memcontrol.c 145 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * Kernel Memory Controller
  14. * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15. * Authors: Glauber Costa and Suleiman Souhlal
  16. *
  17. * This program is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License as published by
  19. * the Free Software Foundation; either version 2 of the License, or
  20. * (at your option) any later version.
  21. *
  22. * This program is distributed in the hope that it will be useful,
  23. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  25. * GNU General Public License for more details.
  26. */
  27. #include <linux/page_counter.h>
  28. #include <linux/memcontrol.h>
  29. #include <linux/cgroup.h>
  30. #include <linux/mm.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/smp.h>
  34. #include <linux/page-flags.h>
  35. #include <linux/backing-dev.h>
  36. #include <linux/bit_spinlock.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/limits.h>
  39. #include <linux/export.h>
  40. #include <linux/mutex.h>
  41. #include <linux/rbtree.h>
  42. #include <linux/slab.h>
  43. #include <linux/swap.h>
  44. #include <linux/swapops.h>
  45. #include <linux/spinlock.h>
  46. #include <linux/eventfd.h>
  47. #include <linux/poll.h>
  48. #include <linux/sort.h>
  49. #include <linux/fs.h>
  50. #include <linux/seq_file.h>
  51. #include <linux/vmpressure.h>
  52. #include <linux/mm_inline.h>
  53. #include <linux/swap_cgroup.h>
  54. #include <linux/cpu.h>
  55. #include <linux/oom.h>
  56. #include <linux/lockdep.h>
  57. #include <linux/file.h>
  58. #include "internal.h"
  59. #include <net/sock.h>
  60. #include <net/ip.h>
  61. #include <net/tcp_memcontrol.h>
  62. #include "slab.h"
  63. #include <asm/uaccess.h>
  64. #include <trace/events/vmscan.h>
  65. struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  66. EXPORT_SYMBOL(memory_cgrp_subsys);
  67. #define MEM_CGROUP_RECLAIM_RETRIES 5
  68. static struct mem_cgroup *root_mem_cgroup __read_mostly;
  69. #ifdef CONFIG_MEMCG_SWAP
  70. /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
  71. int do_swap_account __read_mostly;
  72. /* for remember boot option*/
  73. #ifdef CONFIG_MEMCG_SWAP_ENABLED
  74. static int really_do_swap_account __initdata = 1;
  75. #else
  76. static int really_do_swap_account __initdata;
  77. #endif
  78. #else
  79. #define do_swap_account 0
  80. #endif
  81. static const char * const mem_cgroup_stat_names[] = {
  82. "cache",
  83. "rss",
  84. "rss_huge",
  85. "mapped_file",
  86. "writeback",
  87. "swap",
  88. };
  89. enum mem_cgroup_events_index {
  90. MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
  91. MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
  92. MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
  93. MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
  94. MEM_CGROUP_EVENTS_NSTATS,
  95. };
  96. static const char * const mem_cgroup_events_names[] = {
  97. "pgpgin",
  98. "pgpgout",
  99. "pgfault",
  100. "pgmajfault",
  101. };
  102. static const char * const mem_cgroup_lru_names[] = {
  103. "inactive_anon",
  104. "active_anon",
  105. "inactive_file",
  106. "active_file",
  107. "unevictable",
  108. };
  109. /*
  110. * Per memcg event counter is incremented at every pagein/pageout. With THP,
  111. * it will be incremated by the number of pages. This counter is used for
  112. * for trigger some periodic events. This is straightforward and better
  113. * than using jiffies etc. to handle periodic memcg event.
  114. */
  115. enum mem_cgroup_events_target {
  116. MEM_CGROUP_TARGET_THRESH,
  117. MEM_CGROUP_TARGET_SOFTLIMIT,
  118. MEM_CGROUP_TARGET_NUMAINFO,
  119. MEM_CGROUP_NTARGETS,
  120. };
  121. #define THRESHOLDS_EVENTS_TARGET 128
  122. #define SOFTLIMIT_EVENTS_TARGET 1024
  123. #define NUMAINFO_EVENTS_TARGET 1024
  124. struct mem_cgroup_stat_cpu {
  125. long count[MEM_CGROUP_STAT_NSTATS];
  126. unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
  127. unsigned long nr_page_events;
  128. unsigned long targets[MEM_CGROUP_NTARGETS];
  129. };
  130. struct reclaim_iter {
  131. struct mem_cgroup *position;
  132. /* scan generation, increased every round-trip */
  133. unsigned int generation;
  134. };
  135. /*
  136. * per-zone information in memory controller.
  137. */
  138. struct mem_cgroup_per_zone {
  139. struct lruvec lruvec;
  140. unsigned long lru_size[NR_LRU_LISTS];
  141. struct reclaim_iter iter[DEF_PRIORITY + 1];
  142. struct rb_node tree_node; /* RB tree node */
  143. unsigned long usage_in_excess;/* Set to the value by which */
  144. /* the soft limit is exceeded*/
  145. bool on_tree;
  146. struct mem_cgroup *memcg; /* Back pointer, we cannot */
  147. /* use container_of */
  148. };
  149. struct mem_cgroup_per_node {
  150. struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  151. };
  152. /*
  153. * Cgroups above their limits are maintained in a RB-Tree, independent of
  154. * their hierarchy representation
  155. */
  156. struct mem_cgroup_tree_per_zone {
  157. struct rb_root rb_root;
  158. spinlock_t lock;
  159. };
  160. struct mem_cgroup_tree_per_node {
  161. struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
  162. };
  163. struct mem_cgroup_tree {
  164. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  165. };
  166. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  167. struct mem_cgroup_threshold {
  168. struct eventfd_ctx *eventfd;
  169. unsigned long threshold;
  170. };
  171. /* For threshold */
  172. struct mem_cgroup_threshold_ary {
  173. /* An array index points to threshold just below or equal to usage. */
  174. int current_threshold;
  175. /* Size of entries[] */
  176. unsigned int size;
  177. /* Array of thresholds */
  178. struct mem_cgroup_threshold entries[0];
  179. };
  180. struct mem_cgroup_thresholds {
  181. /* Primary thresholds array */
  182. struct mem_cgroup_threshold_ary *primary;
  183. /*
  184. * Spare threshold array.
  185. * This is needed to make mem_cgroup_unregister_event() "never fail".
  186. * It must be able to store at least primary->size - 1 entries.
  187. */
  188. struct mem_cgroup_threshold_ary *spare;
  189. };
  190. /* for OOM */
  191. struct mem_cgroup_eventfd_list {
  192. struct list_head list;
  193. struct eventfd_ctx *eventfd;
  194. };
  195. /*
  196. * cgroup_event represents events which userspace want to receive.
  197. */
  198. struct mem_cgroup_event {
  199. /*
  200. * memcg which the event belongs to.
  201. */
  202. struct mem_cgroup *memcg;
  203. /*
  204. * eventfd to signal userspace about the event.
  205. */
  206. struct eventfd_ctx *eventfd;
  207. /*
  208. * Each of these stored in a list by the cgroup.
  209. */
  210. struct list_head list;
  211. /*
  212. * register_event() callback will be used to add new userspace
  213. * waiter for changes related to this event. Use eventfd_signal()
  214. * on eventfd to send notification to userspace.
  215. */
  216. int (*register_event)(struct mem_cgroup *memcg,
  217. struct eventfd_ctx *eventfd, const char *args);
  218. /*
  219. * unregister_event() callback will be called when userspace closes
  220. * the eventfd or on cgroup removing. This callback must be set,
  221. * if you want provide notification functionality.
  222. */
  223. void (*unregister_event)(struct mem_cgroup *memcg,
  224. struct eventfd_ctx *eventfd);
  225. /*
  226. * All fields below needed to unregister event when
  227. * userspace closes eventfd.
  228. */
  229. poll_table pt;
  230. wait_queue_head_t *wqh;
  231. wait_queue_t wait;
  232. struct work_struct remove;
  233. };
  234. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  235. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  236. /*
  237. * The memory controller data structure. The memory controller controls both
  238. * page cache and RSS per cgroup. We would eventually like to provide
  239. * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  240. * to help the administrator determine what knobs to tune.
  241. *
  242. * TODO: Add a water mark for the memory controller. Reclaim will begin when
  243. * we hit the water mark. May be even add a low water mark, such that
  244. * no reclaim occurs from a cgroup at it's low water mark, this is
  245. * a feature that will be implemented much later in the future.
  246. */
  247. struct mem_cgroup {
  248. struct cgroup_subsys_state css;
  249. /* Accounted resources */
  250. struct page_counter memory;
  251. struct page_counter memsw;
  252. struct page_counter kmem;
  253. unsigned long soft_limit;
  254. /* vmpressure notifications */
  255. struct vmpressure vmpressure;
  256. /* css_online() has been completed */
  257. int initialized;
  258. /*
  259. * Should the accounting and control be hierarchical, per subtree?
  260. */
  261. bool use_hierarchy;
  262. bool oom_lock;
  263. atomic_t under_oom;
  264. atomic_t oom_wakeups;
  265. int swappiness;
  266. /* OOM-Killer disable */
  267. int oom_kill_disable;
  268. /* protect arrays of thresholds */
  269. struct mutex thresholds_lock;
  270. /* thresholds for memory usage. RCU-protected */
  271. struct mem_cgroup_thresholds thresholds;
  272. /* thresholds for mem+swap usage. RCU-protected */
  273. struct mem_cgroup_thresholds memsw_thresholds;
  274. /* For oom notifier event fd */
  275. struct list_head oom_notify;
  276. /*
  277. * Should we move charges of a task when a task is moved into this
  278. * mem_cgroup ? And what type of charges should we move ?
  279. */
  280. unsigned long move_charge_at_immigrate;
  281. /*
  282. * set > 0 if pages under this cgroup are moving to other cgroup.
  283. */
  284. atomic_t moving_account;
  285. /* taken only while moving_account > 0 */
  286. spinlock_t move_lock;
  287. struct task_struct *move_lock_task;
  288. unsigned long move_lock_flags;
  289. /*
  290. * percpu counter.
  291. */
  292. struct mem_cgroup_stat_cpu __percpu *stat;
  293. /*
  294. * used when a cpu is offlined or other synchronizations
  295. * See mem_cgroup_read_stat().
  296. */
  297. struct mem_cgroup_stat_cpu nocpu_base;
  298. spinlock_t pcp_counter_lock;
  299. #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
  300. struct cg_proto tcp_mem;
  301. #endif
  302. #if defined(CONFIG_MEMCG_KMEM)
  303. /* Index in the kmem_cache->memcg_params->memcg_caches array */
  304. int kmemcg_id;
  305. #endif
  306. int last_scanned_node;
  307. #if MAX_NUMNODES > 1
  308. nodemask_t scan_nodes;
  309. atomic_t numainfo_events;
  310. atomic_t numainfo_updating;
  311. #endif
  312. /* List of events which userspace want to receive */
  313. struct list_head event_list;
  314. spinlock_t event_list_lock;
  315. struct mem_cgroup_per_node *nodeinfo[0];
  316. /* WARNING: nodeinfo must be the last member here */
  317. };
  318. #ifdef CONFIG_MEMCG_KMEM
  319. static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
  320. {
  321. return memcg->kmemcg_id >= 0;
  322. }
  323. #endif
  324. /* Stuffs for move charges at task migration. */
  325. /*
  326. * Types of charges to be moved. "move_charge_at_immitgrate" and
  327. * "immigrate_flags" are treated as a left-shifted bitmap of these types.
  328. */
  329. enum move_type {
  330. MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
  331. MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
  332. NR_MOVE_TYPE,
  333. };
  334. /* "mc" and its members are protected by cgroup_mutex */
  335. static struct move_charge_struct {
  336. spinlock_t lock; /* for from, to */
  337. struct mem_cgroup *from;
  338. struct mem_cgroup *to;
  339. unsigned long immigrate_flags;
  340. unsigned long precharge;
  341. unsigned long moved_charge;
  342. unsigned long moved_swap;
  343. struct task_struct *moving_task; /* a task moving charges */
  344. wait_queue_head_t waitq; /* a waitq for other context */
  345. } mc = {
  346. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  347. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  348. };
  349. static bool move_anon(void)
  350. {
  351. return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
  352. }
  353. static bool move_file(void)
  354. {
  355. return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
  356. }
  357. /*
  358. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  359. * limit reclaim to prevent infinite loops, if they ever occur.
