mmu-hash.h 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692
  1. #ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
  2. #define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. #include <asm/bug.h>
  17. /*
  18. * This is necessary to get the definition of PGTABLE_RANGE which we
  19. * need for various slices related matters. Note that this isn't the
  20. * complete pgtable.h but only a portion of it.
  21. */
  22. #include <asm/book3s/64/pgtable.h>
  23. #include <asm/bug.h>
  24. #include <asm/processor.h>
  25. #include <asm/cpu_has_feature.h>
  26. /*
  27. * SLB
  28. */
  29. #define SLB_NUM_BOLTED 3
  30. #define SLB_CACHE_ENTRIES 8
  31. #define SLB_MIN_SIZE 32
  32. /* Bits in the SLB ESID word */
  33. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  34. /* Bits in the SLB VSID word */
  35. #define SLB_VSID_SHIFT 12
  36. #define SLB_VSID_SHIFT_1T 24
  37. #define SLB_VSID_SSIZE_SHIFT 62
  38. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  39. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  40. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  41. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  42. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  43. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  44. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  45. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  46. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  47. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  48. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  49. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  50. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  51. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  52. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  53. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  54. #define SLBIE_C (0x08000000)
  55. #define SLBIE_SSIZE_SHIFT 25
  56. /*
  57. * Hash table
  58. */
  59. #define HPTES_PER_GROUP 8
  60. #define HPTE_V_SSIZE_SHIFT 62
  61. #define HPTE_V_AVPN_SHIFT 7
  62. #define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
  63. #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
  64. #define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
  65. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  66. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  67. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  68. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  69. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  70. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  71. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  72. /*
  73. * ISA 3.0 has a different HPTE format.
  74. */
  75. #define HPTE_R_3_0_SSIZE_SHIFT 58
  76. #define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
  77. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  78. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  79. #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
  80. #define HPTE_R_RPN_SHIFT 12
  81. #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
  82. #define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
  83. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  84. #define HPTE_R_PPP ASM_CONST(0x8000000000000003)
  85. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  86. #define HPTE_R_G ASM_CONST(0x0000000000000008)
  87. #define HPTE_R_M ASM_CONST(0x0000000000000010)
  88. #define HPTE_R_I ASM_CONST(0x0000000000000020)
  89. #define HPTE_R_W ASM_CONST(0x0000000000000040)
  90. #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
  91. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  92. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  93. #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
  94. #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
  95. #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
  96. /* Values for PP (assumes Ks=0, Kp=1) */
  97. #define PP_RWXX 0 /* Supervisor read/write, User none */
  98. #define PP_RWRX 1 /* Supervisor read/write, User read */
  99. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  100. #define PP_RXRX 3 /* Supervisor read, User read */
  101. #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
  102. /* Fields for tlbiel instruction in architecture 2.06 */
  103. #define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
  104. #define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
  105. #define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
  106. #define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
  107. #define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
  108. #define TLBIEL_INVAL_SET_SHIFT 12
  109. #define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
  110. #define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
  111. #define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
  112. #define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
  113. #ifndef __ASSEMBLY__
  114. struct mmu_hash_ops {
  115. void (*hpte_invalidate)(unsigned long slot,
  116. unsigned long vpn,
  117. int bpsize, int apsize,
  118. int ssize, int local);
  119. long (*hpte_updatepp)(unsigned long slot,
  120. unsigned long newpp,
  121. unsigned long vpn,
  122. int bpsize, int apsize,
  123. int ssize, unsigned long flags);
  124. void (*hpte_updateboltedpp)(unsigned long newpp,
  125. unsigned long ea,
  126. int psize, int ssize);
  127. long (*hpte_insert)(unsigned long hpte_group,
  128. unsigned long vpn,
  129. unsigned long prpn,
  130. unsigned long rflags,
  131. unsigned long vflags,
  132. int psize, int apsize,
  133. int ssize);
  134. long (*hpte_remove)(unsigned long hpte_group);
  135. int (*hpte_removebolted)(unsigned long ea,
  136. int psize, int ssize);
  137. void (*flush_hash_range)(unsigned long number, int local);
  138. void (*hugepage_invalidate)(unsigned long vsid,
  139. unsigned long addr,
  140. unsigned char *hpte_slot_array,
  141. int psize, int ssize, int local);
  142. /*
  143. * Special for kexec.
