process.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385
  1. /*
  2. * Based on arch/arm/kernel/process.c
  3. *
  4. * Original Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  6. * Copyright (C) 2012 ARM Ltd.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <stdarg.h>
  21. #include <linux/compat.h>
  22. #include <linux/export.h>
  23. #include <linux/sched.h>
  24. #include <linux/kernel.h>
  25. #include <linux/mm.h>
  26. #include <linux/stddef.h>
  27. #include <linux/unistd.h>
  28. #include <linux/user.h>
  29. #include <linux/delay.h>
  30. #include <linux/reboot.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/kallsyms.h>
  33. #include <linux/init.h>
  34. #include <linux/cpu.h>
  35. #include <linux/elfcore.h>
  36. #include <linux/pm.h>
  37. #include <linux/tick.h>
  38. #include <linux/utsname.h>
  39. #include <linux/uaccess.h>
  40. #include <linux/random.h>
  41. #include <linux/hw_breakpoint.h>
  42. #include <linux/personality.h>
  43. #include <linux/notifier.h>
  44. #include <asm/compat.h>
  45. #include <asm/cacheflush.h>
  46. #include <asm/fpsimd.h>
  47. #include <asm/mmu_context.h>
  48. #include <asm/processor.h>
  49. #include <asm/stacktrace.h>
  50. static void setup_restart(void)
  51. {
  52. /*
  53. * Tell the mm system that we are going to reboot -
  54. * we may need it to insert some 1:1 mappings so that
  55. * soft boot works.
  56. */
  57. setup_mm_for_reboot();
  58. /* Clean and invalidate caches */
  59. flush_cache_all();
  60. /* Turn D-cache off */
  61. cpu_cache_off();
  62. /* Push out any further dirty data, and ensure cache is empty */
  63. flush_cache_all();
  64. }
  65. void soft_restart(unsigned long addr)
  66. {
  67. typedef void (*phys_reset_t)(unsigned long);
  68. phys_reset_t phys_reset;
  69. setup_restart();
  70. /* Switch to the identity mapping */
  71. phys_reset = (phys_reset_t)virt_to_phys(cpu_reset);
  72. phys_reset(addr);
  73. /* Should never get here */
  74. BUG();
  75. }
  76. /*
  77. * Function pointers to optional machine specific functions
  78. */
  79. void (*pm_power_off)(void);
  80. EXPORT_SYMBOL_GPL(pm_power_off);
  81. void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
  82. EXPORT_SYMBOL_GPL(arm_pm_restart);
  83. /*
  84. * This is our default idle handler.
  85. */
  86. void arch_cpu_idle(void)
  87. {
  88. /*
  89. * This should do all the clock switching and wait for interrupt
  90. * tricks
  91. */
  92. cpu_do_idle();
  93. local_irq_enable();
  94. }
  95. #ifdef CONFIG_HOTPLUG_CPU
  96. void arch_cpu_idle_dead(void)
  97. {
  98. cpu_die();
  99. }
  100. #endif
  101. /*
  102. * Called by kexec, immediately prior to machine_kexec().
  103. *
  104. * This must completely disable all secondary CPUs; simply causing those CPUs
  105. * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
  106. * kexec'd kernel to use any and all RAM as it sees fit, without having to
  107. * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
  108. * functionality embodied in disable_nonboot_cpus() to achieve this.
  109. */
  110. void machine_shutdown(void)
  111. {
  112. disable_nonboot_cpus();
  113. }
  114. /*
  115. * Halting simply requires that the secondary CPUs stop performing any
  116. * activity (executing tasks, handling interrupts). smp_send_stop()
  117. * achieves this.
  118. */
  119. void machine_halt(void)
  120. {
  121. smp_send_stop();
  122. while (1);
  123. }
  124. /*
  125. * Power-off simply requires that the secondary CPUs stop performing any
  126. * activity (executing tasks, handling interrupts). smp_send_stop()
  127. * achieves this. When the system power is turned off, it will take all CPUs
  128. * with it.
