file.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/falloc.h>
  27. #include <linux/swap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/statfs.h>
  30. #include <linux/compat.h>
  31. #include <linux/slab.h>
  32. #include "ctree.h"
  33. #include "disk-io.h"
  34. #include "transaction.h"
  35. #include "btrfs_inode.h"
  36. #include "ioctl.h"
  37. #include "print-tree.h"
  38. #include "tree-log.h"
  39. #include "locking.h"
  40. #include "compat.h"
  41. #include "volumes.h"
  42. static struct kmem_cache *btrfs_inode_defrag_cachep;
  43. /*
  44. * when auto defrag is enabled we
  45. * queue up these defrag structs to remember which
  46. * inodes need defragging passes
  47. */
  48. struct inode_defrag {
  49. struct rb_node rb_node;
  50. /* objectid */
  51. u64 ino;
  52. /*
  53. * transid where the defrag was added, we search for
  54. * extents newer than this
  55. */
  56. u64 transid;
  57. /* root objectid */
  58. u64 root;
  59. /* last offset we were able to defrag */
  60. u64 last_offset;
  61. /* if we've wrapped around back to zero once already */
  62. int cycled;
  63. };
  64. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  65. struct inode_defrag *defrag2)
  66. {
  67. if (defrag1->root > defrag2->root)
  68. return 1;
  69. else if (defrag1->root < defrag2->root)
  70. return -1;
  71. else if (defrag1->ino > defrag2->ino)
  72. return 1;
  73. else if (defrag1->ino < defrag2->ino)
  74. return -1;
  75. else
  76. return 0;
  77. }
  78. /* pop a record for an inode into the defrag tree. The lock
  79. * must be held already
  80. *
  81. * If you're inserting a record for an older transid than an
  82. * existing record, the transid already in the tree is lowered
  83. *
  84. * If an existing record is found the defrag item you
  85. * pass in is freed
  86. */
  87. static void __btrfs_add_inode_defrag(struct inode *inode,
  88. struct inode_defrag *defrag)
  89. {
  90. struct btrfs_root *root = BTRFS_I(inode)->root;
  91. struct inode_defrag *entry;
  92. struct rb_node **p;
  93. struct rb_node *parent = NULL;
  94. int ret;
  95. p = &root->fs_info->defrag_inodes.rb_node;
  96. while (*p) {
  97. parent = *p;
  98. entry = rb_entry(parent, struct inode_defrag, rb_node);
  99. ret = __compare_inode_defrag(defrag, entry);
  100. if (ret < 0)
  101. p = &parent->rb_left;
  102. else if (ret > 0)
  103. p = &parent->rb_right;
  104. else {
  105. /* if we're reinserting an entry for
  106. * an old defrag run, make sure to
  107. * lower the transid of our existing record
  108. */
  109. if (defrag->transid < entry->transid)
  110. entry->transid = defrag->transid;
  111. if (defrag->last_offset > entry->last_offset)
  112. entry->last_offset = defrag->last_offset;
  113. goto exists;
  114. }
  115. }
  116. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  117. rb_link_node(&defrag->rb_node, parent, p);
  118. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  119. return;
  120. exists:
  121. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  122. return;
  123. }
  124. /*
  125. * insert a defrag record for this inode if auto defrag is
  126. * enabled
  127. */
  128. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  129. struct inode *inode)
  130. {
  131. struct btrfs_root *root = BTRFS_I(inode)->root;
  132. struct inode_defrag *defrag;
  133. u64 transid;
  134. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  135. return 0;
  136. if (btrfs_fs_closing(root->fs_info))
  137. return 0;
  138. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  139. return 0;
  140. if (trans)
  141. transid = trans->transid;
  142. else
  143. transid = BTRFS_I(inode)->root->last_trans;
  144. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  145. if (!defrag)
  146. return -ENOMEM;
  147. defrag->ino = btrfs_ino(inode);
  148. defrag->transid = transid;
  149. defrag->root = root->root_key.objectid;
  150. spin_lock(&root->fs_info->defrag_inodes_lock);
  151. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  152. __btrfs_add_inode_defrag(inode, defrag);
  153. else
  154. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  155. spin_unlock(&root->fs_info->defrag_inodes_lock);
  156. return 0;
  157. }
  158. /*
  159. * must be called with the defrag_inodes lock held
  160. */
  161. struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info,
  162. u64 root, u64 ino,
  163. struct rb_node **next)
  164. {
  165. struct inode_defrag *entry = NULL;
  166. struct inode_defrag tmp;
  167. struct rb_node *p;
  168. struct rb_node *parent = NULL;
  169. int ret;
  170. tmp.ino = ino;
  171. tmp.root = root;
  172. p = info->defrag_inodes.rb_node;
  173. while (p) {
  174. parent = p;
  175. entry = rb_entry(parent, struct inode_defrag, rb_node);
  176. ret = __compare_inode_defrag(&tmp, entry);
  177. if (ret < 0)
  178. p = parent->rb_left;
  179. else if (ret > 0)
  180. p = parent->rb_right;
  181. else
  182. return entry;
  183. }
  184. if (next) {
  185. while (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  186. parent = rb_next(parent);
  187. entry = rb_entry(parent, struct inode_defrag, rb_node);
  188. }
  189. *next = parent;
  190. }
  191. return NULL;
  192. }
  193. /*
  194. * run through the list of inodes in the FS that need
  195. * defragging
  196. */
  197. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  198. {
  199. struct inode_defrag *defrag;
  200. struct btrfs_root *inode_root;
  201. struct inode *inode;
  202. struct rb_node *n;
  203. struct btrfs_key key;
  204. struct btrfs_ioctl_defrag_range_args range;
  205. u64 first_ino = 0;
  206. u64 root_objectid = 0;
  207. int num_defrag;
  208. int defrag_batch = 1024;
  209. memset(&range, 0, sizeof(range));
  210. range.len = (u64)-1;
  211. atomic_inc(&fs_info->defrag_running);
  212. spin_lock(&fs_info->defrag_inodes_lock);
  213. while(1) {
  214. n = NULL;
  215. /* find an inode to defrag */
  216. defrag = btrfs_find_defrag_inode(fs_info, root_objectid,
  217. first_ino, &n);
  218. if (!defrag) {
  219. if (n) {
  220. defrag = rb_entry(n, struct inode_defrag,
  221. rb_node);
  222. } else if (root_objectid || first_ino) {
  223. root_objectid = 0;
  224. first_ino = 0;
  225. continue;
  226. } else {
  227. break;
  228. }
  229. }
  230. /* remove it from the rbtree */
  231. first_ino = defrag->ino + 1;
  232. root_objectid = defrag->root;
  233. rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
  234. if (btrfs_fs_closing(fs_info))
  235. goto next_free;
  236. spin_unlock(&fs_info->defrag_inodes_lock);
  237. /* get the inode */
  238. key.objectid = defrag->root;
  239. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  240. key.offset = (u64)-1;
  241. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  242. if (IS_ERR(inode_root))
  243. goto next;
  244. key.objectid = defrag->ino;
  245. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  246. key.offset = 0;
  247. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  248. if (IS_ERR(inode))
  249. goto next;
  250. /* do a chunk of defrag */
  251. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  252. range.start = defrag->last_offset;
  253. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  254. defrag_batch);
  255. /*
  256. * if we filled the whole defrag batch, there
  257. * must be more work to do. Queue this defrag
  258. * again
  259. */
  260. if (num_defrag == defrag_batch) {
  261. defrag->last_offset = range.start;
  262. __btrfs_add_inode_defrag(inode, defrag);
  263. /*
  264. * we don't want to kfree defrag, we added it back to
  265. * the rbtree
  266. */
  267. defrag = NULL;
  268. } else if (defrag->last_offset && !defrag->cycled) {
  269. /*
  270. * we didn't fill our defrag batch, but
  271. * we didn't start at zero. Make sure we loop
  272. * around to the start of the file.
  273. */
  274. defrag->last_offset = 0;
  275. defrag->cycled = 1;
  276. __btrfs_add_inode_defrag(inode, defrag);
  277. defrag = NULL;
  278. }
  279. iput(inode);
  280. next:
  281. spin_lock(&fs_info->defrag_inodes_lock);
  282. next_free:
  283. if (defrag)
  284. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  285. }
  286. spin_unlock(&fs_info->defrag_inodes_lock);
  287. atomic_dec(&fs_info->defrag_running);
  288. /*
  289. * during unmount, we use the transaction_wait queue to
  290. * wait for the defragger to stop
  291. */
  292. wake_up(&fs_info->transaction_wait);
  293. return 0;
  294. }
  295. /* simple helper to fault in pages and copy. This should go away
  296. * and be replaced with calls into generic code.