  144. * To be called in real mode with interrupts disabled. No locks are
  145. * taken as such, concurrent access on pre POWER5 hardware could result
  146. * in a deadlock.
  147. * The linear mapping is destroyed as well.
  148. */
  149. void (*hpte_clear_all)(void);
  150. };
  151. extern struct mmu_hash_ops mmu_hash_ops;
  152. struct hash_pte {
  153. __be64 v;
  154. __be64 r;
  155. };
  156. extern struct hash_pte *htab_address;
  157. extern unsigned long htab_size_bytes;
  158. extern unsigned long htab_hash_mask;
  159. static inline int shift_to_mmu_psize(unsigned int shift)
  160. {
  161. int psize;
  162. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
  163. if (mmu_psize_defs[psize].shift == shift)
  164. return psize;
  165. return -1;
  166. }
  167. static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
  168. {
  169. if (mmu_psize_defs[mmu_psize].shift)
  170. return mmu_psize_defs[mmu_psize].shift;
  171. BUG();
  172. }
  173. static inline unsigned long get_sllp_encoding(int psize)
  174. {
  175. unsigned long sllp;
  176. sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
  177. ((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
  178. return sllp;
  179. }
  180. #endif /* __ASSEMBLY__ */
  181. /*
  182. * Segment sizes.
  183. * These are the values used by hardware in the B field of
  184. * SLB entries and the first dword of MMU hashtable entries.
  185. * The B field is 2 bits; the values 2 and 3 are unused and reserved.
  186. */
  187. #define MMU_SEGSIZE_256M 0
  188. #define MMU_SEGSIZE_1T 1
  189. /*
  190. * encode page number shift.
  191. * in order to fit the 78 bit va in a 64 bit variable we shift the va by
  192. * 12 bits. This enable us to address upto 76 bit va.
  193. * For hpt hash from a va we can ignore the page size bits of va and for
  194. * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
  195. * we work in all cases including 4k page size.
  196. */
  197. #define VPN_SHIFT 12
  198. /*
  199. * HPTE Large Page (LP) details
  200. */
  201. #define LP_SHIFT 12
  202. #define LP_BITS 8
  203. #define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
  204. #ifndef __ASSEMBLY__
  205. static inline int slb_vsid_shift(int ssize)
  206. {
  207. if (ssize == MMU_SEGSIZE_256M)
  208. return SLB_VSID_SHIFT;
  209. return SLB_VSID_SHIFT_1T;
  210. }
  211. static inline int segment_shift(int ssize)
  212. {
  213. if (ssize == MMU_SEGSIZE_256M)
  214. return SID_SHIFT;
  215. return SID_SHIFT_1T;
  216. }
  217. /*
  218. * This array is indexed by the LP field of the HPTE second dword.
  219. * Since this field may contain some RPN bits, some entries are
  220. * replicated so that we get the same value irrespective of RPN.
  221. * The top 4 bits are the page size index (MMU_PAGE_*) for the
  222. * actual page size, the bottom 4 bits are the base page size.
  223. */
  224. extern u8 hpte_page_sizes[1 << LP_BITS];
  225. static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
  226. bool is_base_size)
  227. {
  228. unsigned int i, lp;
  229. if (!(h & HPTE_V_LARGE))
  230. return 1ul << 12;
  231. /* Look at the 8 bit LP value */
  232. lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
  233. i = hpte_page_sizes[lp];
  234. if (!i)
  235. return 0;
  236. if (!is_base_size)
  237. i >>= 4;
  238. return 1ul << mmu_psize_defs[i & 0xf].shift;
  239. }
  240. static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
  241. {
  242. return __hpte_page_size(h, l, 0);
  243. }
  244. static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
  245. {
  246. return __hpte_page_size(h, l, 1);
  247. }
  248. /*
  249. * The current system page and segment sizes
  250. */
  251. extern int mmu_kernel_ssize;
  252. extern int mmu_highuser_ssize;
  253. extern u16 mmu_slb_size;
  254. extern unsigned long tce_alloc_start, tce_alloc_end;
  255. /*
  256. * If the processor supports 64k normal pages but not 64k cache
  257. * inhibited pages, we have to be prepared to switch processes
  258. * to use 4k pages when they create cache-inhibited mappings.
  259. * If this is the case, mmu_ci_restrictions will be set to 1.
