time.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/clockchips.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <linux/clk-provider.h>
  57. #include <linux/suspend.h>
  58. #include <linux/rtc.h>
  59. #include <asm/trace.h>
  60. #include <asm/io.h>
  61. #include <asm/processor.h>
  62. #include <asm/nvram.h>
  63. #include <asm/cache.h>
  64. #include <asm/machdep.h>
  65. #include <linux/uaccess.h>
  66. #include <asm/time.h>
  67. #include <asm/prom.h>
  68. #include <asm/irq.h>
  69. #include <asm/div64.h>
  70. #include <asm/smp.h>
  71. #include <asm/vdso_datapage.h>
  72. #include <asm/firmware.h>
  73. #include <asm/cputime.h>
  74. #include <asm/asm-prototypes.h>
  75. /* powerpc clocksource/clockevent code */
  76. #include <linux/clockchips.h>
  77. #include <linux/timekeeper_internal.h>
  78. static u64 rtc_read(struct clocksource *);
  79. static struct clocksource clocksource_rtc = {
  80. .name = "rtc",
  81. .rating = 400,
  82. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  83. .mask = CLOCKSOURCE_MASK(64),
  84. .read = rtc_read,
  85. };
  86. static u64 timebase_read(struct clocksource *);
  87. static struct clocksource clocksource_timebase = {
  88. .name = "timebase",
  89. .rating = 400,
  90. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  91. .mask = CLOCKSOURCE_MASK(64),
  92. .read = timebase_read,
  93. };
  94. #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
  95. u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
  96. static int decrementer_set_next_event(unsigned long evt,
  97. struct clock_event_device *dev);
  98. static int decrementer_shutdown(struct clock_event_device *evt);
  99. struct clock_event_device decrementer_clockevent = {
  100. .name = "decrementer",
  101. .rating = 200,
  102. .irq = 0,
  103. .set_next_event = decrementer_set_next_event,
  104. .set_state_shutdown = decrementer_shutdown,
  105. .tick_resume = decrementer_shutdown,
  106. .features = CLOCK_EVT_FEAT_ONESHOT |
  107. CLOCK_EVT_FEAT_C3STOP,
  108. };
  109. EXPORT_SYMBOL(decrementer_clockevent);
  110. DEFINE_PER_CPU(u64, decrementers_next_tb);
  111. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  112. #define XSEC_PER_SEC (1024*1024)
  113. #ifdef CONFIG_PPC64
  114. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  115. #else
  116. /* compute ((xsec << 12) * max) >> 32 */
  117. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  118. #endif
  119. unsigned long tb_ticks_per_jiffy;
  120. unsigned long tb_ticks_per_usec = 100; /* sane default */
  121. EXPORT_SYMBOL(tb_ticks_per_usec);
  122. unsigned long tb_ticks_per_sec;
  123. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  124. DEFINE_SPINLOCK(rtc_lock);
  125. EXPORT_SYMBOL_GPL(rtc_lock);
  126. static u64 tb_to_ns_scale __read_mostly;
  127. static unsigned tb_to_ns_shift __read_mostly;
  128. static u64 boot_tb __read_mostly;
  129. extern struct timezone sys_tz;
  130. static long timezone_offset;
  131. unsigned long ppc_proc_freq;
  132. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  133. unsigned long ppc_tb_freq;
  134. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  135. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  136. /*
  137. * Factors for converting from cputime_t (timebase ticks) to
  138. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  139. * These are all stored as 0.64 fixed-point binary fractions.
  140. */
  141. u64 __cputime_jiffies_factor;
  142. EXPORT_SYMBOL(__cputime_jiffies_factor);
  143. u64 __cputime_usec_factor;
  144. EXPORT_SYMBOL(__cputime_usec_factor);
  145. u64 __cputime_sec_factor;
  146. EXPORT_SYMBOL(__cputime_sec_factor);
  147. u64 __cputime_clockt_factor;
  148. EXPORT_SYMBOL(__cputime_clockt_factor);
  149. cputime_t cputime_one_jiffy;
  150. #ifdef CONFIG_PPC_SPLPAR
  151. void (*dtl_consumer)(struct dtl_entry *, u64);
  152. #endif
  153. #ifdef CONFIG_PPC64
  154. #define get_accounting(tsk) (&get_paca()->accounting)
  155. #else
  156. #define get_accounting(tsk) (&task_thread_info(tsk)->accounting)
  157. #endif
  158. static void calc_cputime_factors(void)
  159. {
  160. struct div_result res;
  161. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  162. __cputime_jiffies_factor = res.result_low;
  163. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  164. __cputime_usec_factor = res.result_low;
  165. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  166. __cputime_sec_factor = res.result_low;
  167. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  168. __cputime_clockt_factor = res.result_low;
  169. }
  170. /*
  171. * Read the SPURR on systems that have it, otherwise the PURR,
  172. * or if that doesn't exist return the timebase value passed in.