  297. */
  298. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  299. size_t write_bytes,
  300. struct page **prepared_pages,
  301. struct iov_iter *i)
  302. {
  303. size_t copied = 0;
  304. size_t total_copied = 0;
  305. int pg = 0;
  306. int offset = pos & (PAGE_CACHE_SIZE - 1);
  307. while (write_bytes > 0) {
  308. size_t count = min_t(size_t,
  309. PAGE_CACHE_SIZE - offset, write_bytes);
  310. struct page *page = prepared_pages[pg];
  311. /*
  312. * Copy data from userspace to the current page
  313. *
  314. * Disable pagefault to avoid recursive lock since
  315. * the pages are already locked
  316. */
  317. pagefault_disable();
  318. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  319. pagefault_enable();
  320. /* Flush processor's dcache for this page */
  321. flush_dcache_page(page);
  322. /*
  323. * if we get a partial write, we can end up with
  324. * partially up to date pages. These add
  325. * a lot of complexity, so make sure they don't
  326. * happen by forcing this copy to be retried.
  327. *
  328. * The rest of the btrfs_file_write code will fall
  329. * back to page at a time copies after we return 0.
  330. */
  331. if (!PageUptodate(page) && copied < count)
  332. copied = 0;
  333. iov_iter_advance(i, copied);
  334. write_bytes -= copied;
  335. total_copied += copied;
  336. /* Return to btrfs_file_aio_write to fault page */
  337. if (unlikely(copied == 0))
  338. break;
  339. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  340. offset += copied;
  341. } else {
  342. pg++;
  343. offset = 0;
  344. }
  345. }
  346. return total_copied;
  347. }
  348. /*
  349. * unlocks pages after btrfs_file_write is done with them
  350. */
  351. void btrfs_drop_pages(struct page **pages, size_t num_pages)
  352. {
  353. size_t i;
  354. for (i = 0; i < num_pages; i++) {
  355. /* page checked is some magic around finding pages that
  356. * have been modified without going through btrfs_set_page_dirty
  357. * clear it here
  358. */
  359. ClearPageChecked(pages[i]);
  360. unlock_page(pages[i]);
  361. mark_page_accessed(pages[i]);
  362. page_cache_release(pages[i]);
  363. }
  364. }
  365. /*
  366. * after copy_from_user, pages need to be dirtied and we need to make
  367. * sure holes are created between the current EOF and the start of
  368. * any next extents (if required).
  369. *
  370. * this also makes the decision about creating an inline extent vs
  371. * doing real data extents, marking pages dirty and delalloc as required.
  372. */
  373. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  374. struct page **pages, size_t num_pages,
  375. loff_t pos, size_t write_bytes,
  376. struct extent_state **cached)
  377. {
  378. int err = 0;
  379. int i;
  380. u64 num_bytes;
  381. u64 start_pos;
  382. u64 end_of_last_block;
  383. u64 end_pos = pos + write_bytes;
  384. loff_t isize = i_size_read(inode);
  385. start_pos = pos & ~((u64)root->sectorsize - 1);
  386. num_bytes = (write_bytes + pos - start_pos +
  387. root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  388. end_of_last_block = start_pos + num_bytes - 1;
  389. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  390. cached);
  391. if (err)
  392. return err;
  393. for (i = 0; i < num_pages; i++) {
  394. struct page *p = pages[i];
  395. SetPageUptodate(p);
  396. ClearPageChecked(p);
  397. set_page_dirty(p);
  398. }
  399. /*
  400. * we've only changed i_size in ram, and we haven't updated
  401. * the disk i_size. There is no need to log the inode
  402. * at this time.
  403. */
  404. if (end_pos > isize)
  405. i_size_write(inode, end_pos);
  406. return 0;
  407. }
  408. /*
  409. * this drops all the extents in the cache that intersect the range
  410. * [start, end]. Existing extents are split as required.
  411. */
  412. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  413. int skip_pinned)
  414. {
  415. struct extent_map *em;
  416. struct extent_map *split = NULL;
  417. struct extent_map *split2 = NULL;
  418. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  419. u64 len = end - start + 1;
  420. u64 gen;
  421. int ret;
  422. int testend = 1;
  423. unsigned long flags;
  424. int compressed = 0;
  425. WARN_ON(end < start);
  426. if (end == (u64)-1) {
  427. len = (u64)-1;
  428. testend = 0;
  429. }
  430. while (1) {
  431. int no_splits = 0;
  432. if (!split)
  433. split = alloc_extent_map();
  434. if (!split2)
  435. split2 = alloc_extent_map();
  436. if (!split || !split2)
  437. no_splits = 1;
  438. write_lock(&em_tree->lock);
  439. em = lookup_extent_mapping(em_tree, start, len);
  440. if (!em) {
  441. write_unlock(&em_tree->lock);
  442. break;
  443. }
  444. flags = em->flags;
  445. gen = em->generation;
  446. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  447. if (testend && em->start + em->len >= start + len) {
  448. free_extent_map(em);
  449. write_unlock(&em_tree->lock);
  450. break;
  451. }
  452. start = em->start + em->len;
  453. if (testend)
  454. len = start + len - (em->start + em->len);
  455. free_extent_map(em);
  456. write_unlock(&em_tree->lock);
  457. continue;
  458. }
  459. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  460. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  461. remove_extent_mapping(em_tree, em);
  462. if (no_splits)
  463. goto next;
  464. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  465. em->start < start) {
  466. split->start = em->start;
  467. split->len = start - em->start;
  468. split->orig_start = em->orig_start;
  469. split->block_start = em->block_start;
  470. if (compressed)
  471. split->block_len = em->block_len;
  472. else
  473. split->block_len = split->len;
  474. split->generation = gen;
  475. split->bdev = em->bdev;
  476. split->flags = flags;
  477. split->compress_type = em->compress_type;
  478. ret = add_extent_mapping(em_tree, split);
  479. BUG_ON(ret); /* Logic error */
  480. list_move(&split->list, &em_tree->modified_extents);
  481. free_extent_map(split);
  482. split = split2;
  483. split2 = NULL;
  484. }
  485. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  486. testend && em->start + em->len > start + len) {
  487. u64 diff = start + len - em->start;
  488. split->start = start + len;
  489. split->len = em->start + em->len - (start + len);
  490. split->bdev = em->bdev;
  491. split->flags = flags;
  492. split->compress_type = em->compress_type;
  493. split->generation = gen;
  494. if (compressed) {
  495. split->block_len = em->block_len;
  496. split->block_start = em->block_start;
  497. split->orig_start = em->orig_start;
  498. } else {
  499. split->block_len = split->len;
  500. split->block_start = em->block_start + diff;
  501. split->orig_start = split->start;
  502. }
  503. ret = add_extent_mapping(em_tree, split);
  504. BUG_ON(ret); /* Logic error */
  505. list_move(&split->list, &em_tree->modified_extents);
  506. free_extent_map(split);
  507. split = NULL;
  508. }
  509. next:
  510. write_unlock(&em_tree->lock);
  511. /* once for us */
  512. free_extent_map(em);
  513. /* once for the tree*/
  514. free_extent_map(em);
  515. }
  516. if (split)
  517. free_extent_map(split);
  518. if (split2)
  519. free_extent_map(split2);
  520. }
  521. /*
  522. * this is very complex, but the basic idea is to drop all extents
  523. * in the range start - end. hint_block is filled in with a block number
  524. * that would be a good hint to the block allocator for this file.
  525. *
  526. * If an extent intersects the range but is not entirely inside the range
  527. * it is either truncated or split. Anything entirely inside the range
  528. * is deleted from the tree.