  260. */
  261. extern int mmu_ci_restrictions;
  262. /*
  263. * This computes the AVPN and B fields of the first dword of a HPTE,
  264. * for use when we want to match an existing PTE. The bottom 7 bits
  265. * of the returned value are zero.
  266. */
  267. static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
  268. int ssize)
  269. {
  270. unsigned long v;
  271. /*
  272. * The AVA field omits the low-order 23 bits of the 78 bits VA.
  273. * These bits are not needed in the PTE, because the
  274. * low-order b of these bits are part of the byte offset
  275. * into the virtual page and, if b < 23, the high-order
  276. * 23-b of these bits are always used in selecting the
  277. * PTEGs to be searched
  278. */
  279. v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
  280. v <<= HPTE_V_AVPN_SHIFT;
  281. v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
  282. return v;
  283. }
  284. /*
  285. * ISA v3.0 defines a new HPTE format, which differs from the old
  286. * format in having smaller AVPN and ARPN fields, and the B field
  287. * in the second dword instead of the first.
  288. */
  289. static inline unsigned long hpte_old_to_new_v(unsigned long v)
  290. {
  291. /* trim AVPN, drop B */
  292. return v & HPTE_V_COMMON_BITS;
  293. }
  294. static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
  295. {
  296. /* move B field from 1st to 2nd dword, trim ARPN */
  297. return (r & ~HPTE_R_3_0_SSIZE_MASK) |
  298. (((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
  299. }
  300. static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
  301. {
  302. /* insert B field */
  303. return (v & HPTE_V_COMMON_BITS) |
  304. ((r & HPTE_R_3_0_SSIZE_MASK) <<
  305. (HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
  306. }
  307. static inline unsigned long hpte_new_to_old_r(unsigned long r)
  308. {
  309. /* clear out B field */
  310. return r & ~HPTE_R_3_0_SSIZE_MASK;
  311. }
  312. /*
  313. * This function sets the AVPN and L fields of the HPTE appropriately
  314. * using the base page size and actual page size.
  315. */
  316. static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
  317. int actual_psize, int ssize)
  318. {
  319. unsigned long v;
  320. v = hpte_encode_avpn(vpn, base_psize, ssize);
  321. if (actual_psize != MMU_PAGE_4K)
  322. v |= HPTE_V_LARGE;
  323. return v;
  324. }
  325. /*
  326. * This function sets the ARPN, and LP fields of the HPTE appropriately
  327. * for the page size. We assume the pa is already "clean" that is properly
  328. * aligned for the requested page size
  329. */
  330. static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
  331. int actual_psize)
  332. {
  333. /* A 4K page needs no special encoding */
  334. if (actual_psize == MMU_PAGE_4K)
  335. return pa & HPTE_R_RPN;
  336. else {
  337. unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
  338. unsigned int shift = mmu_psize_defs[actual_psize].shift;
  339. return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
  340. }
  341. }
  342. /*
  343. * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
  344. */
  345. static inline unsigned long hpt_vpn(unsigned long ea,
  346. unsigned long vsid, int ssize)
  347. {
  348. unsigned long mask;
  349. int s_shift = segment_shift(ssize);
  350. mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
  351. return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
  352. }
  353. /*
  354. * This hashes a virtual address
  355. */
  356. static inline unsigned long hpt_hash(unsigned long vpn,
  357. unsigned int shift, int ssize)
  358. {
  359. int mask;
  360. unsigned long hash, vsid;
  361. /* VPN_SHIFT can be atmost 12 */
  362. if (ssize == MMU_SEGSIZE_256M) {
  363. mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
  364. hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
  365. ((vpn & mask) >> (shift - VPN_SHIFT));
  366. } else {
  367. mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
  368. vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
  369. hash = vsid ^ (vsid << 25) ^
  370. ((vpn & mask) >> (shift - VPN_SHIFT)) ;
  371. }
  372. return hash & 0x7fffffffffUL;
  373. }
  374. #define HPTE_LOCAL_UPDATE 0x1
  375. #define HPTE_NOHPTE_UPDATE 0x2
  376. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  377. unsigned long vsid, pte_t *ptep, unsigned long trap,
  378. unsigned long flags, int ssize, int subpage_prot);
  379. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  380. unsigned long vsid, pte_t *ptep, unsigned long trap,
  381. unsigned long flags, int ssize);
  382. struct mm_struct;
  383. unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
  384. extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
  385. unsigned long access, unsigned long trap,
  386. unsigned long flags);
  387. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
  388. unsigned long dsisr);
  389. int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