  173. */
  174. static unsigned long read_spurr(unsigned long tb)
  175. {
  176. if (cpu_has_feature(CPU_FTR_SPURR))
  177. return mfspr(SPRN_SPURR);
  178. if (cpu_has_feature(CPU_FTR_PURR))
  179. return mfspr(SPRN_PURR);
  180. return tb;
  181. }
  182. #ifdef CONFIG_PPC_SPLPAR
  183. /*
  184. * Scan the dispatch trace log and count up the stolen time.
  185. * Should be called with interrupts disabled.
  186. */
  187. static u64 scan_dispatch_log(u64 stop_tb)
  188. {
  189. u64 i = local_paca->dtl_ridx;
  190. struct dtl_entry *dtl = local_paca->dtl_curr;
  191. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  192. struct lppaca *vpa = local_paca->lppaca_ptr;
  193. u64 tb_delta;
  194. u64 stolen = 0;
  195. u64 dtb;
  196. if (!dtl)
  197. return 0;
  198. if (i == be64_to_cpu(vpa->dtl_idx))
  199. return 0;
  200. while (i < be64_to_cpu(vpa->dtl_idx)) {
  201. dtb = be64_to_cpu(dtl->timebase);
  202. tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
  203. be32_to_cpu(dtl->ready_to_enqueue_time);
  204. barrier();
  205. if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
  206. /* buffer has overflowed */
  207. i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
  208. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  209. continue;
  210. }
  211. if (dtb > stop_tb)
  212. break;
  213. if (dtl_consumer)
  214. dtl_consumer(dtl, i);
  215. stolen += tb_delta;
  216. ++i;
  217. ++dtl;
  218. if (dtl == dtl_end)
  219. dtl = local_paca->dispatch_log;
  220. }
  221. local_paca->dtl_ridx = i;
  222. local_paca->dtl_curr = dtl;
  223. return stolen;
  224. }
  225. /*
  226. * Accumulate stolen time by scanning the dispatch trace log.
  227. * Called on entry from user mode.
  228. */
  229. void accumulate_stolen_time(void)
  230. {
  231. u64 sst, ust;
  232. u8 save_soft_enabled = local_paca->soft_enabled;
  233. struct cpu_accounting_data *acct = &local_paca->accounting;
  234. /* We are called early in the exception entry, before
  235. * soft/hard_enabled are sync'ed to the expected state
  236. * for the exception. We are hard disabled but the PACA
  237. * needs to reflect that so various debug stuff doesn't
  238. * complain
  239. */
  240. local_paca->soft_enabled = 0;
  241. sst = scan_dispatch_log(acct->starttime_user);
  242. ust = scan_dispatch_log(acct->starttime);
  243. acct->system_time -= sst;
  244. acct->user_time -= ust;
  245. local_paca->stolen_time += ust + sst;
  246. local_paca->soft_enabled = save_soft_enabled;
  247. }
  248. static inline u64 calculate_stolen_time(u64 stop_tb)
  249. {
  250. u64 stolen = 0;
  251. if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
  252. stolen = scan_dispatch_log(stop_tb);
  253. get_paca()->accounting.system_time -= stolen;
  254. }
  255. stolen += get_paca()->stolen_time;
  256. get_paca()->stolen_time = 0;
  257. return stolen;
  258. }
  259. #else /* CONFIG_PPC_SPLPAR */
  260. static inline u64 calculate_stolen_time(u64 stop_tb)
  261. {
  262. return 0;
  263. }
  264. #endif /* CONFIG_PPC_SPLPAR */
  265. /*
  266. * Account time for a transition between system, hard irq
  267. * or soft irq state.