  529. */
  530. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  531. struct btrfs_root *root, struct inode *inode,
  532. struct btrfs_path *path, u64 start, u64 end,
  533. u64 *drop_end, int drop_cache)
  534. {
  535. struct extent_buffer *leaf;
  536. struct btrfs_file_extent_item *fi;
  537. struct btrfs_key key;
  538. struct btrfs_key new_key;
  539. u64 ino = btrfs_ino(inode);
  540. u64 search_start = start;
  541. u64 disk_bytenr = 0;
  542. u64 num_bytes = 0;
  543. u64 extent_offset = 0;
  544. u64 extent_end = 0;
  545. int del_nr = 0;
  546. int del_slot = 0;
  547. int extent_type;
  548. int recow;
  549. int ret;
  550. int modify_tree = -1;
  551. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  552. int found = 0;
  553. if (drop_cache)
  554. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  555. if (start >= BTRFS_I(inode)->disk_i_size)
  556. modify_tree = 0;
  557. while (1) {
  558. recow = 0;
  559. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  560. search_start, modify_tree);
  561. if (ret < 0)
  562. break;
  563. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  564. leaf = path->nodes[0];
  565. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  566. if (key.objectid == ino &&
  567. key.type == BTRFS_EXTENT_DATA_KEY)
  568. path->slots[0]--;
  569. }
  570. ret = 0;
  571. next_slot:
  572. leaf = path->nodes[0];
  573. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  574. BUG_ON(del_nr > 0);
  575. ret = btrfs_next_leaf(root, path);
  576. if (ret < 0)
  577. break;
  578. if (ret > 0) {
  579. ret = 0;
  580. break;
  581. }
  582. leaf = path->nodes[0];
  583. recow = 1;
  584. }
  585. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  586. if (key.objectid > ino ||
  587. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  588. break;
  589. fi = btrfs_item_ptr(leaf, path->slots[0],
  590. struct btrfs_file_extent_item);
  591. extent_type = btrfs_file_extent_type(leaf, fi);
  592. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  593. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  594. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  595. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  596. extent_offset = btrfs_file_extent_offset(leaf, fi);
  597. extent_end = key.offset +
  598. btrfs_file_extent_num_bytes(leaf, fi);
  599. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  600. extent_end = key.offset +
  601. btrfs_file_extent_inline_len(leaf, fi);
  602. } else {
  603. WARN_ON(1);
  604. extent_end = search_start;
  605. }
  606. if (extent_end <= search_start) {
  607. path->slots[0]++;
  608. goto next_slot;
  609. }
  610. found = 1;
  611. search_start = max(key.offset, start);
  612. if (recow || !modify_tree) {
  613. modify_tree = -1;
  614. btrfs_release_path(path);
  615. continue;
  616. }
  617. /*
  618. * | - range to drop - |
  619. * | -------- extent -------- |
  620. */
  621. if (start > key.offset && end < extent_end) {
  622. BUG_ON(del_nr > 0);
  623. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  624. memcpy(&new_key, &key, sizeof(new_key));
  625. new_key.offset = start;
  626. ret = btrfs_duplicate_item(trans, root, path,
  627. &new_key);
  628. if (ret == -EAGAIN) {
  629. btrfs_release_path(path);
  630. continue;
  631. }
  632. if (ret < 0)
  633. break;
  634. leaf = path->nodes[0];
  635. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  636. struct btrfs_file_extent_item);
  637. btrfs_set_file_extent_num_bytes(leaf, fi,
  638. start - key.offset);
  639. fi = btrfs_item_ptr(leaf, path->slots[0],
  640. struct btrfs_file_extent_item);
  641. extent_offset += start - key.offset;
  642. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  643. btrfs_set_file_extent_num_bytes(leaf, fi,
  644. extent_end - start);
  645. btrfs_mark_buffer_dirty(leaf);
  646. if (update_refs && disk_bytenr > 0) {
  647. ret = btrfs_inc_extent_ref(trans, root,
  648. disk_bytenr, num_bytes, 0,
  649. root->root_key.objectid,
  650. new_key.objectid,
  651. start - extent_offset, 0);
  652. BUG_ON(ret); /* -ENOMEM */
  653. }
  654. key.offset = start;
  655. }
  656. /*
  657. * | ---- range to drop ----- |
  658. * | -------- extent -------- |
  659. */
  660. if (start <= key.offset && end < extent_end) {
  661. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  662. memcpy(&new_key, &key, sizeof(new_key));
  663. new_key.offset = end;
  664. btrfs_set_item_key_safe(trans, root, path, &new_key);
  665. extent_offset += end - key.offset;
  666. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  667. btrfs_set_file_extent_num_bytes(leaf, fi,
  668. extent_end - end);
  669. btrfs_mark_buffer_dirty(leaf);
  670. if (update_refs && disk_bytenr > 0)
  671. inode_sub_bytes(inode, end - key.offset);
  672. break;
  673. }
  674. search_start = extent_end;
  675. /*
  676. * | ---- range to drop ----- |
  677. * | -------- extent -------- |
  678. */
  679. if (start > key.offset && end >= extent_end) {
  680. BUG_ON(del_nr > 0);
  681. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  682. btrfs_set_file_extent_num_bytes(leaf, fi,
  683. start - key.offset);
  684. btrfs_mark_buffer_dirty(leaf);
  685. if (update_refs && disk_bytenr > 0)
  686. inode_sub_bytes(inode, extent_end - start);
  687. if (end == extent_end)
  688. break;
  689. path->slots[0]++;
  690. goto next_slot;
  691. }
  692. /*
  693. * | ---- range to drop ----- |
  694. * | ------ extent ------ |
  695. */
  696. if (start <= key.offset && end >= extent_end) {
  697. if (del_nr == 0) {
  698. del_slot = path->slots[0];
  699. del_nr = 1;
  700. } else {
  701. BUG_ON(del_slot + del_nr != path->slots[0]);
  702. del_nr++;
  703. }
  704. if (update_refs &&
  705. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  706. inode_sub_bytes(inode,
  707. extent_end - key.offset);
  708. extent_end = ALIGN(extent_end,
  709. root->sectorsize);
  710. } else if (update_refs && disk_bytenr > 0) {
  711. ret = btrfs_free_extent(trans, root,
  712. disk_bytenr, num_bytes, 0,
  713. root->root_key.objectid,
  714. key.objectid, key.offset -
  715. extent_offset, 0);
  716. BUG_ON(ret); /* -ENOMEM */
  717. inode_sub_bytes(inode,
  718. extent_end - key.offset);
  719. }
  720. if (end == extent_end)
  721. break;
  722. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  723. path->slots[0]++;
  724. goto next_slot;
  725. }
  726. ret = btrfs_del_items(trans, root, path, del_slot,
  727. del_nr);
  728. if (ret) {
  729. btrfs_abort_transaction(trans, root, ret);
  730. break;
  731. }
  732. del_nr = 0;
  733. del_slot = 0;
  734. btrfs_release_path(path);
  735. continue;
  736. }
  737. BUG_ON(1);
  738. }
  739. if (!ret && del_nr > 0) {
  740. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  741. if (ret)
  742. btrfs_abort_transaction(trans, root, ret);
  743. }
  744. if (drop_end)
  745. *drop_end = found ? min(end, extent_end) : end;
  746. btrfs_release_path(path);
  747. return ret;
  748. }
  749. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  750. struct btrfs_root *root, struct inode *inode, u64 start,
  751. u64 end, int drop_cache)
  752. {
  753. struct btrfs_path *path;
  754. int ret;
  755. path = btrfs_alloc_path();
  756. if (!path)
  757. return -ENOMEM;
  758. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  759. drop_cache);
  760. btrfs_free_path(path);
  761. return ret;
  762. }
  763. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  764. u64 objectid, u64 bytenr, u64 orig_offset,
  765. u64 *start, u64 *end)
  766. {
  767. struct btrfs_file_extent_item *fi;
  768. struct btrfs_key key;
  769. u64 extent_end;
  770. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  771. return 0;
  772. btrfs_item_key_to_cpu(leaf, &key, slot);
  773. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  774. return 0;
  775. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  776. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  777. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  778. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  779. btrfs_file_extent_compression(leaf, fi) ||
  780. btrfs_file_extent_encryption(leaf, fi) ||
  781. btrfs_file_extent_other_encoding(leaf, fi))
  782. return 0;
  783. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  784. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  785. return 0;
  786. *start = key.offset;
  787. *end = extent_end;
  788. return 1;
  789. }
  790. /*
  791. * Mark extent in the range start - end as written.
  792. *
  793. * This changes extent type from 'pre-allocated' to 'regular'. If only
  794. * part of extent is marked as written, the extent will be split into
  795. * two or three.