  390. pte_t *ptep, unsigned long trap, unsigned long flags,
  391. int ssize, unsigned int shift, unsigned int mmu_psize);
  392. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  393. extern int __hash_page_thp(unsigned long ea, unsigned long access,
  394. unsigned long vsid, pmd_t *pmdp, unsigned long trap,
  395. unsigned long flags, int ssize, unsigned int psize);
  396. #else
  397. static inline int __hash_page_thp(unsigned long ea, unsigned long access,
  398. unsigned long vsid, pmd_t *pmdp,
  399. unsigned long trap, unsigned long flags,
  400. int ssize, unsigned int psize)
  401. {
  402. BUG();
  403. return -1;
  404. }
  405. #endif
  406. extern void hash_failure_debug(unsigned long ea, unsigned long access,
  407. unsigned long vsid, unsigned long trap,
  408. int ssize, int psize, int lpsize,
  409. unsigned long pte);
  410. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  411. unsigned long pstart, unsigned long prot,
  412. int psize, int ssize);
  413. int htab_remove_mapping(unsigned long vstart, unsigned long vend,
  414. int psize, int ssize);
  415. extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
  416. extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
  417. #ifdef CONFIG_PPC_PSERIES
  418. void hpte_init_pseries(void);
  419. #else
  420. static inline void hpte_init_pseries(void) { }
  421. #endif
  422. extern void hpte_init_native(void);
  423. extern void slb_initialize(void);
  424. extern void slb_flush_and_rebolt(void);
  425. extern void slb_vmalloc_update(void);
  426. extern void slb_set_size(u16 size);
  427. #endif /* __ASSEMBLY__ */
  428. /*
  429. * VSID allocation (256MB segment)
  430. *
  431. * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
  432. * from mmu context id and effective segment id of the address.
  433. *
  434. * For user processes max context id is limited to ((1ul << 19) - 5)
  435. * for kernel space, we use the top 4 context ids to map address as below
  436. * NOTE: each context only support 64TB now.
  437. * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
  438. * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
  439. * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
  440. * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
  441. *
  442. * The proto-VSIDs are then scrambled into real VSIDs with the
  443. * multiplicative hash:
  444. *
  445. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  446. *
  447. * VSID_MULTIPLIER is prime, so in particular it is
  448. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  449. * Because the modulus is 2^n-1 we can compute it efficiently without
  450. * a divide or extra multiply (see below). The scramble function gives
  451. * robust scattering in the hash table (at least based on some initial
  452. * results).
  453. *
  454. * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
  455. * bad address. This enables us to consolidate bad address handling in
  456. * hash_page.
  457. *
  458. * We also need to avoid the last segment of the last context, because that
  459. * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
  460. * because of the modulo operation in vsid scramble. But the vmemmap
  461. * (which is what uses region 0xf) will never be close to 64TB in size
  462. * (it's 56 bytes per page of system memory).
  463. */
  464. #define CONTEXT_BITS 19
  465. #define ESID_BITS 18
  466. #define ESID_BITS_1T 6
  467. /*
  468. * 256MB segment
  469. * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
  470. * available for user + kernel mapping. The top 4 contexts are used for
  471. * kernel mapping. Each segment contains 2^28 bytes. Each
  472. * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
  473. * (19 == 37 + 28 - 46).
  474. */
  475. #define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
  476. /*
  477. * This should be computed such that protovosid * vsid_mulitplier
  478. * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
  479. */
  480. #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
  481. #define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
  482. #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
  483. #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
  484. #define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
  485. #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
  486. #define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
  487. /*
  488. * This macro generates asm code to compute the VSID scramble
  489. * function. Used in slb_allocate() and do_stab_bolted. The function
  490. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  491. *
  492. * rt = register containing the proto-VSID and into which the
  493. * VSID will be stored
  494. * rx = scratch register (clobbered)
  495. *
  496. * - rt and rx must be different registers
  497. * - The answer will end up in the low VSID_BITS bits of rt. The higher
  498. * bits may contain other garbage, so you may need to mask the
  499. * result.