  268. */
  269. static unsigned long vtime_delta(struct task_struct *tsk,
  270. unsigned long *sys_scaled,
  271. unsigned long *stolen)
  272. {
  273. unsigned long now, nowscaled, deltascaled;
  274. unsigned long udelta, delta, user_scaled;
  275. struct cpu_accounting_data *acct = get_accounting(tsk);
  276. WARN_ON_ONCE(!irqs_disabled());
  277. now = mftb();
  278. nowscaled = read_spurr(now);
  279. acct->system_time += now - acct->starttime;
  280. acct->starttime = now;
  281. deltascaled = nowscaled - acct->startspurr;
  282. acct->startspurr = nowscaled;
  283. *stolen = calculate_stolen_time(now);
  284. delta = acct->system_time;
  285. acct->system_time = 0;
  286. udelta = acct->user_time - acct->utime_sspurr;
  287. acct->utime_sspurr = acct->user_time;
  288. /*
  289. * Because we don't read the SPURR on every kernel entry/exit,
  290. * deltascaled includes both user and system SPURR ticks.
  291. * Apportion these ticks to system SPURR ticks and user
  292. * SPURR ticks in the same ratio as the system time (delta)
  293. * and user time (udelta) values obtained from the timebase
  294. * over the same interval. The system ticks get accounted here;
  295. * the user ticks get saved up in paca->user_time_scaled to be
  296. * used by account_process_tick.
  297. */
  298. *sys_scaled = delta;
  299. user_scaled = udelta;
  300. if (deltascaled != delta + udelta) {
  301. if (udelta) {
  302. *sys_scaled = deltascaled * delta / (delta + udelta);
  303. user_scaled = deltascaled - *sys_scaled;
  304. } else {
  305. *sys_scaled = deltascaled;
  306. }
  307. }
  308. acct->user_time_scaled += user_scaled;
  309. return delta;
  310. }
  311. void vtime_account_system(struct task_struct *tsk)
  312. {
  313. unsigned long delta, sys_scaled, stolen;
  314. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  315. account_system_time(tsk, 0, delta);
  316. tsk->stimescaled += sys_scaled;
  317. if (stolen)
  318. account_steal_time(stolen);
  319. }
  320. EXPORT_SYMBOL_GPL(vtime_account_system);
  321. void vtime_account_idle(struct task_struct *tsk)
  322. {
  323. unsigned long delta, sys_scaled, stolen;
  324. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  325. account_idle_time(delta + stolen);
  326. }
  327. /*
  328. * Transfer the user time accumulated in the paca
  329. * by the exception entry and exit code to the generic
  330. * process user time records.
  331. * Must be called with interrupts disabled.
  332. * Assumes that vtime_account_system/idle() has been called
  333. * recently (i.e. since the last entry from usermode) so that
  334. * get_paca()->user_time_scaled is up to date.
  335. */
  336. void vtime_account_user(struct task_struct *tsk)
  337. {
  338. cputime_t utime, utimescaled;
  339. struct cpu_accounting_data *acct = get_accounting(tsk);
  340. utime = acct->user_time;
  341. utimescaled = acct->user_time_scaled;
  342. acct->user_time = 0;
  343. acct->user_time_scaled = 0;
  344. acct->utime_sspurr = 0;
  345. account_user_time(tsk, utime);
  346. tsk->utimescaled += utimescaled;
  347. }
  348. #ifdef CONFIG_PPC32
  349. /*
  350. * Called from the context switch with interrupts disabled, to charge all
  351. * accumulated times to the current process, and to prepare accounting on
  352. * the next process.
