  514. CORRUPT("slot end outside of leaf", leaf, root, slot);
  515. return -EIO;
  516. }
  517. }
  518. return 0;
  519. }
  520. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  521. u64 phy_offset, struct page *page,
  522. u64 start, u64 end, int mirror)
  523. {
  524. u64 found_start;
  525. int found_level;
  526. struct extent_buffer *eb;
  527. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  528. int ret = 0;
  529. int reads_done;
  530. if (!page->private)
  531. goto out;
  532. eb = (struct extent_buffer *)page->private;
  533. /* the pending IO might have been the only thing that kept this buffer
  534. * in memory. Make sure we have a ref for all this other checks
  535. */
  536. extent_buffer_get(eb);
  537. reads_done = atomic_dec_and_test(&eb->io_pages);
  538. if (!reads_done)
  539. goto err;
  540. eb->read_mirror = mirror;
  541. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  542. ret = -EIO;
  543. goto err;
  544. }
  545. found_start = btrfs_header_bytenr(eb);
  546. if (found_start != eb->start) {
  547. printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
  548. "%llu %llu\n",
  549. eb->fs_info->sb->s_id, found_start, eb->start);
  550. ret = -EIO;
  551. goto err;
  552. }
  553. if (check_tree_block_fsid(root, eb)) {
  554. printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
  555. eb->fs_info->sb->s_id, eb->start);
  556. ret = -EIO;
  557. goto err;
  558. }
  559. found_level = btrfs_header_level(eb);
  560. if (found_level >= BTRFS_MAX_LEVEL) {
  561. btrfs_info(root->fs_info, "bad tree block level %d",
  562. (int)btrfs_header_level(eb));
  563. ret = -EIO;
  564. goto err;
  565. }
  566. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  567. eb, found_level);
  568. ret = csum_tree_block(root, eb, 1);
  569. if (ret) {
  570. ret = -EIO;
  571. goto err;
  572. }
  573. /*
  574. * If this is a leaf block and it is corrupt, set the corrupt bit so
  575. * that we don't try and read the other copies of this block, just
  576. * return -EIO.
  577. */
  578. if (found_level == 0 && check_leaf(root, eb)) {
  579. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  580. ret = -EIO;
  581. }
  582. if (!ret)
  583. set_extent_buffer_uptodate(eb);
  584. err:
  585. if (reads_done &&
  586. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  587. btree_readahead_hook(root, eb, eb->start, ret);
  588. if (ret) {
  589. /*
  590. * our io error hook is going to dec the io pages
  591. * again, we have to make sure it has something
  592. * to decrement
  593. */
  594. atomic_inc(&eb->io_pages);
  595. clear_extent_buffer_uptodate(eb);
  596. }
  597. free_extent_buffer(eb);
  598. out:
  599. return ret;
  600. }
  601. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  602. {
  603. struct extent_buffer *eb;
  604. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  605. eb = (struct extent_buffer *)page->private;
  606. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  607. eb->read_mirror = failed_mirror;
  608. atomic_dec(&eb->io_pages);
  609. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  610. btree_readahead_hook(root, eb, eb->start, -EIO);
  611. return -EIO; /* we fixed nothing */
  612. }
  613. static void end_workqueue_bio(struct bio *bio, int err)
  614. {
  615. struct end_io_wq *end_io_wq = bio->bi_private;
  616. struct btrfs_fs_info *fs_info;
  617. struct btrfs_workqueue *wq;
  618. btrfs_work_func_t func;
  619. fs_info = end_io_wq->info;
  620. end_io_wq->error = err;
  621. if (bio->bi_rw & REQ_WRITE) {
  622. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  623. wq = fs_info->endio_meta_write_workers;
  624. func = btrfs_endio_meta_write_helper;
  625. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  626. wq = fs_info->endio_freespace_worker;
  627. func = btrfs_freespace_write_helper;
  628. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  629. wq = fs_info->endio_raid56_workers;
  630. func = btrfs_endio_raid56_helper;
  631. } else {
  632. wq = fs_info->endio_write_workers;
  633. func = btrfs_endio_write_helper;
  634. }
  635. } else {
  636. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  637. wq = fs_info->endio_raid56_workers;
  638. func = btrfs_endio_raid56_helper;
  639. } else if (end_io_wq->metadata) {
  640. wq = fs_info->endio_meta_workers;
  641. func = btrfs_endio_meta_helper;
  642. } else {
  643. wq = fs_info->endio_workers;
  644. func = btrfs_endio_helper;
  645. }
  646. }
  647. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  648. btrfs_queue_work(wq, &end_io_wq->work);
  649. }
  650. /*
  651. * For the metadata arg you want
  652. *
  653. * 0 - if data
  654. * 1 - if normal metadta
  655. * 2 - if writing to the free space cache area
  656. * 3 - raid parity work
  657. */
  658. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  659. int metadata)
  660. {
  661. struct end_io_wq *end_io_wq;
  662. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  663. if (!end_io_wq)
  664. return -ENOMEM;
  665. end_io_wq->private = bio->bi_private;
  666. end_io_wq->end_io = bio->bi_end_io;
  667. end_io_wq->info = info;
  668. end_io_wq->error = 0;
  669. end_io_wq->bio = bio;
  670. end_io_wq->metadata = metadata;
  671. bio->bi_private = end_io_wq;
  672. bio->bi_end_io = end_workqueue_bio;
  673. return 0;
  674. }
  675. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  676. {
  677. unsigned long limit = min_t(unsigned long,
  678. info->thread_pool_size,
  679. info->fs_devices->open_devices);
  680. return 256 * limit;
  681. }
  682. static void run_one_async_start(struct btrfs_work *work)
  683. {
  684. struct async_submit_bio *async;
  685. int ret;
  686. async = container_of(work, struct async_submit_bio, work);
  687. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  688. async->mirror_num, async->bio_flags,
  689. async->bio_offset);
  690. if (ret)
  691. async->error = ret;
  692. }
  693. static void run_one_async_done(struct btrfs_work *work)
  694. {
  695. struct btrfs_fs_info *fs_info;
  696. struct async_submit_bio *async;
  697. int limit;
  698. async = container_of(work, struct async_submit_bio, work);
  699. fs_info = BTRFS_I(async->inode)->root->fs_info;
  700. limit = btrfs_async_submit_limit(fs_info);
  701. limit = limit * 2 / 3;
  702. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  703. waitqueue_active(&fs_info->async_submit_wait))
  704. wake_up(&fs_info->async_submit_wait);
  705. /* If an error occured we just want to clean up the bio and move on */
  706. if (async->error) {
  707. bio_endio(async->bio, async->error);
  708. return;
  709. }
  710. async->submit_bio_done(async->inode, async->rw, async->bio,
  711. async->mirror_num, async->bio_flags,
  712. async->bio_offset);
  713. }
  714. static void run_one_async_free(struct btrfs_work *work)
  715. {
  716. struct async_submit_bio *async;
  717. async = container_of(work, struct async_submit_bio, work);
  718. kfree(async);
  719. }
  720. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  721. int rw, struct bio *bio, int mirror_num,
  722. unsigned long bio_flags,
  723. u64 bio_offset,
  724. extent_submit_bio_hook_t *submit_bio_start,
  725. extent_submit_bio_hook_t *submit_bio_done)
  726. {
  727. struct async_submit_bio *async;
  728. async = kmalloc(sizeof(*async), GFP_NOFS);
  729. if (!async)
  730. return -ENOMEM;
  731. async->inode = inode;
  732. async->rw = rw;
  733. async->bio = bio;
  734. async->mirror_num = mirror_num;
  735. async->submit_bio_start = submit_bio_start;
  736. async->submit_bio_done = submit_bio_done;
  737. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  738. run_one_async_done, run_one_async_free);
  739. async->bio_flags = bio_flags;
  740. async->bio_offset = bio_offset;
  741. async->error = 0;
  742. atomic_inc(&fs_info->nr_async_submits);
  743. if (rw & REQ_SYNC)
  744. btrfs_set_work_high_priority(&async->work);
  745. btrfs_queue_work(fs_info->workers, &async->work);
  746. while (atomic_read(&fs_info->async_submit_draining) &&
  747. atomic_read(&fs_info->nr_async_submits)) {
  748. wait_event(fs_info->async_submit_wait,
  749. (atomic_read(&fs_info->nr_async_submits) == 0));
  750. }
  751. return 0;
  752. }
  753. static int btree_csum_one_bio(struct bio *bio)
  754. {
  755. struct bio_vec *bvec;
  756. struct btrfs_root *root;
  757. int i, ret = 0;
  758. bio_for_each_segment_all(bvec, bio, i) {
  759. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  760. ret = csum_dirty_buffer(root, bvec->bv_page);
  761. if (ret)
  762. break;
  763. }
  764. return ret;
  765. }
  766. static int __btree_submit_bio_start(struct inode *inode, int rw,
  767. struct bio *bio, int mirror_num,
  768. unsigned long bio_flags,
  769. u64 bio_offset)
  770. {
  771. /*
  772. * when we're called for a write, we're already in the async
  773. * submission context. Just jump into btrfs_map_bio
  774. */
  775. return btree_csum_one_bio(bio);
  776. }
  777. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  778. int mirror_num, unsigned long bio_flags,
  779. u64 bio_offset)
  780. {
  781. int ret;
  782. /*
  783. * when we're called for a write, we're already in the async
  784. * submission context. Just jump into btrfs_map_bio
  785. */
  786. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  787. if (ret)
  788. bio_endio(bio, ret);
  789. return ret;
  790. }
  791. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  792. {
  793. if (bio_flags & EXTENT_BIO_TREE_LOG)
  794. return 0;
  795. #ifdef CONFIG_X86
  796. if (cpu_has_xmm4_2)
  797. return 0;
  798. #endif
  799. return 1;
  800. }
  801. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  802. int mirror_num, unsigned long bio_flags,
  803. u64 bio_offset)
  804. {
  805. int async = check_async_write(inode, bio_flags);
  806. int ret;
  807. if (!(rw & REQ_WRITE)) {
  808. /*
  809. * called for a read, do the setup so that checksum validation
  810. * can happen in the async kernel threads
  811. */
  812. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  813. bio, 1);
  814. if (ret)
  815. goto out_w_error;
  816. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  817. mirror_num, 0);
  818. } else if (!async) {
  819. ret = btree_csum_one_bio(bio);
  820. if (ret)
  821. goto out_w_error;
  822. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  823. mirror_num, 0);
  824. } else {
  825. /*
  826. * kthread helpers are used to submit writes so that
  827. * checksumming can happen in parallel across all CPUs
  828. */
  829. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  830. inode, rw, bio, mirror_num, 0,
  831. bio_offset,
  832. __btree_submit_bio_start,
  833. __btree_submit_bio_done);
  834. }
  835. if (ret) {
  836. out_w_error:
  837. bio_endio(bio, ret);
  838. }
  839. return ret;
  840. }
  841. #ifdef CONFIG_MIGRATION
  842. static int btree_migratepage(struct address_space *mapping,
  843. struct page *newpage, struct page *page,
  844. enum migrate_mode mode)
  845. {
  846. /*
  847. * we can't safely write a btree page from here,
  848. * we haven't done the locking hook
  849. */
  850. if (PageDirty(page))
  851. return -EAGAIN;
  852. /*
  853. * Buffers may be managed in a filesystem specific way.
  854. * We must have no buffers or drop them.