  796. */
  797. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  798. struct inode *inode, u64 start, u64 end)
  799. {
  800. struct btrfs_root *root = BTRFS_I(inode)->root;
  801. struct extent_buffer *leaf;
  802. struct btrfs_path *path;
  803. struct btrfs_file_extent_item *fi;
  804. struct btrfs_key key;
  805. struct btrfs_key new_key;
  806. u64 bytenr;
  807. u64 num_bytes;
  808. u64 extent_end;
  809. u64 orig_offset;
  810. u64 other_start;
  811. u64 other_end;
  812. u64 split;
  813. int del_nr = 0;
  814. int del_slot = 0;
  815. int recow;
  816. int ret;
  817. u64 ino = btrfs_ino(inode);
  818. path = btrfs_alloc_path();
  819. if (!path)
  820. return -ENOMEM;
  821. again:
  822. recow = 0;
  823. split = start;
  824. key.objectid = ino;
  825. key.type = BTRFS_EXTENT_DATA_KEY;
  826. key.offset = split;
  827. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  828. if (ret < 0)
  829. goto out;
  830. if (ret > 0 && path->slots[0] > 0)
  831. path->slots[0]--;
  832. leaf = path->nodes[0];
  833. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  834. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  835. fi = btrfs_item_ptr(leaf, path->slots[0],
  836. struct btrfs_file_extent_item);
  837. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  838. BTRFS_FILE_EXTENT_PREALLOC);
  839. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  840. BUG_ON(key.offset > start || extent_end < end);
  841. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  842. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  843. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  844. memcpy(&new_key, &key, sizeof(new_key));
  845. if (start == key.offset && end < extent_end) {
  846. other_start = 0;
  847. other_end = start;
  848. if (extent_mergeable(leaf, path->slots[0] - 1,
  849. ino, bytenr, orig_offset,
  850. &other_start, &other_end)) {
  851. new_key.offset = end;
  852. btrfs_set_item_key_safe(trans, root, path, &new_key);
  853. fi = btrfs_item_ptr(leaf, path->slots[0],
  854. struct btrfs_file_extent_item);
  855. btrfs_set_file_extent_generation(leaf, fi,
  856. trans->transid);
  857. btrfs_set_file_extent_num_bytes(leaf, fi,
  858. extent_end - end);
  859. btrfs_set_file_extent_offset(leaf, fi,
  860. end - orig_offset);
  861. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  862. struct btrfs_file_extent_item);
  863. btrfs_set_file_extent_generation(leaf, fi,
  864. trans->transid);
  865. btrfs_set_file_extent_num_bytes(leaf, fi,
  866. end - other_start);
  867. btrfs_mark_buffer_dirty(leaf);
  868. goto out;
  869. }
  870. }
  871. if (start > key.offset && end == extent_end) {
  872. other_start = end;
  873. other_end = 0;
  874. if (extent_mergeable(leaf, path->slots[0] + 1,
  875. ino, bytenr, orig_offset,
  876. &other_start, &other_end)) {
  877. fi = btrfs_item_ptr(leaf, path->slots[0],
  878. struct btrfs_file_extent_item);
  879. btrfs_set_file_extent_num_bytes(leaf, fi,
  880. start - key.offset);
  881. btrfs_set_file_extent_generation(leaf, fi,
  882. trans->transid);
  883. path->slots[0]++;
  884. new_key.offset = start;
  885. btrfs_set_item_key_safe(trans, root, path, &new_key);
  886. fi = btrfs_item_ptr(leaf, path->slots[0],
  887. struct btrfs_file_extent_item);
  888. btrfs_set_file_extent_generation(leaf, fi,
  889. trans->transid);
  890. btrfs_set_file_extent_num_bytes(leaf, fi,
  891. other_end - start);
  892. btrfs_set_file_extent_offset(leaf, fi,
  893. start - orig_offset);
  894. btrfs_mark_buffer_dirty(leaf);
  895. goto out;
  896. }
  897. }
  898. while (start > key.offset || end < extent_end) {
  899. if (key.offset == start)
  900. split = end;
  901. new_key.offset = split;
  902. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  903. if (ret == -EAGAIN) {
  904. btrfs_release_path(path);
  905. goto again;
  906. }
  907. if (ret < 0) {
  908. btrfs_abort_transaction(trans, root, ret);
  909. goto out;
  910. }
  911. leaf = path->nodes[0];
  912. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  913. struct btrfs_file_extent_item);
  914. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  915. btrfs_set_file_extent_num_bytes(leaf, fi,
  916. split - key.offset);
  917. fi = btrfs_item_ptr(leaf, path->slots[0],
  918. struct btrfs_file_extent_item);
  919. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  920. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  921. btrfs_set_file_extent_num_bytes(leaf, fi,
  922. extent_end - split);
  923. btrfs_mark_buffer_dirty(leaf);
  924. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  925. root->root_key.objectid,
  926. ino, orig_offset, 0);
  927. BUG_ON(ret); /* -ENOMEM */
  928. if (split == start) {
  929. key.offset = start;
  930. } else {
  931. BUG_ON(start != key.offset);
  932. path->slots[0]--;
  933. extent_end = end;
  934. }
  935. recow = 1;
  936. }
  937. other_start = end;
  938. other_end = 0;
  939. if (extent_mergeable(leaf, path->slots[0] + 1,
  940. ino, bytenr, orig_offset,
  941. &other_start, &other_end)) {
  942. if (recow) {
  943. btrfs_release_path(path);
  944. goto again;
  945. }
  946. extent_end = other_end;
  947. del_slot = path->slots[0] + 1;
  948. del_nr++;
  949. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  950. 0, root->root_key.objectid,
  951. ino, orig_offset, 0);
  952. BUG_ON(ret); /* -ENOMEM */
  953. }
  954. other_start = 0;
  955. other_end = start;
  956. if (extent_mergeable(leaf, path->slots[0] - 1,
  957. ino, bytenr, orig_offset,
  958. &other_start, &other_end)) {
  959. if (recow) {
  960. btrfs_release_path(path);
  961. goto again;
  962. }
  963. key.offset = other_start;
  964. del_slot = path->slots[0];
  965. del_nr++;
  966. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  967. 0, root->root_key.objectid,
  968. ino, orig_offset, 0);
  969. BUG_ON(ret); /* -ENOMEM */
  970. }
  971. if (del_nr == 0) {
  972. fi = btrfs_item_ptr(leaf, path->slots[0],
  973. struct btrfs_file_extent_item);
  974. btrfs_set_file_extent_type(leaf, fi,
  975. BTRFS_FILE_EXTENT_REG);
  976. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  977. btrfs_mark_buffer_dirty(leaf);
  978. } else {
  979. fi = btrfs_item_ptr(leaf, del_slot - 1,
  980. struct btrfs_file_extent_item);
  981. btrfs_set_file_extent_type(leaf, fi,
  982. BTRFS_FILE_EXTENT_REG);
  983. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  984. btrfs_set_file_extent_num_bytes(leaf, fi,
  985. extent_end - key.offset);
  986. btrfs_mark_buffer_dirty(leaf);
  987. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  988. if (ret < 0) {
  989. btrfs_abort_transaction(trans, root, ret);
  990. goto out;
  991. }
  992. }
  993. out:
  994. btrfs_free_path(path);
  995. return 0;
  996. }
  997. /*
  998. * on error we return an unlocked page and the error value
  999. * on success we return a locked page and 0
  1000. */
  1001. static int prepare_uptodate_page(struct page *page, u64 pos,
  1002. bool force_uptodate)
  1003. {
  1004. int ret = 0;
  1005. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1006. !PageUptodate(page)) {
  1007. ret = btrfs_readpage(NULL, page);
  1008. if (ret)
  1009. return ret;
  1010. lock_page(page);
  1011. if (!PageUptodate(page)) {
  1012. unlock_page(page);
  1013. return -EIO;
  1014. }
  1015. }
  1016. return 0;
  1017. }
  1018. /*
  1019. * this gets pages into the page cache and locks them down, it also properly
  1020. * waits for data=ordered extents to finish before allowing the pages to be
  1021. * modified.