  353. */
  354. void arch_vtime_task_switch(struct task_struct *prev)
  355. {
  356. struct cpu_accounting_data *acct = get_accounting(current);
  357. acct->starttime = get_accounting(prev)->starttime;
  358. acct->startspurr = get_accounting(prev)->startspurr;
  359. acct->system_time = 0;
  360. acct->user_time = 0;
  361. }
  362. #endif /* CONFIG_PPC32 */
  363. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  364. #define calc_cputime_factors()
  365. #endif
  366. void __delay(unsigned long loops)
  367. {
  368. unsigned long start;
  369. int diff;
  370. if (__USE_RTC()) {
  371. start = get_rtcl();
  372. do {
  373. /* the RTCL register wraps at 1000000000 */
  374. diff = get_rtcl() - start;
  375. if (diff < 0)
  376. diff += 1000000000;
  377. } while (diff < loops);
  378. } else {
  379. start = get_tbl();
  380. while (get_tbl() - start < loops)
  381. HMT_low();
  382. HMT_medium();
  383. }
  384. }
  385. EXPORT_SYMBOL(__delay);
  386. void udelay(unsigned long usecs)
  387. {
  388. __delay(tb_ticks_per_usec * usecs);
  389. }
  390. EXPORT_SYMBOL(udelay);
  391. #ifdef CONFIG_SMP
  392. unsigned long profile_pc(struct pt_regs *regs)
  393. {
  394. unsigned long pc = instruction_pointer(regs);
  395. if (in_lock_functions(pc))
  396. return regs->link;
  397. return pc;
  398. }
  399. EXPORT_SYMBOL(profile_pc);
  400. #endif
  401. #ifdef CONFIG_IRQ_WORK
  402. /*
  403. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  404. */
  405. #ifdef CONFIG_PPC64
  406. static inline unsigned long test_irq_work_pending(void)
  407. {
  408. unsigned long x;
  409. asm volatile("lbz %0,%1(13)"
  410. : "=r" (x)
  411. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  412. return x;
  413. }
  414. static inline void set_irq_work_pending_flag(void)
  415. {
  416. asm volatile("stb %0,%1(13)" : :
  417. "r" (1),
  418. "i" (offsetof(struct paca_struct, irq_work_pending)));
  419. }
  420. static inline void clear_irq_work_pending(void)
  421. {
  422. asm volatile("stb %0,%1(13)" : :
  423. "r" (0),
  424. "i" (offsetof(struct paca_struct, irq_work_pending)));
  425. }
  426. #else /* 32-bit */
  427. DEFINE_PER_CPU(u8, irq_work_pending);
  428. #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
  429. #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
  430. #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
  431. #endif /* 32 vs 64 bit */
  432. void arch_irq_work_raise(void)
  433. {
  434. preempt_disable();
  435. set_irq_work_pending_flag();
  436. set_dec(1);
  437. preempt_enable();
  438. }
  439. #else /* CONFIG_IRQ_WORK */
  440. #define test_irq_work_pending() 0
  441. #define clear_irq_work_pending()
  442. #endif /* CONFIG_IRQ_WORK */
  443. static void __timer_interrupt(void)
  444. {
  445. struct pt_regs *regs = get_irq_regs();
  446. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  447. struct clock_event_device *evt = this_cpu_ptr(&decrementers);
  448. u64 now;
  449. trace_timer_interrupt_entry(regs);
  450. if (test_irq_work_pending()) {
  451. clear_irq_work_pending();
  452. irq_work_run();
  453. }
  454. now = get_tb_or_rtc();
  455. if (now >= *next_tb) {
  456. *next_tb = ~(u64)0;
  457. if (evt->event_handler)
  458. evt->event_handler(evt);
  459. __this_cpu_inc(irq_stat.timer_irqs_event);
  460. } else {
  461. now = *next_tb - now;
  462. if (now <= decrementer_max)
  463. set_dec(now);
  464. /* We may have raced with new irq work */
  465. if (test_irq_work_pending())
  466. set_dec(1);
  467. __this_cpu_inc(irq_stat.timer_irqs_others);
  468. }
  469. #ifdef CONFIG_PPC64
  470. /* collect purr register values often, for accurate calculations */
  471. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  472. struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
  473. cu->current_tb = mfspr(SPRN_PURR);
  474. }
  475. #endif
  476. trace_timer_interrupt_exit(regs);
  477. }
  478. /*
  479. * timer_interrupt - gets called when the decrementer overflows,
  480. * with interrupts disabled.
  481. */
  482. void timer_interrupt(struct pt_regs * regs)
  483. {
  484. struct pt_regs *old_regs;
  485. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  486. /* Ensure a positive value is written to the decrementer, or else
  487. * some CPUs will continue to take decrementer exceptions.
  488. */
  489. set_dec(decrementer_max);
  490. /* Some implementations of hotplug will get timer interrupts while
  491. * offline, just ignore these and we also need to set
  492. * decrementers_next_tb as MAX to make sure __check_irq_replay
  493. * don't replay timer interrupt when return, otherwise we'll trap
  494. * here infinitely :(
  495. */
  496. if (!cpu_online(smp_processor_id())) {
  497. *next_tb = ~(u64)0;
  498. return;
  499. }
  500. /* Conditionally hard-enable interrupts now that the DEC has been
  501. * bumped to its maximum value
  502. */
  503. may_hard_irq_enable();
  504. #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
  505. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  506. do_IRQ(regs);
  507. #endif
  508. old_regs = set_irq_regs(regs);
  509. irq_enter();
  510. __timer_interrupt();
  511. irq_exit();
  512. set_irq_regs(old_regs);
  513. }
  514. EXPORT_SYMBOL(timer_interrupt);
  515. /*
  516. * Hypervisor decrementer interrupts shouldn't occur but are sometimes
  517. * left pending on exit from a KVM guest. We don't need to do anything
  518. * to clear them, as they are edge-triggered.