  855. */
  856. if (page_has_private(page) &&
  857. !try_to_release_page(page, GFP_KERNEL))
  858. return -EAGAIN;
  859. return migrate_page(mapping, newpage, page, mode);
  860. }
  861. #endif
  862. static int btree_writepages(struct address_space *mapping,
  863. struct writeback_control *wbc)
  864. {
  865. struct btrfs_fs_info *fs_info;
  866. int ret;
  867. if (wbc->sync_mode == WB_SYNC_NONE) {
  868. if (wbc->for_kupdate)
  869. return 0;
  870. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  871. /* this is a bit racy, but that's ok */
  872. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  873. BTRFS_DIRTY_METADATA_THRESH);
  874. if (ret < 0)
  875. return 0;
  876. }
  877. return btree_write_cache_pages(mapping, wbc);
  878. }
  879. static int btree_readpage(struct file *file, struct page *page)
  880. {
  881. struct extent_io_tree *tree;
  882. tree = &BTRFS_I(page->mapping->host)->io_tree;
  883. return extent_read_full_page(tree, page, btree_get_extent, 0);
  884. }
  885. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  886. {
  887. if (PageWriteback(page) || PageDirty(page))
  888. return 0;
  889. return try_release_extent_buffer(page);
  890. }
  891. static void btree_invalidatepage(struct page *page, unsigned int offset,
  892. unsigned int length)
  893. {
  894. struct extent_io_tree *tree;
  895. tree = &BTRFS_I(page->mapping->host)->io_tree;
  896. extent_invalidatepage(tree, page, offset);
  897. btree_releasepage(page, GFP_NOFS);
  898. if (PagePrivate(page)) {
  899. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  900. "page private not zero on page %llu",
  901. (unsigned long long)page_offset(page));
  902. ClearPagePrivate(page);
  903. set_page_private(page, 0);
  904. page_cache_release(page);
  905. }
  906. }
  907. static int btree_set_page_dirty(struct page *page)
  908. {
  909. #ifdef DEBUG
  910. struct extent_buffer *eb;
  911. BUG_ON(!PagePrivate(page));
  912. eb = (struct extent_buffer *)page->private;
  913. BUG_ON(!eb);
  914. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  915. BUG_ON(!atomic_read(&eb->refs));
  916. btrfs_assert_tree_locked(eb);
  917. #endif
  918. return __set_page_dirty_nobuffers(page);
  919. }
  920. static const struct address_space_operations btree_aops = {
  921. .readpage = btree_readpage,
  922. .writepages = btree_writepages,
  923. .releasepage = btree_releasepage,
  924. .invalidatepage = btree_invalidatepage,
  925. #ifdef CONFIG_MIGRATION
  926. .migratepage = btree_migratepage,
  927. #endif
  928. .set_page_dirty = btree_set_page_dirty,
  929. };
  930. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  931. u64 parent_transid)
  932. {
  933. struct extent_buffer *buf = NULL;
  934. struct inode *btree_inode = root->fs_info->btree_inode;
  935. int ret = 0;
  936. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  937. if (!buf)
  938. return 0;
  939. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  940. buf, 0, WAIT_NONE, btree_get_extent, 0);
  941. free_extent_buffer(buf);
  942. return ret;
  943. }
  944. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  945. int mirror_num, struct extent_buffer **eb)
  946. {
  947. struct extent_buffer *buf = NULL;
  948. struct inode *btree_inode = root->fs_info->btree_inode;
  949. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  950. int ret;
  951. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  952. if (!buf)
  953. return 0;
  954. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  955. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  956. btree_get_extent, mirror_num);
  957. if (ret) {
  958. free_extent_buffer(buf);
  959. return ret;
  960. }
  961. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  962. free_extent_buffer(buf);
  963. return -EIO;
  964. } else if (extent_buffer_uptodate(buf)) {
  965. *eb = buf;
  966. } else {
  967. free_extent_buffer(buf);
  968. }
  969. return 0;
  970. }
  971. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  972. u64 bytenr, u32 blocksize)
  973. {
  974. return find_extent_buffer(root->fs_info, bytenr);
  975. }
  976. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  977. u64 bytenr, u32 blocksize)
  978. {
  979. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  980. if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
  981. return alloc_test_extent_buffer(root->fs_info, bytenr,
  982. blocksize);
  983. #endif
  984. return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
  985. }
  986. int btrfs_write_tree_block(struct extent_buffer *buf)
  987. {
  988. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  989. buf->start + buf->len - 1);
  990. }
  991. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  992. {
  993. return filemap_fdatawait_range(buf->pages[0]->mapping,
  994. buf->start, buf->start + buf->len - 1);
  995. }
  996. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  997. u32 blocksize, u64 parent_transid)
  998. {
  999. struct extent_buffer *buf = NULL;
  1000. int ret;
  1001. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1002. if (!buf)
  1003. return NULL;
  1004. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1005. if (ret) {
  1006. free_extent_buffer(buf);
  1007. return NULL;
  1008. }
  1009. return buf;
  1010. }
  1011. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1012. struct extent_buffer *buf)
  1013. {
  1014. struct btrfs_fs_info *fs_info = root->fs_info;
  1015. if (btrfs_header_generation(buf) ==
  1016. fs_info->running_transaction->transid) {
  1017. btrfs_assert_tree_locked(buf);
  1018. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1019. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1020. -buf->len,
  1021. fs_info->dirty_metadata_batch);
  1022. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1023. btrfs_set_lock_blocking(buf);
  1024. clear_extent_buffer_dirty(buf);
  1025. }
  1026. }
  1027. }
  1028. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1029. {
  1030. struct btrfs_subvolume_writers *writers;
  1031. int ret;
  1032. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1033. if (!writers)
  1034. return ERR_PTR(-ENOMEM);
  1035. ret = percpu_counter_init(&writers->counter, 0);
  1036. if (ret < 0) {
  1037. kfree(writers);
  1038. return ERR_PTR(ret);
  1039. }
  1040. init_waitqueue_head(&writers->wait);
  1041. return writers;
  1042. }
  1043. static void
  1044. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1045. {
  1046. percpu_counter_destroy(&writers->counter);
  1047. kfree(writers);
  1048. }
  1049. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1050. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1051. u64 objectid)
  1052. {
  1053. root->node = NULL;
  1054. root->commit_root = NULL;
  1055. root->sectorsize = sectorsize;
  1056. root->nodesize = nodesize;
  1057. root->stripesize = stripesize;
  1058. root->state = 0;
  1059. root->orphan_cleanup_state = 0;
  1060. root->objectid = objectid;
  1061. root->last_trans = 0;
  1062. root->highest_objectid = 0;
  1063. root->nr_delalloc_inodes = 0;
  1064. root->nr_ordered_extents = 0;
  1065. root->name = NULL;
  1066. root->inode_tree = RB_ROOT;
  1067. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1068. root->block_rsv = NULL;
  1069. root->orphan_block_rsv = NULL;
  1070. INIT_LIST_HEAD(&root->dirty_list);
  1071. INIT_LIST_HEAD(&root->root_list);
  1072. INIT_LIST_HEAD(&root->delalloc_inodes);
  1073. INIT_LIST_HEAD(&root->delalloc_root);
  1074. INIT_LIST_HEAD(&root->ordered_extents);
  1075. INIT_LIST_HEAD(&root->ordered_root);
  1076. INIT_LIST_HEAD(&root->logged_list[0]);
  1077. INIT_LIST_HEAD(&root->logged_list[1]);
  1078. spin_lock_init(&root->orphan_lock);
  1079. spin_lock_init(&root->inode_lock);
  1080. spin_lock_init(&root->delalloc_lock);
  1081. spin_lock_init(&root->ordered_extent_lock);
  1082. spin_lock_init(&root->accounting_lock);
  1083. spin_lock_init(&root->log_extents_lock[0]);
  1084. spin_lock_init(&root->log_extents_lock[1]);
  1085. mutex_init(&root->objectid_mutex);
  1086. mutex_init(&root->log_mutex);
  1087. mutex_init(&root->ordered_extent_mutex);
  1088. mutex_init(&root->delalloc_mutex);
  1089. init_waitqueue_head(&root->log_writer_wait);
  1090. init_waitqueue_head(&root->log_commit_wait[0]);
  1091. init_waitqueue_head(&root->log_commit_wait[1]);
  1092. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1093. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1094. atomic_set(&root->log_commit[0], 0);
  1095. atomic_set(&root->log_commit[1], 0);
  1096. atomic_set(&root->log_writers, 0);
  1097. atomic_set(&root->log_batch, 0);
  1098. atomic_set(&root->orphan_inodes, 0);
  1099. atomic_set(&root->refs, 1);
  1100. atomic_set(&root->will_be_snapshoted, 0);
  1101. root->log_transid = 0;
  1102. root->log_transid_committed = -1;
  1103. root->last_log_commit = 0;
  1104. if (fs_info)
  1105. extent_io_tree_init(&root->dirty_log_pages,
  1106. fs_info->btree_inode->i_mapping);
  1107. memset(&root->root_key, 0, sizeof(root->root_key));
  1108. memset(&root->root_item, 0, sizeof(root->root_item));
  1109. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1110. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1111. if (fs_info)
  1112. root->defrag_trans_start = fs_info->generation;
  1113. else
  1114. root->defrag_trans_start = 0;
  1115. init_completion(&root->kobj_unregister);
  1116. root->root_key.objectid = objectid;
  1117. root->anon_dev = 0;
  1118. spin_lock_init(&root->root_item_lock);
  1119. }
  1120. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1121. {
  1122. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1123. if (root)
  1124. root->fs_info = fs_info;
  1125. return root;
  1126. }
  1127. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1128. /* Should only be used by the testing infrastructure */
  1129. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1130. {
  1131. struct btrfs_root *root;
  1132. root = btrfs_alloc_root(NULL);
  1133. if (!root)
  1134. return ERR_PTR(-ENOMEM);
  1135. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1136. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1137. root->alloc_bytenr = 0;
  1138. return root;
  1139. }
  1140. #endif
  1141. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1142. struct btrfs_fs_info *fs_info,
  1143. u64 objectid)
  1144. {
  1145. struct extent_buffer *leaf;
  1146. struct btrfs_root *tree_root = fs_info->tree_root;
  1147. struct btrfs_root *root;
  1148. struct btrfs_key key;
  1149. int ret = 0;
  1150. uuid_le uuid;
  1151. root = btrfs_alloc_root(fs_info);
  1152. if (!root)
  1153. return ERR_PTR(-ENOMEM);
  1154. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1155. tree_root->stripesize, root, fs_info, objectid);
  1156. root->root_key.objectid = objectid;
  1157. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1158. root->root_key.offset = 0;
  1159. leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
  1160. 0, objectid, NULL, 0, 0, 0);
  1161. if (IS_ERR(leaf)) {
  1162. ret = PTR_ERR(leaf);
  1163. leaf = NULL;
  1164. goto fail;
  1165. }
  1166. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1167. btrfs_set_header_bytenr(leaf, leaf->start);
  1168. btrfs_set_header_generation(leaf, trans->transid);
  1169. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1170. btrfs_set_header_owner(leaf, objectid);
  1171. root->node = leaf;
  1172. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1173. BTRFS_FSID_SIZE);
  1174. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1175. btrfs_header_chunk_tree_uuid(leaf),
  1176. BTRFS_UUID_SIZE);
  1177. btrfs_mark_buffer_dirty(leaf);
  1178. root->commit_root = btrfs_root_node(root);
  1179. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1180. root->root_item.flags = 0;
  1181. root->root_item.byte_limit = 0;
  1182. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1183. btrfs_set_root_generation(&root->root_item, trans->transid);
  1184. btrfs_set_root_level(&root->root_item, 0);
  1185. btrfs_set_root_refs(&root->root_item, 1);
  1186. btrfs_set_root_used(&root->root_item, leaf->len);
  1187. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1188. btrfs_set_root_dirid(&root->root_item, 0);
  1189. uuid_le_gen(&uuid);
  1190. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1191. root->root_item.drop_level = 0;
  1192. key.objectid = objectid;
  1193. key.type = BTRFS_ROOT_ITEM_KEY;
  1194. key.offset = 0;
  1195. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1196. if (ret)
  1197. goto fail;
  1198. btrfs_tree_unlock(leaf);
  1199. return root;
  1200. fail:
  1201. if (leaf) {
  1202. btrfs_tree_unlock(leaf);
  1203. free_extent_buffer(root->commit_root);
  1204. free_extent_buffer(leaf);
  1205. }
  1206. kfree(root);
  1207. return ERR_PTR(ret);
  1208. }
  1209. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1210. struct btrfs_fs_info *fs_info)
  1211. {
  1212. struct btrfs_root *root;
  1213. struct btrfs_root *tree_root = fs_info->tree_root;
  1214. struct extent_buffer *leaf;
  1215. root = btrfs_alloc_root(fs_info);
  1216. if (!root)
  1217. return ERR_PTR(-ENOMEM);
  1218. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1219. tree_root->stripesize, root, fs_info,
  1220. BTRFS_TREE_LOG_OBJECTID);
  1221. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1222. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1223. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1224. /*
  1225. * DON'T set REF_COWS for log trees
  1226. *
  1227. * log trees do not get reference counted because they go away
  1228. * before a real commit is actually done. They do store pointers
  1229. * to file data extents, and those reference counts still get
  1230. * updated (along with back refs to the log tree).