  1022. */
  1023. static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
  1024. struct page **pages, size_t num_pages,
  1025. loff_t pos, unsigned long first_index,
  1026. size_t write_bytes, bool force_uptodate)
  1027. {
  1028. struct extent_state *cached_state = NULL;
  1029. int i;
  1030. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1031. struct inode *inode = fdentry(file)->d_inode;
  1032. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1033. int err = 0;
  1034. int faili = 0;
  1035. u64 start_pos;
  1036. u64 last_pos;
  1037. start_pos = pos & ~((u64)root->sectorsize - 1);
  1038. last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
  1039. again:
  1040. for (i = 0; i < num_pages; i++) {
  1041. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1042. mask | __GFP_WRITE);
  1043. if (!pages[i]) {
  1044. faili = i - 1;
  1045. err = -ENOMEM;
  1046. goto fail;
  1047. }
  1048. if (i == 0)
  1049. err = prepare_uptodate_page(pages[i], pos,
  1050. force_uptodate);
  1051. if (i == num_pages - 1)
  1052. err = prepare_uptodate_page(pages[i],
  1053. pos + write_bytes, false);
  1054. if (err) {
  1055. page_cache_release(pages[i]);
  1056. faili = i - 1;
  1057. goto fail;
  1058. }
  1059. wait_on_page_writeback(pages[i]);
  1060. }
  1061. err = 0;
  1062. if (start_pos < inode->i_size) {
  1063. struct btrfs_ordered_extent *ordered;
  1064. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1065. start_pos, last_pos - 1, 0, &cached_state);
  1066. ordered = btrfs_lookup_first_ordered_extent(inode,
  1067. last_pos - 1);
  1068. if (ordered &&
  1069. ordered->file_offset + ordered->len > start_pos &&
  1070. ordered->file_offset < last_pos) {
  1071. btrfs_put_ordered_extent(ordered);
  1072. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1073. start_pos, last_pos - 1,
  1074. &cached_state, GFP_NOFS);
  1075. for (i = 0; i < num_pages; i++) {
  1076. unlock_page(pages[i]);
  1077. page_cache_release(pages[i]);
  1078. }
  1079. btrfs_wait_ordered_range(inode, start_pos,
  1080. last_pos - start_pos);
  1081. goto again;
  1082. }
  1083. if (ordered)
  1084. btrfs_put_ordered_extent(ordered);
  1085. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1086. last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
  1087. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1088. 0, 0, &cached_state, GFP_NOFS);
  1089. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1090. start_pos, last_pos - 1, &cached_state,
  1091. GFP_NOFS);
  1092. }
  1093. for (i = 0; i < num_pages; i++) {
  1094. if (clear_page_dirty_for_io(pages[i]))
  1095. account_page_redirty(pages[i]);
  1096. set_page_extent_mapped(pages[i]);
  1097. WARN_ON(!PageLocked(pages[i]));
  1098. }
  1099. return 0;
  1100. fail:
  1101. while (faili >= 0) {
  1102. unlock_page(pages[faili]);
  1103. page_cache_release(pages[faili]);
  1104. faili--;
  1105. }
  1106. return err;
  1107. }
  1108. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1109. struct iov_iter *i,
  1110. loff_t pos)
  1111. {
  1112. struct inode *inode = fdentry(file)->d_inode;
  1113. struct btrfs_root *root = BTRFS_I(inode)->root;
  1114. struct page **pages = NULL;
  1115. unsigned long first_index;
  1116. size_t num_written = 0;
  1117. int nrptrs;
  1118. int ret = 0;
  1119. bool force_page_uptodate = false;
  1120. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1121. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1122. (sizeof(struct page *)));
  1123. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1124. nrptrs = max(nrptrs, 8);
  1125. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1126. if (!pages)
  1127. return -ENOMEM;
  1128. first_index = pos >> PAGE_CACHE_SHIFT;
  1129. while (iov_iter_count(i) > 0) {
  1130. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1131. size_t write_bytes = min(iov_iter_count(i),
  1132. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1133. offset);
  1134. size_t num_pages = (write_bytes + offset +
  1135. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1136. size_t dirty_pages;
  1137. size_t copied;
  1138. WARN_ON(num_pages > nrptrs);
  1139. /*
  1140. * Fault pages before locking them in prepare_pages
  1141. * to avoid recursive lock
  1142. */
  1143. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1144. ret = -EFAULT;
  1145. break;
  1146. }
  1147. ret = btrfs_delalloc_reserve_space(inode,
  1148. num_pages << PAGE_CACHE_SHIFT);
  1149. if (ret)
  1150. break;
  1151. /*
  1152. * This is going to setup the pages array with the number of
  1153. * pages we want, so we don't really need to worry about the
  1154. * contents of pages from loop to loop
  1155. */
  1156. ret = prepare_pages(root, file, pages, num_pages,
  1157. pos, first_index, write_bytes,
  1158. force_page_uptodate);
  1159. if (ret) {
  1160. btrfs_delalloc_release_space(inode,
  1161. num_pages << PAGE_CACHE_SHIFT);
  1162. break;
  1163. }
  1164. copied = btrfs_copy_from_user(pos, num_pages,
  1165. write_bytes, pages, i);
  1166. /*
  1167. * if we have trouble faulting in the pages, fall
  1168. * back to one page at a time
  1169. */
  1170. if (copied < write_bytes)
  1171. nrptrs = 1;
  1172. if (copied == 0) {
  1173. force_page_uptodate = true;
  1174. dirty_pages = 0;
  1175. } else {
  1176. force_page_uptodate = false;
  1177. dirty_pages = (copied + offset +
  1178. PAGE_CACHE_SIZE - 1) >>
  1179. PAGE_CACHE_SHIFT;
  1180. }
  1181. /*
  1182. * If we had a short copy we need to release the excess delaloc
  1183. * bytes we reserved. We need to increment outstanding_extents
  1184. * because btrfs_delalloc_release_space will decrement it, but
  1185. * we still have an outstanding extent for the chunk we actually
  1186. * managed to copy.
  1187. */
  1188. if (num_pages > dirty_pages) {
  1189. if (copied > 0) {
  1190. spin_lock(&BTRFS_I(inode)->lock);
  1191. BTRFS_I(inode)->outstanding_extents++;
  1192. spin_unlock(&BTRFS_I(inode)->lock);
  1193. }
  1194. btrfs_delalloc_release_space(inode,
  1195. (num_pages - dirty_pages) <<
  1196. PAGE_CACHE_SHIFT);
  1197. }
  1198. if (copied > 0) {
  1199. ret = btrfs_dirty_pages(root, inode, pages,
  1200. dirty_pages, pos, copied,
  1201. NULL);
  1202. if (ret) {
  1203. btrfs_delalloc_release_space(inode,
  1204. dirty_pages << PAGE_CACHE_SHIFT);
  1205. btrfs_drop_pages(pages, num_pages);
  1206. break;
  1207. }
  1208. }
  1209. btrfs_drop_pages(pages, num_pages);
  1210. cond_resched();
  1211. balance_dirty_pages_ratelimited_nr(inode->i_mapping,
  1212. dirty_pages);
  1213. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1214. btrfs_btree_balance_dirty(root);
  1215. pos += copied;
  1216. num_written += copied;
  1217. }
  1218. kfree(pages);
  1219. return num_written ? num_written : ret;
  1220. }
  1221. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1222. const struct iovec *iov,
  1223. unsigned long nr_segs, loff_t pos,
  1224. loff_t *ppos, size_t count, size_t ocount)
  1225. {
  1226. struct file *file = iocb->ki_filp;
  1227. struct iov_iter i;
  1228. ssize_t written;
  1229. ssize_t written_buffered;
  1230. loff_t endbyte;
  1231. int err;
  1232. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1233. count, ocount);
  1234. if (written < 0 || written == count)
  1235. return written;
  1236. pos += written;
  1237. count -= written;
  1238. iov_iter_init(&i, iov, nr_segs, count, written);
  1239. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1240. if (written_buffered < 0) {
  1241. err = written_buffered;
  1242. goto out;
  1243. }
  1244. endbyte = pos + written_buffered - 1;
  1245. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1246. if (err)
  1247. goto out;
  1248. written += written_buffered;
  1249. *ppos = pos + written_buffered;
  1250. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1251. endbyte >> PAGE_CACHE_SHIFT);
  1252. out:
  1253. return written ? written : err;
  1254. }
  1255. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1256. const struct iovec *iov,
  1257. unsigned long nr_segs, loff_t pos)
  1258. {
  1259. struct file *file = iocb->ki_filp;
  1260. struct inode *inode = fdentry(file)->d_inode;
  1261. struct btrfs_root *root = BTRFS_I(inode)->root;
  1262. loff_t *ppos = &iocb->ki_pos;
  1263. u64 start_pos;
  1264. ssize_t num_written = 0;
  1265. ssize_t err = 0;
  1266. size_t count, ocount;
  1267. sb_start_write(inode->i_sb);
  1268. mutex_lock(&inode->i_mutex);
  1269. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1270. if (err) {
  1271. mutex_unlock(&inode->i_mutex);
  1272. goto out;
  1273. }
  1274. count = ocount;
  1275. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1276. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1277. if (err) {
  1278. mutex_unlock(&inode->i_mutex);
  1279. goto out;
  1280. }
  1281. if (count == 0) {
  1282. mutex_unlock(&inode->i_mutex);
  1283. goto out;
  1284. }
  1285. err = file_remove_suid(file);
  1286. if (err) {
  1287. mutex_unlock(&inode->i_mutex);
  1288. goto out;
  1289. }
  1290. /*
  1291. * If BTRFS flips readonly due to some impossible error
  1292. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1293. * although we have opened a file as writable, we have
  1294. * to stop this write operation to ensure FS consistency.
  1295. */
  1296. if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  1297. mutex_unlock(&inode->i_mutex);
  1298. err = -EROFS;
  1299. goto out;
  1300. }
  1301. err = file_update_time(file);
  1302. if (err) {
  1303. mutex_unlock(&inode->i_mutex);
  1304. goto out;
  1305. }
  1306. start_pos = round_down(pos, root->sectorsize);
  1307. if (start_pos > i_size_read(inode)) {
  1308. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1309. if (err) {
  1310. mutex_unlock(&inode->i_mutex);
  1311. goto out;
  1312. }
  1313. }
  1314. if (unlikely(file->f_flags & O_DIRECT)) {
  1315. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1316. pos, ppos, count, ocount);
  1317. } else {
  1318. struct iov_iter i;
  1319. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1320. num_written = __btrfs_buffered_write(file, &i, pos);
  1321. if (num_written > 0)
  1322. *ppos = pos + num_written;
  1323. }
  1324. mutex_unlock(&inode->i_mutex);
  1325. /*
  1326. * we want to make sure fsync finds this change
  1327. * but we haven't joined a transaction running right now.