  519. */
  520. void hdec_interrupt(struct pt_regs *regs)
  521. {
  522. }
  523. #ifdef CONFIG_SUSPEND
  524. static void generic_suspend_disable_irqs(void)
  525. {
  526. /* Disable the decrementer, so that it doesn't interfere
  527. * with suspending.
  528. */
  529. set_dec(decrementer_max);
  530. local_irq_disable();
  531. set_dec(decrementer_max);
  532. }
  533. static void generic_suspend_enable_irqs(void)
  534. {
  535. local_irq_enable();
  536. }
  537. /* Overrides the weak version in kernel/power/main.c */
  538. void arch_suspend_disable_irqs(void)
  539. {
  540. if (ppc_md.suspend_disable_irqs)
  541. ppc_md.suspend_disable_irqs();
  542. generic_suspend_disable_irqs();
  543. }
  544. /* Overrides the weak version in kernel/power/main.c */
  545. void arch_suspend_enable_irqs(void)
  546. {
  547. generic_suspend_enable_irqs();
  548. if (ppc_md.suspend_enable_irqs)
  549. ppc_md.suspend_enable_irqs();
  550. }
  551. #endif
  552. unsigned long long tb_to_ns(unsigned long long ticks)
  553. {
  554. return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
  555. }
  556. EXPORT_SYMBOL_GPL(tb_to_ns);
  557. /*
  558. * Scheduler clock - returns current time in nanosec units.
  559. *
  560. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  561. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  562. * are 64-bit unsigned numbers.
  563. */
  564. unsigned long long sched_clock(void)
  565. {
  566. if (__USE_RTC())
  567. return get_rtc();
  568. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  569. }
  570. #ifdef CONFIG_PPC_PSERIES
  571. /*
  572. * Running clock - attempts to give a view of time passing for a virtualised
  573. * kernels.
  574. * Uses the VTB register if available otherwise a next best guess.
  575. */
  576. unsigned long long running_clock(void)
  577. {
  578. /*
  579. * Don't read the VTB as a host since KVM does not switch in host
  580. * timebase into the VTB when it takes a guest off the CPU, reading the
  581. * VTB would result in reading 'last switched out' guest VTB.
  582. *
  583. * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
  584. * would be unsafe to rely only on the #ifdef above.
  585. */
  586. if (firmware_has_feature(FW_FEATURE_LPAR) &&
  587. cpu_has_feature(CPU_FTR_ARCH_207S))
  588. return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  589. /*
  590. * This is a next best approximation without a VTB.
  591. * On a host which is running bare metal there should never be any stolen
  592. * time and on a host which doesn't do any virtualisation TB *should* equal
  593. * VTB so it makes no difference anyway.