  1231. */
  1232. leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1233. BTRFS_TREE_LOG_OBJECTID, NULL,
  1234. 0, 0, 0);
  1235. if (IS_ERR(leaf)) {
  1236. kfree(root);
  1237. return ERR_CAST(leaf);
  1238. }
  1239. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1240. btrfs_set_header_bytenr(leaf, leaf->start);
  1241. btrfs_set_header_generation(leaf, trans->transid);
  1242. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1243. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1244. root->node = leaf;
  1245. write_extent_buffer(root->node, root->fs_info->fsid,
  1246. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1247. btrfs_mark_buffer_dirty(root->node);
  1248. btrfs_tree_unlock(root->node);
  1249. return root;
  1250. }
  1251. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1252. struct btrfs_fs_info *fs_info)
  1253. {
  1254. struct btrfs_root *log_root;
  1255. log_root = alloc_log_tree(trans, fs_info);
  1256. if (IS_ERR(log_root))
  1257. return PTR_ERR(log_root);
  1258. WARN_ON(fs_info->log_root_tree);
  1259. fs_info->log_root_tree = log_root;
  1260. return 0;
  1261. }
  1262. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1263. struct btrfs_root *root)
  1264. {
  1265. struct btrfs_root *log_root;
  1266. struct btrfs_inode_item *inode_item;
  1267. log_root = alloc_log_tree(trans, root->fs_info);
  1268. if (IS_ERR(log_root))
  1269. return PTR_ERR(log_root);
  1270. log_root->last_trans = trans->transid;
  1271. log_root->root_key.offset = root->root_key.objectid;
  1272. inode_item = &log_root->root_item.inode;
  1273. btrfs_set_stack_inode_generation(inode_item, 1);
  1274. btrfs_set_stack_inode_size(inode_item, 3);
  1275. btrfs_set_stack_inode_nlink(inode_item, 1);
  1276. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1277. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1278. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1279. WARN_ON(root->log_root);
  1280. root->log_root = log_root;
  1281. root->log_transid = 0;
  1282. root->log_transid_committed = -1;
  1283. root->last_log_commit = 0;
  1284. return 0;
  1285. }
  1286. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1287. struct btrfs_key *key)
  1288. {
  1289. struct btrfs_root *root;
  1290. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1291. struct btrfs_path *path;
  1292. u64 generation;
  1293. u32 blocksize;
  1294. int ret;
  1295. path = btrfs_alloc_path();
  1296. if (!path)
  1297. return ERR_PTR(-ENOMEM);
  1298. root = btrfs_alloc_root(fs_info);
  1299. if (!root) {
  1300. ret = -ENOMEM;
  1301. goto alloc_fail;
  1302. }
  1303. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1304. tree_root->stripesize, root, fs_info, key->objectid);
  1305. ret = btrfs_find_root(tree_root, key, path,
  1306. &root->root_item, &root->root_key);
  1307. if (ret) {
  1308. if (ret > 0)
  1309. ret = -ENOENT;
  1310. goto find_fail;
  1311. }
  1312. generation = btrfs_root_generation(&root->root_item);
  1313. blocksize = root->nodesize;
  1314. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1315. blocksize, generation);
  1316. if (!root->node) {
  1317. ret = -ENOMEM;
  1318. goto find_fail;
  1319. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1320. ret = -EIO;
  1321. goto read_fail;
  1322. }
  1323. root->commit_root = btrfs_root_node(root);
  1324. out:
  1325. btrfs_free_path(path);
  1326. return root;
  1327. read_fail:
  1328. free_extent_buffer(root->node);
  1329. find_fail:
  1330. kfree(root);
  1331. alloc_fail:
  1332. root = ERR_PTR(ret);
  1333. goto out;
  1334. }
  1335. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1336. struct btrfs_key *location)
  1337. {
  1338. struct btrfs_root *root;
  1339. root = btrfs_read_tree_root(tree_root, location);
  1340. if (IS_ERR(root))
  1341. return root;
  1342. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1343. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1344. btrfs_check_and_init_root_item(&root->root_item);
  1345. }
  1346. return root;
  1347. }
  1348. int btrfs_init_fs_root(struct btrfs_root *root)
  1349. {
  1350. int ret;
  1351. struct btrfs_subvolume_writers *writers;
  1352. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1353. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1354. GFP_NOFS);
  1355. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1356. ret = -ENOMEM;
  1357. goto fail;
  1358. }
  1359. writers = btrfs_alloc_subvolume_writers();
  1360. if (IS_ERR(writers)) {
  1361. ret = PTR_ERR(writers);
  1362. goto fail;
  1363. }
  1364. root->subv_writers = writers;
  1365. btrfs_init_free_ino_ctl(root);
  1366. spin_lock_init(&root->ino_cache_lock);
  1367. init_waitqueue_head(&root->ino_cache_wait);
  1368. ret = get_anon_bdev(&root->anon_dev);
  1369. if (ret)
  1370. goto free_writers;
  1371. return 0;
  1372. free_writers:
  1373. btrfs_free_subvolume_writers(root->subv_writers);
  1374. fail:
  1375. kfree(root->free_ino_ctl);
  1376. kfree(root->free_ino_pinned);
  1377. return ret;
  1378. }
  1379. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1380. u64 root_id)
  1381. {
  1382. struct btrfs_root *root;
  1383. spin_lock(&fs_info->fs_roots_radix_lock);
  1384. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1385. (unsigned long)root_id);
  1386. spin_unlock(&fs_info->fs_roots_radix_lock);
  1387. return root;
  1388. }
  1389. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1390. struct btrfs_root *root)
  1391. {
  1392. int ret;
  1393. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1394. if (ret)
  1395. return ret;
  1396. spin_lock(&fs_info->fs_roots_radix_lock);
  1397. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1398. (unsigned long)root->root_key.objectid,
  1399. root);
  1400. if (ret == 0)
  1401. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1402. spin_unlock(&fs_info->fs_roots_radix_lock);
  1403. radix_tree_preload_end();
  1404. return ret;
  1405. }
  1406. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1407. struct btrfs_key *location,
  1408. bool check_ref)
  1409. {
  1410. struct btrfs_root *root;
  1411. int ret;
  1412. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1413. return fs_info->tree_root;
  1414. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1415. return fs_info->extent_root;
  1416. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1417. return fs_info->chunk_root;
  1418. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1419. return fs_info->dev_root;
  1420. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1421. return fs_info->csum_root;
  1422. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1423. return fs_info->quota_root ? fs_info->quota_root :
  1424. ERR_PTR(-ENOENT);
  1425. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1426. return fs_info->uuid_root ? fs_info->uuid_root :
  1427. ERR_PTR(-ENOENT);
  1428. again:
  1429. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1430. if (root) {
  1431. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1432. return ERR_PTR(-ENOENT);
  1433. return root;
  1434. }
  1435. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1436. if (IS_ERR(root))
  1437. return root;
  1438. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1439. ret = -ENOENT;
  1440. goto fail;
  1441. }
  1442. ret = btrfs_init_fs_root(root);
  1443. if (ret)
  1444. goto fail;
  1445. ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
  1446. location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
  1447. if (ret < 0)
  1448. goto fail;
  1449. if (ret == 0)
  1450. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1451. ret = btrfs_insert_fs_root(fs_info, root);
  1452. if (ret) {
  1453. if (ret == -EEXIST) {
  1454. free_fs_root(root);
  1455. goto again;
  1456. }
  1457. goto fail;
  1458. }
  1459. return root;
  1460. fail:
  1461. free_fs_root(root);
  1462. return ERR_PTR(ret);
  1463. }
  1464. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1465. {
  1466. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1467. int ret = 0;
  1468. struct btrfs_device *device;
  1469. struct backing_dev_info *bdi;
  1470. rcu_read_lock();
  1471. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1472. if (!device->bdev)
  1473. continue;
  1474. bdi = blk_get_backing_dev_info(device->bdev);
  1475. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1476. ret = 1;
  1477. break;
  1478. }
  1479. }
  1480. rcu_read_unlock();
  1481. return ret;
  1482. }
  1483. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1484. {
  1485. int err;
  1486. bdi->capabilities = BDI_CAP_MAP_COPY;
  1487. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1488. if (err)
  1489. return err;
  1490. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1491. bdi->congested_fn = btrfs_congested_fn;
  1492. bdi->congested_data = info;
  1493. return 0;
  1494. }
  1495. /*
  1496. * called by the kthread helper functions to finally call the bio end_io
  1497. * functions. This is where read checksum verification actually happens
  1498. */
  1499. static void end_workqueue_fn(struct btrfs_work *work)
  1500. {
  1501. struct bio *bio;
  1502. struct end_io_wq *end_io_wq;
  1503. int error;
  1504. end_io_wq = container_of(work, struct end_io_wq, work);
  1505. bio = end_io_wq->bio;
  1506. error = end_io_wq->error;
  1507. bio->bi_private = end_io_wq->private;
  1508. bio->bi_end_io = end_io_wq->end_io;
  1509. kfree(end_io_wq);
  1510. bio_endio_nodec(bio, error);
  1511. }
  1512. static int cleaner_kthread(void *arg)
  1513. {
  1514. struct btrfs_root *root = arg;
  1515. int again;
  1516. do {
  1517. again = 0;
  1518. /* Make the cleaner go to sleep early. */
  1519. if (btrfs_need_cleaner_sleep(root))
  1520. goto sleep;
  1521. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1522. goto sleep;
  1523. /*
  1524. * Avoid the problem that we change the status of the fs
  1525. * during the above check and trylock.
  1526. */
  1527. if (btrfs_need_cleaner_sleep(root)) {
  1528. mutex_unlock(&root->fs_info->cleaner_mutex);
  1529. goto sleep;
  1530. }
  1531. btrfs_run_delayed_iputs(root);
  1532. again = btrfs_clean_one_deleted_snapshot(root);
  1533. mutex_unlock(&root->fs_info->cleaner_mutex);
  1534. /*
  1535. * The defragger has dealt with the R/O remount and umount,
  1536. * needn't do anything special here.
  1537. */
  1538. btrfs_run_defrag_inodes(root->fs_info);
  1539. sleep:
  1540. if (!try_to_freeze() && !again) {
  1541. set_current_state(TASK_INTERRUPTIBLE);
  1542. if (!kthread_should_stop())
  1543. schedule();
  1544. __set_current_state(TASK_RUNNING);
  1545. }
  1546. } while (!kthread_should_stop());
  1547. return 0;
  1548. }
  1549. static int transaction_kthread(void *arg)
  1550. {
  1551. struct btrfs_root *root = arg;
  1552. struct btrfs_trans_handle *trans;
  1553. struct btrfs_transaction *cur;
  1554. u64 transid;
  1555. unsigned long now;
  1556. unsigned long delay;
  1557. bool cannot_commit;
  1558. do {
  1559. cannot_commit = false;
  1560. delay = HZ * root->fs_info->commit_interval;
  1561. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1562. spin_lock(&root->fs_info->trans_lock);
  1563. cur = root->fs_info->running_transaction;
  1564. if (!cur) {
  1565. spin_unlock(&root->fs_info->trans_lock);
  1566. goto sleep;
  1567. }
  1568. now = get_seconds();
  1569. if (cur->state < TRANS_STATE_BLOCKED &&
  1570. (now < cur->start_time ||
  1571. now - cur->start_time < root->fs_info->commit_interval)) {
  1572. spin_unlock(&root->fs_info->trans_lock);
  1573. delay = HZ * 5;
  1574. goto sleep;
  1575. }
  1576. transid = cur->transid;
  1577. spin_unlock(&root->fs_info->trans_lock);
  1578. /* If the file system is aborted, this will always fail. */
  1579. trans = btrfs_attach_transaction(root);
  1580. if (IS_ERR(trans)) {
  1581. if (PTR_ERR(trans) != -ENOENT)
  1582. cannot_commit = true;
  1583. goto sleep;
  1584. }
  1585. if (transid == trans->transid) {
  1586. btrfs_commit_transaction(trans, root);
  1587. } else {
  1588. btrfs_end_transaction(trans, root);
  1589. }
  1590. sleep:
  1591. wake_up_process(root->fs_info->cleaner_kthread);
  1592. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1593. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1594. &root->fs_info->fs_state)))
  1595. btrfs_cleanup_transaction(root);
  1596. if (!try_to_freeze()) {
  1597. set_current_state(TASK_INTERRUPTIBLE);
  1598. if (!kthread_should_stop() &&
  1599. (!btrfs_transaction_blocked(root->fs_info) ||
  1600. cannot_commit))
  1601. schedule_timeout(delay);
  1602. __set_current_state(TASK_RUNNING);
  1603. }
  1604. } while (!kthread_should_stop());
  1605. return 0;
  1606. }
  1607. /*
  1608. * this will find the highest generation in the array of
  1609. * root backups. The index of the highest array is returned,
  1610. * or -1 if we can't find anything.
  1611. *
  1612. * We check to make sure the array is valid by comparing the
  1613. * generation of the latest root in the array with the generation
  1614. * in the super block. If they don't match we pitch it.
  1615. */
  1616. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1617. {
  1618. u64 cur;
  1619. int newest_index = -1;
  1620. struct btrfs_root_backup *root_backup;
  1621. int i;
  1622. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1623. root_backup = info->super_copy->super_roots + i;
  1624. cur = btrfs_backup_tree_root_gen(root_backup);
  1625. if (cur == newest_gen)
  1626. newest_index = i;
  1627. }
  1628. /* check to see if we actually wrapped around */
  1629. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1630. root_backup = info->super_copy->super_roots;
  1631. cur = btrfs_backup_tree_root_gen(root_backup);
  1632. if (cur == newest_gen)
  1633. newest_index = 0;
  1634. }
  1635. return newest_index;
  1636. }
  1637. /*
  1638. * find the oldest backup so we know where to store new entries
  1639. * in the backup array. This will set the backup_root_index
  1640. * field in the fs_info struct
  1641. */
  1642. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1643. u64 newest_gen)
  1644. {
  1645. int newest_index = -1;
  1646. newest_index = find_newest_super_backup(info, newest_gen);
  1647. /* if there was garbage in there, just move along */
  1648. if (newest_index == -1) {
  1649. info->backup_root_index = 0;
  1650. } else {
  1651. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1652. }
  1653. }
  1654. /*
  1655. * copy all the root pointers into the super backup array.
  1656. * this will bump the backup pointer by one when it is
  1657. * done
  1658. */
  1659. static void backup_super_roots(struct btrfs_fs_info *info)
  1660. {
  1661. int next_backup;
  1662. struct btrfs_root_backup *root_backup;
  1663. int last_backup;
  1664. next_backup = info->backup_root_index;
  1665. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1666. BTRFS_NUM_BACKUP_ROOTS;
  1667. /*
  1668. * just overwrite the last backup if we're at the same generation
  1669. * this happens only at umount
  1670. */
  1671. root_backup = info->super_for_commit->super_roots + last_backup;
  1672. if (btrfs_backup_tree_root_gen(root_backup) ==
  1673. btrfs_header_generation(info->tree_root->node))
  1674. next_backup = last_backup;
  1675. root_backup = info->super_for_commit->super_roots + next_backup;
  1676. /*
  1677. * make sure all of our padding and empty slots get zero filled
  1678. * regardless of which ones we use today
  1679. */
  1680. memset(root_backup, 0, sizeof(*root_backup));
  1681. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1682. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1683. btrfs_set_backup_tree_root_gen(root_backup,
  1684. btrfs_header_generation(info->tree_root->node));
  1685. btrfs_set_backup_tree_root_level(root_backup,
  1686. btrfs_header_level(info->tree_root->node));
  1687. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1688. btrfs_set_backup_chunk_root_gen(root_backup,
  1689. btrfs_header_generation(info->chunk_root->node));
  1690. btrfs_set_backup_chunk_root_level(root_backup,
  1691. btrfs_header_level(info->chunk_root->node));
  1692. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1693. btrfs_set_backup_extent_root_gen(root_backup,
  1694. btrfs_header_generation(info->extent_root->node));
  1695. btrfs_set_backup_extent_root_level(root_backup,
  1696. btrfs_header_level(info->extent_root->node));
  1697. /*
  1698. * we might commit during log recovery, which happens before we set
  1699. * the fs_root. Make sure it is valid before we fill it in.