  360. */
  361. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  362. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  363. enum charge_type {
  364. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  365. MEM_CGROUP_CHARGE_TYPE_ANON,
  366. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  367. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  368. NR_CHARGE_TYPE,
  369. };
  370. /* for encoding cft->private value on file */
  371. enum res_type {
  372. _MEM,
  373. _MEMSWAP,
  374. _OOM_TYPE,
  375. _KMEM,
  376. };
  377. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  378. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  379. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  380. /* Used for OOM nofiier */
  381. #define OOM_CONTROL (0)
  382. /*
  383. * The memcg_create_mutex will be held whenever a new cgroup is created.
  384. * As a consequence, any change that needs to protect against new child cgroups
  385. * appearing has to hold it as well.
  386. */
  387. static DEFINE_MUTEX(memcg_create_mutex);
  388. struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
  389. {
  390. return s ? container_of(s, struct mem_cgroup, css) : NULL;
  391. }
  392. /* Some nice accessors for the vmpressure. */
  393. struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
  394. {
  395. if (!memcg)
  396. memcg = root_mem_cgroup;
  397. return &memcg->vmpressure;
  398. }
  399. struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
  400. {
  401. return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
  402. }
  403. static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  404. {
  405. return (memcg == root_mem_cgroup);
  406. }
  407. /*
  408. * We restrict the id in the range of [1, 65535], so it can fit into
  409. * an unsigned short.
  410. */
  411. #define MEM_CGROUP_ID_MAX USHRT_MAX
  412. static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
  413. {
  414. return memcg->css.id;
  415. }
  416. static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
  417. {
  418. struct cgroup_subsys_state *css;
  419. css = css_from_id(id, &memory_cgrp_subsys);
  420. return mem_cgroup_from_css(css);
  421. }
  422. /* Writing them here to avoid exposing memcg's inner layout */
  423. #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
  424. void sock_update_memcg(struct sock *sk)
  425. {
  426. if (mem_cgroup_sockets_enabled) {
  427. struct mem_cgroup *memcg;
  428. struct cg_proto *cg_proto;
  429. BUG_ON(!sk->sk_prot->proto_cgroup);
  430. /* Socket cloning can throw us here with sk_cgrp already
  431. * filled. It won't however, necessarily happen from
  432. * process context. So the test for root memcg given
  433. * the current task's memcg won't help us in this case.
  434. *
  435. * Respecting the original socket's memcg is a better
  436. * decision in this case.
  437. */
  438. if (sk->sk_cgrp) {
  439. BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
  440. css_get(&sk->sk_cgrp->memcg->css);
  441. return;
  442. }
  443. rcu_read_lock();
  444. memcg = mem_cgroup_from_task(current);
  445. cg_proto = sk->sk_prot->proto_cgroup(memcg);
  446. if (!mem_cgroup_is_root(memcg) &&
  447. memcg_proto_active(cg_proto) &&
  448. css_tryget_online(&memcg->css)) {
  449. sk->sk_cgrp = cg_proto;
  450. }
  451. rcu_read_unlock();
  452. }
  453. }
  454. EXPORT_SYMBOL(sock_update_memcg);
  455. void sock_release_memcg(struct sock *sk)
  456. {
  457. if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
  458. struct mem_cgroup *memcg;
  459. WARN_ON(!sk->sk_cgrp->memcg);
  460. memcg = sk->sk_cgrp->memcg;
  461. css_put(&sk->sk_cgrp->memcg->css);
  462. }
  463. }
  464. struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
  465. {
  466. if (!memcg || mem_cgroup_is_root(memcg))
  467. return NULL;
  468. return &memcg->tcp_mem;
  469. }
  470. EXPORT_SYMBOL(tcp_proto_cgroup);
  471. static void disarm_sock_keys(struct mem_cgroup *memcg)
  472. {
  473. if (!memcg_proto_activated(&memcg->tcp_mem))
  474. return;
  475. static_key_slow_dec(&memcg_socket_limit_enabled);
  476. }
  477. #else
  478. static void disarm_sock_keys(struct mem_cgroup *memcg)
  479. {
  480. }
  481. #endif
  482. #ifdef CONFIG_MEMCG_KMEM
  483. /*
  484. * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
  485. * The main reason for not using cgroup id for this:
  486. * this works better in sparse environments, where we have a lot of memcgs,
  487. * but only a few kmem-limited. Or also, if we have, for instance, 200
  488. * memcgs, and none but the 200th is kmem-limited, we'd have to have a
  489. * 200 entry array for that.
  490. *
  491. * The current size of the caches array is stored in
  492. * memcg_limited_groups_array_size. It will double each time we have to
  493. * increase it.
  494. */
  495. static DEFINE_IDA(kmem_limited_groups);
  496. int memcg_limited_groups_array_size;
  497. /*
  498. * MIN_SIZE is different than 1, because we would like to avoid going through
  499. * the alloc/free process all the time. In a small machine, 4 kmem-limited
  500. * cgroups is a reasonable guess. In the future, it could be a parameter or
  501. * tunable, but that is strictly not necessary.
  502. *
  503. * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
  504. * this constant directly from cgroup, but it is understandable that this is
  505. * better kept as an internal representation in cgroup.c. In any case, the
  506. * cgrp_id space is not getting any smaller, and we don't have to necessarily
  507. * increase ours as well if it increases.
  508. */
  509. #define MEMCG_CACHES_MIN_SIZE 4
  510. #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
  511. /*
  512. * A lot of the calls to the cache allocation functions are expected to be
  513. * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  514. * conditional to this static branch, we'll have to allow modules that does
  515. * kmem_cache_alloc and the such to see this symbol as well
  516. */
  517. struct static_key memcg_kmem_enabled_key;
  518. EXPORT_SYMBOL(memcg_kmem_enabled_key);
  519. static void memcg_free_cache_id(int id);
  520. static void disarm_kmem_keys(struct mem_cgroup *memcg)
  521. {
  522. if (memcg_kmem_is_active(memcg)) {
  523. static_key_slow_dec(&memcg_kmem_enabled_key);
  524. memcg_free_cache_id(memcg->kmemcg_id);
  525. }
  526. /*
  527. * This check can't live in kmem destruction function,
  528. * since the charges will outlive the cgroup
  529. */
  530. WARN_ON(page_counter_read(&memcg->kmem));
  531. }
  532. #else
  533. static void disarm_kmem_keys(struct mem_cgroup *memcg)
  534. {
  535. }
  536. #endif /* CONFIG_MEMCG_KMEM */
  537. static void disarm_static_keys(struct mem_cgroup *memcg)
  538. {
  539. disarm_sock_keys(memcg);
  540. disarm_kmem_keys(memcg);
  541. }
  542. static struct mem_cgroup_per_zone *
  543. mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
  544. {
  545. int nid = zone_to_nid(zone);
  546. int zid = zone_idx(zone);
  547. return &memcg->nodeinfo[nid]->zoneinfo[zid];
  548. }
  549. struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
  550. {
  551. return &memcg->css;
  552. }
  553. static struct mem_cgroup_per_zone *
  554. mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
  555. {
  556. int nid = page_to_nid(page);
  557. int zid = page_zonenum(page);
  558. return &memcg->nodeinfo[nid]->zoneinfo[zid];
  559. }
  560. static struct mem_cgroup_tree_per_zone *
  561. soft_limit_tree_node_zone(int nid, int zid)
  562. {
  563. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  564. }
  565. static struct mem_cgroup_tree_per_zone *
  566. soft_limit_tree_from_page(struct page *page)
  567. {
  568. int nid = page_to_nid(page);
  569. int zid = page_zonenum(page);
  570. return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
  571. }
  572. static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
  573. struct mem_cgroup_tree_per_zone *mctz,
  574. unsigned long new_usage_in_excess)
  575. {
  576. struct rb_node **p = &mctz->rb_root.rb_node;
  577. struct rb_node *parent = NULL;
  578. struct mem_cgroup_per_zone *mz_node;
  579. if (mz->on_tree)
  580. return;
  581. mz->usage_in_excess = new_usage_in_excess;
  582. if (!mz->usage_in_excess)
  583. return;
  584. while (*p) {
  585. parent = *p;
  586. mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
  587. tree_node);
  588. if (mz->usage_in_excess < mz_node->usage_in_excess)
  589. p = &(*p)->rb_left;
  590. /*
  591. * We can't avoid mem cgroups that are over their soft
  592. * limit by the same amount
  593. */
  594. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  595. p = &(*p)->rb_right;
  596. }
  597. rb_link_node(&mz->tree_node, parent, p);
  598. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  599. mz->on_tree = true;
  600. }
  601. static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
  602. struct mem_cgroup_tree_per_zone *mctz)
  603. {
  604. if (!mz->on_tree)
  605. return;
  606. rb_erase(&mz->tree_node, &mctz->rb_root);
  607. mz->on_tree = false;
  608. }
  609. static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
  610. struct mem_cgroup_tree_per_zone *mctz)
  611. {
  612. unsigned long flags;
  613. spin_lock_irqsave(&mctz->lock, flags);
  614. __mem_cgroup_remove_exceeded(mz, mctz);
  615. spin_unlock_irqrestore(&mctz->lock, flags);
  616. }
  617. static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
  618. {
  619. unsigned long nr_pages = page_counter_read(&memcg->memory);
  620. unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
  621. unsigned long excess = 0;
  622. if (nr_pages > soft_limit)
  623. excess = nr_pages - soft_limit;
  624. return excess;
  625. }
  626. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  627. {
  628. unsigned long excess;
  629. struct mem_cgroup_per_zone *mz;
  630. struct mem_cgroup_tree_per_zone *mctz;
  631. mctz = soft_limit_tree_from_page(page);
  632. /*
  633. * Necessary to update all ancestors when hierarchy is used.
  634. * because their event counter is not touched.
  635. */
  636. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  637. mz = mem_cgroup_page_zoneinfo(memcg, page);
  638. excess = soft_limit_excess(memcg);
  639. /*
  640. * We have to update the tree if mz is on RB-tree or
  641. * mem is over its softlimit.
  642. */
  643. if (excess || mz->on_tree) {
  644. unsigned long flags;
  645. spin_lock_irqsave(&mctz->lock, flags);
  646. /* if on-tree, remove it */
  647. if (mz->on_tree)
  648. __mem_cgroup_remove_exceeded(mz, mctz);
  649. /*
  650. * Insert again. mz->usage_in_excess will be updated.
  651. * If excess is 0, no tree ops.
  652. */
  653. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  654. spin_unlock_irqrestore(&mctz->lock, flags);
  655. }
  656. }
  657. }
  658. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  659. {
  660. struct mem_cgroup_tree_per_zone *mctz;
  661. struct mem_cgroup_per_zone *mz;
  662. int nid, zid;
  663. for_each_node(nid) {
  664. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  665. mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
  666. mctz = soft_limit_tree_node_zone(nid, zid);
  667. mem_cgroup_remove_exceeded(mz, mctz);
  668. }
  669. }
  670. }
  671. static struct mem_cgroup_per_zone *
  672. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  673. {
  674. struct rb_node *rightmost = NULL;
  675. struct mem_cgroup_per_zone *mz;
  676. retry:
  677. mz = NULL;
  678. rightmost = rb_last(&mctz->rb_root);
  679. if (!rightmost)
  680. goto done; /* Nothing to reclaim from */
  681. mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
  682. /*
  683. * Remove the node now but someone else can add it back,
  684. * we will to add it back at the end of reclaim to its correct
  685. * position in the tree.
  686. */
  687. __mem_cgroup_remove_exceeded(mz, mctz);
  688. if (!soft_limit_excess(mz->memcg) ||
  689. !css_tryget_online(&mz->memcg->css))
  690. goto retry;
  691. done:
  692. return mz;
  693. }
  694. static struct mem_cgroup_per_zone *
  695. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
  696. {
  697. struct mem_cgroup_per_zone *mz;
  698. spin_lock_irq(&mctz->lock);
  699. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  700. spin_unlock_irq(&mctz->lock);
  701. return mz;
  702. }
  703. /*
  704. * Implementation Note: reading percpu statistics for memcg.