  1328. *
  1329. * Later on, someone is sure to update the inode and get the
  1330. * real transid recorded.
  1331. *
  1332. * We set last_trans now to the fs_info generation + 1,
  1333. * this will either be one more than the running transaction
  1334. * or the generation used for the next transaction if there isn't
  1335. * one running right now.
  1336. */
  1337. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1338. if (num_written > 0 || num_written == -EIOCBQUEUED) {
  1339. err = generic_write_sync(file, pos, num_written);
  1340. if (err < 0 && num_written > 0)
  1341. num_written = err;
  1342. }
  1343. out:
  1344. sb_end_write(inode->i_sb);
  1345. current->backing_dev_info = NULL;
  1346. return num_written ? num_written : err;
  1347. }
  1348. int btrfs_release_file(struct inode *inode, struct file *filp)
  1349. {
  1350. /*
  1351. * ordered_data_close is set by settattr when we are about to truncate
  1352. * a file from a non-zero size to a zero size. This tries to
  1353. * flush down new bytes that may have been written if the
  1354. * application were using truncate to replace a file in place.
  1355. */
  1356. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1357. &BTRFS_I(inode)->runtime_flags)) {
  1358. btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
  1359. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1360. filemap_flush(inode->i_mapping);
  1361. }
  1362. if (filp->private_data)
  1363. btrfs_ioctl_trans_end(filp);
  1364. return 0;
  1365. }
  1366. /*
  1367. * fsync call for both files and directories. This logs the inode into
  1368. * the tree log instead of forcing full commits whenever possible.
  1369. *
  1370. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1371. * in the metadata btree are up to date for copying to the log.
  1372. *
  1373. * It drops the inode mutex before doing the tree log commit. This is an
  1374. * important optimization for directories because holding the mutex prevents
  1375. * new operations on the dir while we write to disk.
  1376. */
  1377. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1378. {
  1379. struct dentry *dentry = file->f_path.dentry;
  1380. struct inode *inode = dentry->d_inode;
  1381. struct btrfs_root *root = BTRFS_I(inode)->root;
  1382. int ret = 0;
  1383. struct btrfs_trans_handle *trans;
  1384. trace_btrfs_sync_file(file, datasync);
  1385. /*
  1386. * We write the dirty pages in the range and wait until they complete
  1387. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1388. * multi-task, and make the performance up.
  1389. */
  1390. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  1391. if (ret)
  1392. return ret;
  1393. mutex_lock(&inode->i_mutex);
  1394. /*
  1395. * We flush the dirty pages again to avoid some dirty pages in the
  1396. * range being left.
  1397. */
  1398. atomic_inc(&root->log_batch);
  1399. btrfs_wait_ordered_range(inode, start, end - start + 1);
  1400. atomic_inc(&root->log_batch);
  1401. /*
  1402. * check the transaction that last modified this inode
  1403. * and see if its already been committed
  1404. */
  1405. if (!BTRFS_I(inode)->last_trans) {
  1406. mutex_unlock(&inode->i_mutex);
  1407. goto out;
  1408. }
  1409. /*
  1410. * if the last transaction that changed this file was before
  1411. * the current transaction, we can bail out now without any
  1412. * syncing
  1413. */
  1414. smp_mb();
  1415. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1416. BTRFS_I(inode)->last_trans <=
  1417. root->fs_info->last_trans_committed) {
  1418. BTRFS_I(inode)->last_trans = 0;
  1419. /*
  1420. * We'v had everything committed since the last time we were
  1421. * modified so clear this flag in case it was set for whatever
  1422. * reason, it's no longer relevant.
  1423. */
  1424. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1425. &BTRFS_I(inode)->runtime_flags);
  1426. mutex_unlock(&inode->i_mutex);
  1427. goto out;
  1428. }
  1429. /*
  1430. * ok we haven't committed the transaction yet, lets do a commit
  1431. */
  1432. if (file->private_data)
  1433. btrfs_ioctl_trans_end(file);
  1434. trans = btrfs_start_transaction(root, 0);
  1435. if (IS_ERR(trans)) {
  1436. ret = PTR_ERR(trans);
  1437. mutex_unlock(&inode->i_mutex);
  1438. goto out;
  1439. }
  1440. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1441. if (ret < 0) {
  1442. mutex_unlock(&inode->i_mutex);
  1443. goto out;
  1444. }
  1445. /* we've logged all the items and now have a consistent
  1446. * version of the file in the log. It is possible that
  1447. * someone will come in and modify the file, but that's
  1448. * fine because the log is consistent on disk, and we
  1449. * have references to all of the file's extents
  1450. *
  1451. * It is possible that someone will come in and log the
  1452. * file again, but that will end up using the synchronization
  1453. * inside btrfs_sync_log to keep things safe.
  1454. */
  1455. mutex_unlock(&inode->i_mutex);
  1456. if (ret != BTRFS_NO_LOG_SYNC) {
  1457. if (ret > 0) {
  1458. ret = btrfs_commit_transaction(trans, root);
  1459. } else {
  1460. ret = btrfs_sync_log(trans, root);
  1461. if (ret == 0)
  1462. ret = btrfs_end_transaction(trans, root);
  1463. else
  1464. ret = btrfs_commit_transaction(trans, root);
  1465. }
  1466. } else {
  1467. ret = btrfs_end_transaction(trans, root);
  1468. }
  1469. out:
  1470. return ret > 0 ? -EIO : ret;
  1471. }
  1472. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1473. .fault = filemap_fault,
  1474. .page_mkwrite = btrfs_page_mkwrite,
  1475. .remap_pages = generic_file_remap_pages,
  1476. };
  1477. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1478. {
  1479. struct address_space *mapping = filp->f_mapping;
  1480. if (!mapping->a_ops->readpage)
  1481. return -ENOEXEC;
  1482. file_accessed(filp);
  1483. vma->vm_ops = &btrfs_file_vm_ops;
  1484. return 0;
  1485. }
  1486. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1487. int slot, u64 start, u64 end)
  1488. {
  1489. struct btrfs_file_extent_item *fi;
  1490. struct btrfs_key key;
  1491. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1492. return 0;
  1493. btrfs_item_key_to_cpu(leaf, &key, slot);
  1494. if (key.objectid != btrfs_ino(inode) ||
  1495. key.type != BTRFS_EXTENT_DATA_KEY)
  1496. return 0;
  1497. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1498. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1499. return 0;
  1500. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1501. return 0;
  1502. if (key.offset == end)
  1503. return 1;
  1504. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1505. return 1;
  1506. return 0;
  1507. }
  1508. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1509. struct btrfs_path *path, u64 offset, u64 end)
  1510. {
  1511. struct btrfs_root *root = BTRFS_I(inode)->root;
  1512. struct extent_buffer *leaf;
  1513. struct btrfs_file_extent_item *fi;
  1514. struct extent_map *hole_em;
  1515. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1516. struct btrfs_key key;
  1517. int ret;
  1518. key.objectid = btrfs_ino(inode);
  1519. key.type = BTRFS_EXTENT_DATA_KEY;
  1520. key.offset = offset;
  1521. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1522. if (ret < 0)
  1523. return ret;
  1524. BUG_ON(!ret);
  1525. leaf = path->nodes[0];
  1526. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1527. u64 num_bytes;
  1528. path->slots[0]--;
  1529. fi = btrfs_item_ptr(leaf, path->slots[0],
  1530. struct btrfs_file_extent_item);
  1531. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1532. end - offset;
  1533. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1534. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1535. btrfs_set_file_extent_offset(leaf, fi, 0);
  1536. btrfs_mark_buffer_dirty(leaf);
  1537. goto out;
  1538. }
  1539. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1540. u64 num_bytes;
  1541. path->slots[0]++;
  1542. key.offset = offset;
  1543. btrfs_set_item_key_safe(trans, root, path, &key);
  1544. fi = btrfs_item_ptr(leaf, path->slots[0],
  1545. struct btrfs_file_extent_item);
  1546. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1547. offset;
  1548. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1549. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1550. btrfs_set_file_extent_offset(leaf, fi, 0);
  1551. btrfs_mark_buffer_dirty(leaf);
  1552. goto out;
  1553. }
  1554. btrfs_release_path(path);
  1555. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1556. 0, 0, end - offset, 0, end - offset,
  1557. 0, 0, 0);
  1558. if (ret)
  1559. return ret;
  1560. out:
  1561. btrfs_release_path(path);
  1562. hole_em = alloc_extent_map();
  1563. if (!hole_em) {
  1564. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1565. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1566. &BTRFS_I(inode)->runtime_flags);
  1567. } else {
  1568. hole_em->start = offset;
  1569. hole_em->len = end - offset;
  1570. hole_em->orig_start = offset;
  1571. hole_em->block_start = EXTENT_MAP_HOLE;
  1572. hole_em->block_len = 0;
  1573. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1574. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1575. hole_em->generation = trans->transid;
  1576. do {
  1577. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1578. write_lock(&em_tree->lock);
  1579. ret = add_extent_mapping(em_tree, hole_em);
  1580. if (!ret)
  1581. list_move(&hole_em->list,
  1582. &em_tree->modified_extents);
  1583. write_unlock(&em_tree->lock);
  1584. } while (ret == -EEXIST);
  1585. free_extent_map(hole_em);
  1586. if (ret)
  1587. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1588. &BTRFS_I(inode)->runtime_flags);
  1589. }
  1590. return 0;
  1591. }
  1592. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1593. {
  1594. struct btrfs_root *root = BTRFS_I(inode)->root;
  1595. struct extent_state *cached_state = NULL;
  1596. struct btrfs_path *path;
  1597. struct btrfs_block_rsv *rsv;
  1598. struct btrfs_trans_handle *trans;
  1599. u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
  1600. u64 lockstart = (offset + mask) & ~mask;
  1601. u64 lockend = ((offset + len) & ~mask) - 1;
  1602. u64 cur_offset = lockstart;
  1603. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1604. u64 drop_end;
  1605. int ret = 0;
  1606. int err = 0;
  1607. bool same_page = (offset >> PAGE_CACHE_SHIFT) ==
  1608. ((offset + len) >> PAGE_CACHE_SHIFT);
  1609. btrfs_wait_ordered_range(inode, offset, len);
  1610. mutex_lock(&inode->i_mutex);
  1611. if (offset >= inode->i_size) {
  1612. mutex_unlock(&inode->i_mutex);
  1613. return 0;
  1614. }
  1615. /*
  1616. * Only do this if we are in the same page and we aren't doing the
  1617. * entire page.