  129. */
  130. void machine_power_off(void)
  131. {
  132. smp_send_stop();
  133. if (pm_power_off)
  134. pm_power_off();
  135. }
  136. /*
  137. * Restart requires that the secondary CPUs stop performing any activity
  138. * while the primary CPU resets the system. Systems with a single CPU can
  139. * use soft_restart() as their machine descriptor's .restart hook, since that
  140. * will cause the only available CPU to reset. Systems with multiple CPUs must
  141. * provide a HW restart implementation, to ensure that all CPUs reset at once.
  142. * This is required so that any code running after reset on the primary CPU
  143. * doesn't have to co-ordinate with other CPUs to ensure they aren't still
  144. * executing pre-reset code, and using RAM that the primary CPU's code wishes
  145. * to use. Implementing such co-ordination would be essentially impossible.
  146. */
  147. void machine_restart(char *cmd)
  148. {
  149. smp_send_stop();
  150. /* Disable interrupts first */
  151. local_irq_disable();
  152. /* Now call the architecture specific reboot code. */
  153. if (arm_pm_restart)
  154. arm_pm_restart(reboot_mode, cmd);
  155. /*
  156. * Whoops - the architecture was unable to reboot.
  157. */
  158. printk("Reboot failed -- System halted\n");
  159. while (1);
  160. }
  161. void __show_regs(struct pt_regs *regs)
  162. {
  163. int i, top_reg;
  164. u64 lr, sp;
  165. if (compat_user_mode(regs)) {
  166. lr = regs->compat_lr;
  167. sp = regs->compat_sp;
  168. top_reg = 12;
  169. } else {
  170. lr = regs->regs[30];
  171. sp = regs->sp;
  172. top_reg = 29;
  173. }
  174. show_regs_print_info(KERN_DEFAULT);
  175. print_symbol("PC is at %s\n", instruction_pointer(regs));
  176. print_symbol("LR is at %s\n", lr);
  177. printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
  178. regs->pc, lr, regs->pstate);
  179. printk("sp : %016llx\n", sp);
  180. for (i = top_reg; i >= 0; i--) {
  181. printk("x%-2d: %016llx ", i, regs->regs[i]);
  182. if (i % 2 == 0)
  183. printk("\n");
  184. }
  185. printk("\n");
  186. }
  187. void show_regs(struct pt_regs * regs)
  188. {
  189. printk("\n");
  190. __show_regs(regs);
  191. }
  192. /*
  193. * Free current thread data structures etc..
  194. */
  195. void exit_thread(void)
  196. {
  197. }
  198. void flush_thread(void)
  199. {
  200. fpsimd_flush_thread();
  201. flush_ptrace_hw_breakpoint(current);
  202. }
  203. void release_thread(struct task_struct *dead_task)
  204. {
  205. }
  206. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  207. {
  208. fpsimd_preserve_current_state();
  209. *dst = *src;
  210. return 0;
  211. }
  212. asmlinkage void ret_from_fork(void) asm("ret_from_fork");
  213. int copy_thread(unsigned long clone_flags, unsigned long stack_start,
  214. unsigned long stk_sz, struct task_struct *p)
  215. {
  216. struct pt_regs *childregs = task_pt_regs(p);
  217. unsigned long tls = p->thread.tp_value;
  218. memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
  219. if (likely(!(p->flags & PF_KTHREAD))) {
  220. *childregs = *current_pt_regs();
  221. childregs->regs[0] = 0;
  222. if (is_compat_thread(task_thread_info(p))) {
  223. if (stack_start)
  224. childregs->compat_sp = stack_start;
  225. } else {
  226. /*
  227. * Read the current TLS pointer from tpidr_el0 as it may be
  228. * out-of-sync with the saved value.