  705. *
  706. * Both of vmstat[] and percpu_counter has threshold and do periodic
  707. * synchronization to implement "quick" read. There are trade-off between
  708. * reading cost and precision of value. Then, we may have a chance to implement
  709. * a periodic synchronizion of counter in memcg's counter.
  710. *
  711. * But this _read() function is used for user interface now. The user accounts
  712. * memory usage by memory cgroup and he _always_ requires exact value because
  713. * he accounts memory. Even if we provide quick-and-fuzzy read, we always
  714. * have to visit all online cpus and make sum. So, for now, unnecessary
  715. * synchronization is not implemented. (just implemented for cpu hotplug)
  716. *
  717. * If there are kernel internal actions which can make use of some not-exact
  718. * value, and reading all cpu value can be performance bottleneck in some
  719. * common workload, threashold and synchonization as vmstat[] should be
  720. * implemented.
  721. */
  722. static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
  723. enum mem_cgroup_stat_index idx)
  724. {
  725. long val = 0;
  726. int cpu;
  727. get_online_cpus();
  728. for_each_online_cpu(cpu)
  729. val += per_cpu(memcg->stat->count[idx], cpu);
  730. #ifdef CONFIG_HOTPLUG_CPU
  731. spin_lock(&memcg->pcp_counter_lock);
  732. val += memcg->nocpu_base.count[idx];
  733. spin_unlock(&memcg->pcp_counter_lock);
  734. #endif
  735. put_online_cpus();
  736. return val;
  737. }
  738. static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
  739. enum mem_cgroup_events_index idx)
  740. {
  741. unsigned long val = 0;
  742. int cpu;
  743. get_online_cpus();
  744. for_each_online_cpu(cpu)
  745. val += per_cpu(memcg->stat->events[idx], cpu);
  746. #ifdef CONFIG_HOTPLUG_CPU
  747. spin_lock(&memcg->pcp_counter_lock);
  748. val += memcg->nocpu_base.events[idx];
  749. spin_unlock(&memcg->pcp_counter_lock);
  750. #endif
  751. put_online_cpus();
  752. return val;
  753. }
  754. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  755. struct page *page,
  756. int nr_pages)
  757. {
  758. /*
  759. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  760. * counted as CACHE even if it's on ANON LRU.
  761. */
  762. if (PageAnon(page))
  763. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
  764. nr_pages);
  765. else
  766. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
  767. nr_pages);
  768. if (PageTransHuge(page))
  769. __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  770. nr_pages);
  771. /* pagein of a big page is an event. So, ignore page size */
  772. if (nr_pages > 0)
  773. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
  774. else {
  775. __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
  776. nr_pages = -nr_pages; /* for event */
  777. }
  778. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  779. }
  780. unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  781. {
  782. struct mem_cgroup_per_zone *mz;
  783. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  784. return mz->lru_size[lru];
  785. }
  786. static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  787. int nid,
  788. unsigned int lru_mask)
  789. {
  790. unsigned long nr = 0;
  791. int zid;
  792. VM_BUG_ON((unsigned)nid >= nr_node_ids);
  793. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  794. struct mem_cgroup_per_zone *mz;
  795. enum lru_list lru;
  796. for_each_lru(lru) {
  797. if (!(BIT(lru) & lru_mask))
  798. continue;
  799. mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
  800. nr += mz->lru_size[lru];
  801. }
  802. }
  803. return nr;
  804. }
  805. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  806. unsigned int lru_mask)
  807. {
  808. unsigned long nr = 0;
  809. int nid;
  810. for_each_node_state(nid, N_MEMORY)
  811. nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  812. return nr;
  813. }
  814. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  815. enum mem_cgroup_events_target target)
  816. {
  817. unsigned long val, next;
  818. val = __this_cpu_read(memcg->stat->nr_page_events);
  819. next = __this_cpu_read(memcg->stat->targets[target]);
  820. /* from time_after() in jiffies.h */
  821. if ((long)next - (long)val < 0) {
  822. switch (target) {
  823. case MEM_CGROUP_TARGET_THRESH:
  824. next = val + THRESHOLDS_EVENTS_TARGET;
  825. break;
  826. case MEM_CGROUP_TARGET_SOFTLIMIT:
  827. next = val + SOFTLIMIT_EVENTS_TARGET;
  828. break;
  829. case MEM_CGROUP_TARGET_NUMAINFO:
  830. next = val + NUMAINFO_EVENTS_TARGET;
  831. break;
  832. default:
  833. break;
  834. }
  835. __this_cpu_write(memcg->stat->targets[target], next);
  836. return true;
  837. }
  838. return false;
  839. }
  840. /*
  841. * Check events in order.
  842. *
  843. */
  844. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  845. {
  846. /* threshold event is triggered in finer grain than soft limit */
  847. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  848. MEM_CGROUP_TARGET_THRESH))) {
  849. bool do_softlimit;
  850. bool do_numainfo __maybe_unused;
  851. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  852. MEM_CGROUP_TARGET_SOFTLIMIT);
  853. #if MAX_NUMNODES > 1
  854. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  855. MEM_CGROUP_TARGET_NUMAINFO);
  856. #endif
  857. mem_cgroup_threshold(memcg);
  858. if (unlikely(do_softlimit))
  859. mem_cgroup_update_tree(memcg, page);
  860. #if MAX_NUMNODES > 1
  861. if (unlikely(do_numainfo))
  862. atomic_inc(&memcg->numainfo_events);
  863. #endif
  864. }
  865. }
  866. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  867. {
  868. /*
  869. * mm_update_next_owner() may clear mm->owner to NULL
  870. * if it races with swapoff, page migration, etc.
  871. * So this can be called with p == NULL.
  872. */
  873. if (unlikely(!p))
  874. return NULL;
  875. return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
  876. }
  877. static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
  878. {
  879. struct mem_cgroup *memcg = NULL;
  880. rcu_read_lock();
  881. do {
  882. /*
  883. * Page cache insertions can happen withou an
  884. * actual mm context, e.g. during disk probing
  885. * on boot, loopback IO, acct() writes etc.
  886. */
  887. if (unlikely(!mm))
  888. memcg = root_mem_cgroup;
  889. else {
  890. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  891. if (unlikely(!memcg))
  892. memcg = root_mem_cgroup;
  893. }
  894. } while (!css_tryget_online(&memcg->css));
  895. rcu_read_unlock();
  896. return memcg;
  897. }
  898. /**
  899. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  900. * @root: hierarchy root
  901. * @prev: previously returned memcg, NULL on first invocation
  902. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  903. *
  904. * Returns references to children of the hierarchy below @root, or
  905. * @root itself, or %NULL after a full round-trip.
  906. *
  907. * Caller must pass the return value in @prev on subsequent
  908. * invocations for reference counting, or use mem_cgroup_iter_break()
  909. * to cancel a hierarchy walk before the round-trip is complete.
  910. *
  911. * Reclaimers can specify a zone and a priority level in @reclaim to
  912. * divide up the memcgs in the hierarchy among all concurrent
  913. * reclaimers operating on the same zone and priority.
  914. */
  915. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  916. struct mem_cgroup *prev,
  917. struct mem_cgroup_reclaim_cookie *reclaim)
  918. {
  919. struct reclaim_iter *uninitialized_var(iter);
  920. struct cgroup_subsys_state *css = NULL;
  921. struct mem_cgroup *memcg = NULL;
  922. struct mem_cgroup *pos = NULL;
  923. if (mem_cgroup_disabled())
  924. return NULL;
  925. if (!root)
  926. root = root_mem_cgroup;
  927. if (prev && !reclaim)
  928. pos = prev;
  929. if (!root->use_hierarchy && root != root_mem_cgroup) {
  930. if (prev)
  931. goto out;
  932. return root;
  933. }
  934. rcu_read_lock();
  935. if (reclaim) {
  936. struct mem_cgroup_per_zone *mz;
  937. mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
  938. iter = &mz->iter[reclaim->priority];
  939. if (prev && reclaim->generation != iter->generation)
  940. goto out_unlock;
  941. do {
  942. pos = ACCESS_ONCE(iter->position);
  943. /*
  944. * A racing update may change the position and
  945. * put the last reference, hence css_tryget(),
  946. * or retry to see the updated position.
  947. */
  948. } while (pos && !css_tryget(&pos->css));
  949. }
  950. if (pos)
  951. css = &pos->css;
  952. for (;;) {
  953. css = css_next_descendant_pre(css, &root->css);
  954. if (!css) {
  955. /*
  956. * Reclaimers share the hierarchy walk, and a
  957. * new one might jump in right at the end of
  958. * the hierarchy - make sure they see at least
  959. * one group and restart from the beginning.
  960. */
  961. if (!prev)
  962. continue;
  963. break;
  964. }
  965. /*
  966. * Verify the css and acquire a reference. The root
  967. * is provided by the caller, so we know it's alive
  968. * and kicking, and don't take an extra reference.
  969. */
  970. memcg = mem_cgroup_from_css(css);
  971. if (css == &root->css)
  972. break;
  973. if (css_tryget(css)) {
  974. /*
  975. * Make sure the memcg is initialized:
  976. * mem_cgroup_css_online() orders the the
  977. * initialization against setting the flag.
  978. */
  979. if (smp_load_acquire(&memcg->initialized))
  980. break;
  981. css_put(css);
  982. }
  983. memcg = NULL;
  984. }
  985. if (reclaim) {
  986. if (cmpxchg(&iter->position, pos, memcg) == pos) {
  987. if (memcg)
  988. css_get(&memcg->css);
  989. if (pos)
  990. css_put(&pos->css);
  991. }
  992. /*
  993. * pairs with css_tryget when dereferencing iter->position
  994. * above.
  995. */
  996. if (pos)
  997. css_put(&pos->css);
  998. if (!memcg)
  999. iter->generation++;
  1000. else if (!prev)
  1001. reclaim->generation = iter->generation;
  1002. }
  1003. out_unlock:
  1004. rcu_read_unlock();
  1005. out:
  1006. if (prev && prev != root)
  1007. css_put(&prev->css);
  1008. return memcg;
  1009. }
  1010. /**
  1011. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  1012. * @root: hierarchy root
  1013. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  1014. */
  1015. void mem_cgroup_iter_break(struct mem_cgroup *root,
  1016. struct mem_cgroup *prev)
  1017. {
  1018. if (!root)
  1019. root = root_mem_cgroup;
  1020. if (prev && prev != root)
  1021. css_put(&prev->css);
  1022. }
  1023. /*
  1024. * Iteration constructs for visiting all cgroups (under a tree). If
  1025. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  1026. * be used for reference counting.
  1027. */
  1028. #define for_each_mem_cgroup_tree(iter, root) \
  1029. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  1030. iter != NULL; \
  1031. iter = mem_cgroup_iter(root, iter, NULL))
  1032. #define for_each_mem_cgroup(iter) \
  1033. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  1034. iter != NULL; \
  1035. iter = mem_cgroup_iter(NULL, iter, NULL))
  1036. void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
  1037. {
  1038. struct mem_cgroup *memcg;
  1039. rcu_read_lock();
  1040. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  1041. if (unlikely(!memcg))
  1042. goto out;
  1043. switch (idx) {
  1044. case PGFAULT:
  1045. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
  1046. break;
  1047. case PGMAJFAULT:
  1048. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
  1049. break;
  1050. default:
  1051. BUG();
  1052. }
  1053. out:
  1054. rcu_read_unlock();
  1055. }
  1056. EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
  1057. /**
  1058. * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
  1059. * @zone: zone of the wanted lruvec
  1060. * @memcg: memcg of the wanted lruvec
  1061. *
  1062. * Returns the lru list vector holding pages for the given @zone and
  1063. * @mem. This can be the global zone lruvec, if the memory controller
  1064. * is disabled.
  1065. */
  1066. struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
  1067. struct mem_cgroup *memcg)
  1068. {
  1069. struct mem_cgroup_per_zone *mz;
  1070. struct lruvec *lruvec;
  1071. if (mem_cgroup_disabled()) {
  1072. lruvec = &zone->lruvec;
  1073. goto out;
  1074. }
  1075. mz = mem_cgroup_zone_zoneinfo(memcg, zone);
  1076. lruvec = &mz->lruvec;
  1077. out:
  1078. /*
  1079. * Since a node can be onlined after the mem_cgroup was created,
  1080. * we have to be prepared to initialize lruvec->zone here;
  1081. * and if offlined then reonlined, we need to reinitialize it.