  594. */
  595. return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
  596. }
  597. #endif
  598. static int __init get_freq(char *name, int cells, unsigned long *val)
  599. {
  600. struct device_node *cpu;
  601. const __be32 *fp;
  602. int found = 0;
  603. /* The cpu node should have timebase and clock frequency properties */
  604. cpu = of_find_node_by_type(NULL, "cpu");
  605. if (cpu) {
  606. fp = of_get_property(cpu, name, NULL);
  607. if (fp) {
  608. found = 1;
  609. *val = of_read_ulong(fp, cells);
  610. }
  611. of_node_put(cpu);
  612. }
  613. return found;
  614. }
  615. static void start_cpu_decrementer(void)
  616. {
  617. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  618. /* Clear any pending timer interrupts */
  619. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  620. /* Enable decrementer interrupt */
  621. mtspr(SPRN_TCR, TCR_DIE);
  622. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  623. }
  624. void __init generic_calibrate_decr(void)
  625. {
  626. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  627. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  628. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  629. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  630. "(not found)\n");
  631. }
  632. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  633. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  634. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  635. printk(KERN_ERR "WARNING: Estimating processor frequency "
  636. "(not found)\n");
  637. }
  638. }
  639. int update_persistent_clock(struct timespec now)
  640. {
  641. struct rtc_time tm;
  642. if (!ppc_md.set_rtc_time)
  643. return -ENODEV;
  644. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  645. tm.tm_year -= 1900;
  646. tm.tm_mon -= 1;
  647. return ppc_md.set_rtc_time(&tm);
  648. }
  649. static void __read_persistent_clock(struct timespec *ts)
  650. {
  651. struct rtc_time tm;
  652. static int first = 1;
  653. ts->tv_nsec = 0;
  654. /* XXX this is a litle fragile but will work okay in the short term */
  655. if (first) {
  656. first = 0;
  657. if (ppc_md.time_init)
  658. timezone_offset = ppc_md.time_init();
  659. /* get_boot_time() isn't guaranteed to be safe to call late */
  660. if (ppc_md.get_boot_time) {
  661. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  662. return;
  663. }
  664. }
  665. if (!ppc_md.get_rtc_time) {
  666. ts->tv_sec = 0;
  667. return;
  668. }
  669. ppc_md.get_rtc_time(&tm);
  670. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  671. tm.tm_hour, tm.tm_min, tm.tm_sec);
  672. }
  673. void read_persistent_clock(struct timespec *ts)
  674. {
  675. __read_persistent_clock(ts);
  676. /* Sanitize it in case real time clock is set below EPOCH */
  677. if (ts->tv_sec < 0) {
  678. ts->tv_sec = 0;
  679. ts->tv_nsec = 0;
  680. }
  681. }
  682. /* clocksource code */
  683. static u64 rtc_read(struct clocksource *cs)
  684. {
  685. return (u64)get_rtc();
  686. }
  687. static u64 timebase_read(struct clocksource *cs)
  688. {
  689. return (u64)get_tb();
  690. }
  691. void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
  692. struct clocksource *clock, u32 mult, u64 cycle_last)
  693. {
  694. u64 new_tb_to_xs, new_stamp_xsec;
  695. u32 frac_sec;
  696. if (clock != &clocksource_timebase)
  697. return;
  698. /* Make userspace gettimeofday spin until we're done. */
  699. ++vdso_data->tb_update_count;
  700. smp_mb();
  701. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  702. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  703. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  704. do_div(new_stamp_xsec, 1000000000);
  705. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  706. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  707. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  708. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  709. /*
  710. * tb_update_count is used to allow the userspace gettimeofday code
  711. * to assure itself that it sees a consistent view of the tb_to_xs and
  712. * stamp_xsec variables. It reads the tb_update_count, then reads
  713. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  714. * the two values of tb_update_count match and are even then the
  715. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  716. * loops back and reads them again until this criteria is met.
  717. * We expect the caller to have done the first increment of
  718. * vdso_data->tb_update_count already.
  719. */
  720. vdso_data->tb_orig_stamp = cycle_last;
  721. vdso_data->stamp_xsec = new_stamp_xsec;
  722. vdso_data->tb_to_xs = new_tb_to_xs;
  723. vdso_data->wtom_clock_sec = wtm->tv_sec;
  724. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  725. vdso_data->stamp_xtime = *wall_time;
  726. vdso_data->stamp_sec_fraction = frac_sec;
  727. smp_wmb();
  728. ++(vdso_data->tb_update_count);
  729. }
  730. void update_vsyscall_tz(void)
  731. {
  732. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  733. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  734. }
  735. static void __init clocksource_init(void)
  736. {
  737. struct clocksource *clock;
  738. if (__USE_RTC())
  739. clock = &clocksource_rtc;
  740. else
  741. clock = &clocksource_timebase;
  742. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  743. printk(KERN_ERR "clocksource: %s is already registered\n",
  744. clock->name);
  745. return;
  746. }
  747. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  748. clock->name, clock->mult, clock->shift);
  749. }
  750. static int decrementer_set_next_event(unsigned long evt,
  751. struct clock_event_device *dev)
  752. {
  753. __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
  754. set_dec(evt);
  755. /* We may have raced with new irq work */
  756. if (test_irq_work_pending())
  757. set_dec(1);
  758. return 0;
  759. }
  760. static int decrementer_shutdown(struct clock_event_device *dev)
  761. {
  762. decrementer_set_next_event(decrementer_max, dev);
  763. return 0;
  764. }
  765. /* Interrupt handler for the timer broadcast IPI */
  766. void tick_broadcast_ipi_handler(void)
  767. {
  768. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  769. *next_tb = get_tb_or_rtc();
  770. __timer_interrupt();
  771. }
  772. static void register_decrementer_clockevent(int cpu)
  773. {
  774. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  775. *dec = decrementer_clockevent;
  776. dec->cpumask = cpumask_of(cpu);
  777. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  778. dec->name, dec->mult, dec->shift, cpu);
  779. clockevents_register_device(dec);
  780. }
  781. static void enable_large_decrementer(void)
  782. {
  783. if (!cpu_has_feature(CPU_FTR_ARCH_300))
  784. return;
  785. if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
  786. return;
  787. /*
  788. * If we're running as the hypervisor we need to enable the LD manually
  789. * otherwise firmware should have done it for us.
