vgic-mmio-v3.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654
  1. /*
  2. * VGICv3 MMIO handling functions
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. */
  13. #include <linux/irqchip/arm-gic-v3.h>
  14. #include <linux/kvm.h>
  15. #include <linux/kvm_host.h>
  16. #include <kvm/iodev.h>
  17. #include <kvm/arm_vgic.h>
  18. #include <asm/kvm_emulate.h>
  19. #include "vgic.h"
  20. #include "vgic-mmio.h"
  21. /* extract @num bytes at @offset bytes offset in data */
  22. unsigned long extract_bytes(u64 data, unsigned int offset,
  23. unsigned int num)
  24. {
  25. return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
  26. }
  27. /* allows updates of any half of a 64-bit register (or the whole thing) */
  28. u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
  29. unsigned long val)
  30. {
  31. int lower = (offset & 4) * 8;
  32. int upper = lower + 8 * len - 1;
  33. reg &= ~GENMASK_ULL(upper, lower);
  34. val &= GENMASK_ULL(len * 8 - 1, 0);
  35. return reg | ((u64)val << lower);
  36. }
  37. bool vgic_has_its(struct kvm *kvm)
  38. {
  39. struct vgic_dist *dist = &kvm->arch.vgic;
  40. if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
  41. return false;
  42. return dist->has_its;
  43. }
  44. static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
  45. gpa_t addr, unsigned int len)
  46. {
  47. u32 value = 0;
  48. switch (addr & 0x0c) {
  49. case GICD_CTLR:
  50. if (vcpu->kvm->arch.vgic.enabled)
  51. value |= GICD_CTLR_ENABLE_SS_G1;
  52. value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
  53. break;
  54. case GICD_TYPER:
  55. value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
  56. value = (value >> 5) - 1;
  57. if (vgic_has_its(vcpu->kvm)) {
  58. value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
  59. value |= GICD_TYPER_LPIS;
  60. } else {
  61. value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
  62. }
  63. break;
  64. case GICD_IIDR:
  65. value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
  66. break;
  67. default:
  68. return 0;
  69. }
  70. return value;
  71. }
  72. static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
  73. gpa_t addr, unsigned int len,
  74. unsigned long val)
  75. {
  76. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  77. bool was_enabled = dist->enabled;
  78. switch (addr & 0x0c) {
  79. case GICD_CTLR:
  80. dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
  81. if (!was_enabled && dist->enabled)
  82. vgic_kick_vcpus(vcpu->kvm);
  83. break;
  84. case GICD_TYPER:
  85. case GICD_IIDR:
  86. return;
  87. }
  88. }
  89. static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
  90. gpa_t addr, unsigned int len)
  91. {
  92. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  93. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  94. unsigned long ret = 0;
  95. if (!irq)
  96. return 0;
  97. /* The upper word is RAZ for us. */
  98. if (!(addr & 4))
  99. ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
  100. vgic_put_irq(vcpu->kvm, irq);
  101. return ret;
  102. }
  103. static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
  104. gpa_t addr, unsigned int len,
  105. unsigned long val)
  106. {
  107. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  108. struct vgic_irq *irq;
  109. /* The upper word is WI for us since we don't implement Aff3. */
  110. if (addr & 4)
  111. return;
  112. irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  113. if (!irq)
  114. return;
  115. spin_lock(&irq->irq_lock);
  116. /* We only care about and preserve Aff0, Aff1 and Aff2. */
  117. irq->mpidr = val & GENMASK(23, 0);
  118. irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
  119. spin_unlock(&irq->irq_lock);
  120. vgic_put_irq(vcpu->kvm, irq);
  121. }
  122. static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
  123. gpa_t addr, unsigned int len)
  124. {
  125. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  126. return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
  127. }
  128. static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
  129. gpa_t addr, unsigned int len,
  130. unsigned long val)
  131. {
  132. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  133. bool was_enabled = vgic_cpu->lpis_enabled;
  134. if (!vgic_has_its(vcpu->kvm))
  135. return;
  136. vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
  137. if (!was_enabled && vgic_cpu->lpis_enabled)
  138. vgic_enable_lpis(vcpu);
  139. }
  140. static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
  141. gpa_t addr, unsigned int len)
  142. {
  143. unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
  144. int target_vcpu_id = vcpu->vcpu_id;
  145. u64 value;
  146. value = (u64)(mpidr & GENMASK(23, 0)) << 32;
  147. value |= ((target_vcpu_id & 0xffff) << 8);
  148. if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
  149. value |= GICR_TYPER_LAST;
  150. if (vgic_has_its(vcpu->kvm))
  151. value |= GICR_TYPER_PLPIS;
  152. return extract_bytes(value, addr & 7, len);
  153. }
  154. static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
  155. gpa_t addr, unsigned int len)
  156. {