  1082. */
  1083. if (unlikely(lruvec->zone != zone))
  1084. lruvec->zone = zone;
  1085. return lruvec;
  1086. }
  1087. /**
  1088. * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
  1089. * @page: the page
  1090. * @zone: zone of the page
  1091. *
  1092. * This function is only safe when following the LRU page isolation
  1093. * and putback protocol: the LRU lock must be held, and the page must
  1094. * either be PageLRU() or the caller must have isolated/allocated it.
  1095. */
  1096. struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
  1097. {
  1098. struct mem_cgroup_per_zone *mz;
  1099. struct mem_cgroup *memcg;
  1100. struct lruvec *lruvec;
  1101. if (mem_cgroup_disabled()) {
  1102. lruvec = &zone->lruvec;
  1103. goto out;
  1104. }
  1105. memcg = page->mem_cgroup;
  1106. /*
  1107. * Swapcache readahead pages are added to the LRU - and
  1108. * possibly migrated - before they are charged.
  1109. */
  1110. if (!memcg)
  1111. memcg = root_mem_cgroup;
  1112. mz = mem_cgroup_page_zoneinfo(memcg, page);
  1113. lruvec = &mz->lruvec;
  1114. out:
  1115. /*
  1116. * Since a node can be onlined after the mem_cgroup was created,
  1117. * we have to be prepared to initialize lruvec->zone here;
  1118. * and if offlined then reonlined, we need to reinitialize it.
  1119. */
  1120. if (unlikely(lruvec->zone != zone))
  1121. lruvec->zone = zone;
  1122. return lruvec;
  1123. }
  1124. /**
  1125. * mem_cgroup_update_lru_size - account for adding or removing an lru page
  1126. * @lruvec: mem_cgroup per zone lru vector
  1127. * @lru: index of lru list the page is sitting on
  1128. * @nr_pages: positive when adding or negative when removing
  1129. *
  1130. * This function must be called when a page is added to or removed from an
  1131. * lru list.
  1132. */
  1133. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  1134. int nr_pages)
  1135. {
  1136. struct mem_cgroup_per_zone *mz;
  1137. unsigned long *lru_size;
  1138. if (mem_cgroup_disabled())
  1139. return;
  1140. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  1141. lru_size = mz->lru_size + lru;
  1142. *lru_size += nr_pages;
  1143. VM_BUG_ON((long)(*lru_size) < 0);
  1144. }
  1145. bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
  1146. {
  1147. if (root == memcg)
  1148. return true;
  1149. if (!root->use_hierarchy)
  1150. return false;
  1151. return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
  1152. }
  1153. bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
  1154. {
  1155. struct mem_cgroup *task_memcg;
  1156. struct task_struct *p;
  1157. bool ret;
  1158. p = find_lock_task_mm(task);
  1159. if (p) {
  1160. task_memcg = get_mem_cgroup_from_mm(p->mm);
  1161. task_unlock(p);
  1162. } else {
  1163. /*
  1164. * All threads may have already detached their mm's, but the oom
  1165. * killer still needs to detect if they have already been oom
  1166. * killed to prevent needlessly killing additional tasks.
  1167. */
  1168. rcu_read_lock();
  1169. task_memcg = mem_cgroup_from_task(task);
  1170. css_get(&task_memcg->css);
  1171. rcu_read_unlock();
  1172. }
  1173. ret = mem_cgroup_is_descendant(task_memcg, memcg);
  1174. css_put(&task_memcg->css);
  1175. return ret;
  1176. }
  1177. int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
  1178. {
  1179. unsigned long inactive_ratio;
  1180. unsigned long inactive;
  1181. unsigned long active;
  1182. unsigned long gb;
  1183. inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1184. active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
  1185. gb = (inactive + active) >> (30 - PAGE_SHIFT);
  1186. if (gb)
  1187. inactive_ratio = int_sqrt(10 * gb);
  1188. else
  1189. inactive_ratio = 1;
  1190. return inactive * inactive_ratio < active;
  1191. }
  1192. bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
  1193. {
  1194. struct mem_cgroup_per_zone *mz;
  1195. struct mem_cgroup *memcg;
  1196. if (mem_cgroup_disabled())
  1197. return true;
  1198. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  1199. memcg = mz->memcg;
  1200. return !!(memcg->css.flags & CSS_ONLINE);
  1201. }
  1202. #define mem_cgroup_from_counter(counter, member) \
  1203. container_of(counter, struct mem_cgroup, member)
  1204. /**
  1205. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  1206. * @memcg: the memory cgroup
  1207. *
  1208. * Returns the maximum amount of memory @mem can be charged with, in
  1209. * pages.
  1210. */
  1211. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  1212. {
  1213. unsigned long margin = 0;
  1214. unsigned long count;
  1215. unsigned long limit;
  1216. count = page_counter_read(&memcg->memory);
  1217. limit = ACCESS_ONCE(memcg->memory.limit);
  1218. if (count < limit)
  1219. margin = limit - count;
  1220. if (do_swap_account) {
  1221. count = page_counter_read(&memcg->memsw);
  1222. limit = ACCESS_ONCE(memcg->memsw.limit);
  1223. if (count <= limit)
  1224. margin = min(margin, limit - count);
  1225. }
  1226. return margin;
  1227. }
  1228. int mem_cgroup_swappiness(struct mem_cgroup *memcg)
  1229. {
  1230. /* root ? */
  1231. if (mem_cgroup_disabled() || !memcg->css.parent)
  1232. return vm_swappiness;
  1233. return memcg->swappiness;
  1234. }
  1235. /*
  1236. * A routine for checking "mem" is under move_account() or not.
  1237. *
  1238. * Checking a cgroup is mc.from or mc.to or under hierarchy of
  1239. * moving cgroups. This is for waiting at high-memory pressure
  1240. * caused by "move".
  1241. */
  1242. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  1243. {
  1244. struct mem_cgroup *from;
  1245. struct mem_cgroup *to;
  1246. bool ret = false;
  1247. /*
  1248. * Unlike task_move routines, we access mc.to, mc.from not under
  1249. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  1250. */
  1251. spin_lock(&mc.lock);
  1252. from = mc.from;
  1253. to = mc.to;
  1254. if (!from)
  1255. goto unlock;
  1256. ret = mem_cgroup_is_descendant(from, memcg) ||
  1257. mem_cgroup_is_descendant(to, memcg);
  1258. unlock:
  1259. spin_unlock(&mc.lock);
  1260. return ret;
  1261. }
  1262. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  1263. {
  1264. if (mc.moving_task && current != mc.moving_task) {
  1265. if (mem_cgroup_under_move(memcg)) {
  1266. DEFINE_WAIT(wait);
  1267. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  1268. /* moving charge context might have finished. */
  1269. if (mc.moving_task)
  1270. schedule();
  1271. finish_wait(&mc.waitq, &wait);
  1272. return true;
  1273. }
  1274. }
  1275. return false;
  1276. }
  1277. #define K(x) ((x) << (PAGE_SHIFT-10))
  1278. /**
  1279. * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
  1280. * @memcg: The memory cgroup that went over limit
  1281. * @p: Task that is going to be killed
  1282. *
  1283. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  1284. * enabled
  1285. */
  1286. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  1287. {
  1288. /* oom_info_lock ensures that parallel ooms do not interleave */
  1289. static DEFINE_MUTEX(oom_info_lock);
  1290. struct mem_cgroup *iter;
  1291. unsigned int i;
  1292. if (!p)
  1293. return;
  1294. mutex_lock(&oom_info_lock);
  1295. rcu_read_lock();
  1296. pr_info("Task in ");
  1297. pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
  1298. pr_cont(" killed as a result of limit of ");
  1299. pr_cont_cgroup_path(memcg->css.cgroup);
  1300. pr_cont("\n");
  1301. rcu_read_unlock();
  1302. pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
  1303. K((u64)page_counter_read(&memcg->memory)),
  1304. K((u64)memcg->memory.limit), memcg->memory.failcnt);
  1305. pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
  1306. K((u64)page_counter_read(&memcg->memsw)),
  1307. K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
  1308. pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
  1309. K((u64)page_counter_read(&memcg->kmem)),
  1310. K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
  1311. for_each_mem_cgroup_tree(iter, memcg) {
  1312. pr_info("Memory cgroup stats for ");
  1313. pr_cont_cgroup_path(iter->css.cgroup);
  1314. pr_cont(":");
  1315. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  1316. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  1317. continue;
  1318. pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
  1319. K(mem_cgroup_read_stat(iter, i)));
  1320. }
  1321. for (i = 0; i < NR_LRU_LISTS; i++)
  1322. pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
  1323. K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
  1324. pr_cont("\n");
  1325. }
  1326. mutex_unlock(&oom_info_lock);
  1327. }
  1328. /*
  1329. * This function returns the number of memcg under hierarchy tree. Returns
  1330. * 1(self count) if no children.
  1331. */
  1332. static int mem_cgroup_count_children(struct mem_cgroup *memcg)
  1333. {
  1334. int num = 0;
  1335. struct mem_cgroup *iter;
  1336. for_each_mem_cgroup_tree(iter, memcg)
  1337. num++;
  1338. return num;
  1339. }
  1340. /*
  1341. * Return the memory (and swap, if configured) limit for a memcg.
  1342. */
  1343. static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
  1344. {
  1345. unsigned long limit;
  1346. limit = memcg->memory.limit;
  1347. if (mem_cgroup_swappiness(memcg)) {
  1348. unsigned long memsw_limit;
  1349. memsw_limit = memcg->memsw.limit;
  1350. limit = min(limit + total_swap_pages, memsw_limit);
  1351. }
  1352. return limit;
  1353. }
  1354. static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1355. int order)
  1356. {
  1357. struct mem_cgroup *iter;
  1358. unsigned long chosen_points = 0;
  1359. unsigned long totalpages;
  1360. unsigned int points = 0;
  1361. struct task_struct *chosen = NULL;
  1362. /*
  1363. * If current has a pending SIGKILL or is exiting, then automatically
  1364. * select it. The goal is to allow it to allocate so that it may
  1365. * quickly exit and free its memory.
  1366. */
  1367. if (fatal_signal_pending(current) || task_will_free_mem(current)) {
  1368. set_thread_flag(TIF_MEMDIE);
  1369. return;
  1370. }
  1371. check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
  1372. totalpages = mem_cgroup_get_limit(memcg) ? : 1;
  1373. for_each_mem_cgroup_tree(iter, memcg) {
  1374. struct css_task_iter it;
  1375. struct task_struct *task;
  1376. css_task_iter_start(&iter->css, &it);
  1377. while ((task = css_task_iter_next(&it))) {
  1378. switch (oom_scan_process_thread(task, totalpages, NULL,
  1379. false)) {
  1380. case OOM_SCAN_SELECT:
  1381. if (chosen)
  1382. put_task_struct(chosen);
  1383. chosen = task;
  1384. chosen_points = ULONG_MAX;
  1385. get_task_struct(chosen);
  1386. /* fall through */
  1387. case OOM_SCAN_CONTINUE:
  1388. continue;
  1389. case OOM_SCAN_ABORT:
  1390. css_task_iter_end(&it);
  1391. mem_cgroup_iter_break(memcg, iter);
  1392. if (chosen)
  1393. put_task_struct(chosen);
  1394. return;
  1395. case OOM_SCAN_OK:
  1396. break;
  1397. };
  1398. points = oom_badness(task, memcg, NULL, totalpages);
  1399. if (!points || points < chosen_points)
  1400. continue;
  1401. /* Prefer thread group leaders for display purposes */
  1402. if (points == chosen_points &&
  1403. thread_group_leader(chosen))
  1404. continue;
  1405. if (chosen)
  1406. put_task_struct(chosen);
  1407. chosen = task;
  1408. chosen_points = points;
  1409. get_task_struct(chosen);
  1410. }
  1411. css_task_iter_end(&it);
  1412. }
  1413. if (!chosen)
  1414. return;
  1415. points = chosen_points * 1000 / totalpages;
  1416. oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
  1417. NULL, "Memory cgroup out of memory");
  1418. }
  1419. #if MAX_NUMNODES > 1
  1420. /**
  1421. * test_mem_cgroup_node_reclaimable
  1422. * @memcg: the target memcg
  1423. * @nid: the node ID to be checked.