  1618. */
  1619. if (same_page && len < PAGE_CACHE_SIZE) {
  1620. ret = btrfs_truncate_page(inode, offset, len, 0);
  1621. mutex_unlock(&inode->i_mutex);
  1622. return ret;
  1623. }
  1624. /* zero back part of the first page */
  1625. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1626. if (ret) {
  1627. mutex_unlock(&inode->i_mutex);
  1628. return ret;
  1629. }
  1630. /* zero the front end of the last page */
  1631. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1632. if (ret) {
  1633. mutex_unlock(&inode->i_mutex);
  1634. return ret;
  1635. }
  1636. if (lockend < lockstart) {
  1637. mutex_unlock(&inode->i_mutex);
  1638. return 0;
  1639. }
  1640. while (1) {
  1641. struct btrfs_ordered_extent *ordered;
  1642. truncate_pagecache_range(inode, lockstart, lockend);
  1643. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1644. 0, &cached_state);
  1645. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1646. /*
  1647. * We need to make sure we have no ordered extents in this range
  1648. * and nobody raced in and read a page in this range, if we did
  1649. * we need to try again.
  1650. */
  1651. if ((!ordered ||
  1652. (ordered->file_offset + ordered->len < lockstart ||
  1653. ordered->file_offset > lockend)) &&
  1654. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1655. lockend, EXTENT_UPTODATE, 0,
  1656. cached_state)) {
  1657. if (ordered)
  1658. btrfs_put_ordered_extent(ordered);
  1659. break;
  1660. }
  1661. if (ordered)
  1662. btrfs_put_ordered_extent(ordered);
  1663. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1664. lockend, &cached_state, GFP_NOFS);
  1665. btrfs_wait_ordered_range(inode, lockstart,
  1666. lockend - lockstart + 1);
  1667. }
  1668. path = btrfs_alloc_path();
  1669. if (!path) {
  1670. ret = -ENOMEM;
  1671. goto out;
  1672. }
  1673. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1674. if (!rsv) {
  1675. ret = -ENOMEM;
  1676. goto out_free;
  1677. }
  1678. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1679. rsv->failfast = 1;
  1680. /*
  1681. * 1 - update the inode
  1682. * 1 - removing the extents in the range
  1683. * 1 - adding the hole extent
  1684. */
  1685. trans = btrfs_start_transaction(root, 3);
  1686. if (IS_ERR(trans)) {
  1687. err = PTR_ERR(trans);
  1688. goto out_free;
  1689. }
  1690. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  1691. min_size);
  1692. BUG_ON(ret);
  1693. trans->block_rsv = rsv;
  1694. while (cur_offset < lockend) {
  1695. ret = __btrfs_drop_extents(trans, root, inode, path,
  1696. cur_offset, lockend + 1,
  1697. &drop_end, 1);
  1698. if (ret != -ENOSPC)
  1699. break;
  1700. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1701. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1702. if (ret) {
  1703. err = ret;
  1704. break;
  1705. }
  1706. cur_offset = drop_end;
  1707. ret = btrfs_update_inode(trans, root, inode);
  1708. if (ret) {
  1709. err = ret;
  1710. break;
  1711. }
  1712. btrfs_end_transaction(trans, root);
  1713. btrfs_btree_balance_dirty(root);
  1714. trans = btrfs_start_transaction(root, 3);
  1715. if (IS_ERR(trans)) {
  1716. ret = PTR_ERR(trans);
  1717. trans = NULL;
  1718. break;
  1719. }
  1720. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  1721. rsv, min_size);
  1722. BUG_ON(ret); /* shouldn't happen */
  1723. trans->block_rsv = rsv;
  1724. }
  1725. if (ret) {
  1726. err = ret;
  1727. goto out_trans;
  1728. }
  1729. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1730. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1731. if (ret) {
  1732. err = ret;
  1733. goto out_trans;
  1734. }
  1735. out_trans:
  1736. if (!trans)
  1737. goto out_free;
  1738. inode_inc_iversion(inode);
  1739. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1740. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1741. ret = btrfs_update_inode(trans, root, inode);
  1742. btrfs_end_transaction(trans, root);
  1743. btrfs_btree_balance_dirty(root);
  1744. out_free:
  1745. btrfs_free_path(path);
  1746. btrfs_free_block_rsv(root, rsv);
  1747. out:
  1748. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1749. &cached_state, GFP_NOFS);
  1750. mutex_unlock(&inode->i_mutex);
  1751. if (ret && !err)
  1752. err = ret;
  1753. return err;
  1754. }
  1755. static long btrfs_fallocate(struct file *file, int mode,
  1756. loff_t offset, loff_t len)
  1757. {
  1758. struct inode *inode = file->f_path.dentry->d_inode;
  1759. struct extent_state *cached_state = NULL;
  1760. u64 cur_offset;
  1761. u64 last_byte;
  1762. u64 alloc_start;
  1763. u64 alloc_end;
  1764. u64 alloc_hint = 0;
  1765. u64 locked_end;
  1766. u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
  1767. struct extent_map *em;
  1768. int ret;
  1769. alloc_start = offset & ~mask;
  1770. alloc_end = (offset + len + mask) & ~mask;
  1771. /* Make sure we aren't being give some crap mode */
  1772. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  1773. return -EOPNOTSUPP;
  1774. if (mode & FALLOC_FL_PUNCH_HOLE)
  1775. return btrfs_punch_hole(inode, offset, len);
  1776. /*
  1777. * Make sure we have enough space before we do the
  1778. * allocation.
  1779. */
  1780. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start + 1);
  1781. if (ret)
  1782. return ret;
  1783. /*
  1784. * wait for ordered IO before we have any locks. We'll loop again
  1785. * below with the locks held.