  1700. */
  1701. if (info->fs_root && info->fs_root->node) {
  1702. btrfs_set_backup_fs_root(root_backup,
  1703. info->fs_root->node->start);
  1704. btrfs_set_backup_fs_root_gen(root_backup,
  1705. btrfs_header_generation(info->fs_root->node));
  1706. btrfs_set_backup_fs_root_level(root_backup,
  1707. btrfs_header_level(info->fs_root->node));
  1708. }
  1709. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1710. btrfs_set_backup_dev_root_gen(root_backup,
  1711. btrfs_header_generation(info->dev_root->node));
  1712. btrfs_set_backup_dev_root_level(root_backup,
  1713. btrfs_header_level(info->dev_root->node));
  1714. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1715. btrfs_set_backup_csum_root_gen(root_backup,
  1716. btrfs_header_generation(info->csum_root->node));
  1717. btrfs_set_backup_csum_root_level(root_backup,
  1718. btrfs_header_level(info->csum_root->node));
  1719. btrfs_set_backup_total_bytes(root_backup,
  1720. btrfs_super_total_bytes(info->super_copy));
  1721. btrfs_set_backup_bytes_used(root_backup,
  1722. btrfs_super_bytes_used(info->super_copy));
  1723. btrfs_set_backup_num_devices(root_backup,
  1724. btrfs_super_num_devices(info->super_copy));
  1725. /*
  1726. * if we don't copy this out to the super_copy, it won't get remembered
  1727. * for the next commit
  1728. */
  1729. memcpy(&info->super_copy->super_roots,
  1730. &info->super_for_commit->super_roots,
  1731. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1732. }
  1733. /*
  1734. * this copies info out of the root backup array and back into
  1735. * the in-memory super block. It is meant to help iterate through
  1736. * the array, so you send it the number of backups you've already
  1737. * tried and the last backup index you used.
  1738. *
  1739. * this returns -1 when it has tried all the backups
  1740. */
  1741. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1742. struct btrfs_super_block *super,
  1743. int *num_backups_tried, int *backup_index)
  1744. {
  1745. struct btrfs_root_backup *root_backup;
  1746. int newest = *backup_index;
  1747. if (*num_backups_tried == 0) {
  1748. u64 gen = btrfs_super_generation(super);
  1749. newest = find_newest_super_backup(info, gen);
  1750. if (newest == -1)
  1751. return -1;
  1752. *backup_index = newest;
  1753. *num_backups_tried = 1;
  1754. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1755. /* we've tried all the backups, all done */
  1756. return -1;
  1757. } else {
  1758. /* jump to the next oldest backup */
  1759. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1760. BTRFS_NUM_BACKUP_ROOTS;
  1761. *backup_index = newest;
  1762. *num_backups_tried += 1;
  1763. }
  1764. root_backup = super->super_roots + newest;
  1765. btrfs_set_super_generation(super,
  1766. btrfs_backup_tree_root_gen(root_backup));
  1767. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1768. btrfs_set_super_root_level(super,
  1769. btrfs_backup_tree_root_level(root_backup));
  1770. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1771. /*
  1772. * fixme: the total bytes and num_devices need to match or we should
  1773. * need a fsck
  1774. */
  1775. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1776. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1777. return 0;
  1778. }
  1779. /* helper to cleanup workers */
  1780. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1781. {
  1782. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1783. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1784. btrfs_destroy_workqueue(fs_info->workers);
  1785. btrfs_destroy_workqueue(fs_info->endio_workers);
  1786. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1787. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1788. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1789. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1790. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1791. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1792. btrfs_destroy_workqueue(fs_info->submit_workers);
  1793. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1794. btrfs_destroy_workqueue(fs_info->caching_workers);
  1795. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1796. btrfs_destroy_workqueue(fs_info->flush_workers);
  1797. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1798. btrfs_destroy_workqueue(fs_info->extent_workers);
  1799. }
  1800. static void free_root_extent_buffers(struct btrfs_root *root)
  1801. {
  1802. if (root) {
  1803. free_extent_buffer(root->node);
  1804. free_extent_buffer(root->commit_root);
  1805. root->node = NULL;
  1806. root->commit_root = NULL;
  1807. }
  1808. }
  1809. /* helper to cleanup tree roots */
  1810. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1811. {
  1812. free_root_extent_buffers(info->tree_root);
  1813. free_root_extent_buffers(info->dev_root);
  1814. free_root_extent_buffers(info->extent_root);
  1815. free_root_extent_buffers(info->csum_root);
  1816. free_root_extent_buffers(info->quota_root);
  1817. free_root_extent_buffers(info->uuid_root);
  1818. if (chunk_root)
  1819. free_root_extent_buffers(info->chunk_root);
  1820. }
  1821. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1822. {
  1823. int ret;
  1824. struct btrfs_root *gang[8];
  1825. int i;
  1826. while (!list_empty(&fs_info->dead_roots)) {
  1827. gang[0] = list_entry(fs_info->dead_roots.next,
  1828. struct btrfs_root, root_list);
  1829. list_del(&gang[0]->root_list);
  1830. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1831. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1832. } else {
  1833. free_extent_buffer(gang[0]->node);
  1834. free_extent_buffer(gang[0]->commit_root);
  1835. btrfs_put_fs_root(gang[0]);
  1836. }
  1837. }
  1838. while (1) {
  1839. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1840. (void **)gang, 0,
  1841. ARRAY_SIZE(gang));
  1842. if (!ret)
  1843. break;
  1844. for (i = 0; i < ret; i++)
  1845. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1846. }
  1847. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1848. btrfs_free_log_root_tree(NULL, fs_info);
  1849. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1850. fs_info->pinned_extents);
  1851. }
  1852. }
  1853. int open_ctree(struct super_block *sb,
  1854. struct btrfs_fs_devices *fs_devices,
  1855. char *options)
  1856. {
  1857. u32 sectorsize;
  1858. u32 nodesize;
  1859. u32 blocksize;
  1860. u32 stripesize;
  1861. u64 generation;
  1862. u64 features;
  1863. struct btrfs_key location;
  1864. struct buffer_head *bh;
  1865. struct btrfs_super_block *disk_super;
  1866. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1867. struct btrfs_root *tree_root;
  1868. struct btrfs_root *extent_root;
  1869. struct btrfs_root *csum_root;
  1870. struct btrfs_root *chunk_root;
  1871. struct btrfs_root *dev_root;
  1872. struct btrfs_root *quota_root;
  1873. struct btrfs_root *uuid_root;
  1874. struct btrfs_root *log_tree_root;
  1875. int ret;
  1876. int err = -EINVAL;
  1877. int num_backups_tried = 0;
  1878. int backup_index = 0;
  1879. int max_active;
  1880. int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1881. bool create_uuid_tree;
  1882. bool check_uuid_tree;
  1883. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1884. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1885. if (!tree_root || !chunk_root) {
  1886. err = -ENOMEM;
  1887. goto fail;
  1888. }
  1889. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1890. if (ret) {
  1891. err = ret;
  1892. goto fail;
  1893. }
  1894. ret = setup_bdi(fs_info, &fs_info->bdi);
  1895. if (ret) {
  1896. err = ret;
  1897. goto fail_srcu;
  1898. }
  1899. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1900. if (ret) {
  1901. err = ret;
  1902. goto fail_bdi;
  1903. }
  1904. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1905. (1 + ilog2(nr_cpu_ids));
  1906. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1907. if (ret) {
  1908. err = ret;
  1909. goto fail_dirty_metadata_bytes;
  1910. }
  1911. ret = percpu_counter_init(&fs_info->bio_counter, 0);
  1912. if (ret) {
  1913. err = ret;
  1914. goto fail_delalloc_bytes;
  1915. }
  1916. fs_info->btree_inode = new_inode(sb);
  1917. if (!fs_info->btree_inode) {
  1918. err = -ENOMEM;
  1919. goto fail_bio_counter;
  1920. }
  1921. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1922. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1923. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  1924. INIT_LIST_HEAD(&fs_info->trans_list);
  1925. INIT_LIST_HEAD(&fs_info->dead_roots);
  1926. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1927. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  1928. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1929. spin_lock_init(&fs_info->delalloc_root_lock);
  1930. spin_lock_init(&fs_info->trans_lock);
  1931. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1932. spin_lock_init(&fs_info->delayed_iput_lock);
  1933. spin_lock_init(&fs_info->defrag_inodes_lock);
  1934. spin_lock_init(&fs_info->free_chunk_lock);
  1935. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1936. spin_lock_init(&fs_info->super_lock);
  1937. spin_lock_init(&fs_info->qgroup_op_lock);
  1938. spin_lock_init(&fs_info->buffer_lock);
  1939. rwlock_init(&fs_info->tree_mod_log_lock);
  1940. mutex_init(&fs_info->reloc_mutex);
  1941. mutex_init(&fs_info->delalloc_root_mutex);
  1942. seqlock_init(&fs_info->profiles_lock);
  1943. init_completion(&fs_info->kobj_unregister);
  1944. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1945. INIT_LIST_HEAD(&fs_info->space_info);
  1946. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1947. btrfs_mapping_init(&fs_info->mapping_tree);
  1948. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1949. BTRFS_BLOCK_RSV_GLOBAL);
  1950. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1951. BTRFS_BLOCK_RSV_DELALLOC);
  1952. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1953. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1954. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1955. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1956. BTRFS_BLOCK_RSV_DELOPS);
  1957. atomic_set(&fs_info->nr_async_submits, 0);
  1958. atomic_set(&fs_info->async_delalloc_pages, 0);
  1959. atomic_set(&fs_info->async_submit_draining, 0);
  1960. atomic_set(&fs_info->nr_async_bios, 0);
  1961. atomic_set(&fs_info->defrag_running, 0);
  1962. atomic_set(&fs_info->qgroup_op_seq, 0);
  1963. atomic64_set(&fs_info->tree_mod_seq, 0);
  1964. fs_info->sb = sb;
  1965. fs_info->max_inline = 8192 * 1024;
  1966. fs_info->metadata_ratio = 0;
  1967. fs_info->defrag_inodes = RB_ROOT;
  1968. fs_info->free_chunk_space = 0;
  1969. fs_info->tree_mod_log = RB_ROOT;
  1970. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  1971. fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
  1972. /* readahead state */
  1973. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1974. spin_lock_init(&fs_info->reada_lock);
  1975. fs_info->thread_pool_size = min_t(unsigned long,
  1976. num_online_cpus() + 2, 8);
  1977. INIT_LIST_HEAD(&fs_info->ordered_roots);
  1978. spin_lock_init(&fs_info->ordered_root_lock);
  1979. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1980. GFP_NOFS);
  1981. if (!fs_info->delayed_root) {
  1982. err = -ENOMEM;
  1983. goto fail_iput;
  1984. }
  1985. btrfs_init_delayed_root(fs_info->delayed_root);
  1986. mutex_init(&fs_info->scrub_lock);
  1987. atomic_set(&fs_info->scrubs_running, 0);
  1988. atomic_set(&fs_info->scrub_pause_req, 0);
  1989. atomic_set(&fs_info->scrubs_paused, 0);
  1990. atomic_set(&fs_info->scrub_cancel_req, 0);
  1991. init_waitqueue_head(&fs_info->replace_wait);
  1992. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1993. fs_info->scrub_workers_refcnt = 0;
  1994. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1995. fs_info->check_integrity_print_mask = 0;
  1996. #endif
  1997. spin_lock_init(&fs_info->balance_lock);
  1998. mutex_init(&fs_info->balance_mutex);
  1999. atomic_set(&fs_info->balance_running, 0);
  2000. atomic_set(&fs_info->balance_pause_req, 0);
  2001. atomic_set(&fs_info->balance_cancel_req, 0);
  2002. fs_info->balance_ctl = NULL;
  2003. init_waitqueue_head(&fs_info->balance_wait_q);
  2004. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2005. sb->s_blocksize = 4096;
  2006. sb->s_blocksize_bits = blksize_bits(4096);
  2007. sb->s_bdi = &fs_info->bdi;
  2008. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  2009. set_nlink(fs_info->btree_inode, 1);
  2010. /*
  2011. * we set the i_size on the btree inode to the max possible int.
  2012. * the real end of the address space is determined by all of
  2013. * the devices in the system
  2014. */
  2015. fs_info->btree_inode->i_size = OFFSET_MAX;
  2016. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  2017. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  2018. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  2019. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  2020. fs_info->btree_inode->i_mapping);
  2021. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  2022. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  2023. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2024. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2025. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2026. sizeof(struct btrfs_key));
  2027. set_bit(BTRFS_INODE_DUMMY,
  2028. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2029. btrfs_insert_inode_hash(fs_info->btree_inode);
  2030. spin_lock_init(&fs_info->block_group_cache_lock);
  2031. fs_info->block_group_cache_tree = RB_ROOT;
  2032. fs_info->first_logical_byte = (u64)-1;
  2033. extent_io_tree_init(&fs_info->freed_extents[0],
  2034. fs_info->btree_inode->i_mapping);
  2035. extent_io_tree_init(&fs_info->freed_extents[1],
  2036. fs_info->btree_inode->i_mapping);
  2037. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2038. fs_info->do_barriers = 1;
  2039. mutex_init(&fs_info->ordered_operations_mutex);
  2040. mutex_init(&fs_info->ordered_extent_flush_mutex);
  2041. mutex_init(&fs_info->tree_log_mutex);
  2042. mutex_init(&fs_info->chunk_mutex);
  2043. mutex_init(&fs_info->transaction_kthread_mutex);
  2044. mutex_init(&fs_info->cleaner_mutex);
  2045. mutex_init(&fs_info->volume_mutex);
  2046. init_rwsem(&fs_info->commit_root_sem);
  2047. init_rwsem(&fs_info->cleanup_work_sem);
  2048. init_rwsem(&fs_info->subvol_sem);
  2049. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2050. fs_info->dev_replace.lock_owner = 0;
  2051. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2052. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2053. mutex_init(&fs_info->dev_replace.lock_management_lock);
  2054. mutex_init(&fs_info->dev_replace.lock);
  2055. spin_lock_init(&fs_info->qgroup_lock);
  2056. mutex_init(&fs_info->qgroup_ioctl_lock);
  2057. fs_info->qgroup_tree = RB_ROOT;
  2058. fs_info->qgroup_op_tree = RB_ROOT;
  2059. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2060. fs_info->qgroup_seq = 1;
  2061. fs_info->quota_enabled = 0;
  2062. fs_info->pending_quota_state = 0;
  2063. fs_info->qgroup_ulist = NULL;
  2064. mutex_init(&fs_info->qgroup_rescan_lock);
  2065. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2066. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2067. init_waitqueue_head(&fs_info->transaction_throttle);
  2068. init_waitqueue_head(&fs_info->transaction_wait);
  2069. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2070. init_waitqueue_head(&fs_info->async_submit_wait);
  2071. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2072. if (ret) {
  2073. err = ret;
  2074. goto fail_alloc;
  2075. }
  2076. __setup_root(4096, 4096, 4096, tree_root,
  2077. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2078. invalidate_bdev(fs_devices->latest_bdev);
  2079. /*
  2080. * Read super block and check the signature bytes only
  2081. */
  2082. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2083. if (!bh) {
  2084. err = -EINVAL;
  2085. goto fail_alloc;
  2086. }
  2087. /*
  2088. * We want to check superblock checksum, the type is stored inside.