  1424. * @noswap : specify true here if the user wants flle only information.
  1425. *
  1426. * This function returns whether the specified memcg contains any
  1427. * reclaimable pages on a node. Returns true if there are any reclaimable
  1428. * pages in the node.
  1429. */
  1430. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1431. int nid, bool noswap)
  1432. {
  1433. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1434. return true;
  1435. if (noswap || !total_swap_pages)
  1436. return false;
  1437. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1438. return true;
  1439. return false;
  1440. }
  1441. /*
  1442. * Always updating the nodemask is not very good - even if we have an empty
  1443. * list or the wrong list here, we can start from some node and traverse all
  1444. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1445. *
  1446. */
  1447. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1448. {
  1449. int nid;
  1450. /*
  1451. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1452. * pagein/pageout changes since the last update.
  1453. */
  1454. if (!atomic_read(&memcg->numainfo_events))
  1455. return;
  1456. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1457. return;
  1458. /* make a nodemask where this memcg uses memory from */
  1459. memcg->scan_nodes = node_states[N_MEMORY];
  1460. for_each_node_mask(nid, node_states[N_MEMORY]) {
  1461. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1462. node_clear(nid, memcg->scan_nodes);
  1463. }
  1464. atomic_set(&memcg->numainfo_events, 0);
  1465. atomic_set(&memcg->numainfo_updating, 0);
  1466. }
  1467. /*
  1468. * Selecting a node where we start reclaim from. Because what we need is just
  1469. * reducing usage counter, start from anywhere is O,K. Considering
  1470. * memory reclaim from current node, there are pros. and cons.
  1471. *
  1472. * Freeing memory from current node means freeing memory from a node which
  1473. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1474. * hit limits, it will see a contention on a node. But freeing from remote
  1475. * node means more costs for memory reclaim because of memory latency.
  1476. *
  1477. * Now, we use round-robin. Better algorithm is welcomed.
  1478. */
  1479. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1480. {
  1481. int node;
  1482. mem_cgroup_may_update_nodemask(memcg);
  1483. node = memcg->last_scanned_node;
  1484. node = next_node(node, memcg->scan_nodes);
  1485. if (node == MAX_NUMNODES)
  1486. node = first_node(memcg->scan_nodes);
  1487. /*
  1488. * We call this when we hit limit, not when pages are added to LRU.
  1489. * No LRU may hold pages because all pages are UNEVICTABLE or
  1490. * memcg is too small and all pages are not on LRU. In that case,
  1491. * we use curret node.
  1492. */
  1493. if (unlikely(node == MAX_NUMNODES))
  1494. node = numa_node_id();
  1495. memcg->last_scanned_node = node;
  1496. return node;
  1497. }
  1498. #else
  1499. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1500. {
  1501. return 0;
  1502. }
  1503. #endif
  1504. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1505. struct zone *zone,
  1506. gfp_t gfp_mask,
  1507. unsigned long *total_scanned)
  1508. {
  1509. struct mem_cgroup *victim = NULL;
  1510. int total = 0;
  1511. int loop = 0;
  1512. unsigned long excess;
  1513. unsigned long nr_scanned;
  1514. struct mem_cgroup_reclaim_cookie reclaim = {
  1515. .zone = zone,
  1516. .priority = 0,
  1517. };
  1518. excess = soft_limit_excess(root_memcg);
  1519. while (1) {
  1520. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1521. if (!victim) {
  1522. loop++;
  1523. if (loop >= 2) {
  1524. /*
  1525. * If we have not been able to reclaim
  1526. * anything, it might because there are
  1527. * no reclaimable pages under this hierarchy
  1528. */
  1529. if (!total)
  1530. break;
  1531. /*
  1532. * We want to do more targeted reclaim.
  1533. * excess >> 2 is not to excessive so as to
  1534. * reclaim too much, nor too less that we keep
  1535. * coming back to reclaim from this cgroup
  1536. */
  1537. if (total >= (excess >> 2) ||
  1538. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1539. break;
  1540. }
  1541. continue;
  1542. }
  1543. total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
  1544. zone, &nr_scanned);
  1545. *total_scanned += nr_scanned;
  1546. if (!soft_limit_excess(root_memcg))
  1547. break;
  1548. }
  1549. mem_cgroup_iter_break(root_memcg, victim);
  1550. return total;
  1551. }
  1552. #ifdef CONFIG_LOCKDEP
  1553. static struct lockdep_map memcg_oom_lock_dep_map = {
  1554. .name = "memcg_oom_lock",
  1555. };
  1556. #endif
  1557. static DEFINE_SPINLOCK(memcg_oom_lock);
  1558. /*
  1559. * Check OOM-Killer is already running under our hierarchy.
  1560. * If someone is running, return false.
  1561. */
  1562. static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
  1563. {
  1564. struct mem_cgroup *iter, *failed = NULL;
  1565. spin_lock(&memcg_oom_lock);
  1566. for_each_mem_cgroup_tree(iter, memcg) {
  1567. if (iter->oom_lock) {
  1568. /*
  1569. * this subtree of our hierarchy is already locked
  1570. * so we cannot give a lock.
  1571. */
  1572. failed = iter;
  1573. mem_cgroup_iter_break(memcg, iter);
  1574. break;
  1575. } else
  1576. iter->oom_lock = true;
  1577. }
  1578. if (failed) {
  1579. /*
  1580. * OK, we failed to lock the whole subtree so we have
  1581. * to clean up what we set up to the failing subtree
  1582. */
  1583. for_each_mem_cgroup_tree(iter, memcg) {
  1584. if (iter == failed) {
  1585. mem_cgroup_iter_break(memcg, iter);
  1586. break;
  1587. }
  1588. iter->oom_lock = false;
  1589. }
  1590. } else
  1591. mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
  1592. spin_unlock(&memcg_oom_lock);
  1593. return !failed;
  1594. }
  1595. static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1596. {
  1597. struct mem_cgroup *iter;
  1598. spin_lock(&memcg_oom_lock);
  1599. mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
  1600. for_each_mem_cgroup_tree(iter, memcg)
  1601. iter->oom_lock = false;
  1602. spin_unlock(&memcg_oom_lock);
  1603. }
  1604. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1605. {
  1606. struct mem_cgroup *iter;
  1607. for_each_mem_cgroup_tree(iter, memcg)
  1608. atomic_inc(&iter->under_oom);
  1609. }
  1610. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1611. {
  1612. struct mem_cgroup *iter;
  1613. /*
  1614. * When a new child is created while the hierarchy is under oom,
  1615. * mem_cgroup_oom_lock() may not be called. We have to use
  1616. * atomic_add_unless() here.
  1617. */
  1618. for_each_mem_cgroup_tree(iter, memcg)
  1619. atomic_add_unless(&iter->under_oom, -1, 0);
  1620. }
  1621. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1622. struct oom_wait_info {
  1623. struct mem_cgroup *memcg;
  1624. wait_queue_t wait;
  1625. };
  1626. static int memcg_oom_wake_function(wait_queue_t *wait,
  1627. unsigned mode, int sync, void *arg)
  1628. {
  1629. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1630. struct mem_cgroup *oom_wait_memcg;
  1631. struct oom_wait_info *oom_wait_info;
  1632. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1633. oom_wait_memcg = oom_wait_info->memcg;
  1634. if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
  1635. !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
  1636. return 0;
  1637. return autoremove_wake_function(wait, mode, sync, arg);
  1638. }
  1639. static void memcg_wakeup_oom(struct mem_cgroup *memcg)
  1640. {
  1641. atomic_inc(&memcg->oom_wakeups);
  1642. /* for filtering, pass "memcg" as argument. */
  1643. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1644. }
  1645. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1646. {
  1647. if (memcg && atomic_read(&memcg->under_oom))
  1648. memcg_wakeup_oom(memcg);
  1649. }
  1650. static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
  1651. {
  1652. if (!current->memcg_oom.may_oom)
  1653. return;
  1654. /*
  1655. * We are in the middle of the charge context here, so we
  1656. * don't want to block when potentially sitting on a callstack
  1657. * that holds all kinds of filesystem and mm locks.
  1658. *
  1659. * Also, the caller may handle a failed allocation gracefully
  1660. * (like optional page cache readahead) and so an OOM killer
  1661. * invocation might not even be necessary.
  1662. *
  1663. * That's why we don't do anything here except remember the
  1664. * OOM context and then deal with it at the end of the page
  1665. * fault when the stack is unwound, the locks are released,
  1666. * and when we know whether the fault was overall successful.
  1667. */
  1668. css_get(&memcg->css);
  1669. current->memcg_oom.memcg = memcg;
  1670. current->memcg_oom.gfp_mask = mask;
  1671. current->memcg_oom.order = order;
  1672. }
  1673. /**
  1674. * mem_cgroup_oom_synchronize - complete memcg OOM handling
  1675. * @handle: actually kill/wait or just clean up the OOM state
  1676. *
  1677. * This has to be called at the end of a page fault if the memcg OOM
  1678. * handler was enabled.
  1679. *
  1680. * Memcg supports userspace OOM handling where failed allocations must
  1681. * sleep on a waitqueue until the userspace task resolves the
  1682. * situation. Sleeping directly in the charge context with all kinds
  1683. * of locks held is not a good idea, instead we remember an OOM state
  1684. * in the task and mem_cgroup_oom_synchronize() has to be called at
  1685. * the end of the page fault to complete the OOM handling.
  1686. *
  1687. * Returns %true if an ongoing memcg OOM situation was detected and
  1688. * completed, %false otherwise.
  1689. */
  1690. bool mem_cgroup_oom_synchronize(bool handle)
  1691. {
  1692. struct mem_cgroup *memcg = current->memcg_oom.memcg;
  1693. struct oom_wait_info owait;
  1694. bool locked;
  1695. /* OOM is global, do not handle */
  1696. if (!memcg)
  1697. return false;
  1698. if (!handle)
  1699. goto cleanup;
  1700. owait.memcg = memcg;
  1701. owait.wait.flags = 0;
  1702. owait.wait.func = memcg_oom_wake_function;
  1703. owait.wait.private = current;
  1704. INIT_LIST_HEAD(&owait.wait.task_list);
  1705. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1706. mem_cgroup_mark_under_oom(memcg);
  1707. locked = mem_cgroup_oom_trylock(memcg);
  1708. if (locked)
  1709. mem_cgroup_oom_notify(memcg);
  1710. if (locked && !memcg->oom_kill_disable) {
  1711. mem_cgroup_unmark_under_oom(memcg);
  1712. finish_wait(&memcg_oom_waitq, &owait.wait);
  1713. mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
  1714. current->memcg_oom.order);
  1715. } else {
  1716. schedule();
  1717. mem_cgroup_unmark_under_oom(memcg);
  1718. finish_wait(&memcg_oom_waitq, &owait.wait);
  1719. }
  1720. if (locked) {
  1721. mem_cgroup_oom_unlock(memcg);
  1722. /*
  1723. * There is no guarantee that an OOM-lock contender
  1724. * sees the wakeups triggered by the OOM kill
  1725. * uncharges. Wake any sleepers explicitely.
  1726. */
  1727. memcg_oom_recover(memcg);
  1728. }
  1729. cleanup:
  1730. current->memcg_oom.memcg = NULL;
  1731. css_put(&memcg->css);
  1732. return true;
  1733. }
  1734. /**
  1735. * mem_cgroup_begin_page_stat - begin a page state statistics transaction
  1736. * @page: page that is going to change accounted state
  1737. *
  1738. * This function must mark the beginning of an accounted page state
  1739. * change to prevent double accounting when the page is concurrently
  1740. * being moved to another memcg:
  1741. *
  1742. * memcg = mem_cgroup_begin_page_stat(page);
  1743. * if (TestClearPageState(page))
  1744. * mem_cgroup_update_page_stat(memcg, state, -1);
  1745. * mem_cgroup_end_page_stat(memcg);
  1746. */
  1747. struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
  1748. {
  1749. struct mem_cgroup *memcg;
  1750. unsigned long flags;
  1751. /*
  1752. * The RCU lock is held throughout the transaction. The fast
  1753. * path can get away without acquiring the memcg->move_lock
  1754. * because page moving starts with an RCU grace period.