  229. */
  230. asm("mrs %0, tpidr_el0" : "=r" (tls));
  231. if (stack_start) {
  232. /* 16-byte aligned stack mandatory on AArch64 */
  233. if (stack_start & 15)
  234. return -EINVAL;
  235. childregs->sp = stack_start;
  236. }
  237. }
  238. /*
  239. * If a TLS pointer was passed to clone (4th argument), use it
  240. * for the new thread.
  241. */
  242. if (clone_flags & CLONE_SETTLS)
  243. tls = childregs->regs[3];
  244. } else {
  245. memset(childregs, 0, sizeof(struct pt_regs));
  246. childregs->pstate = PSR_MODE_EL1h;
  247. p->thread.cpu_context.x19 = stack_start;
  248. p->thread.cpu_context.x20 = stk_sz;
  249. }
  250. p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
  251. p->thread.cpu_context.sp = (unsigned long)childregs;
  252. p->thread.tp_value = tls;
  253. ptrace_hw_copy_thread(p);
  254. return 0;
  255. }
  256. static void tls_thread_switch(struct task_struct *next)
  257. {
  258. unsigned long tpidr, tpidrro;
  259. if (!is_compat_task()) {
  260. asm("mrs %0, tpidr_el0" : "=r" (tpidr));
  261. current->thread.tp_value = tpidr;
  262. }
  263. if (is_compat_thread(task_thread_info(next))) {
  264. tpidr = 0;
  265. tpidrro = next->thread.tp_value;
  266. } else {
  267. tpidr = next->thread.tp_value;
  268. tpidrro = 0;
  269. }
  270. asm(
  271. " msr tpidr_el0, %0\n"
  272. " msr tpidrro_el0, %1"
  273. : : "r" (tpidr), "r" (tpidrro));
  274. }
  275. /*
  276. * Thread switching.
  277. */
  278. struct task_struct *__switch_to(struct task_struct *prev,
  279. struct task_struct *next)
  280. {
  281. struct task_struct *last;
  282. fpsimd_thread_switch(next);
  283. tls_thread_switch(next);
  284. hw_breakpoint_thread_switch(next);
  285. contextidr_thread_switch(next);
  286. /*
  287. * Complete any pending TLB or cache maintenance on this CPU in case
  288. * the thread migrates to a different CPU.
  289. */
  290. dsb(ish);
  291. /* the actual thread switch */
  292. last = cpu_switch_to(prev, next);
  293. return last;
  294. }
  295. unsigned long get_wchan(struct task_struct *p)
  296. {
  297. struct stackframe frame;
  298. unsigned long stack_page;
  299. int count = 0;
  300. if (!p || p == current || p->state == TASK_RUNNING)
  301. return 0;
  302. frame.fp = thread_saved_fp(p);
  303. frame.sp = thread_saved_sp(p);
  304. frame.pc = thread_saved_pc(p);
  305. stack_page = (unsigned long)task_stack_page(p);
  306. do {
  307. if (frame.sp < stack_page ||
  308. frame.sp >= stack_page + THREAD_SIZE ||
  309. unwind_frame(&frame))
  310. return 0;
  311. if (!in_sched_functions(frame.pc))
  312. return frame.pc;
  313. } while (count ++ < 16);
  314. return 0;
  315. }
  316. unsigned long arch_align_stack(unsigned long sp)
  317. {
  318. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  319. sp -= get_random_int() & ~PAGE_MASK;
  320. return sp & ~0xf;
  321. }
  322. static unsigned long randomize_base(unsigned long base)
  323. {
  324. unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
  325. return randomize_range(base, range_end, 0) ? : base;
  326. }
  327. unsigned long arch_randomize_brk(struct mm_struct *mm)
  328. {
  329. return randomize_base(mm->brk);
  330. }
  331. unsigned long randomize_et_dyn(unsigned long base)
  332. {
  333. return randomize_base(base);
  334. }