  2089. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2090. */
  2091. if (btrfs_check_super_csum(bh->b_data)) {
  2092. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2093. err = -EINVAL;
  2094. goto fail_alloc;
  2095. }
  2096. /*
  2097. * super_copy is zeroed at allocation time and we never touch the
  2098. * following bytes up to INFO_SIZE, the checksum is calculated from
  2099. * the whole block of INFO_SIZE
  2100. */
  2101. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2102. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2103. sizeof(*fs_info->super_for_commit));
  2104. brelse(bh);
  2105. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2106. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2107. if (ret) {
  2108. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2109. err = -EINVAL;
  2110. goto fail_alloc;
  2111. }
  2112. disk_super = fs_info->super_copy;
  2113. if (!btrfs_super_root(disk_super))
  2114. goto fail_alloc;
  2115. /* check FS state, whether FS is broken. */
  2116. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2117. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2118. /*
  2119. * run through our array of backup supers and setup
  2120. * our ring pointer to the oldest one
  2121. */
  2122. generation = btrfs_super_generation(disk_super);
  2123. find_oldest_super_backup(fs_info, generation);
  2124. /*
  2125. * In the long term, we'll store the compression type in the super
  2126. * block, and it'll be used for per file compression control.
  2127. */
  2128. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2129. ret = btrfs_parse_options(tree_root, options);
  2130. if (ret) {
  2131. err = ret;
  2132. goto fail_alloc;
  2133. }
  2134. features = btrfs_super_incompat_flags(disk_super) &
  2135. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2136. if (features) {
  2137. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2138. "unsupported optional features (%Lx).\n",
  2139. features);
  2140. err = -EINVAL;
  2141. goto fail_alloc;
  2142. }
  2143. /*
  2144. * Leafsize and nodesize were always equal, this is only a sanity check.
  2145. */
  2146. if (le32_to_cpu(disk_super->__unused_leafsize) !=
  2147. btrfs_super_nodesize(disk_super)) {
  2148. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2149. "blocksizes don't match. node %d leaf %d\n",
  2150. btrfs_super_nodesize(disk_super),
  2151. le32_to_cpu(disk_super->__unused_leafsize));
  2152. err = -EINVAL;
  2153. goto fail_alloc;
  2154. }
  2155. if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2156. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2157. "blocksize (%d) was too large\n",
  2158. btrfs_super_nodesize(disk_super));
  2159. err = -EINVAL;
  2160. goto fail_alloc;
  2161. }
  2162. features = btrfs_super_incompat_flags(disk_super);
  2163. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2164. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2165. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2166. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2167. printk(KERN_ERR "BTRFS: has skinny extents\n");
  2168. /*
  2169. * flag our filesystem as having big metadata blocks if
  2170. * they are bigger than the page size
  2171. */
  2172. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2173. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2174. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2175. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2176. }
  2177. nodesize = btrfs_super_nodesize(disk_super);
  2178. sectorsize = btrfs_super_sectorsize(disk_super);
  2179. stripesize = btrfs_super_stripesize(disk_super);
  2180. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2181. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2182. /*
  2183. * mixed block groups end up with duplicate but slightly offset
  2184. * extent buffers for the same range. It leads to corruptions
  2185. */
  2186. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2187. (sectorsize != nodesize)) {
  2188. printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
  2189. "are not allowed for mixed block groups on %s\n",
  2190. sb->s_id);
  2191. goto fail_alloc;
  2192. }
  2193. /*
  2194. * Needn't use the lock because there is no other task which will
  2195. * update the flag.
  2196. */
  2197. btrfs_set_super_incompat_flags(disk_super, features);
  2198. features = btrfs_super_compat_ro_flags(disk_super) &
  2199. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2200. if (!(sb->s_flags & MS_RDONLY) && features) {
  2201. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2202. "unsupported option features (%Lx).\n",
  2203. features);
  2204. err = -EINVAL;
  2205. goto fail_alloc;
  2206. }
  2207. max_active = fs_info->thread_pool_size;
  2208. fs_info->workers =
  2209. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  2210. max_active, 16);
  2211. fs_info->delalloc_workers =
  2212. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  2213. fs_info->flush_workers =
  2214. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  2215. fs_info->caching_workers =
  2216. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  2217. /*
  2218. * a higher idle thresh on the submit workers makes it much more
  2219. * likely that bios will be send down in a sane order to the
  2220. * devices
  2221. */
  2222. fs_info->submit_workers =
  2223. btrfs_alloc_workqueue("submit", flags,
  2224. min_t(u64, fs_devices->num_devices,
  2225. max_active), 64);
  2226. fs_info->fixup_workers =
  2227. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  2228. /*
  2229. * endios are largely parallel and should have a very
  2230. * low idle thresh
  2231. */
  2232. fs_info->endio_workers =
  2233. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  2234. fs_info->endio_meta_workers =
  2235. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  2236. fs_info->endio_meta_write_workers =
  2237. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2238. fs_info->endio_raid56_workers =
  2239. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2240. fs_info->rmw_workers =
  2241. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2242. fs_info->endio_write_workers =
  2243. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2244. fs_info->endio_freespace_worker =
  2245. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2246. fs_info->delayed_workers =
  2247. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2248. fs_info->readahead_workers =
  2249. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2250. fs_info->qgroup_rescan_workers =
  2251. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2252. fs_info->extent_workers =
  2253. btrfs_alloc_workqueue("extent-refs", flags,
  2254. min_t(u64, fs_devices->num_devices,
  2255. max_active), 8);
  2256. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2257. fs_info->submit_workers && fs_info->flush_workers &&
  2258. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2259. fs_info->endio_meta_write_workers &&
  2260. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2261. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2262. fs_info->caching_workers && fs_info->readahead_workers &&
  2263. fs_info->fixup_workers && fs_info->delayed_workers &&
  2264. fs_info->extent_workers &&
  2265. fs_info->qgroup_rescan_workers)) {
  2266. err = -ENOMEM;
  2267. goto fail_sb_buffer;
  2268. }
  2269. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2270. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2271. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2272. tree_root->nodesize = nodesize;
  2273. tree_root->sectorsize = sectorsize;
  2274. tree_root->stripesize = stripesize;
  2275. sb->s_blocksize = sectorsize;
  2276. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2277. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2278. printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
  2279. goto fail_sb_buffer;
  2280. }
  2281. if (sectorsize != PAGE_SIZE) {
  2282. printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
  2283. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2284. goto fail_sb_buffer;
  2285. }
  2286. mutex_lock(&fs_info->chunk_mutex);
  2287. ret = btrfs_read_sys_array(tree_root);
  2288. mutex_unlock(&fs_info->chunk_mutex);
  2289. if (ret) {
  2290. printk(KERN_WARNING "BTRFS: failed to read the system "
  2291. "array on %s\n", sb->s_id);
  2292. goto fail_sb_buffer;
  2293. }
  2294. blocksize = tree_root->nodesize;
  2295. generation = btrfs_super_chunk_root_generation(disk_super);
  2296. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2297. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2298. chunk_root->node = read_tree_block(chunk_root,
  2299. btrfs_super_chunk_root(disk_super),
  2300. blocksize, generation);
  2301. if (!chunk_root->node ||
  2302. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2303. printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
  2304. sb->s_id);
  2305. goto fail_tree_roots;
  2306. }
  2307. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2308. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2309. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2310. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2311. ret = btrfs_read_chunk_tree(chunk_root);
  2312. if (ret) {
  2313. printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
  2314. sb->s_id);
  2315. goto fail_tree_roots;
  2316. }
  2317. /*
  2318. * keep the device that is marked to be the target device for the
  2319. * dev_replace procedure
  2320. */
  2321. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2322. if (!fs_devices->latest_bdev) {
  2323. printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
  2324. sb->s_id);
  2325. goto fail_tree_roots;
  2326. }
  2327. retry_root_backup:
  2328. blocksize = tree_root->nodesize;
  2329. generation = btrfs_super_generation(disk_super);
  2330. tree_root->node = read_tree_block(tree_root,
  2331. btrfs_super_root(disk_super),
  2332. blocksize, generation);
  2333. if (!tree_root->node ||
  2334. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2335. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2336. sb->s_id);
  2337. goto recovery_tree_root;
  2338. }
  2339. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2340. tree_root->commit_root = btrfs_root_node(tree_root);
  2341. btrfs_set_root_refs(&tree_root->root_item, 1);
  2342. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2343. location.type = BTRFS_ROOT_ITEM_KEY;
  2344. location.offset = 0;
  2345. extent_root = btrfs_read_tree_root(tree_root, &location);
  2346. if (IS_ERR(extent_root)) {
  2347. ret = PTR_ERR(extent_root);
  2348. goto recovery_tree_root;
  2349. }
  2350. set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
  2351. fs_info->extent_root = extent_root;
  2352. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2353. dev_root = btrfs_read_tree_root(tree_root, &location);
  2354. if (IS_ERR(dev_root)) {
  2355. ret = PTR_ERR(dev_root);
  2356. goto recovery_tree_root;
  2357. }
  2358. set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
  2359. fs_info->dev_root = dev_root;
  2360. btrfs_init_devices_late(fs_info);
  2361. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2362. csum_root = btrfs_read_tree_root(tree_root, &location);
  2363. if (IS_ERR(csum_root)) {
  2364. ret = PTR_ERR(csum_root);
  2365. goto recovery_tree_root;
  2366. }
  2367. set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
  2368. fs_info->csum_root = csum_root;
  2369. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2370. quota_root = btrfs_read_tree_root(tree_root, &location);
  2371. if (!IS_ERR(quota_root)) {
  2372. set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
  2373. fs_info->quota_enabled = 1;
  2374. fs_info->pending_quota_state = 1;
  2375. fs_info->quota_root = quota_root;
  2376. }
  2377. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2378. uuid_root = btrfs_read_tree_root(tree_root, &location);
  2379. if (IS_ERR(uuid_root)) {
  2380. ret = PTR_ERR(uuid_root);
  2381. if (ret != -ENOENT)
  2382. goto recovery_tree_root;
  2383. create_uuid_tree = true;
  2384. check_uuid_tree = false;
  2385. } else {
  2386. set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
  2387. fs_info->uuid_root = uuid_root;
  2388. create_uuid_tree = false;
  2389. check_uuid_tree =
  2390. generation != btrfs_super_uuid_tree_generation(disk_super);
  2391. }
  2392. fs_info->generation = generation;
  2393. fs_info->last_trans_committed = generation;
  2394. ret = btrfs_recover_balance(fs_info);
  2395. if (ret) {
  2396. printk(KERN_WARNING "BTRFS: failed to recover balance\n");
  2397. goto fail_block_groups;
  2398. }
  2399. ret = btrfs_init_dev_stats(fs_info);
  2400. if (ret) {
  2401. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2402. ret);
  2403. goto fail_block_groups;
  2404. }
  2405. ret = btrfs_init_dev_replace(fs_info);
  2406. if (ret) {
  2407. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2408. goto fail_block_groups;
  2409. }
  2410. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2411. ret = btrfs_sysfs_add_one(fs_info);