  157. return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
  158. }
  159. static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
  160. gpa_t addr, unsigned int len)
  161. {
  162. switch (addr & 0xffff) {
  163. case GICD_PIDR2:
  164. /* report a GICv3 compliant implementation */
  165. return 0x3b;
  166. }
  167. return 0;
  168. }
  169. /* We want to avoid outer shareable. */
  170. u64 vgic_sanitise_shareability(u64 field)
  171. {
  172. switch (field) {
  173. case GIC_BASER_OuterShareable:
  174. return GIC_BASER_InnerShareable;
  175. default:
  176. return field;
  177. }
  178. }
  179. /* Avoid any inner non-cacheable mapping. */
  180. u64 vgic_sanitise_inner_cacheability(u64 field)
  181. {
  182. switch (field) {
  183. case GIC_BASER_CACHE_nCnB:
  184. case GIC_BASER_CACHE_nC:
  185. return GIC_BASER_CACHE_RaWb;
  186. default:
  187. return field;
  188. }
  189. }
  190. /* Non-cacheable or same-as-inner are OK. */
  191. u64 vgic_sanitise_outer_cacheability(u64 field)
  192. {
  193. switch (field) {
  194. case GIC_BASER_CACHE_SameAsInner:
  195. case GIC_BASER_CACHE_nC:
  196. return field;
  197. default:
  198. return GIC_BASER_CACHE_nC;
  199. }
  200. }
  201. u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
  202. u64 (*sanitise_fn)(u64))
  203. {
  204. u64 field = (reg & field_mask) >> field_shift;
  205. field = sanitise_fn(field) << field_shift;
  206. return (reg & ~field_mask) | field;
  207. }
  208. #define PROPBASER_RES0_MASK \
  209. (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
  210. #define PENDBASER_RES0_MASK \
  211. (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
  212. GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
  213. static u64 vgic_sanitise_pendbaser(u64 reg)
  214. {
  215. reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
  216. GICR_PENDBASER_SHAREABILITY_SHIFT,
  217. vgic_sanitise_shareability);
  218. reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
  219. GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
  220. vgic_sanitise_inner_cacheability);
  221. reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
  222. GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
  223. vgic_sanitise_outer_cacheability);
  224. reg &= ~PENDBASER_RES0_MASK;
  225. reg &= ~GENMASK_ULL(51, 48);
  226. return reg;
  227. }
  228. static u64 vgic_sanitise_propbaser(u64 reg)
  229. {
  230. reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
  231. GICR_PROPBASER_SHAREABILITY_SHIFT,
  232. vgic_sanitise_shareability);
  233. reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
  234. GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
  235. vgic_sanitise_inner_cacheability);
  236. reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
  237. GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
  238. vgic_sanitise_outer_cacheability);
  239. reg &= ~PROPBASER_RES0_MASK;
  240. reg &= ~GENMASK_ULL(51, 48);
  241. return reg;
  242. }
  243. static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
  244. gpa_t addr, unsigned int len)
  245. {
  246. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  247. return extract_bytes(dist->propbaser, addr & 7, len);
  248. }
  249. static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
  250. gpa_t addr, unsigned int len,
  251. unsigned long val)
  252. {
  253. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  254. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  255. u64 old_propbaser, propbaser;
  256. /* Storing a value with LPIs already enabled is undefined */
  257. if (vgic_cpu->lpis_enabled)
  258. return;
  259. do {
  260. old_propbaser = dist->propbaser;
  261. propbaser = old_propbaser;
  262. propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
  263. propbaser = vgic_sanitise_propbaser(propbaser);
  264. } while (cmpxchg64(&dist->propbaser, old_propbaser,
  265. propbaser) != old_propbaser);
  266. }
  267. static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
  268. gpa_t addr, unsigned int len)
  269. {
  270. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  271. return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
  272. }
  273. static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
  274. gpa_t addr, unsigned int len,
  275. unsigned long val)
  276. {
  277. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  278. u64 old_pendbaser, pendbaser;
  279. /* Storing a value with LPIs already enabled is undefined */
  280. if (vgic_cpu->lpis_enabled)
  281. return;
  282. do {
  283. old_pendbaser = vgic_cpu->pendbaser;
  284. pendbaser = old_pendbaser;
  285. pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
  286. pendbaser = vgic_sanitise_pendbaser(pendbaser);
  287. } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
  288. pendbaser) != old_pendbaser);
  289. }
  290. /*
  291. * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
  292. * redistributors, while SPIs are covered by registers in the distributor
  293. * block. Trying to set private IRQs in this block gets ignored.
  294. * We take some special care here to fix the calculation of the register
  295. * offset.