  1755. *
  1756. * The RCU lock also protects the memcg from being freed when
  1757. * the page state that is going to change is the only thing
  1758. * preventing the page from being uncharged.
  1759. * E.g. end-writeback clearing PageWriteback(), which allows
  1760. * migration to go ahead and uncharge the page before the
  1761. * account transaction might be complete.
  1762. */
  1763. rcu_read_lock();
  1764. if (mem_cgroup_disabled())
  1765. return NULL;
  1766. again:
  1767. memcg = page->mem_cgroup;
  1768. if (unlikely(!memcg))
  1769. return NULL;
  1770. if (atomic_read(&memcg->moving_account) <= 0)
  1771. return memcg;
  1772. spin_lock_irqsave(&memcg->move_lock, flags);
  1773. if (memcg != page->mem_cgroup) {
  1774. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1775. goto again;
  1776. }
  1777. /*
  1778. * When charge migration first begins, we can have locked and
  1779. * unlocked page stat updates happening concurrently. Track
  1780. * the task who has the lock for mem_cgroup_end_page_stat().
  1781. */
  1782. memcg->move_lock_task = current;
  1783. memcg->move_lock_flags = flags;
  1784. return memcg;
  1785. }
  1786. /**
  1787. * mem_cgroup_end_page_stat - finish a page state statistics transaction
  1788. * @memcg: the memcg that was accounted against
  1789. */
  1790. void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
  1791. {
  1792. if (memcg && memcg->move_lock_task == current) {
  1793. unsigned long flags = memcg->move_lock_flags;
  1794. memcg->move_lock_task = NULL;
  1795. memcg->move_lock_flags = 0;
  1796. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1797. }
  1798. rcu_read_unlock();
  1799. }
  1800. /**
  1801. * mem_cgroup_update_page_stat - update page state statistics
  1802. * @memcg: memcg to account against
  1803. * @idx: page state item to account
  1804. * @val: number of pages (positive or negative)
  1805. *
  1806. * See mem_cgroup_begin_page_stat() for locking requirements.
  1807. */
  1808. void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
  1809. enum mem_cgroup_stat_index idx, int val)
  1810. {
  1811. VM_BUG_ON(!rcu_read_lock_held());
  1812. if (memcg)
  1813. this_cpu_add(memcg->stat->count[idx], val);
  1814. }
  1815. /*
  1816. * size of first charge trial. "32" comes from vmscan.c's magic value.
  1817. * TODO: maybe necessary to use big numbers in big irons.
  1818. */
  1819. #define CHARGE_BATCH 32U
  1820. struct memcg_stock_pcp {
  1821. struct mem_cgroup *cached; /* this never be root cgroup */
  1822. unsigned int nr_pages;
  1823. struct work_struct work;
  1824. unsigned long flags;
  1825. #define FLUSHING_CACHED_CHARGE 0
  1826. };
  1827. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  1828. static DEFINE_MUTEX(percpu_charge_mutex);
  1829. /**
  1830. * consume_stock: Try to consume stocked charge on this cpu.
  1831. * @memcg: memcg to consume from.
  1832. * @nr_pages: how many pages to charge.
  1833. *
  1834. * The charges will only happen if @memcg matches the current cpu's memcg
  1835. * stock, and at least @nr_pages are available in that stock. Failure to
  1836. * service an allocation will refill the stock.
  1837. *
  1838. * returns true if successful, false otherwise.
  1839. */
  1840. static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1841. {
  1842. struct memcg_stock_pcp *stock;
  1843. bool ret = false;
  1844. if (nr_pages > CHARGE_BATCH)
  1845. return ret;
  1846. stock = &get_cpu_var(memcg_stock);
  1847. if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
  1848. stock->nr_pages -= nr_pages;
  1849. ret = true;
  1850. }
  1851. put_cpu_var(memcg_stock);
  1852. return ret;
  1853. }
  1854. /*
  1855. * Returns stocks cached in percpu and reset cached information.
  1856. */
  1857. static void drain_stock(struct memcg_stock_pcp *stock)
  1858. {
  1859. struct mem_cgroup *old = stock->cached;
  1860. if (stock->nr_pages) {
  1861. page_counter_uncharge(&old->memory, stock->nr_pages);
  1862. if (do_swap_account)
  1863. page_counter_uncharge(&old->memsw, stock->nr_pages);
  1864. css_put_many(&old->css, stock->nr_pages);
  1865. stock->nr_pages = 0;
  1866. }
  1867. stock->cached = NULL;
  1868. }
  1869. /*
  1870. * This must be called under preempt disabled or must be called by
  1871. * a thread which is pinned to local cpu.
  1872. */
  1873. static void drain_local_stock(struct work_struct *dummy)
  1874. {
  1875. struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
  1876. drain_stock(stock);
  1877. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  1878. }
  1879. static void __init memcg_stock_init(void)
  1880. {
  1881. int cpu;
  1882. for_each_possible_cpu(cpu) {
  1883. struct memcg_stock_pcp *stock =
  1884. &per_cpu(memcg_stock, cpu);
  1885. INIT_WORK(&stock->work, drain_local_stock);
  1886. }
  1887. }
  1888. /*
  1889. * Cache charges(val) to local per_cpu area.
  1890. * This will be consumed by consume_stock() function, later.
  1891. */
  1892. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1893. {
  1894. struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
  1895. if (stock->cached != memcg) { /* reset if necessary */
  1896. drain_stock(stock);
  1897. stock->cached = memcg;
  1898. }
  1899. stock->nr_pages += nr_pages;
  1900. put_cpu_var(memcg_stock);
  1901. }
  1902. /*
  1903. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  1904. * of the hierarchy under it.
  1905. */
  1906. static void drain_all_stock(struct mem_cgroup *root_memcg)
  1907. {
  1908. int cpu, curcpu;
  1909. /* If someone's already draining, avoid adding running more workers. */
  1910. if (!mutex_trylock(&percpu_charge_mutex))
  1911. return;
  1912. /* Notify other cpus that system-wide "drain" is running */
  1913. get_online_cpus();
  1914. curcpu = get_cpu();
  1915. for_each_online_cpu(cpu) {
  1916. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  1917. struct mem_cgroup *memcg;
  1918. memcg = stock->cached;
  1919. if (!memcg || !stock->nr_pages)
  1920. continue;
  1921. if (!mem_cgroup_is_descendant(memcg, root_memcg))
  1922. continue;
  1923. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  1924. if (cpu == curcpu)
  1925. drain_local_stock(&stock->work);
  1926. else
  1927. schedule_work_on(cpu, &stock->work);
  1928. }
  1929. }
  1930. put_cpu();
  1931. put_online_cpus();
  1932. mutex_unlock(&percpu_charge_mutex);
  1933. }
  1934. /*
  1935. * This function drains percpu counter value from DEAD cpu and
  1936. * move it to local cpu. Note that this function can be preempted.
  1937. */
  1938. static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
  1939. {
  1940. int i;
  1941. spin_lock(&memcg->pcp_counter_lock);
  1942. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  1943. long x = per_cpu(memcg->stat->count[i], cpu);
  1944. per_cpu(memcg->stat->count[i], cpu) = 0;
  1945. memcg->nocpu_base.count[i] += x;
  1946. }
  1947. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  1948. unsigned long x = per_cpu(memcg->stat->events[i], cpu);
  1949. per_cpu(memcg->stat->events[i], cpu) = 0;
  1950. memcg->nocpu_base.events[i] += x;
  1951. }
  1952. spin_unlock(&memcg->pcp_counter_lock);
  1953. }
  1954. static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
  1955. unsigned long action,
  1956. void *hcpu)
  1957. {
  1958. int cpu = (unsigned long)hcpu;
  1959. struct memcg_stock_pcp *stock;
  1960. struct mem_cgroup *iter;
  1961. if (action == CPU_ONLINE)
  1962. return NOTIFY_OK;
  1963. if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
  1964. return NOTIFY_OK;
  1965. for_each_mem_cgroup(iter)
  1966. mem_cgroup_drain_pcp_counter(iter, cpu);
  1967. stock = &per_cpu(memcg_stock, cpu);
  1968. drain_stock(stock);
  1969. return NOTIFY_OK;
  1970. }
  1971. static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1972. unsigned int nr_pages)
  1973. {
  1974. unsigned int batch = max(CHARGE_BATCH, nr_pages);
  1975. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  1976. struct mem_cgroup *mem_over_limit;
  1977. struct page_counter *counter;
  1978. unsigned long nr_reclaimed;
  1979. bool may_swap = true;
  1980. bool drained = false;
  1981. int ret = 0;
  1982. if (mem_cgroup_is_root(memcg))
  1983. goto done;
  1984. retry:
  1985. if (consume_stock(memcg, nr_pages))
  1986. goto done;
  1987. if (!do_swap_account ||
  1988. !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
  1989. if (!page_counter_try_charge(&memcg->memory, batch, &counter))
  1990. goto done_restock;
  1991. if (do_swap_account)
  1992. page_counter_uncharge(&memcg->memsw, batch);
  1993. mem_over_limit = mem_cgroup_from_counter(counter, memory);
  1994. } else {
  1995. mem_over_limit = mem_cgroup_from_counter(counter, memsw);
  1996. may_swap = false;
  1997. }
  1998. if (batch > nr_pages) {
  1999. batch = nr_pages;
  2000. goto retry;
  2001. }
  2002. /*
  2003. * Unlike in global OOM situations, memcg is not in a physical
  2004. * memory shortage. Allow dying and OOM-killed tasks to
  2005. * bypass the last charges so that they can exit quickly and
  2006. * free their memory.
  2007. */
  2008. if (unlikely(test_thread_flag(TIF_MEMDIE) ||
  2009. fatal_signal_pending(current) ||
  2010. current->flags & PF_EXITING))
  2011. goto bypass;
  2012. if (unlikely(task_in_memcg_oom(current)))
  2013. goto nomem;
  2014. if (!(gfp_mask & __GFP_WAIT))
  2015. goto nomem;
  2016. nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
  2017. gfp_mask, may_swap);
  2018. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  2019. goto retry;
  2020. if (!drained) {
  2021. drain_all_stock(mem_over_limit);
  2022. drained = true;
  2023. goto retry;
  2024. }
  2025. if (gfp_mask & __GFP_NORETRY)
  2026. goto nomem;
  2027. /*
  2028. * Even though the limit is exceeded at this point, reclaim
  2029. * may have been able to free some pages. Retry the charge
  2030. * before killing the task.
  2031. *
  2032. * Only for regular pages, though: huge pages are rather
  2033. * unlikely to succeed so close to the limit, and we fall back
  2034. * to regular pages anyway in case of failure.
  2035. */
  2036. if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
  2037. goto retry;
  2038. /*
  2039. * At task move, charge accounts can be doubly counted. So, it's
  2040. * better to wait until the end of task_move if something is going on.
  2041. */
  2042. if (mem_cgroup_wait_acct_move(mem_over_limit))
  2043. goto retry;
  2044. if (nr_retries--)
  2045. goto retry;
  2046. if (gfp_mask & __GFP_NOFAIL)
  2047. goto bypass;
  2048. if (fatal_signal_pending(current))
  2049. goto bypass;
  2050. mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
  2051. nomem:
  2052. if (!(gfp_mask & __GFP_NOFAIL))
  2053. return -ENOMEM;
  2054. bypass:
  2055. return -EINTR;
  2056. done_restock:
  2057. css_get_many(&memcg->css, batch);
  2058. if (batch > nr_pages)
  2059. refill_stock(memcg, batch - nr_pages);
  2060. done:
  2061. return ret;
  2062. }
  2063. static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
  2064. {
  2065. if (mem_cgroup_is_root(memcg))
  2066. return;
  2067. page_counter_uncharge(&memcg->memory, nr_pages);
  2068. if (do_swap_account)
  2069. page_counter_uncharge(&memcg->memsw, nr_pages);
  2070. css_put_many(&memcg->css, nr_pages);
  2071. }
  2072. /*
  2073. * A helper function to get mem_cgroup from ID. must be called under
  2074. * rcu_read_lock(). The caller is responsible for calling
  2075. * css_tryget_online() if the mem_cgroup is used for charging. (dropping
  2076. * refcnt from swap can be called against removed memcg.)