  500. */
  501. #define ASM_VSID_SCRAMBLE(rt, rx, size) \
  502. lis rx,VSID_MULTIPLIER_##size@h; \
  503. ori rx,rx,VSID_MULTIPLIER_##size@l; \
  504. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  505. \
  506. srdi rx,rt,VSID_BITS_##size; \
  507. clrldi rt,rt,(64-VSID_BITS_##size); \
  508. add rt,rt,rx; /* add high and low bits */ \
  509. /* NOTE: explanation based on VSID_BITS_##size = 36 \
  510. * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  511. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  512. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  513. * the bit clear, r3 already has the answer we want, if it \
  514. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  515. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  516. addi rx,rt,1; \
  517. srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
  518. add rt,rt,rx
  519. /* 4 bits per slice and we have one slice per 1TB */
  520. #define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
  521. #ifndef __ASSEMBLY__
  522. #ifdef CONFIG_PPC_SUBPAGE_PROT
  523. /*
  524. * For the sub-page protection option, we extend the PGD with one of
  525. * these. Basically we have a 3-level tree, with the top level being
  526. * the protptrs array. To optimize speed and memory consumption when
  527. * only addresses < 4GB are being protected, pointers to the first
  528. * four pages of sub-page protection words are stored in the low_prot
  529. * array.
  530. * Each page of sub-page protection words protects 1GB (4 bytes
  531. * protects 64k). For the 3-level tree, each page of pointers then
  532. * protects 8TB.
  533. */
  534. struct subpage_prot_table {
  535. unsigned long maxaddr; /* only addresses < this are protected */
  536. unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
  537. unsigned int *low_prot[4];
  538. };
  539. #define SBP_L1_BITS (PAGE_SHIFT - 2)
  540. #define SBP_L2_BITS (PAGE_SHIFT - 3)
  541. #define SBP_L1_COUNT (1 << SBP_L1_BITS)
  542. #define SBP_L2_COUNT (1 << SBP_L2_BITS)
  543. #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
  544. #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
  545. extern void subpage_prot_free(struct mm_struct *mm);
  546. extern void subpage_prot_init_new_context(struct mm_struct *mm);
  547. #else
  548. static inline void subpage_prot_free(struct mm_struct *mm) {}
  549. static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
  550. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  551. #if 0
  552. /*
  553. * The code below is equivalent to this function for arguments
  554. * < 2^VSID_BITS, which is all this should ever be called
  555. * with. However gcc is not clever enough to compute the
  556. * modulus (2^n-1) without a second multiply.
  557. */
  558. #define vsid_scramble(protovsid, size) \
  559. ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
  560. #else /* 1 */
  561. #define vsid_scramble(protovsid, size) \
  562. ({ \
  563. unsigned long x; \
  564. x = (protovsid) * VSID_MULTIPLIER_##size; \
  565. x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
  566. (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
  567. })
  568. #endif /* 1 */
  569. /* Returns the segment size indicator for a user address */
  570. static inline int user_segment_size(unsigned long addr)
  571. {
  572. /* Use 1T segments if possible for addresses >= 1T */
  573. if (addr >= (1UL << SID_SHIFT_1T))
  574. return mmu_highuser_ssize;
  575. return MMU_SEGSIZE_256M;
  576. }
  577. static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
  578. int ssize)
  579. {
  580. /*
  581. * Bad address. We return VSID 0 for that
  582. */
  583. if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
  584. return 0;
  585. if (ssize == MMU_SEGSIZE_256M)
  586. return vsid_scramble((context << ESID_BITS)
  587. | (ea >> SID_SHIFT), 256M);
  588. return vsid_scramble((context << ESID_BITS_1T)
  589. | (ea >> SID_SHIFT_1T), 1T);
  590. }
  591. /*
  592. * This is only valid for addresses >= PAGE_OFFSET
  593. *
  594. * For kernel space, we use the top 4 context ids to map address as below
  595. * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
  596. * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
  597. * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
  598. * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
  599. */
  600. static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
  601. {
  602. unsigned long context;
  603. /*
  604. * kernel take the top 4 context from the available range
  605. */
  606. context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
  607. return get_vsid(context, ea, ssize);
  608. }
  609. unsigned htab_shift_for_mem_size(unsigned long mem_size);
  610. #endif /* __ASSEMBLY__ */
  611. #endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */