target_core_rd.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. /*******************************************************************************
  2. * Filename: target_core_rd.c
  3. *
  4. * This file contains the Storage Engine <-> Ramdisk transport
  5. * specific functions.
  6. *
  7. * (c) Copyright 2003-2013 Datera, Inc.
  8. *
  9. * Nicholas A. Bellinger <nab@kernel.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  24. *
  25. ******************************************************************************/
  26. #include <linux/string.h>
  27. #include <linux/parser.h>
  28. #include <linux/timer.h>
  29. #include <linux/slab.h>
  30. #include <linux/spinlock.h>
  31. #include <scsi/scsi_proto.h>
  32. #include <target/target_core_base.h>
  33. #include <target/target_core_backend.h>
  34. #include "target_core_rd.h"
  35. static inline struct rd_dev *RD_DEV(struct se_device *dev)
  36. {
  37. return container_of(dev, struct rd_dev, dev);
  38. }
  39. static int rd_attach_hba(struct se_hba *hba, u32 host_id)
  40. {
  41. struct rd_host *rd_host;
  42. rd_host = kzalloc(sizeof(struct rd_host), GFP_KERNEL);
  43. if (!rd_host) {
  44. pr_err("Unable to allocate memory for struct rd_host\n");
  45. return -ENOMEM;
  46. }
  47. rd_host->rd_host_id = host_id;
  48. hba->hba_ptr = rd_host;
  49. pr_debug("CORE_HBA[%d] - TCM Ramdisk HBA Driver %s on"
  50. " Generic Target Core Stack %s\n", hba->hba_id,
  51. RD_HBA_VERSION, TARGET_CORE_VERSION);
  52. return 0;
  53. }
  54. static void rd_detach_hba(struct se_hba *hba)
  55. {
  56. struct rd_host *rd_host = hba->hba_ptr;
  57. pr_debug("CORE_HBA[%d] - Detached Ramdisk HBA: %u from"
  58. " Generic Target Core\n", hba->hba_id, rd_host->rd_host_id);
  59. kfree(rd_host);
  60. hba->hba_ptr = NULL;
  61. }
  62. static u32 rd_release_sgl_table(struct rd_dev *rd_dev, struct rd_dev_sg_table *sg_table,
  63. u32 sg_table_count)
  64. {
  65. struct page *pg;
  66. struct scatterlist *sg;
  67. u32 i, j, page_count = 0, sg_per_table;
  68. for (i = 0; i < sg_table_count; i++) {
  69. sg = sg_table[i].sg_table;
  70. sg_per_table = sg_table[i].rd_sg_count;
  71. for (j = 0; j < sg_per_table; j++) {
  72. pg = sg_page(&sg[j]);
  73. if (pg) {
  74. __free_page(pg);
  75. page_count++;
  76. }
  77. }
  78. kfree(sg);
  79. }
  80. kfree(sg_table);
  81. return page_count;
  82. }
  83. static void rd_release_device_space(struct rd_dev *rd_dev)
  84. {
  85. u32 page_count;
  86. if (!rd_dev->sg_table_array || !rd_dev->sg_table_count)
  87. return;
  88. page_count = rd_release_sgl_table(rd_dev, rd_dev->sg_table_array,
  89. rd_dev->sg_table_count);
  90. pr_debug("CORE_RD[%u] - Released device space for Ramdisk"
  91. " Device ID: %u, pages %u in %u tables total bytes %lu\n",
  92. rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
  93. rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
  94. rd_dev->sg_table_array = NULL;
  95. rd_dev->sg_table_count = 0;
  96. }
  97. /* rd_build_device_space():
  98. *
  99. *
  100. */
  101. static int rd_allocate_sgl_table(struct rd_dev *rd_dev, struct rd_dev_sg_table *sg_table,
  102. u32 total_sg_needed, unsigned char init_payload)
  103. {
  104. u32 i = 0, j, page_offset = 0, sg_per_table;
  105. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  106. sizeof(struct scatterlist));
  107. struct page *pg;
  108. struct scatterlist *sg;
  109. unsigned char *p;
  110. while (total_sg_needed) {
  111. unsigned int chain_entry = 0;
  112. sg_per_table = (total_sg_needed > max_sg_per_table) ?
  113. max_sg_per_table : total_sg_needed;
  114. #ifdef CONFIG_ARCH_HAS_SG_CHAIN
  115. /*
  116. * Reserve extra element for chain entry
  117. */
  118. if (sg_per_table < total_sg_needed)
  119. chain_entry = 1;
  120. #endif /* CONFIG_ARCH_HAS_SG_CHAIN */
  121. sg = kcalloc(sg_per_table + chain_entry, sizeof(*sg),
  122. GFP_KERNEL);
  123. if (!sg) {
  124. pr_err("Unable to allocate scatterlist array"
  125. " for struct rd_dev\n");
  126. return -ENOMEM;
  127. }
  128. sg_init_table(sg, sg_per_table + chain_entry);
  129. #ifdef CONFIG_ARCH_HAS_SG_CHAIN
  130. if (i > 0) {
  131. sg_chain(sg_table[i - 1].sg_table,
  132. max_sg_per_table + 1, sg);
  133. }
  134. #endif /* CONFIG_ARCH_HAS_SG_CHAIN */
  135. sg_table[i].sg_table = sg;
  136. sg_table[i].rd_sg_count = sg_per_table;
  137. sg_table[i].page_start_offset = page_offset;
  138. sg_table[i++].page_end_offset = (page_offset + sg_per_table)
  139. - 1;
  140. for (j = 0; j < sg_per_table; j++) {
  141. pg = alloc_pages(GFP_KERNEL, 0);
  142. if (!pg) {
  143. pr_err("Unable to allocate scatterlist"
  144. " pages for struct rd_dev_sg_table\n");
  145. return -ENOMEM;
  146. }
  147. sg_assign_page(&sg[j], pg);
  148. sg[j].length = PAGE_SIZE;
  149. p = kmap(pg);
  150. memset(p, init_payload, PAGE_SIZE);
  151. kunmap(pg);
  152. }
  153. page_offset += sg_per_table;
  154. total_sg_needed -= sg_per_table;
  155. }
  156. return 0;
  157. }
  158. static int rd_build_device_space(struct rd_dev *rd_dev)
  159. {
  160. struct rd_dev_sg_table *sg_table;
  161. u32 sg_tables, total_sg_needed;
  162. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  163. sizeof(struct scatterlist));
  164. int rc;
  165. if (rd_dev->rd_page_count <= 0) {
  166. pr_err("Illegal page count: %u for Ramdisk device\n",
  167. rd_dev->rd_page_count);
  168. return -EINVAL;
  169. }
  170. /* Don't need backing pages for NULLIO */
  171. if (rd_dev->rd_flags & RDF_NULLIO)
  172. return 0;
  173. total_sg_needed = rd_dev->rd_page_count;
  174. sg_tables = (total_sg_needed / max_sg_per_table) + 1;
  175. sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
  176. if (!sg_table) {
  177. pr_err("Unable to allocate memory for Ramdisk"
  178. " scatterlist tables\n");
  179. return -ENOMEM;
  180. }
  181. rd_dev->sg_table_array = sg_table;
  182. rd_dev->sg_table_count = sg_tables;
  183. rc = rd_allocate_sgl_table(rd_dev, sg_table, total_sg_needed, 0x00);
  184. if (rc)
  185. return rc;
  186. pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u space of"
  187. " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
  188. rd_dev->rd_dev_id, rd_dev->rd_page_count,
  189. rd_dev->sg_table_count);
  190. return 0;
  191. }
  192. static void rd_release_prot_space(struct rd_dev *rd_dev)
  193. {
  194. u32 page_count;
  195. if (!rd_dev->sg_prot_array || !rd_dev->sg_prot_count)
  196. return;
  197. page_count = rd_release_sgl_table(rd_dev, rd_dev->sg_prot_array,
  198. rd_dev->sg_prot_count);
  199. pr_debug("CORE_RD[%u] - Released protection space for Ramdisk"
  200. " Device ID: %u, pages %u in %u tables total bytes %lu\n",
  201. rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count,
  202. rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE);
  203. rd_dev->sg_prot_array = NULL;
  204. rd_dev->sg_prot_count = 0;
  205. }
  206. static int rd_build_prot_space(struct rd_dev *rd_dev, int prot_length, int block_size)
  207. {
  208. struct rd_dev_sg_table *sg_table;
  209. u32 total_sg_needed, sg_tables;
  210. u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  211. sizeof(struct scatterlist));
  212. int rc;
  213. if (rd_dev->rd_flags & RDF_NULLIO)
  214. return 0;
  215. /*
  216. * prot_length=8byte dif data
  217. * tot sg needed = rd_page_count * (PGSZ/block_size) *
  218. * (prot_length/block_size) + pad
  219. * PGSZ canceled each other.
  220. */
  221. total_sg_needed = (rd_dev->rd_page_count * prot_length / block_size) + 1;
  222. sg_tables = (total_sg_needed / max_sg_per_table) + 1;
  223. sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL);
  224. if (!sg_table) {
  225. pr_err("Unable to allocate memory for Ramdisk protection"
  226. " scatterlist tables\n");
  227. return -ENOMEM;
  228. }
  229. rd_dev->sg_prot_array = sg_table;
  230. rd_dev->sg_prot_count = sg_tables;
  231. rc = rd_allocate_sgl_table(rd_dev, sg_table, total_sg_needed, 0xff);
  232. if (rc)
  233. return rc;
  234. pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u prot space of"
  235. " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id,
  236. rd_dev->rd_dev_id, total_sg_needed, rd_dev->sg_prot_count);
  237. return 0;
  238. }
  239. static struct se_device *rd_alloc_device(struct se_hba *hba, const char *name)
  240. {
  241. struct rd_dev *rd_dev;
  242. struct rd_host *rd_host = hba->hba_ptr;
  243. rd_dev = kzalloc(sizeof(struct rd_dev), GFP_KERNEL);
  244. if (!rd_dev) {
  245. pr_err("Unable to allocate memory for struct rd_dev\n");
  246. return NULL;
  247. }
  248. rd_dev->rd_host = rd_host;
  249. return &rd_dev->dev;
  250. }
  251. static int rd_configure_device(struct se_device *dev)
  252. {
  253. struct rd_dev *rd_dev = RD_DEV(dev);
  254. struct rd_host *rd_host = dev->se_hba->hba_ptr;
  255. int ret;
  256. if (!(rd_dev->rd_flags & RDF_HAS_PAGE_COUNT)) {
  257. pr_debug("Missing rd_pages= parameter\n");
  258. return -EINVAL;
  259. }
  260. ret = rd_build_device_space(rd_dev);
  261. if (ret < 0)
  262. goto fail;
  263. dev->dev_attrib.hw_block_size = RD_BLOCKSIZE;
  264. dev->dev_attrib.hw_max_sectors = UINT_MAX;
  265. dev->dev_attrib.hw_queue_depth = RD_MAX_DEVICE_QUEUE_DEPTH;
  266. rd_dev->rd_dev_id = rd_host->rd_host_dev_id_count++;
  267. pr_debug("CORE_RD[%u] - Added TCM MEMCPY Ramdisk Device ID: %u of"
  268. " %u pages in %u tables, %lu total bytes\n",
  269. rd_host->rd_host_id, rd_dev->rd_dev_id, rd_dev->rd_page_count,
  270. rd_dev->sg_table_count,
  271. (unsigned long)(rd_dev->rd_page_count * PAGE_SIZE));
  272. return 0;
  273. fail:
  274. rd_release_device_space(rd_dev);
  275. return ret;
  276. }
  277. static void rd_dev_call_rcu(struct rcu_head *p)
  278. {
  279. struct se_device *dev = container_of(p, struct se_device, rcu_head);
  280. struct rd_dev *rd_dev = RD_DEV(dev);
  281. kfree(rd_dev);
  282. }
  283. static void rd_free_device(struct se_device *dev)
  284. {
  285. struct rd_dev *rd_dev = RD_DEV(dev);
  286. rd_release_device_space(rd_dev);
  287. call_rcu(&dev->rcu_head, rd_dev_call_rcu);
  288. }
  289. static struct rd_dev_sg_table *rd_get_sg_table(struct rd_dev *rd_dev, u32 page)
  290. {
  291. struct rd_dev_sg_table *sg_table;
  292. u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  293. sizeof(struct scatterlist));
  294. i = page / sg_per_table;
  295. if (i < rd_dev->sg_table_count) {
  296. sg_table = &rd_dev->sg_table_array[i];
  297. if ((sg_table->page_start_offset <= page) &&
  298. (sg_table->page_end_offset >= page))
  299. return sg_table;
  300. }
  301. pr_err("Unable to locate struct rd_dev_sg_table for page: %u\n",
  302. page);
  303. return NULL;
  304. }
  305. static struct rd_dev_sg_table *rd_get_prot_table(struct rd_dev *rd_dev, u32 page)
  306. {
  307. struct rd_dev_sg_table *sg_table;
  308. u32 i, sg_per_table = (RD_MAX_ALLOCATION_SIZE /
  309. sizeof(struct scatterlist));
  310. i = page / sg_per_table;
  311. if (i < rd_dev->sg_prot_count) {
  312. sg_table = &rd_dev->sg_prot_array[i];
  313. if ((sg_table->page_start_offset <= page) &&
  314. (sg_table->page_end_offset >= page))
  315. return sg_table;
  316. }
  317. pr_err("Unable to locate struct prot rd_dev_sg_table for page: %u\n",
  318. page);
  319. return NULL;
  320. }
  321. static sense_reason_t rd_do_prot_rw(struct se_cmd *cmd, bool is_read)
  322. {
  323. struct se_device *se_dev = cmd->se_dev;
  324. struct rd_dev *dev = RD_DEV(se_dev);
  325. struct rd_dev_sg_table *prot_table;
  326. bool need_to_release = false;
  327. struct scatterlist *prot_sg;
  328. u32 sectors = cmd->data_length / se_dev->dev_attrib.block_size;
  329. u32 prot_offset, prot_page;
  330. u32 prot_npages __maybe_unused;
  331. u64 tmp;
  332. sense_reason_t rc = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  333. tmp = cmd->t_task_lba * se_dev->prot_length;
  334. prot_offset = do_div(tmp, PAGE_SIZE);
  335. prot_page = tmp;
  336. prot_table = rd_get_prot_table(dev, prot_page);
  337. if (!prot_table)
  338. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  339. prot_sg = &prot_table->sg_table[prot_page -
  340. prot_table->page_start_offset];
  341. #ifndef CONFIG_ARCH_HAS_SG_CHAIN
  342. prot_npages = DIV_ROUND_UP(prot_offset + sectors * se_dev->prot_length,
  343. PAGE_SIZE);
  344. /*
  345. * Allocate temporaly contiguous scatterlist entries if prot pages
  346. * straddles multiple scatterlist tables.
  347. */
  348. if (prot_table->page_end_offset < prot_page + prot_npages - 1) {
  349. int i;
  350. prot_sg = kcalloc(prot_npages, sizeof(*prot_sg), GFP_KERNEL);
  351. if (!prot_sg)
  352. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  353. need_to_release = true;
  354. sg_init_table(prot_sg, prot_npages);
  355. for (i = 0; i < prot_npages; i++) {
  356. if (prot_page + i > prot_table->page_end_offset) {
  357. prot_table = rd_get_prot_table(dev,
  358. prot_page + i);
  359. if (!prot_table) {
  360. kfree(prot_sg);
  361. return rc;
  362. }
  363. sg_unmark_end(&prot_sg[i - 1]);
  364. }
  365. prot_sg[i] = prot_table->sg_table[prot_page + i -
  366. prot_table->page_start_offset];
  367. }
  368. }
  369. #endif /* !CONFIG_ARCH_HAS_SG_CHAIN */
  370. if (is_read)
  371. rc = sbc_dif_verify(cmd, cmd->t_task_lba, sectors, 0,
  372. prot_sg, prot_offset);
  373. else
  374. rc = sbc_dif_verify(cmd, cmd->t_task_lba, sectors, 0,
  375. cmd->t_prot_sg, 0);
  376. if (!rc)
  377. sbc_dif_copy_prot(cmd, sectors, is_read, prot_sg, prot_offset);
  378. if (need_to_release)
  379. kfree(prot_sg);
  380. return rc;
  381. }
  382. static sense_reason_t
  383. rd_execute_rw(struct se_cmd *cmd, struct scatterlist *sgl, u32 sgl_nents,
  384. enum dma_data_direction data_direction)
  385. {
  386. struct se_device *se_dev = cmd->se_dev;
  387. struct rd_dev *dev = RD_DEV(se_dev);
  388. struct rd_dev_sg_table *table;
  389. struct scatterlist *rd_sg;
  390. struct sg_mapping_iter m;
  391. u32 rd_offset;
  392. u32 rd_size;
  393. u32 rd_page;
  394. u32 src_len;
  395. u64 tmp;
  396. sense_reason_t rc;
  397. if (dev->rd_flags & RDF_NULLIO) {
  398. target_complete_cmd(cmd, SAM_STAT_GOOD);
  399. return 0;
  400. }
  401. tmp = cmd->t_task_lba * se_dev->dev_attrib.block_size;
  402. rd_offset = do_div(tmp, PAGE_SIZE);
  403. rd_page = tmp;
  404. rd_size = cmd->data_length;
  405. table = rd_get_sg_table(dev, rd_page);
  406. if (!table)
  407. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  408. rd_sg = &table->sg_table[rd_page - table->page_start_offset];
  409. pr_debug("RD[%u]: %s LBA: %llu, Size: %u Page: %u, Offset: %u\n",
  410. dev->rd_dev_id,
  411. data_direction == DMA_FROM_DEVICE ? "Read" : "Write",
  412. cmd->t_task_lba, rd_size, rd_page, rd_offset);
  413. if (cmd->prot_type && se_dev->dev_attrib.pi_prot_type &&
  414. data_direction == DMA_TO_DEVICE) {
  415. rc = rd_do_prot_rw(cmd, false);
  416. if (rc)
  417. return rc;
  418. }
  419. src_len = PAGE_SIZE - rd_offset;
  420. sg_miter_start(&m, sgl, sgl_nents,
  421. data_direction == DMA_FROM_DEVICE ?
  422. SG_MITER_TO_SG : SG_MITER_FROM_SG);
  423. while (rd_size) {
  424. u32 len;
  425. void *rd_addr;
  426. sg_miter_next(&m);
  427. if (!(u32)m.length) {
  428. pr_debug("RD[%u]: invalid sgl %p len %zu\n",
  429. dev->rd_dev_id, m.addr, m.length);
  430. sg_miter_stop(&m);
  431. return TCM_INCORRECT_AMOUNT_OF_DATA;
  432. }
  433. len = min((u32)m.length, src_len);
  434. if (len > rd_size) {
  435. pr_debug("RD[%u]: size underrun page %d offset %d "
  436. "size %d\n", dev->rd_dev_id,
  437. rd_page, rd_offset, rd_size);
  438. len = rd_size;
  439. }
  440. m.consumed = len;
  441. rd_addr = sg_virt(rd_sg) + rd_offset;
  442. if (data_direction == DMA_FROM_DEVICE)
  443. memcpy(m.addr, rd_addr, len);
  444. else
  445. memcpy(rd_addr, m.addr, len);
  446. rd_size -= len;
  447. if (!rd_size)
  448. continue;
  449. src_len -= len;
  450. if (src_len) {
  451. rd_offset += len;
  452. continue;
  453. }
  454. /* rd page completed, next one please */
  455. rd_page++;
  456. rd_offset = 0;
  457. src_len = PAGE_SIZE;
  458. if (rd_page <= table->page_end_offset) {
  459. rd_sg++;
  460. continue;
  461. }
  462. table = rd_get_sg_table(dev, rd_page);
  463. if (!table) {
  464. sg_miter_stop(&m);
  465. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  466. }
  467. /* since we increment, the first sg entry is correct */
  468. rd_sg = table->sg_table;
  469. }
  470. sg_miter_stop(&m);
  471. if (cmd->prot_type && se_dev->dev_attrib.pi_prot_type &&
  472. data_direction == DMA_FROM_DEVICE) {
  473. rc = rd_do_prot_rw(cmd, true);
  474. if (rc)
  475. return rc;
  476. }
  477. target_complete_cmd(cmd, SAM_STAT_GOOD);
  478. return 0;
  479. }
  480. enum {
  481. Opt_rd_pages, Opt_rd_nullio, Opt_err
  482. };
  483. static match_table_t tokens = {
  484. {Opt_rd_pages, "rd_pages=%d"},
  485. {Opt_rd_nullio, "rd_nullio=%d"},
  486. {Opt_err, NULL}
  487. };
  488. static ssize_t rd_set_configfs_dev_params(struct se_device *dev,
  489. const char *page, ssize_t count)
  490. {
  491. struct rd_dev *rd_dev = RD_DEV(dev);
  492. char *orig, *ptr, *opts;
  493. substring_t args[MAX_OPT_ARGS];
  494. int ret = 0, arg, token;
  495. opts = kstrdup(page, GFP_KERNEL);
  496. if (!opts)
  497. return -ENOMEM;
  498. orig = opts;
  499. while ((ptr = strsep(&opts, ",\n")) != NULL) {
  500. if (!*ptr)
  501. continue;
  502. token = match_token(ptr, tokens, args);
  503. switch (token) {
  504. case Opt_rd_pages:
  505. match_int(args, &arg);
  506. rd_dev->rd_page_count = arg;
  507. pr_debug("RAMDISK: Referencing Page"
  508. " Count: %u\n", rd_dev->rd_page_count);
  509. rd_dev->rd_flags |= RDF_HAS_PAGE_COUNT;
  510. break;
  511. case Opt_rd_nullio:
  512. match_int(args, &arg);
  513. if (arg != 1)
  514. break;
  515. pr_debug("RAMDISK: Setting NULLIO flag: %d\n", arg);
  516. rd_dev->rd_flags |= RDF_NULLIO;
  517. break;
  518. default:
  519. break;
  520. }
  521. }
  522. kfree(orig);
  523. return (!ret) ? count : ret;
  524. }
  525. static ssize_t rd_show_configfs_dev_params(struct se_device *dev, char *b)
  526. {
  527. struct rd_dev *rd_dev = RD_DEV(dev);
  528. ssize_t bl = sprintf(b, "TCM RamDisk ID: %u RamDisk Makeup: rd_mcp\n",
  529. rd_dev->rd_dev_id);
  530. bl += sprintf(b + bl, " PAGES/PAGE_SIZE: %u*%lu"
  531. " SG_table_count: %u nullio: %d\n", rd_dev->rd_page_count,
  532. PAGE_SIZE, rd_dev->sg_table_count,
  533. !!(rd_dev->rd_flags & RDF_NULLIO));
  534. return bl;
  535. }
  536. static sector_t rd_get_blocks(struct se_device *dev)
  537. {
  538. struct rd_dev *rd_dev = RD_DEV(dev);
  539. unsigned long long blocks_long = ((rd_dev->rd_page_count * PAGE_SIZE) /
  540. dev->dev_attrib.block_size) - 1;
  541. return blocks_long;
  542. }
  543. static int rd_init_prot(struct se_device *dev)
  544. {
  545. struct rd_dev *rd_dev = RD_DEV(dev);
  546. if (!dev->dev_attrib.pi_prot_type)
  547. return 0;
  548. return rd_build_prot_space(rd_dev, dev->prot_length,
  549. dev->dev_attrib.block_size);
  550. }
  551. static void rd_free_prot(struct se_device *dev)
  552. {
  553. struct rd_dev *rd_dev = RD_DEV(dev);
  554. rd_release_prot_space(rd_dev);
  555. }
  556. static struct sbc_ops rd_sbc_ops = {
  557. .execute_rw = rd_execute_rw,
  558. };
  559. static sense_reason_t
  560. rd_parse_cdb(struct se_cmd *cmd)
  561. {
  562. return sbc_parse_cdb(cmd, &rd_sbc_ops);
  563. }
  564. static const struct target_backend_ops rd_mcp_ops = {
  565. .name = "rd_mcp",
  566. .inquiry_prod = "RAMDISK-MCP",
  567. .inquiry_rev = RD_MCP_VERSION,
  568. .attach_hba = rd_attach_hba,
  569. .detach_hba = rd_detach_hba,
  570. .alloc_device = rd_alloc_device,
  571. .configure_device = rd_configure_device,
  572. .free_device = rd_free_device,
  573. .parse_cdb = rd_parse_cdb,
  574. .set_configfs_dev_params = rd_set_configfs_dev_params,
  575. .show_configfs_dev_params = rd_show_configfs_dev_params,
  576. .get_device_type = sbc_get_device_type,
  577. .get_blocks = rd_get_blocks,
  578. .init_prot = rd_init_prot,
  579. .free_prot = rd_free_prot,
  580. .tb_dev_attrib_attrs = sbc_attrib_attrs,
  581. };
  582. int __init rd_module_init(void)
  583. {
  584. return transport_backend_register(&rd_mcp_ops);
  585. }
  586. void rd_module_exit(void)
  587. {
  588. target_backend_unregister(&rd_mcp_ops);
  589. }