  790. */
  791. if (cpu_has_feature(CPU_FTR_HVMODE))
  792. mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
  793. }
  794. static void __init set_decrementer_max(void)
  795. {
  796. struct device_node *cpu;
  797. u32 bits = 32;
  798. /* Prior to ISAv3 the decrementer is always 32 bit */
  799. if (!cpu_has_feature(CPU_FTR_ARCH_300))
  800. return;
  801. cpu = of_find_node_by_type(NULL, "cpu");
  802. if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
  803. if (bits > 64 || bits < 32) {
  804. pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
  805. bits = 32;
  806. }
  807. /* calculate the signed maximum given this many bits */
  808. decrementer_max = (1ul << (bits - 1)) - 1;
  809. }
  810. of_node_put(cpu);
  811. pr_info("time_init: %u bit decrementer (max: %llx)\n",
  812. bits, decrementer_max);
  813. }
  814. static void __init init_decrementer_clockevent(void)
  815. {
  816. int cpu = smp_processor_id();
  817. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  818. decrementer_clockevent.max_delta_ns =
  819. clockevent_delta2ns(decrementer_max, &decrementer_clockevent);
  820. decrementer_clockevent.min_delta_ns =
  821. clockevent_delta2ns(2, &decrementer_clockevent);
  822. register_decrementer_clockevent(cpu);
  823. }
  824. void secondary_cpu_time_init(void)
  825. {
  826. /* Enable and test the large decrementer for this cpu */
  827. enable_large_decrementer();
  828. /* Start the decrementer on CPUs that have manual control
  829. * such as BookE
  830. */
  831. start_cpu_decrementer();
  832. /* FIME: Should make unrelatred change to move snapshot_timebase
  833. * call here ! */
  834. register_decrementer_clockevent(smp_processor_id());
  835. }
  836. /* This function is only called on the boot processor */
  837. void __init time_init(void)
  838. {
  839. struct div_result res;
  840. u64 scale;
  841. unsigned shift;
  842. if (__USE_RTC()) {
  843. /* 601 processor: dec counts down by 128 every 128ns */
  844. ppc_tb_freq = 1000000000;
  845. } else {
  846. /* Normal PowerPC with timebase register */
  847. ppc_md.calibrate_decr();
  848. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  849. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  850. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  851. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  852. }
  853. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  854. tb_ticks_per_sec = ppc_tb_freq;
  855. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  856. calc_cputime_factors();
  857. setup_cputime_one_jiffy();
  858. /*
  859. * Compute scale factor for sched_clock.
  860. * The calibrate_decr() function has set tb_ticks_per_sec,
  861. * which is the timebase frequency.
  862. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  863. * the 128-bit result as a 64.64 fixed-point number.
  864. * We then shift that number right until it is less than 1.0,
  865. * giving us the scale factor and shift count to use in
  866. * sched_clock().