  2412. if (ret) {
  2413. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2414. goto fail_block_groups;
  2415. }
  2416. ret = btrfs_init_space_info(fs_info);
  2417. if (ret) {
  2418. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2419. goto fail_sysfs;
  2420. }
  2421. ret = btrfs_read_block_groups(extent_root);
  2422. if (ret) {
  2423. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2424. goto fail_sysfs;
  2425. }
  2426. fs_info->num_tolerated_disk_barrier_failures =
  2427. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2428. if (fs_info->fs_devices->missing_devices >
  2429. fs_info->num_tolerated_disk_barrier_failures &&
  2430. !(sb->s_flags & MS_RDONLY)) {
  2431. printk(KERN_WARNING "BTRFS: "
  2432. "too many missing devices, writeable mount is not allowed\n");
  2433. goto fail_sysfs;
  2434. }
  2435. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2436. "btrfs-cleaner");
  2437. if (IS_ERR(fs_info->cleaner_kthread))
  2438. goto fail_sysfs;
  2439. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2440. tree_root,
  2441. "btrfs-transaction");
  2442. if (IS_ERR(fs_info->transaction_kthread))
  2443. goto fail_cleaner;
  2444. if (!btrfs_test_opt(tree_root, SSD) &&
  2445. !btrfs_test_opt(tree_root, NOSSD) &&
  2446. !fs_info->fs_devices->rotating) {
  2447. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2448. "mode\n");
  2449. btrfs_set_opt(fs_info->mount_opt, SSD);
  2450. }
  2451. /* Set the real inode map cache flag */
  2452. if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
  2453. btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
  2454. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2455. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2456. ret = btrfsic_mount(tree_root, fs_devices,
  2457. btrfs_test_opt(tree_root,
  2458. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2459. 1 : 0,
  2460. fs_info->check_integrity_print_mask);
  2461. if (ret)
  2462. printk(KERN_WARNING "BTRFS: failed to initialize"
  2463. " integrity check module %s\n", sb->s_id);
  2464. }
  2465. #endif
  2466. ret = btrfs_read_qgroup_config(fs_info);
  2467. if (ret)
  2468. goto fail_trans_kthread;
  2469. /* do not make disk changes in broken FS */
  2470. if (btrfs_super_log_root(disk_super) != 0) {
  2471. u64 bytenr = btrfs_super_log_root(disk_super);
  2472. if (fs_devices->rw_devices == 0) {
  2473. printk(KERN_WARNING "BTRFS: log replay required "
  2474. "on RO media\n");
  2475. err = -EIO;
  2476. goto fail_qgroup;
  2477. }
  2478. blocksize = tree_root->nodesize;
  2479. log_tree_root = btrfs_alloc_root(fs_info);
  2480. if (!log_tree_root) {
  2481. err = -ENOMEM;
  2482. goto fail_qgroup;
  2483. }
  2484. __setup_root(nodesize, sectorsize, stripesize,
  2485. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2486. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2487. blocksize,
  2488. generation + 1);
  2489. if (!log_tree_root->node ||
  2490. !extent_buffer_uptodate(log_tree_root->node)) {
  2491. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2492. free_extent_buffer(log_tree_root->node);
  2493. kfree(log_tree_root);
  2494. goto fail_qgroup;
  2495. }
  2496. /* returns with log_tree_root freed on success */
  2497. ret = btrfs_recover_log_trees(log_tree_root);
  2498. if (ret) {
  2499. btrfs_error(tree_root->fs_info, ret,
  2500. "Failed to recover log tree");
  2501. free_extent_buffer(log_tree_root->node);
  2502. kfree(log_tree_root);
  2503. goto fail_qgroup;
  2504. }
  2505. if (sb->s_flags & MS_RDONLY) {
  2506. ret = btrfs_commit_super(tree_root);
  2507. if (ret)
  2508. goto fail_qgroup;
  2509. }
  2510. }
  2511. ret = btrfs_find_orphan_roots(tree_root);
  2512. if (ret)
  2513. goto fail_qgroup;
  2514. if (!(sb->s_flags & MS_RDONLY)) {
  2515. ret = btrfs_cleanup_fs_roots(fs_info);
  2516. if (ret)
  2517. goto fail_qgroup;
  2518. mutex_lock(&fs_info->cleaner_mutex);
  2519. ret = btrfs_recover_relocation(tree_root);
  2520. mutex_unlock(&fs_info->cleaner_mutex);
  2521. if (ret < 0) {
  2522. printk(KERN_WARNING
  2523. "BTRFS: failed to recover relocation\n");
  2524. err = -EINVAL;
  2525. goto fail_qgroup;
  2526. }
  2527. }
  2528. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2529. location.type = BTRFS_ROOT_ITEM_KEY;
  2530. location.offset = 0;
  2531. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2532. if (IS_ERR(fs_info->fs_root)) {
  2533. err = PTR_ERR(fs_info->fs_root);
  2534. goto fail_qgroup;
  2535. }
  2536. if (sb->s_flags & MS_RDONLY)
  2537. return 0;
  2538. down_read(&fs_info->cleanup_work_sem);
  2539. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2540. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2541. up_read(&fs_info->cleanup_work_sem);
  2542. close_ctree(tree_root);
  2543. return ret;
  2544. }
  2545. up_read(&fs_info->cleanup_work_sem);
  2546. ret = btrfs_resume_balance_async(fs_info);
  2547. if (ret) {
  2548. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2549. close_ctree(tree_root);
  2550. return ret;
  2551. }
  2552. ret = btrfs_resume_dev_replace_async(fs_info);
  2553. if (ret) {
  2554. pr_warn("BTRFS: failed to resume dev_replace\n");
  2555. close_ctree(tree_root);
  2556. return ret;
  2557. }
  2558. btrfs_qgroup_rescan_resume(fs_info);
  2559. if (create_uuid_tree) {
  2560. pr_info("BTRFS: creating UUID tree\n");
  2561. ret = btrfs_create_uuid_tree(fs_info);
  2562. if (ret) {
  2563. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2564. ret);
  2565. close_ctree(tree_root);
  2566. return ret;
  2567. }
  2568. } else if (check_uuid_tree ||
  2569. btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
  2570. pr_info("BTRFS: checking UUID tree\n");
  2571. ret = btrfs_check_uuid_tree(fs_info);
  2572. if (ret) {
  2573. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2574. ret);
  2575. close_ctree(tree_root);
  2576. return ret;
  2577. }
  2578. } else {
  2579. fs_info->update_uuid_tree_gen = 1;
  2580. }
  2581. return 0;
  2582. fail_qgroup:
  2583. btrfs_free_qgroup_config(fs_info);
  2584. fail_trans_kthread:
  2585. kthread_stop(fs_info->transaction_kthread);
  2586. btrfs_cleanup_transaction(fs_info->tree_root);
  2587. btrfs_free_fs_roots(fs_info);
  2588. fail_cleaner:
  2589. kthread_stop(fs_info->cleaner_kthread);
  2590. /*
  2591. * make sure we're done with the btree inode before we stop our
  2592. * kthreads
  2593. */
  2594. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2595. fail_sysfs:
  2596. btrfs_sysfs_remove_one(fs_info);
  2597. fail_block_groups:
  2598. btrfs_put_block_group_cache(fs_info);
  2599. btrfs_free_block_groups(fs_info);
  2600. fail_tree_roots:
  2601. free_root_pointers(fs_info, 1);
  2602. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2603. fail_sb_buffer:
  2604. btrfs_stop_all_workers(fs_info);
  2605. fail_alloc:
  2606. fail_iput:
  2607. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2608. iput(fs_info->btree_inode);
  2609. fail_bio_counter:
  2610. percpu_counter_destroy(&fs_info->bio_counter);
  2611. fail_delalloc_bytes:
  2612. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2613. fail_dirty_metadata_bytes:
  2614. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2615. fail_bdi:
  2616. bdi_destroy(&fs_info->bdi);
  2617. fail_srcu:
  2618. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2619. fail:
  2620. btrfs_free_stripe_hash_table(fs_info);
  2621. btrfs_close_devices(fs_info->fs_devices);
  2622. return err;
  2623. recovery_tree_root:
  2624. if (!btrfs_test_opt(tree_root, RECOVERY))
  2625. goto fail_tree_roots;
  2626. free_root_pointers(fs_info, 0);
  2627. /* don't use the log in recovery mode, it won't be valid */
  2628. btrfs_set_super_log_root(disk_super, 0);
  2629. /* we can't trust the free space cache either */
  2630. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2631. ret = next_root_backup(fs_info, fs_info->super_copy,
  2632. &num_backups_tried, &backup_index);
  2633. if (ret == -1)
  2634. goto fail_block_groups;
  2635. goto retry_root_backup;
  2636. }
  2637. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2638. {
  2639. if (uptodate) {
  2640. set_buffer_uptodate(bh);
  2641. } else {
  2642. struct btrfs_device *device = (struct btrfs_device *)
  2643. bh->b_private;
  2644. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2645. "I/O error on %s\n",
  2646. rcu_str_deref(device->name));
  2647. /* note, we dont' set_buffer_write_io_error because we have
  2648. * our own ways of dealing with the IO errors
  2649. */
  2650. clear_buffer_uptodate(bh);
  2651. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2652. }
  2653. unlock_buffer(bh);
  2654. put_bh(bh);
  2655. }
  2656. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2657. {
  2658. struct buffer_head *bh;
  2659. struct buffer_head *latest = NULL;
  2660. struct btrfs_super_block *super;
  2661. int i;
  2662. u64 transid = 0;
  2663. u64 bytenr;
  2664. /* we would like to check all the supers, but that would make
  2665. * a btrfs mount succeed after a mkfs from a different FS.
  2666. * So, we need to add a special mount option to scan for
  2667. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2668. */
  2669. for (i = 0; i < 1; i++) {
  2670. bytenr = btrfs_sb_offset(i);
  2671. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2672. i_size_read(bdev->bd_inode))
  2673. break;
  2674. bh = __bread(bdev, bytenr / 4096,
  2675. BTRFS_SUPER_INFO_SIZE);
  2676. if (!bh)
  2677. continue;
  2678. super = (struct btrfs_super_block *)bh->b_data;
  2679. if (btrfs_super_bytenr(super) != bytenr ||
  2680. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2681. brelse(bh);
  2682. continue;
  2683. }
  2684. if (!latest || btrfs_super_generation(super) > transid) {
  2685. brelse(latest);
  2686. latest = bh;
  2687. transid = btrfs_super_generation(super);
  2688. } else {
  2689. brelse(bh);
  2690. }
  2691. }
  2692. return latest;
  2693. }
  2694. /*
  2695. * this should be called twice, once with wait == 0 and
  2696. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2697. * we write are pinned.
  2698. *
  2699. * They are released when wait == 1 is done.
  2700. * max_mirrors must be the same for both runs, and it indicates how
  2701. * many supers on this one device should be written.
  2702. *
  2703. * max_mirrors == 0 means to write them all.
  2704. */
  2705. static int write_dev_supers(struct btrfs_device *device,
  2706. struct btrfs_super_block *sb,
  2707. int do_barriers, int wait, int max_mirrors)
  2708. {
  2709. struct buffer_head *bh;
  2710. int i;
  2711. int ret;
  2712. int errors = 0;
  2713. u32 crc;
  2714. u64 bytenr;
  2715. if (max_mirrors == 0)
  2716. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2717. for (i = 0; i < max_mirrors; i++) {
  2718. bytenr = btrfs_sb_offset(i);
  2719. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2720. device->commit_total_bytes)
  2721. break;
  2722. if (wait) {
  2723. bh = __find_get_block(device->bdev, bytenr / 4096,
  2724. BTRFS_SUPER_INFO_SIZE);
  2725. if (!bh) {
  2726. errors++;
  2727. continue;
  2728. }
  2729. wait_on_buffer(bh);
  2730. if (!buffer_uptodate(bh))
  2731. errors++;
  2732. /* drop our reference */
  2733. brelse(bh);
  2734. /* drop the reference from the wait == 0 run */
  2735. brelse(bh);
  2736. continue;
  2737. } else {
  2738. btrfs_set_super_bytenr(sb, bytenr);
  2739. crc = ~(u32)0;
  2740. crc = btrfs_csum_data((char *)sb +
  2741. BTRFS_CSUM_SIZE, crc,
  2742. BTRFS_SUPER_INFO_SIZE -
  2743. BTRFS_CSUM_SIZE);
  2744. btrfs_csum_final(crc, sb->csum);
  2745. /*
  2746. * one reference for us, and we leave it for the
  2747. * caller
  2748. */
  2749. bh = __getblk(device->bdev, bytenr / 4096,
  2750. BTRFS_SUPER_INFO_SIZE);
  2751. if (!bh) {
  2752. printk(KERN_ERR "BTRFS: couldn't get super "
  2753. "buffer head for bytenr %Lu\n", bytenr);
  2754. errors++;
  2755. continue;
  2756. }
  2757. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2758. /* one reference for submit_bh */
  2759. get_bh(bh);
  2760. set_buffer_uptodate(bh);
  2761. lock_buffer(bh);
  2762. bh->b_end_io = btrfs_end_buffer_write_sync;
  2763. bh->b_private = device;
  2764. }
  2765. /*
  2766. * we fua the first super. The others we allow
  2767. * to go down lazy.
  2768. */
  2769. if (i == 0)
  2770. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2771. else
  2772. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2773. if (ret)
  2774. errors++;
  2775. }
  2776. return errors < i ? 0 : -1;
  2777. }
  2778. /*
  2779. * endio for the write_dev_flush, this will wake anyone waiting
  2780. * for the barrier when it is done
  2781. */
  2782. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2783. {
  2784. if (err) {
  2785. if (err == -EOPNOTSUPP)
  2786. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2787. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2788. }
  2789. if (bio->bi_private)
  2790. complete(bio->bi_private);
  2791. bio_put(bio);
  2792. }
  2793. /*
  2794. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2795. * sent down. With wait == 1, it waits for the previous flush.