  296. */
  297. #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, bpi, acc) \
  298. { \
  299. .reg_offset = off, \
  300. .bits_per_irq = bpi, \
  301. .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  302. .access_flags = acc, \
  303. .read = vgic_mmio_read_raz, \
  304. .write = vgic_mmio_write_wi, \
  305. }, { \
  306. .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  307. .bits_per_irq = bpi, \
  308. .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
  309. .access_flags = acc, \
  310. .read = rd, \
  311. .write = wr, \
  312. }
  313. static const struct vgic_register_region vgic_v3_dist_registers[] = {
  314. REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
  315. vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
  316. VGIC_ACCESS_32bit),
  317. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
  318. vgic_mmio_read_rao, vgic_mmio_write_wi, 1,
  319. VGIC_ACCESS_32bit),
  320. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
  321. vgic_mmio_read_enable, vgic_mmio_write_senable, 1,
  322. VGIC_ACCESS_32bit),
  323. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
  324. vgic_mmio_read_enable, vgic_mmio_write_cenable, 1,
  325. VGIC_ACCESS_32bit),
  326. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
  327. vgic_mmio_read_pending, vgic_mmio_write_spending, 1,
  328. VGIC_ACCESS_32bit),
  329. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
  330. vgic_mmio_read_pending, vgic_mmio_write_cpending, 1,
  331. VGIC_ACCESS_32bit),
  332. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
  333. vgic_mmio_read_active, vgic_mmio_write_sactive, 1,
  334. VGIC_ACCESS_32bit),
  335. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
  336. vgic_mmio_read_active, vgic_mmio_write_cactive, 1,
  337. VGIC_ACCESS_32bit),
  338. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
  339. vgic_mmio_read_priority, vgic_mmio_write_priority, 8,
  340. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  341. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
  342. vgic_mmio_read_raz, vgic_mmio_write_wi, 8,
  343. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  344. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
  345. vgic_mmio_read_config, vgic_mmio_write_config, 2,
  346. VGIC_ACCESS_32bit),
  347. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
  348. vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
  349. VGIC_ACCESS_32bit),
  350. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
  351. vgic_mmio_read_irouter, vgic_mmio_write_irouter, 64,
  352. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  353. REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
  354. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  355. VGIC_ACCESS_32bit),
  356. };
  357. static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
  358. REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
  359. vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
  360. VGIC_ACCESS_32bit),
  361. REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
  362. vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
  363. VGIC_ACCESS_32bit),
  364. REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
  365. vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
  366. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  367. REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
  368. vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
  369. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  370. REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
  371. vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
  372. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  373. REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
  374. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  375. VGIC_ACCESS_32bit),
  376. };
  377. static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
  378. REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
  379. vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
  380. VGIC_ACCESS_32bit),
  381. REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
  382. vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
  383. VGIC_ACCESS_32bit),
  384. REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
  385. vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
  386. VGIC_ACCESS_32bit),
  387. REGISTER_DESC_WITH_LENGTH(GICR_ISPENDR0,
  388. vgic_mmio_read_pending, vgic_mmio_write_spending, 4,
  389. VGIC_ACCESS_32bit),
  390. REGISTER_DESC_WITH_LENGTH(GICR_ICPENDR0,
  391. vgic_mmio_read_pending, vgic_mmio_write_cpending, 4,
  392. VGIC_ACCESS_32bit),
  393. REGISTER_DESC_WITH_LENGTH(GICR_ISACTIVER0,
  394. vgic_mmio_read_active, vgic_mmio_write_sactive, 4,
  395. VGIC_ACCESS_32bit),
  396. REGISTER_DESC_WITH_LENGTH(GICR_ICACTIVER0,
  397. vgic_mmio_read_active, vgic_mmio_write_cactive, 4,
  398. VGIC_ACCESS_32bit),
  399. REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
  400. vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
  401. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  402. REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
  403. vgic_mmio_read_config, vgic_mmio_write_config, 8,
  404. VGIC_ACCESS_32bit),
  405. REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
  406. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  407. VGIC_ACCESS_32bit),
  408. REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
  409. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  410. VGIC_ACCESS_32bit),
  411. };
  412. unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
  413. {
  414. dev->regions = vgic_v3_dist_registers;