  867. */
  868. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  869. scale = res.result_low;
  870. for (shift = 0; res.result_high != 0; ++shift) {
  871. scale = (scale >> 1) | (res.result_high << 63);
  872. res.result_high >>= 1;
  873. }
  874. tb_to_ns_scale = scale;
  875. tb_to_ns_shift = shift;
  876. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  877. boot_tb = get_tb_or_rtc();
  878. /* If platform provided a timezone (pmac), we correct the time */
  879. if (timezone_offset) {
  880. sys_tz.tz_minuteswest = -timezone_offset / 60;
  881. sys_tz.tz_dsttime = 0;
  882. }
  883. vdso_data->tb_update_count = 0;
  884. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  885. /* initialise and enable the large decrementer (if we have one) */
  886. set_decrementer_max();
  887. enable_large_decrementer();
  888. /* Start the decrementer on CPUs that have manual control
  889. * such as BookE
  890. */
  891. start_cpu_decrementer();
  892. /* Register the clocksource */
  893. clocksource_init();
  894. init_decrementer_clockevent();
  895. tick_setup_hrtimer_broadcast();
  896. #ifdef CONFIG_COMMON_CLK
  897. of_clk_init(NULL);
  898. #endif
  899. }
  900. #define FEBRUARY 2
  901. #define STARTOFTIME 1970
  902. #define SECDAY 86400L
  903. #define SECYR (SECDAY * 365)
  904. #define leapyear(year) ((year) % 4 == 0 && \
  905. ((year) % 100 != 0 || (year) % 400 == 0))
  906. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  907. #define days_in_month(a) (month_days[(a) - 1])
  908. static int month_days[12] = {
  909. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  910. };
  911. void to_tm(int tim, struct rtc_time * tm)
  912. {
  913. register int i;
  914. register long hms, day;
  915. day = tim / SECDAY;
  916. hms = tim % SECDAY;
  917. /* Hours, minutes, seconds are easy */
  918. tm->tm_hour = hms / 3600;
  919. tm->tm_min = (hms % 3600) / 60;
  920. tm->tm_sec = (hms % 3600) % 60;
  921. /* Number of years in days */
  922. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  923. day -= days_in_year(i);
  924. tm->tm_year = i;
  925. /* Number of months in days left */
  926. if (leapyear(tm->tm_year))
  927. days_in_month(FEBRUARY) = 29;
  928. for (i = 1; day >= days_in_month(i); i++)
  929. day -= days_in_month(i);
  930. days_in_month(FEBRUARY) = 28;
  931. tm->tm_mon = i;
  932. /* Days are what is left over (+1) from all that. */
  933. tm->tm_mday = day + 1;
  934. /*
  935. * No-one uses the day of the week.
  936. */
  937. tm->tm_wday = -1;
  938. }
  939. EXPORT_SYMBOL(to_tm);
  940. /*
  941. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  942. * result.
  943. */
  944. void div128_by_32(u64 dividend_high, u64 dividend_low,
  945. unsigned divisor, struct div_result *dr)
  946. {
  947. unsigned long a, b, c, d;
  948. unsigned long w, x, y, z;
  949. u64 ra, rb, rc;
  950. a = dividend_high >> 32;
  951. b = dividend_high & 0xffffffff;
  952. c = dividend_low >> 32;
  953. d = dividend_low & 0xffffffff;
  954. w = a / divisor;
  955. ra = ((u64)(a - (w * divisor)) << 32) + b;
  956. rb = ((u64) do_div(ra, divisor) << 32) + c;
  957. x = ra;
  958. rc = ((u64) do_div(rb, divisor) << 32) + d;
  959. y = rb;
  960. do_div(rc, divisor);
  961. z = rc;
  962. dr->result_high = ((u64)w << 32) + x;
  963. dr->result_low = ((u64)y << 32) + z;
  964. }
  965. /* We don't need to calibrate delay, we use the CPU timebase for that */
  966. void calibrate_delay(void)
  967. {
  968. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  969. * as the number of __delay(1) in a jiffy, so make it so
  970. */
  971. loops_per_jiffy = tb_ticks_per_jiffy;
  972. }
  973. #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
  974. static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
  975. {
  976. ppc_md.get_rtc_time(tm);
  977. return rtc_valid_tm(tm);
  978. }
  979. static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
  980. {
  981. if (!ppc_md.set_rtc_time)
  982. return -EOPNOTSUPP;
  983. if (ppc_md.set_rtc_time(tm) < 0)
  984. return -EOPNOTSUPP;
  985. return 0;
  986. }
  987. static const struct rtc_class_ops rtc_generic_ops = {
  988. .read_time = rtc_generic_get_time,
  989. .set_time = rtc_generic_set_time,
  990. };
  991. static int __init rtc_init(void)
  992. {
  993. struct platform_device *pdev;
  994. if (!ppc_md.get_rtc_time)
  995. return -ENODEV;
  996. pdev = platform_device_register_data(NULL, "rtc-generic", -1,
  997. &rtc_generic_ops,
  998. sizeof(rtc_generic_ops));
  999. return PTR_ERR_OR_ZERO(pdev);
  1000. }
  1001. device_initcall(rtc_init);
  1002. #endif