  2077. */
  2078. static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
  2079. {
  2080. /* ID 0 is unused ID */
  2081. if (!id)
  2082. return NULL;
  2083. return mem_cgroup_from_id(id);
  2084. }
  2085. /*
  2086. * try_get_mem_cgroup_from_page - look up page's memcg association
  2087. * @page: the page
  2088. *
  2089. * Look up, get a css reference, and return the memcg that owns @page.
  2090. *
  2091. * The page must be locked to prevent racing with swap-in and page
  2092. * cache charges. If coming from an unlocked page table, the caller
  2093. * must ensure the page is on the LRU or this can race with charging.
  2094. */
  2095. struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
  2096. {
  2097. struct mem_cgroup *memcg;
  2098. unsigned short id;
  2099. swp_entry_t ent;
  2100. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2101. memcg = page->mem_cgroup;
  2102. if (memcg) {
  2103. if (!css_tryget_online(&memcg->css))
  2104. memcg = NULL;
  2105. } else if (PageSwapCache(page)) {
  2106. ent.val = page_private(page);
  2107. id = lookup_swap_cgroup_id(ent);
  2108. rcu_read_lock();
  2109. memcg = mem_cgroup_lookup(id);
  2110. if (memcg && !css_tryget_online(&memcg->css))
  2111. memcg = NULL;
  2112. rcu_read_unlock();
  2113. }
  2114. return memcg;
  2115. }
  2116. static void lock_page_lru(struct page *page, int *isolated)
  2117. {
  2118. struct zone *zone = page_zone(page);
  2119. spin_lock_irq(&zone->lru_lock);
  2120. if (PageLRU(page)) {
  2121. struct lruvec *lruvec;
  2122. lruvec = mem_cgroup_page_lruvec(page, zone);
  2123. ClearPageLRU(page);
  2124. del_page_from_lru_list(page, lruvec, page_lru(page));
  2125. *isolated = 1;
  2126. } else
  2127. *isolated = 0;
  2128. }
  2129. static void unlock_page_lru(struct page *page, int isolated)
  2130. {
  2131. struct zone *zone = page_zone(page);
  2132. if (isolated) {
  2133. struct lruvec *lruvec;
  2134. lruvec = mem_cgroup_page_lruvec(page, zone);
  2135. VM_BUG_ON_PAGE(PageLRU(page), page);
  2136. SetPageLRU(page);
  2137. add_page_to_lru_list(page, lruvec, page_lru(page));
  2138. }
  2139. spin_unlock_irq(&zone->lru_lock);
  2140. }
  2141. static void commit_charge(struct page *page, struct mem_cgroup *memcg,
  2142. bool lrucare)
  2143. {
  2144. int isolated;
  2145. VM_BUG_ON_PAGE(page->mem_cgroup, page);
  2146. /*
  2147. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  2148. * may already be on some other mem_cgroup's LRU. Take care of it.
  2149. */
  2150. if (lrucare)
  2151. lock_page_lru(page, &isolated);
  2152. /*
  2153. * Nobody should be changing or seriously looking at
  2154. * page->mem_cgroup at this point:
  2155. *
  2156. * - the page is uncharged
  2157. *
  2158. * - the page is off-LRU
  2159. *
  2160. * - an anonymous fault has exclusive page access, except for
  2161. * a locked page table
  2162. *
  2163. * - a page cache insertion, a swapin fault, or a migration
  2164. * have the page locked
  2165. */
  2166. page->mem_cgroup = memcg;
  2167. if (lrucare)
  2168. unlock_page_lru(page, isolated);
  2169. }
  2170. #ifdef CONFIG_MEMCG_KMEM
  2171. int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
  2172. unsigned long nr_pages)
  2173. {
  2174. struct page_counter *counter;
  2175. int ret = 0;
  2176. ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
  2177. if (ret < 0)
  2178. return ret;
  2179. ret = try_charge(memcg, gfp, nr_pages);
  2180. if (ret == -EINTR) {
  2181. /*
  2182. * try_charge() chose to bypass to root due to OOM kill or
  2183. * fatal signal. Since our only options are to either fail
  2184. * the allocation or charge it to this cgroup, do it as a
  2185. * temporary condition. But we can't fail. From a kmem/slab
  2186. * perspective, the cache has already been selected, by
  2187. * mem_cgroup_kmem_get_cache(), so it is too late to change
  2188. * our minds.
  2189. *
  2190. * This condition will only trigger if the task entered
  2191. * memcg_charge_kmem in a sane state, but was OOM-killed
  2192. * during try_charge() above. Tasks that were already dying
  2193. * when the allocation triggers should have been already
  2194. * directed to the root cgroup in memcontrol.h
  2195. */
  2196. page_counter_charge(&memcg->memory, nr_pages);
  2197. if (do_swap_account)
  2198. page_counter_charge(&memcg->memsw, nr_pages);
  2199. css_get_many(&memcg->css, nr_pages);
  2200. ret = 0;
  2201. } else if (ret)
  2202. page_counter_uncharge(&memcg->kmem, nr_pages);
  2203. return ret;
  2204. }
  2205. void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
  2206. {
  2207. page_counter_uncharge(&memcg->memory, nr_pages);
  2208. if (do_swap_account)
  2209. page_counter_uncharge(&memcg->memsw, nr_pages);
  2210. page_counter_uncharge(&memcg->kmem, nr_pages);
  2211. css_put_many(&memcg->css, nr_pages);
  2212. }
  2213. /*
  2214. * helper for acessing a memcg's index. It will be used as an index in the
  2215. * child cache array in kmem_cache, and also to derive its name. This function
  2216. * will return -1 when this is not a kmem-limited memcg.
  2217. */
  2218. int memcg_cache_id(struct mem_cgroup *memcg)
  2219. {
  2220. return memcg ? memcg->kmemcg_id : -1;
  2221. }
  2222. static int memcg_alloc_cache_id(void)
  2223. {
  2224. int id, size;
  2225. int err;
  2226. id = ida_simple_get(&kmem_limited_groups,
  2227. 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
  2228. if (id < 0)
  2229. return id;
  2230. if (id < memcg_limited_groups_array_size)
  2231. return id;
  2232. /*
  2233. * There's no space for the new id in memcg_caches arrays,
  2234. * so we have to grow them.
  2235. */
  2236. size = 2 * (id + 1);
  2237. if (size < MEMCG_CACHES_MIN_SIZE)
  2238. size = MEMCG_CACHES_MIN_SIZE;
  2239. else if (size > MEMCG_CACHES_MAX_SIZE)
  2240. size = MEMCG_CACHES_MAX_SIZE;
  2241. err = memcg_update_all_caches(size);
  2242. if (err) {
  2243. ida_simple_remove(&kmem_limited_groups, id);
  2244. return err;
  2245. }
  2246. return id;
  2247. }
  2248. static void memcg_free_cache_id(int id)
  2249. {
  2250. ida_simple_remove(&kmem_limited_groups, id);
  2251. }
  2252. /*
  2253. * We should update the current array size iff all caches updates succeed. This
  2254. * can only be done from the slab side. The slab mutex needs to be held when
  2255. * calling this.
  2256. */
  2257. void memcg_update_array_size(int num)
  2258. {
  2259. memcg_limited_groups_array_size = num;
  2260. }
  2261. struct memcg_kmem_cache_create_work {
  2262. struct mem_cgroup *memcg;
  2263. struct kmem_cache *cachep;
  2264. struct work_struct work;
  2265. };
  2266. static void memcg_kmem_cache_create_func(struct work_struct *w)
  2267. {
  2268. struct memcg_kmem_cache_create_work *cw =
  2269. container_of(w, struct memcg_kmem_cache_create_work, work);
  2270. struct mem_cgroup *memcg = cw->memcg;
  2271. struct kmem_cache *cachep = cw->cachep;
  2272. memcg_create_kmem_cache(memcg, cachep);
  2273. css_put(&memcg->css);
  2274. kfree(cw);
  2275. }
  2276. /*
  2277. * Enqueue the creation of a per-memcg kmem_cache.
  2278. */
  2279. static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  2280. struct kmem_cache *cachep)
  2281. {
  2282. struct memcg_kmem_cache_create_work *cw;
  2283. cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
  2284. if (!cw)
  2285. return;
  2286. css_get(&memcg->css);
  2287. cw->memcg = memcg;
  2288. cw->cachep = cachep;
  2289. INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
  2290. schedule_work(&cw->work);
  2291. }
  2292. static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  2293. struct kmem_cache *cachep)
  2294. {
  2295. /*
  2296. * We need to stop accounting when we kmalloc, because if the
  2297. * corresponding kmalloc cache is not yet created, the first allocation
  2298. * in __memcg_schedule_kmem_cache_create will recurse.
  2299. *
  2300. * However, it is better to enclose the whole function. Depending on
  2301. * the debugging options enabled, INIT_WORK(), for instance, can
  2302. * trigger an allocation. This too, will make us recurse. Because at
  2303. * this point we can't allow ourselves back into memcg_kmem_get_cache,
  2304. * the safest choice is to do it like this, wrapping the whole function.
  2305. */
  2306. current->memcg_kmem_skip_account = 1;
  2307. __memcg_schedule_kmem_cache_create(memcg, cachep);
  2308. current->memcg_kmem_skip_account = 0;
  2309. }
  2310. /*
  2311. * Return the kmem_cache we're supposed to use for a slab allocation.
  2312. * We try to use the current memcg's version of the cache.
  2313. *
  2314. * If the cache does not exist yet, if we are the first user of it,
  2315. * we either create it immediately, if possible, or create it asynchronously
  2316. * in a workqueue.
  2317. * In the latter case, we will let the current allocation go through with
  2318. * the original cache.
  2319. *
  2320. * Can't be called in interrupt context or from kernel threads.
  2321. * This function needs to be called with rcu_read_lock() held.
  2322. */
  2323. struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
  2324. {
  2325. struct mem_cgroup *memcg;
  2326. struct kmem_cache *memcg_cachep;
  2327. VM_BUG_ON(!cachep->memcg_params);
  2328. VM_BUG_ON(!cachep->memcg_params->is_root_cache);
  2329. if (current->memcg_kmem_skip_account)
  2330. return cachep;
  2331. memcg = get_mem_cgroup_from_mm(current->mm);
  2332. if (!memcg_kmem_is_active(memcg))
  2333. goto out;
  2334. memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
  2335. if (likely(memcg_cachep))
  2336. return memcg_cachep;
  2337. /*
  2338. * If we are in a safe context (can wait, and not in interrupt
  2339. * context), we could be be predictable and return right away.
  2340. * This would guarantee that the allocation being performed
  2341. * already belongs in the new cache.
  2342. *
  2343. * However, there are some clashes that can arrive from locking.
  2344. * For instance, because we acquire the slab_mutex while doing
  2345. * memcg_create_kmem_cache, this means no further allocation
  2346. * could happen with the slab_mutex held. So it's better to
  2347. * defer everything.
  2348. */
  2349. memcg_schedule_kmem_cache_create(memcg, cachep);
  2350. out:
  2351. css_put(&memcg->css);
  2352. return cachep;
  2353. }
  2354. void __memcg_kmem_put_cache(struct kmem_cache *cachep)
  2355. {
  2356. if (!is_root_cache(cachep))
  2357. css_put(&cachep->memcg_params->memcg->css);
  2358. }
  2359. /*
  2360. * We need to verify if the allocation against current->mm->owner's memcg is
  2361. * possible for the given order. But the page is not allocated yet, so we'll
  2362. * need a further commit step to do the final arrangements.
  2363. *
  2364. * It is possible for the task to switch cgroups in this mean time, so at
  2365. * commit time, we can't rely on task conversion any longer. We'll then use
  2366. * the handle argument to return to the caller which cgroup we should commit
  2367. * against. We could also return the memcg directly and avoid the pointer
  2368. * passing, but a boolean return value gives better semantics considering
  2369. * the compiled-out case as well.
  2370. *
  2371. * Returning true means the allocation is possible.