  2796. *
  2797. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2798. * capable
  2799. */
  2800. static int write_dev_flush(struct btrfs_device *device, int wait)
  2801. {
  2802. struct bio *bio;
  2803. int ret = 0;
  2804. if (device->nobarriers)
  2805. return 0;
  2806. if (wait) {
  2807. bio = device->flush_bio;
  2808. if (!bio)
  2809. return 0;
  2810. wait_for_completion(&device->flush_wait);
  2811. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2812. printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
  2813. rcu_str_deref(device->name));
  2814. device->nobarriers = 1;
  2815. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2816. ret = -EIO;
  2817. btrfs_dev_stat_inc_and_print(device,
  2818. BTRFS_DEV_STAT_FLUSH_ERRS);
  2819. }
  2820. /* drop the reference from the wait == 0 run */
  2821. bio_put(bio);
  2822. device->flush_bio = NULL;
  2823. return ret;
  2824. }
  2825. /*
  2826. * one reference for us, and we leave it for the
  2827. * caller
  2828. */
  2829. device->flush_bio = NULL;
  2830. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2831. if (!bio)
  2832. return -ENOMEM;
  2833. bio->bi_end_io = btrfs_end_empty_barrier;
  2834. bio->bi_bdev = device->bdev;
  2835. init_completion(&device->flush_wait);
  2836. bio->bi_private = &device->flush_wait;
  2837. device->flush_bio = bio;
  2838. bio_get(bio);
  2839. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2840. return 0;
  2841. }
  2842. /*
  2843. * send an empty flush down to each device in parallel,
  2844. * then wait for them
  2845. */
  2846. static int barrier_all_devices(struct btrfs_fs_info *info)
  2847. {
  2848. struct list_head *head;
  2849. struct btrfs_device *dev;
  2850. int errors_send = 0;
  2851. int errors_wait = 0;
  2852. int ret;
  2853. /* send down all the barriers */
  2854. head = &info->fs_devices->devices;
  2855. list_for_each_entry_rcu(dev, head, dev_list) {
  2856. if (dev->missing)
  2857. continue;
  2858. if (!dev->bdev) {
  2859. errors_send++;
  2860. continue;
  2861. }
  2862. if (!dev->in_fs_metadata || !dev->writeable)
  2863. continue;
  2864. ret = write_dev_flush(dev, 0);
  2865. if (ret)
  2866. errors_send++;
  2867. }
  2868. /* wait for all the barriers */
  2869. list_for_each_entry_rcu(dev, head, dev_list) {
  2870. if (dev->missing)
  2871. continue;
  2872. if (!dev->bdev) {
  2873. errors_wait++;
  2874. continue;
  2875. }
  2876. if (!dev->in_fs_metadata || !dev->writeable)
  2877. continue;
  2878. ret = write_dev_flush(dev, 1);
  2879. if (ret)
  2880. errors_wait++;
  2881. }
  2882. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2883. errors_wait > info->num_tolerated_disk_barrier_failures)
  2884. return -EIO;
  2885. return 0;
  2886. }
  2887. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2888. struct btrfs_fs_info *fs_info)
  2889. {
  2890. struct btrfs_ioctl_space_info space;
  2891. struct btrfs_space_info *sinfo;
  2892. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2893. BTRFS_BLOCK_GROUP_SYSTEM,
  2894. BTRFS_BLOCK_GROUP_METADATA,
  2895. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2896. int num_types = 4;
  2897. int i;
  2898. int c;
  2899. int num_tolerated_disk_barrier_failures =
  2900. (int)fs_info->fs_devices->num_devices;
  2901. for (i = 0; i < num_types; i++) {
  2902. struct btrfs_space_info *tmp;
  2903. sinfo = NULL;
  2904. rcu_read_lock();
  2905. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2906. if (tmp->flags == types[i]) {
  2907. sinfo = tmp;
  2908. break;
  2909. }
  2910. }
  2911. rcu_read_unlock();
  2912. if (!sinfo)
  2913. continue;
  2914. down_read(&sinfo->groups_sem);
  2915. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2916. if (!list_empty(&sinfo->block_groups[c])) {
  2917. u64 flags;
  2918. btrfs_get_block_group_info(
  2919. &sinfo->block_groups[c], &space);
  2920. if (space.total_bytes == 0 ||
  2921. space.used_bytes == 0)
  2922. continue;
  2923. flags = space.flags;
  2924. /*
  2925. * return
  2926. * 0: if dup, single or RAID0 is configured for
  2927. * any of metadata, system or data, else
  2928. * 1: if RAID5 is configured, or if RAID1 or
  2929. * RAID10 is configured and only two mirrors
  2930. * are used, else
  2931. * 2: if RAID6 is configured, else
  2932. * num_mirrors - 1: if RAID1 or RAID10 is
  2933. * configured and more than
  2934. * 2 mirrors are used.
  2935. */
  2936. if (num_tolerated_disk_barrier_failures > 0 &&
  2937. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2938. BTRFS_BLOCK_GROUP_RAID0)) ||
  2939. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2940. == 0)))
  2941. num_tolerated_disk_barrier_failures = 0;
  2942. else if (num_tolerated_disk_barrier_failures > 1) {
  2943. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2944. BTRFS_BLOCK_GROUP_RAID5 |
  2945. BTRFS_BLOCK_GROUP_RAID10)) {
  2946. num_tolerated_disk_barrier_failures = 1;
  2947. } else if (flags &
  2948. BTRFS_BLOCK_GROUP_RAID6) {
  2949. num_tolerated_disk_barrier_failures = 2;
  2950. }
  2951. }
  2952. }
  2953. }
  2954. up_read(&sinfo->groups_sem);
  2955. }
  2956. return num_tolerated_disk_barrier_failures;
  2957. }
  2958. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2959. {
  2960. struct list_head *head;
  2961. struct btrfs_device *dev;
  2962. struct btrfs_super_block *sb;
  2963. struct btrfs_dev_item *dev_item;
  2964. int ret;
  2965. int do_barriers;
  2966. int max_errors;
  2967. int total_errors = 0;
  2968. u64 flags;
  2969. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2970. backup_super_roots(root->fs_info);
  2971. sb = root->fs_info->super_for_commit;
  2972. dev_item = &sb->dev_item;
  2973. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2974. head = &root->fs_info->fs_devices->devices;
  2975. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2976. if (do_barriers) {
  2977. ret = barrier_all_devices(root->fs_info);
  2978. if (ret) {
  2979. mutex_unlock(
  2980. &root->fs_info->fs_devices->device_list_mutex);
  2981. btrfs_error(root->fs_info, ret,
  2982. "errors while submitting device barriers.");
  2983. return ret;
  2984. }
  2985. }
  2986. list_for_each_entry_rcu(dev, head, dev_list) {
  2987. if (!dev->bdev) {
  2988. total_errors++;
  2989. continue;
  2990. }
  2991. if (!dev->in_fs_metadata || !dev->writeable)
  2992. continue;
  2993. btrfs_set_stack_device_generation(dev_item, 0);
  2994. btrfs_set_stack_device_type(dev_item, dev->type);
  2995. btrfs_set_stack_device_id(dev_item, dev->devid);
  2996. btrfs_set_stack_device_total_bytes(dev_item,
  2997. dev->commit_total_bytes);
  2998. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2999. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3000. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3001. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3002. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3003. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3004. flags = btrfs_super_flags(sb);
  3005. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3006. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3007. if (ret)
  3008. total_errors++;
  3009. }
  3010. if (total_errors > max_errors) {
  3011. btrfs_err(root->fs_info, "%d errors while writing supers",
  3012. total_errors);
  3013. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3014. /* FUA is masked off if unsupported and can't be the reason */
  3015. btrfs_error(root->fs_info, -EIO,
  3016. "%d errors while writing supers", total_errors);
  3017. return -EIO;
  3018. }
  3019. total_errors = 0;
  3020. list_for_each_entry_rcu(dev, head, dev_list) {
  3021. if (!dev->bdev)
  3022. continue;
  3023. if (!dev->in_fs_metadata || !dev->writeable)
  3024. continue;
  3025. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3026. if (ret)
  3027. total_errors++;
  3028. }
  3029. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3030. if (total_errors > max_errors) {
  3031. btrfs_error(root->fs_info, -EIO,
  3032. "%d errors while writing supers", total_errors);
  3033. return -EIO;
  3034. }
  3035. return 0;
  3036. }
  3037. int write_ctree_super(struct btrfs_trans_handle *trans,
  3038. struct btrfs_root *root, int max_mirrors)
  3039. {
  3040. return write_all_supers(root, max_mirrors);
  3041. }
  3042. /* Drop a fs root from the radix tree and free it. */
  3043. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3044. struct btrfs_root *root)
  3045. {
  3046. spin_lock(&fs_info->fs_roots_radix_lock);
  3047. radix_tree_delete(&fs_info->fs_roots_radix,
  3048. (unsigned long)root->root_key.objectid);
  3049. spin_unlock(&fs_info->fs_roots_radix_lock);
  3050. if (btrfs_root_refs(&root->root_item) == 0)
  3051. synchronize_srcu(&fs_info->subvol_srcu);
  3052. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3053. btrfs_free_log(NULL, root);
  3054. if (root->free_ino_pinned)
  3055. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3056. if (root->free_ino_ctl)
  3057. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3058. free_fs_root(root);
  3059. }
  3060. static void free_fs_root(struct btrfs_root *root)
  3061. {
  3062. iput(root->ino_cache_inode);
  3063. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3064. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3065. root->orphan_block_rsv = NULL;
  3066. if (root->anon_dev)
  3067. free_anon_bdev(root->anon_dev);
  3068. if (root->subv_writers)
  3069. btrfs_free_subvolume_writers(root->subv_writers);
  3070. free_extent_buffer(root->node);
  3071. free_extent_buffer(root->commit_root);
  3072. kfree(root->free_ino_ctl);
  3073. kfree(root->free_ino_pinned);
  3074. kfree(root->name);
  3075. btrfs_put_fs_root(root);
  3076. }
  3077. void btrfs_free_fs_root(struct btrfs_root *root)
  3078. {
  3079. free_fs_root(root);
  3080. }
  3081. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3082. {
  3083. u64 root_objectid = 0;
  3084. struct btrfs_root *gang[8];
  3085. int i = 0;
  3086. int err = 0;
  3087. unsigned int ret = 0;
  3088. int index;
  3089. while (1) {
  3090. index = srcu_read_lock(&fs_info->subvol_srcu);
  3091. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3092. (void **)gang, root_objectid,
  3093. ARRAY_SIZE(gang));
  3094. if (!ret) {
  3095. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3096. break;
  3097. }
  3098. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3099. for (i = 0; i < ret; i++) {
  3100. /* Avoid to grab roots in dead_roots */
  3101. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3102. gang[i] = NULL;
  3103. continue;
  3104. }
  3105. /* grab all the search result for later use */
  3106. gang[i] = btrfs_grab_fs_root(gang[i]);
  3107. }
  3108. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3109. for (i = 0; i < ret; i++) {
  3110. if (!gang[i])
  3111. continue;
  3112. root_objectid = gang[i]->root_key.objectid;
  3113. err = btrfs_orphan_cleanup(gang[i]);
  3114. if (err)
  3115. break;
  3116. btrfs_put_fs_root(gang[i]);
  3117. }
  3118. root_objectid++;
  3119. }
  3120. /* release the uncleaned roots due to error */
  3121. for (; i < ret; i++) {
  3122. if (gang[i])
  3123. btrfs_put_fs_root(gang[i]);
  3124. }
  3125. return err;
  3126. }
  3127. int btrfs_commit_super(struct btrfs_root *root)
  3128. {
  3129. struct btrfs_trans_handle *trans;
  3130. mutex_lock(&root->fs_info->cleaner_mutex);
  3131. btrfs_run_delayed_iputs(root);
  3132. mutex_unlock(&root->fs_info->cleaner_mutex);
  3133. wake_up_process(root->fs_info->cleaner_kthread);
  3134. /* wait until ongoing cleanup work done */
  3135. down_write(&root->fs_info->cleanup_work_sem);
  3136. up_write(&root->fs_info->cleanup_work_sem);
  3137. trans = btrfs_join_transaction(root);
  3138. if (IS_ERR(trans))
  3139. return PTR_ERR(trans);
  3140. return btrfs_commit_transaction(trans, root);
  3141. }
  3142. void close_ctree(struct btrfs_root *root)
  3143. {
  3144. struct btrfs_fs_info *fs_info = root->fs_info;
  3145. int ret;
  3146. fs_info->closing = 1;
  3147. smp_mb();
  3148. /* wait for the uuid_scan task to finish */
  3149. down(&fs_info->uuid_tree_rescan_sem);
  3150. /* avoid complains from lockdep et al., set sem back to initial state */
  3151. up(&fs_info->uuid_tree_rescan_sem);
  3152. /* pause restriper - we want to resume on mount */
  3153. btrfs_pause_balance(fs_info);
  3154. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3155. btrfs_scrub_cancel(fs_info);
  3156. /* wait for any defraggers to finish */
  3157. wait_event(fs_info->transaction_wait,
  3158. (atomic_read(&fs_info->defrag_running) == 0));
  3159. /* clear out the rbtree of defraggable inodes */
  3160. btrfs_cleanup_defrag_inodes(fs_info);
  3161. cancel_work_sync(&fs_info->async_reclaim_work);
  3162. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3163. ret = btrfs_commit_super(root);
  3164. if (ret)
  3165. btrfs_err(root->fs_info, "commit super ret %d", ret);
  3166. }
  3167. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3168. btrfs_error_commit_super(root);
  3169. kthread_stop(fs_info->transaction_kthread);
  3170. kthread_stop(fs_info->cleaner_kthread);
  3171. fs_info->closing = 2;
  3172. smp_mb();
  3173. btrfs_free_qgroup_config(root->fs_info);
  3174. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3175. btrfs_info(root->fs_info, "at unmount delalloc count %lld",
  3176. percpu_counter_sum(&fs_info->delalloc_bytes));
  3177. }
  3178. btrfs_sysfs_remove_one(fs_info);
  3179. btrfs_free_fs_roots(fs_info);
  3180. btrfs_put_block_group_cache(fs_info);
  3181. btrfs_free_block_groups(fs_info);
  3182. /*
  3183. * we must make sure there is not any read request to
  3184. * submit after we stopping all workers.