  415. dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
  416. kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
  417. return SZ_64K;
  418. }
  419. int vgic_register_redist_iodevs(struct kvm *kvm, gpa_t redist_base_address)
  420. {
  421. struct kvm_vcpu *vcpu;
  422. int c, ret = 0;
  423. kvm_for_each_vcpu(c, vcpu, kvm) {
  424. gpa_t rd_base = redist_base_address + c * SZ_64K * 2;
  425. gpa_t sgi_base = rd_base + SZ_64K;
  426. struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
  427. struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
  428. kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
  429. rd_dev->base_addr = rd_base;
  430. rd_dev->iodev_type = IODEV_REDIST;
  431. rd_dev->regions = vgic_v3_rdbase_registers;
  432. rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
  433. rd_dev->redist_vcpu = vcpu;
  434. mutex_lock(&kvm->slots_lock);
  435. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
  436. SZ_64K, &rd_dev->dev);
  437. mutex_unlock(&kvm->slots_lock);
  438. if (ret)
  439. break;
  440. kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
  441. sgi_dev->base_addr = sgi_base;
  442. sgi_dev->iodev_type = IODEV_REDIST;
  443. sgi_dev->regions = vgic_v3_sgibase_registers;
  444. sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
  445. sgi_dev->redist_vcpu = vcpu;
  446. mutex_lock(&kvm->slots_lock);
  447. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
  448. SZ_64K, &sgi_dev->dev);
  449. mutex_unlock(&kvm->slots_lock);
  450. if (ret) {
  451. kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
  452. &rd_dev->dev);
  453. break;
  454. }
  455. }
  456. if (ret) {
  457. /* The current c failed, so we start with the previous one. */
  458. for (c--; c >= 0; c--) {
  459. struct vgic_cpu *vgic_cpu;
  460. vcpu = kvm_get_vcpu(kvm, c);
  461. vgic_cpu = &vcpu->arch.vgic_cpu;
  462. kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
  463. &vgic_cpu->rd_iodev.dev);
  464. kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
  465. &vgic_cpu->sgi_iodev.dev);
  466. }
  467. }
  468. return ret;
  469. }
  470. /*
  471. * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
  472. * generation register ICC_SGI1R_EL1) with a given VCPU.
  473. * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
  474. * return -1.
  475. */
  476. static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
  477. {
  478. unsigned long affinity;
  479. int level0;
  480. /*
  481. * Split the current VCPU's MPIDR into affinity level 0 and the
  482. * rest as this is what we have to compare against.
  483. */
  484. affinity = kvm_vcpu_get_mpidr_aff(vcpu);
  485. level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
  486. affinity &= ~MPIDR_LEVEL_MASK;
  487. /* bail out if the upper three levels don't match */
  488. if (sgi_aff != affinity)
  489. return -1;
  490. /* Is this VCPU's bit set in the mask ? */
  491. if (!(sgi_cpu_mask & BIT(level0)))
  492. return -1;
  493. return level0;
  494. }
  495. /*
  496. * The ICC_SGI* registers encode the affinity differently from the MPIDR,
  497. * so provide a wrapper to use the existing defines to isolate a certain
  498. * affinity level.
  499. */
  500. #define SGI_AFFINITY_LEVEL(reg, level) \
  501. ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
  502. >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
  503. /**
  504. * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
  505. * @vcpu: The VCPU requesting a SGI
  506. * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
  507. *
  508. * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
  509. * This will trap in sys_regs.c and call this function.
  510. * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
  511. * target processors as well as a bitmask of 16 Aff0 CPUs.
  512. * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
  513. * check for matching ones. If this bit is set, we signal all, but not the
  514. * calling VCPU.
  515. */
  516. void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
  517. {
  518. struct kvm *kvm = vcpu->kvm;
  519. struct kvm_vcpu *c_vcpu;
  520. u16 target_cpus;
  521. u64 mpidr;
  522. int sgi, c;
  523. int vcpu_id = vcpu->vcpu_id;
  524. bool broadcast;
  525. sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
  526. broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
  527. target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
  528. mpidr = SGI_AFFINITY_LEVEL(reg, 3);
  529. mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
  530. mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
  531. /*
  532. * We iterate over all VCPUs to find the MPIDRs matching the request.
  533. * If we have handled one CPU, we clear its bit to detect early
  534. * if we are already finished. This avoids iterating through all
  535. * VCPUs when most of the times we just signal a single VCPU.
  536. */
  537. kvm_for_each_vcpu(c, c_vcpu, kvm) {
  538. struct vgic_irq *irq;
  539. /* Exit early if we have dealt with all requested CPUs */
  540. if (!broadcast && target_cpus == 0)
  541. break;
  542. /* Don't signal the calling VCPU */
  543. if (broadcast && c == vcpu_id)
  544. continue;
  545. if (!broadcast) {
  546. int level0;
  547. level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
  548. if (level0 == -1)
  549. continue;
  550. /* remove this matching VCPU from the mask */
  551. target_cpus &= ~BIT(level0);
  552. }
  553. irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
  554. spin_lock(&irq->irq_lock);
  555. irq->pending = true;
  556. vgic_queue_irq_unlock(vcpu->kvm, irq);
  557. vgic_put_irq(vcpu->kvm, irq);
  558. }
  559. }