  1786. */
  1787. btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
  1788. mutex_lock(&inode->i_mutex);
  1789. ret = inode_newsize_ok(inode, alloc_end);
  1790. if (ret)
  1791. goto out;
  1792. if (alloc_start > inode->i_size) {
  1793. ret = btrfs_cont_expand(inode, i_size_read(inode),
  1794. alloc_start);
  1795. if (ret)
  1796. goto out;
  1797. }
  1798. locked_end = alloc_end - 1;
  1799. while (1) {
  1800. struct btrfs_ordered_extent *ordered;
  1801. /* the extent lock is ordered inside the running
  1802. * transaction
  1803. */
  1804. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  1805. locked_end, 0, &cached_state);
  1806. ordered = btrfs_lookup_first_ordered_extent(inode,
  1807. alloc_end - 1);
  1808. if (ordered &&
  1809. ordered->file_offset + ordered->len > alloc_start &&
  1810. ordered->file_offset < alloc_end) {
  1811. btrfs_put_ordered_extent(ordered);
  1812. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1813. alloc_start, locked_end,
  1814. &cached_state, GFP_NOFS);
  1815. /*
  1816. * we can't wait on the range with the transaction
  1817. * running or with the extent lock held
  1818. */
  1819. btrfs_wait_ordered_range(inode, alloc_start,
  1820. alloc_end - alloc_start);
  1821. } else {
  1822. if (ordered)
  1823. btrfs_put_ordered_extent(ordered);
  1824. break;
  1825. }
  1826. }
  1827. cur_offset = alloc_start;
  1828. while (1) {
  1829. u64 actual_end;
  1830. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  1831. alloc_end - cur_offset, 0);
  1832. if (IS_ERR_OR_NULL(em)) {
  1833. if (!em)
  1834. ret = -ENOMEM;
  1835. else
  1836. ret = PTR_ERR(em);
  1837. break;
  1838. }
  1839. last_byte = min(extent_map_end(em), alloc_end);
  1840. actual_end = min_t(u64, extent_map_end(em), offset + len);
  1841. last_byte = (last_byte + mask) & ~mask;
  1842. if (em->block_start == EXTENT_MAP_HOLE ||
  1843. (cur_offset >= inode->i_size &&
  1844. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  1845. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  1846. last_byte - cur_offset,
  1847. 1 << inode->i_blkbits,
  1848. offset + len,
  1849. &alloc_hint);
  1850. if (ret < 0) {
  1851. free_extent_map(em);
  1852. break;
  1853. }
  1854. } else if (actual_end > inode->i_size &&
  1855. !(mode & FALLOC_FL_KEEP_SIZE)) {
  1856. /*
  1857. * We didn't need to allocate any more space, but we
  1858. * still extended the size of the file so we need to
  1859. * update i_size.
  1860. */
  1861. inode->i_ctime = CURRENT_TIME;
  1862. i_size_write(inode, actual_end);
  1863. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  1864. }
  1865. free_extent_map(em);
  1866. cur_offset = last_byte;
  1867. if (cur_offset >= alloc_end) {
  1868. ret = 0;
  1869. break;
  1870. }
  1871. }
  1872. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  1873. &cached_state, GFP_NOFS);
  1874. out:
  1875. mutex_unlock(&inode->i_mutex);
  1876. /* Let go of our reservation. */
  1877. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start + 1);
  1878. return ret;
  1879. }
  1880. static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
  1881. {
  1882. struct btrfs_root *root = BTRFS_I(inode)->root;
  1883. struct extent_map *em;
  1884. struct extent_state *cached_state = NULL;
  1885. u64 lockstart = *offset;
  1886. u64 lockend = i_size_read(inode);
  1887. u64 start = *offset;
  1888. u64 orig_start = *offset;
  1889. u64 len = i_size_read(inode);
  1890. u64 last_end = 0;
  1891. int ret = 0;
  1892. lockend = max_t(u64, root->sectorsize, lockend);
  1893. if (lockend <= lockstart)
  1894. lockend = lockstart + root->sectorsize;
  1895. len = lockend - lockstart + 1;
  1896. len = max_t(u64, len, root->sectorsize);
  1897. if (inode->i_size == 0)
  1898. return -ENXIO;
  1899. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  1900. &cached_state);
  1901. /*
  1902. * Delalloc is such a pain. If we have a hole and we have pending
  1903. * delalloc for a portion of the hole we will get back a hole that
  1904. * exists for the entire range since it hasn't been actually written
  1905. * yet. So to take care of this case we need to look for an extent just
  1906. * before the position we want in case there is outstanding delalloc
  1907. * going on here.
  1908. */
  1909. if (origin == SEEK_HOLE && start != 0) {
  1910. if (start <= root->sectorsize)
  1911. em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
  1912. root->sectorsize, 0);
  1913. else
  1914. em = btrfs_get_extent_fiemap(inode, NULL, 0,
  1915. start - root->sectorsize,
  1916. root->sectorsize, 0);
  1917. if (IS_ERR(em)) {
  1918. ret = PTR_ERR(em);
  1919. goto out;
  1920. }
  1921. last_end = em->start + em->len;
  1922. if (em->block_start == EXTENT_MAP_DELALLOC)
  1923. last_end = min_t(u64, last_end, inode->i_size);
  1924. free_extent_map(em);
  1925. }
  1926. while (1) {
  1927. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  1928. if (IS_ERR(em)) {
  1929. ret = PTR_ERR(em);
  1930. break;
  1931. }
  1932. if (em->block_start == EXTENT_MAP_HOLE) {
  1933. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  1934. if (last_end <= orig_start) {
  1935. free_extent_map(em);
  1936. ret = -ENXIO;
  1937. break;
  1938. }
  1939. }
  1940. if (origin == SEEK_HOLE) {
  1941. *offset = start;
  1942. free_extent_map(em);
  1943. break;
  1944. }
  1945. } else {
  1946. if (origin == SEEK_DATA) {
  1947. if (em->block_start == EXTENT_MAP_DELALLOC) {
  1948. if (start >= inode->i_size) {
  1949. free_extent_map(em);
  1950. ret = -ENXIO;
  1951. break;
  1952. }
  1953. }
  1954. *offset = start;
  1955. free_extent_map(em);
  1956. break;
  1957. }
  1958. }
  1959. start = em->start + em->len;
  1960. last_end = em->start + em->len;
  1961. if (em->block_start == EXTENT_MAP_DELALLOC)
  1962. last_end = min_t(u64, last_end, inode->i_size);
  1963. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  1964. free_extent_map(em);
  1965. ret = -ENXIO;
  1966. break;
  1967. }
  1968. free_extent_map(em);
  1969. cond_resched();
  1970. }
  1971. if (!ret)
  1972. *offset = min(*offset, inode->i_size);
  1973. out:
  1974. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1975. &cached_state, GFP_NOFS);
  1976. return ret;
  1977. }
  1978. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
  1979. {
  1980. struct inode *inode = file->f_mapping->host;
  1981. int ret;
  1982. mutex_lock(&inode->i_mutex);
  1983. switch (origin) {
  1984. case SEEK_END:
  1985. case SEEK_CUR:
  1986. offset = generic_file_llseek(file, offset, origin);
  1987. goto out;
  1988. case SEEK_DATA:
  1989. case SEEK_HOLE:
  1990. if (offset >= i_size_read(inode)) {
  1991. mutex_unlock(&inode->i_mutex);
  1992. return -ENXIO;
  1993. }
  1994. ret = find_desired_extent(inode, &offset, origin);
  1995. if (ret) {
  1996. mutex_unlock(&inode->i_mutex);
  1997. return ret;
  1998. }
  1999. }
  2000. if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
  2001. offset = -EINVAL;
  2002. goto out;
  2003. }
  2004. if (offset > inode->i_sb->s_maxbytes) {
  2005. offset = -EINVAL;
  2006. goto out;
  2007. }
  2008. /* Special lock needed here? */
  2009. if (offset != file->f_pos) {
  2010. file->f_pos = offset;
  2011. file->f_version = 0;
  2012. }
  2013. out:
  2014. mutex_unlock(&inode->i_mutex);
  2015. return offset;
  2016. }
  2017. const struct file_operations btrfs_file_operations = {
  2018. .llseek = btrfs_file_llseek,
  2019. .read = do_sync_read,
  2020. .write = do_sync_write,
  2021. .aio_read = generic_file_aio_read,
  2022. .splice_read = generic_file_splice_read,
  2023. .aio_write = btrfs_file_aio_write,
  2024. .mmap = btrfs_file_mmap,
  2025. .open = generic_file_open,
  2026. .release = btrfs_release_file,
  2027. .fsync = btrfs_sync_file,
  2028. .fallocate = btrfs_fallocate,
  2029. .unlocked_ioctl = btrfs_ioctl,
  2030. #ifdef CONFIG_COMPAT
  2031. .compat_ioctl = btrfs_ioctl,
  2032. #endif
  2033. };
  2034. void btrfs_auto_defrag_exit(void)
  2035. {
  2036. if (btrfs_inode_defrag_cachep)
  2037. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2038. }
  2039. int btrfs_auto_defrag_init(void)
  2040. {
  2041. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2042. sizeof(struct inode_defrag), 0,
  2043. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2044. NULL);
  2045. if (!btrfs_inode_defrag_cachep)
  2046. return -ENOMEM;
  2047. return 0;
  2048. }