  3185. */
  3186. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3187. btrfs_stop_all_workers(fs_info);
  3188. free_root_pointers(fs_info, 1);
  3189. iput(fs_info->btree_inode);
  3190. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3191. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3192. btrfsic_unmount(root, fs_info->fs_devices);
  3193. #endif
  3194. btrfs_close_devices(fs_info->fs_devices);
  3195. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3196. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3197. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3198. percpu_counter_destroy(&fs_info->bio_counter);
  3199. bdi_destroy(&fs_info->bdi);
  3200. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3201. btrfs_free_stripe_hash_table(fs_info);
  3202. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3203. root->orphan_block_rsv = NULL;
  3204. }
  3205. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3206. int atomic)
  3207. {
  3208. int ret;
  3209. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3210. ret = extent_buffer_uptodate(buf);
  3211. if (!ret)
  3212. return ret;
  3213. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3214. parent_transid, atomic);
  3215. if (ret == -EAGAIN)
  3216. return ret;
  3217. return !ret;
  3218. }
  3219. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3220. {
  3221. return set_extent_buffer_uptodate(buf);
  3222. }
  3223. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3224. {
  3225. struct btrfs_root *root;
  3226. u64 transid = btrfs_header_generation(buf);
  3227. int was_dirty;
  3228. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3229. /*
  3230. * This is a fast path so only do this check if we have sanity tests
  3231. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3232. * outside of the sanity tests.
  3233. */
  3234. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3235. return;
  3236. #endif
  3237. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3238. btrfs_assert_tree_locked(buf);
  3239. if (transid != root->fs_info->generation)
  3240. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3241. "found %llu running %llu\n",
  3242. buf->start, transid, root->fs_info->generation);
  3243. was_dirty = set_extent_buffer_dirty(buf);
  3244. if (!was_dirty)
  3245. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3246. buf->len,
  3247. root->fs_info->dirty_metadata_batch);
  3248. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3249. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3250. btrfs_print_leaf(root, buf);
  3251. ASSERT(0);
  3252. }
  3253. #endif
  3254. }
  3255. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3256. int flush_delayed)
  3257. {
  3258. /*
  3259. * looks as though older kernels can get into trouble with
  3260. * this code, they end up stuck in balance_dirty_pages forever
  3261. */
  3262. int ret;
  3263. if (current->flags & PF_MEMALLOC)
  3264. return;
  3265. if (flush_delayed)
  3266. btrfs_balance_delayed_items(root);
  3267. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3268. BTRFS_DIRTY_METADATA_THRESH);
  3269. if (ret > 0) {
  3270. balance_dirty_pages_ratelimited(
  3271. root->fs_info->btree_inode->i_mapping);
  3272. }
  3273. return;
  3274. }
  3275. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3276. {
  3277. __btrfs_btree_balance_dirty(root, 1);
  3278. }
  3279. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3280. {
  3281. __btrfs_btree_balance_dirty(root, 0);
  3282. }
  3283. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3284. {
  3285. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3286. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3287. }
  3288. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3289. int read_only)
  3290. {
  3291. /*
  3292. * Placeholder for checks
  3293. */
  3294. return 0;
  3295. }
  3296. static void btrfs_error_commit_super(struct btrfs_root *root)
  3297. {
  3298. mutex_lock(&root->fs_info->cleaner_mutex);
  3299. btrfs_run_delayed_iputs(root);
  3300. mutex_unlock(&root->fs_info->cleaner_mutex);
  3301. down_write(&root->fs_info->cleanup_work_sem);
  3302. up_write(&root->fs_info->cleanup_work_sem);
  3303. /* cleanup FS via transaction */
  3304. btrfs_cleanup_transaction(root);
  3305. }
  3306. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3307. {
  3308. struct btrfs_ordered_extent *ordered;
  3309. spin_lock(&root->ordered_extent_lock);
  3310. /*
  3311. * This will just short circuit the ordered completion stuff which will
  3312. * make sure the ordered extent gets properly cleaned up.
  3313. */
  3314. list_for_each_entry(ordered, &root->ordered_extents,
  3315. root_extent_list)
  3316. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3317. spin_unlock(&root->ordered_extent_lock);
  3318. }
  3319. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3320. {
  3321. struct btrfs_root *root;
  3322. struct list_head splice;
  3323. INIT_LIST_HEAD(&splice);
  3324. spin_lock(&fs_info->ordered_root_lock);
  3325. list_splice_init(&fs_info->ordered_roots, &splice);
  3326. while (!list_empty(&splice)) {
  3327. root = list_first_entry(&splice, struct btrfs_root,
  3328. ordered_root);
  3329. list_move_tail(&root->ordered_root,
  3330. &fs_info->ordered_roots);
  3331. spin_unlock(&fs_info->ordered_root_lock);
  3332. btrfs_destroy_ordered_extents(root);
  3333. cond_resched();
  3334. spin_lock(&fs_info->ordered_root_lock);
  3335. }
  3336. spin_unlock(&fs_info->ordered_root_lock);
  3337. }
  3338. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3339. struct btrfs_root *root)
  3340. {
  3341. struct rb_node *node;
  3342. struct btrfs_delayed_ref_root *delayed_refs;
  3343. struct btrfs_delayed_ref_node *ref;
  3344. int ret = 0;
  3345. delayed_refs = &trans->delayed_refs;
  3346. spin_lock(&delayed_refs->lock);
  3347. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3348. spin_unlock(&delayed_refs->lock);
  3349. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3350. return ret;
  3351. }
  3352. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3353. struct btrfs_delayed_ref_head *head;
  3354. bool pin_bytes = false;
  3355. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3356. href_node);
  3357. if (!mutex_trylock(&head->mutex)) {
  3358. atomic_inc(&head->node.refs);
  3359. spin_unlock(&delayed_refs->lock);
  3360. mutex_lock(&head->mutex);
  3361. mutex_unlock(&head->mutex);
  3362. btrfs_put_delayed_ref(&head->node);
  3363. spin_lock(&delayed_refs->lock);
  3364. continue;
  3365. }
  3366. spin_lock(&head->lock);
  3367. while ((node = rb_first(&head->ref_root)) != NULL) {
  3368. ref = rb_entry(node, struct btrfs_delayed_ref_node,
  3369. rb_node);
  3370. ref->in_tree = 0;
  3371. rb_erase(&ref->rb_node, &head->ref_root);
  3372. atomic_dec(&delayed_refs->num_entries);
  3373. btrfs_put_delayed_ref(ref);
  3374. }
  3375. if (head->must_insert_reserved)
  3376. pin_bytes = true;
  3377. btrfs_free_delayed_extent_op(head->extent_op);
  3378. delayed_refs->num_heads--;
  3379. if (head->processing == 0)
  3380. delayed_refs->num_heads_ready--;
  3381. atomic_dec(&delayed_refs->num_entries);
  3382. head->node.in_tree = 0;
  3383. rb_erase(&head->href_node, &delayed_refs->href_root);
  3384. spin_unlock(&head->lock);
  3385. spin_unlock(&delayed_refs->lock);
  3386. mutex_unlock(&head->mutex);
  3387. if (pin_bytes)
  3388. btrfs_pin_extent(root, head->node.bytenr,
  3389. head->node.num_bytes, 1);
  3390. btrfs_put_delayed_ref(&head->node);
  3391. cond_resched();
  3392. spin_lock(&delayed_refs->lock);
  3393. }
  3394. spin_unlock(&delayed_refs->lock);
  3395. return ret;
  3396. }
  3397. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3398. {
  3399. struct btrfs_inode *btrfs_inode;
  3400. struct list_head splice;
  3401. INIT_LIST_HEAD(&splice);
  3402. spin_lock(&root->delalloc_lock);
  3403. list_splice_init(&root->delalloc_inodes, &splice);
  3404. while (!list_empty(&splice)) {
  3405. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3406. delalloc_inodes);
  3407. list_del_init(&btrfs_inode->delalloc_inodes);
  3408. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3409. &btrfs_inode->runtime_flags);
  3410. spin_unlock(&root->delalloc_lock);
  3411. btrfs_invalidate_inodes(btrfs_inode->root);
  3412. spin_lock(&root->delalloc_lock);
  3413. }
  3414. spin_unlock(&root->delalloc_lock);
  3415. }
  3416. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3417. {
  3418. struct btrfs_root *root;
  3419. struct list_head splice;
  3420. INIT_LIST_HEAD(&splice);
  3421. spin_lock(&fs_info->delalloc_root_lock);
  3422. list_splice_init(&fs_info->delalloc_roots, &splice);
  3423. while (!list_empty(&splice)) {
  3424. root = list_first_entry(&splice, struct btrfs_root,
  3425. delalloc_root);
  3426. list_del_init(&root->delalloc_root);
  3427. root = btrfs_grab_fs_root(root);
  3428. BUG_ON(!root);
  3429. spin_unlock(&fs_info->delalloc_root_lock);
  3430. btrfs_destroy_delalloc_inodes(root);
  3431. btrfs_put_fs_root(root);
  3432. spin_lock(&fs_info->delalloc_root_lock);
  3433. }
  3434. spin_unlock(&fs_info->delalloc_root_lock);
  3435. }
  3436. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3437. struct extent_io_tree *dirty_pages,
  3438. int mark)
  3439. {
  3440. int ret;
  3441. struct extent_buffer *eb;
  3442. u64 start = 0;
  3443. u64 end;
  3444. while (1) {
  3445. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3446. mark, NULL);
  3447. if (ret)
  3448. break;
  3449. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3450. while (start <= end) {
  3451. eb = btrfs_find_tree_block(root, start,
  3452. root->nodesize);
  3453. start += root->nodesize;
  3454. if (!eb)
  3455. continue;
  3456. wait_on_extent_buffer_writeback(eb);
  3457. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3458. &eb->bflags))
  3459. clear_extent_buffer_dirty(eb);
  3460. free_extent_buffer_stale(eb);
  3461. }
  3462. }
  3463. return ret;
  3464. }
  3465. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3466. struct extent_io_tree *pinned_extents)
  3467. {
  3468. struct extent_io_tree *unpin;
  3469. u64 start;
  3470. u64 end;
  3471. int ret;
  3472. bool loop = true;
  3473. unpin = pinned_extents;
  3474. again:
  3475. while (1) {
  3476. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3477. EXTENT_DIRTY, NULL);
  3478. if (ret)
  3479. break;
  3480. /* opt_discard */
  3481. if (btrfs_test_opt(root, DISCARD))
  3482. ret = btrfs_error_discard_extent(root, start,
  3483. end + 1 - start,
  3484. NULL);
  3485. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3486. btrfs_error_unpin_extent_range(root, start, end);
  3487. cond_resched();
  3488. }
  3489. if (loop) {
  3490. if (unpin == &root->fs_info->freed_extents[0])
  3491. unpin = &root->fs_info->freed_extents[1];
  3492. else
  3493. unpin = &root->fs_info->freed_extents[0];
  3494. loop = false;
  3495. goto again;
  3496. }
  3497. return 0;
  3498. }
  3499. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3500. struct btrfs_root *root)
  3501. {
  3502. btrfs_destroy_delayed_refs(cur_trans, root);
  3503. cur_trans->state = TRANS_STATE_COMMIT_START;
  3504. wake_up(&root->fs_info->transaction_blocked_wait);
  3505. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3506. wake_up(&root->fs_info->transaction_wait);
  3507. btrfs_destroy_delayed_inodes(root);
  3508. btrfs_assert_delayed_root_empty(root);
  3509. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3510. EXTENT_DIRTY);
  3511. btrfs_destroy_pinned_extent(root,
  3512. root->fs_info->pinned_extents);
  3513. cur_trans->state =TRANS_STATE_COMPLETED;
  3514. wake_up(&cur_trans->commit_wait);
  3515. /*
  3516. memset(cur_trans, 0, sizeof(*cur_trans));
  3517. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3518. */
  3519. }
  3520. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3521. {
  3522. struct btrfs_transaction *t;
  3523. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3524. spin_lock(&root->fs_info->trans_lock);
  3525. while (!list_empty(&root->fs_info->trans_list)) {
  3526. t = list_first_entry(&root->fs_info->trans_list,
  3527. struct btrfs_transaction, list);
  3528. if (t->state >= TRANS_STATE_COMMIT_START) {
  3529. atomic_inc(&t->use_count);
  3530. spin_unlock(&root->fs_info->trans_lock);
  3531. btrfs_wait_for_commit(root, t->transid);
  3532. btrfs_put_transaction(t);
  3533. spin_lock(&root->fs_info->trans_lock);
  3534. continue;
  3535. }
  3536. if (t == root->fs_info->running_transaction) {
  3537. t->state = TRANS_STATE_COMMIT_DOING;
  3538. spin_unlock(&root->fs_info->trans_lock);
  3539. /*
  3540. * We wait for 0 num_writers since we don't hold a trans
  3541. * handle open currently for this transaction.
  3542. */
  3543. wait_event(t->writer_wait,
  3544. atomic_read(&t->num_writers) == 0);
  3545. } else {
  3546. spin_unlock(&root->fs_info->trans_lock);
  3547. }
  3548. btrfs_cleanup_one_transaction(t, root);
  3549. spin_lock(&root->fs_info->trans_lock);
  3550. if (t == root->fs_info->running_transaction)
  3551. root->fs_info->running_transaction = NULL;
  3552. list_del_init(&t->list);
  3553. spin_unlock(&root->fs_info->trans_lock);
  3554. btrfs_put_transaction(t);
  3555. trace_btrfs_transaction_commit(root);
  3556. spin_lock(&root->fs_info->trans_lock);
  3557. }
  3558. spin_unlock(&root->fs_info->trans_lock);
  3559. btrfs_destroy_all_ordered_extents(root->fs_info);
  3560. btrfs_destroy_delayed_inodes(root);
  3561. btrfs_assert_delayed_root_empty(root);
  3562. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3563. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3564. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3565. return 0;
  3566. }
  3567. static struct extent_io_ops btree_extent_io_ops = {
  3568. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3569. .readpage_io_failed_hook = btree_io_failed_hook,
  3570. .submit_bio_hook = btree_submit_bio_hook,
  3571. /* note we're sharing with inode.c for the merge bio hook */
  3572. .merge_bio_hook = btrfs_merge_bio_hook,
  3573. };