  2372. */
  2373. bool
  2374. __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
  2375. {
  2376. struct mem_cgroup *memcg;
  2377. int ret;
  2378. *_memcg = NULL;
  2379. memcg = get_mem_cgroup_from_mm(current->mm);
  2380. if (!memcg_kmem_is_active(memcg)) {
  2381. css_put(&memcg->css);
  2382. return true;
  2383. }
  2384. ret = memcg_charge_kmem(memcg, gfp, 1 << order);
  2385. if (!ret)
  2386. *_memcg = memcg;
  2387. css_put(&memcg->css);
  2388. return (ret == 0);
  2389. }
  2390. void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
  2391. int order)
  2392. {
  2393. VM_BUG_ON(mem_cgroup_is_root(memcg));
  2394. /* The page allocation failed. Revert */
  2395. if (!page) {
  2396. memcg_uncharge_kmem(memcg, 1 << order);
  2397. return;
  2398. }
  2399. page->mem_cgroup = memcg;
  2400. }
  2401. void __memcg_kmem_uncharge_pages(struct page *page, int order)
  2402. {
  2403. struct mem_cgroup *memcg = page->mem_cgroup;
  2404. if (!memcg)
  2405. return;
  2406. VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
  2407. memcg_uncharge_kmem(memcg, 1 << order);
  2408. page->mem_cgroup = NULL;
  2409. }
  2410. #endif /* CONFIG_MEMCG_KMEM */
  2411. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  2412. /*
  2413. * Because tail pages are not marked as "used", set it. We're under
  2414. * zone->lru_lock, 'splitting on pmd' and compound_lock.
  2415. * charge/uncharge will be never happen and move_account() is done under
  2416. * compound_lock(), so we don't have to take care of races.
  2417. */
  2418. void mem_cgroup_split_huge_fixup(struct page *head)
  2419. {
  2420. int i;
  2421. if (mem_cgroup_disabled())
  2422. return;
  2423. for (i = 1; i < HPAGE_PMD_NR; i++)
  2424. head[i].mem_cgroup = head->mem_cgroup;
  2425. __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
  2426. HPAGE_PMD_NR);
  2427. }
  2428. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  2429. /**
  2430. * mem_cgroup_move_account - move account of the page
  2431. * @page: the page
  2432. * @nr_pages: number of regular pages (>1 for huge pages)
  2433. * @from: mem_cgroup which the page is moved from.
  2434. * @to: mem_cgroup which the page is moved to. @from != @to.
  2435. *
  2436. * The caller must confirm following.
  2437. * - page is not on LRU (isolate_page() is useful.)
  2438. * - compound_lock is held when nr_pages > 1
  2439. *
  2440. * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
  2441. * from old cgroup.
  2442. */
  2443. static int mem_cgroup_move_account(struct page *page,
  2444. unsigned int nr_pages,
  2445. struct mem_cgroup *from,
  2446. struct mem_cgroup *to)
  2447. {
  2448. unsigned long flags;
  2449. int ret;
  2450. VM_BUG_ON(from == to);
  2451. VM_BUG_ON_PAGE(PageLRU(page), page);
  2452. /*
  2453. * The page is isolated from LRU. So, collapse function
  2454. * will not handle this page. But page splitting can happen.
  2455. * Do this check under compound_page_lock(). The caller should
  2456. * hold it.
  2457. */
  2458. ret = -EBUSY;
  2459. if (nr_pages > 1 && !PageTransHuge(page))
  2460. goto out;
  2461. /*
  2462. * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
  2463. * of its source page while we change it: page migration takes
  2464. * both pages off the LRU, but page cache replacement doesn't.
  2465. */
  2466. if (!trylock_page(page))
  2467. goto out;
  2468. ret = -EINVAL;
  2469. if (page->mem_cgroup != from)
  2470. goto out_unlock;
  2471. spin_lock_irqsave(&from->move_lock, flags);
  2472. if (!PageAnon(page) && page_mapped(page)) {
  2473. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
  2474. nr_pages);
  2475. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
  2476. nr_pages);
  2477. }
  2478. if (PageWriteback(page)) {
  2479. __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
  2480. nr_pages);
  2481. __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
  2482. nr_pages);
  2483. }
  2484. /*
  2485. * It is safe to change page->mem_cgroup here because the page
  2486. * is referenced, charged, and isolated - we can't race with
  2487. * uncharging, charging, migration, or LRU putback.
  2488. */
  2489. /* caller should have done css_get */
  2490. page->mem_cgroup = to;
  2491. spin_unlock_irqrestore(&from->move_lock, flags);
  2492. ret = 0;
  2493. local_irq_disable();
  2494. mem_cgroup_charge_statistics(to, page, nr_pages);
  2495. memcg_check_events(to, page);
  2496. mem_cgroup_charge_statistics(from, page, -nr_pages);
  2497. memcg_check_events(from, page);
  2498. local_irq_enable();
  2499. out_unlock:
  2500. unlock_page(page);
  2501. out:
  2502. return ret;
  2503. }
  2504. #ifdef CONFIG_MEMCG_SWAP
  2505. static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
  2506. bool charge)
  2507. {
  2508. int val = (charge) ? 1 : -1;
  2509. this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
  2510. }
  2511. /**
  2512. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  2513. * @entry: swap entry to be moved
  2514. * @from: mem_cgroup which the entry is moved from
  2515. * @to: mem_cgroup which the entry is moved to
  2516. *
  2517. * It succeeds only when the swap_cgroup's record for this entry is the same
  2518. * as the mem_cgroup's id of @from.
  2519. *
  2520. * Returns 0 on success, -EINVAL on failure.
  2521. *
  2522. * The caller must have charged to @to, IOW, called page_counter_charge() about
  2523. * both res and memsw, and called css_get().
  2524. */
  2525. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  2526. struct mem_cgroup *from, struct mem_cgroup *to)
  2527. {
  2528. unsigned short old_id, new_id;
  2529. old_id = mem_cgroup_id(from);
  2530. new_id = mem_cgroup_id(to);
  2531. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  2532. mem_cgroup_swap_statistics(from, false);
  2533. mem_cgroup_swap_statistics(to, true);
  2534. return 0;
  2535. }
  2536. return -EINVAL;
  2537. }
  2538. #else
  2539. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  2540. struct mem_cgroup *from, struct mem_cgroup *to)
  2541. {
  2542. return -EINVAL;
  2543. }
  2544. #endif
  2545. static DEFINE_MUTEX(memcg_limit_mutex);
  2546. static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
  2547. unsigned long limit)
  2548. {
  2549. unsigned long curusage;
  2550. unsigned long oldusage;
  2551. bool enlarge = false;
  2552. int retry_count;
  2553. int ret;
  2554. /*
  2555. * For keeping hierarchical_reclaim simple, how long we should retry
  2556. * is depends on callers. We set our retry-count to be function
  2557. * of # of children which we should visit in this loop.
  2558. */
  2559. retry_count = MEM_CGROUP_RECLAIM_RETRIES *
  2560. mem_cgroup_count_children(memcg);
  2561. oldusage = page_counter_read(&memcg->memory);
  2562. do {
  2563. if (signal_pending(current)) {
  2564. ret = -EINTR;
  2565. break;
  2566. }
  2567. mutex_lock(&memcg_limit_mutex);
  2568. if (limit > memcg->memsw.limit) {
  2569. mutex_unlock(&memcg_limit_mutex);
  2570. ret = -EINVAL;
  2571. break;
  2572. }
  2573. if (limit > memcg->memory.limit)
  2574. enlarge = true;
  2575. ret = page_counter_limit(&memcg->memory, limit);
  2576. mutex_unlock(&memcg_limit_mutex);
  2577. if (!ret)
  2578. break;
  2579. try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
  2580. curusage = page_counter_read(&memcg->memory);
  2581. /* Usage is reduced ? */
  2582. if (curusage >= oldusage)
  2583. retry_count--;
  2584. else
  2585. oldusage = curusage;
  2586. } while (retry_count);
  2587. if (!ret && enlarge)
  2588. memcg_oom_recover(memcg);
  2589. return ret;
  2590. }
  2591. static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
  2592. unsigned long limit)
  2593. {
  2594. unsigned long curusage;
  2595. unsigned long oldusage;
  2596. bool enlarge = false;
  2597. int retry_count;
  2598. int ret;
  2599. /* see mem_cgroup_resize_res_limit */
  2600. retry_count = MEM_CGROUP_RECLAIM_RETRIES *
  2601. mem_cgroup_count_children(memcg);
  2602. oldusage = page_counter_read(&memcg->memsw);
  2603. do {
  2604. if (signal_pending(current)) {
  2605. ret = -EINTR;
  2606. break;
  2607. }
  2608. mutex_lock(&memcg_limit_mutex);
  2609. if (limit < memcg->memory.limit) {
  2610. mutex_unlock(&memcg_limit_mutex);
  2611. ret = -EINVAL;
  2612. break;
  2613. }
  2614. if (limit > memcg->memsw.limit)
  2615. enlarge = true;
  2616. ret = page_counter_limit(&memcg->memsw, limit);
  2617. mutex_unlock(&memcg_limit_mutex);
  2618. if (!ret)
  2619. break;
  2620. try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
  2621. curusage = page_counter_read(&memcg->memsw);
  2622. /* Usage is reduced ? */
  2623. if (curusage >= oldusage)
  2624. retry_count--;
  2625. else
  2626. oldusage = curusage;
  2627. } while (retry_count);
  2628. if (!ret && enlarge)
  2629. memcg_oom_recover(memcg);
  2630. return ret;
  2631. }
  2632. unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
  2633. gfp_t gfp_mask,
  2634. unsigned long *total_scanned)
  2635. {
  2636. unsigned long nr_reclaimed = 0;
  2637. struct mem_cgroup_per_zone *mz, *next_mz = NULL;
  2638. unsigned long reclaimed;
  2639. int loop = 0;
  2640. struct mem_cgroup_tree_per_zone *mctz;
  2641. unsigned long excess;
  2642. unsigned long nr_scanned;
  2643. if (order > 0)
  2644. return 0;
  2645. mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
  2646. /*
  2647. * This loop can run a while, specially if mem_cgroup's continuously
  2648. * keep exceeding their soft limit and putting the system under
  2649. * pressure
  2650. */
  2651. do {
  2652. if (next_mz)
  2653. mz = next_mz;
  2654. else
  2655. mz = mem_cgroup_largest_soft_limit_node(mctz);
  2656. if (!mz)
  2657. break;
  2658. nr_scanned = 0;
  2659. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
  2660. gfp_mask, &nr_scanned);
  2661. nr_reclaimed += reclaimed;
  2662. *total_scanned += nr_scanned;
  2663. spin_lock_irq(&mctz->lock);
  2664. __mem_cgroup_remove_exceeded(mz, mctz);
  2665. /*
  2666. * If we failed to reclaim anything from this memory cgroup
  2667. * it is time to move on to the next cgroup
  2668. */
  2669. next_mz = NULL;
  2670. if (!reclaimed)
  2671. next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
  2672. excess = soft_limit_excess(mz->memcg);
  2673. /*
  2674. * One school of thought says that we should not add
  2675. * back the node to the tree if reclaim returns 0.
  2676. * But our reclaim could return 0, simply because due
  2677. * to priority we are exposing a smaller subset of
  2678. * memory to reclaim from. Consider this as a longer
  2679. * term TODO.
  2680. */
  2681. /* If excess == 0, no tree ops */
  2682. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  2683. spin_unlock_irq(&mctz->lock);
  2684. css_put(&mz->memcg->css);
  2685. loop++;
  2686. /*
  2687. * Could not reclaim anything and there are no more
  2688. * mem cgroups to try or we seem to be looping without
  2689. * reclaiming anything.
  2690. */
  2691. if (!nr_reclaimed &&
  2692. (next_mz == NULL ||
  2693. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  2694. break;
  2695. } while (!nr_reclaimed);
  2696. if (next_mz)
  2697. css_put(&next_mz->memcg->css);
  2698. return nr_reclaimed;
  2699. }
  2700. /*
  2701. * Test whether @memcg has children, dead or alive. Note that this
  2702. * function doesn't care whether @memcg has use_hierarchy enabled and
  2703. * returns %true if there are child csses according to the cgroup
  2704. * hierarchy. Testing use_hierarchy is the caller's responsiblity.
  2705. */
  2706. static inline bool memcg_has_children(struct mem_cgroup *memcg)
  2707. {
  2708. bool ret;
  2709. /*
  2710. * The lock does not prevent addition or deletion of children, but
  2711. * it prevents a new child from being initialized based on this
  2712. * parent in css_online(), so it's enough to decide whether
  2713. * hierarchically inherited attributes can still be changed or not.
  2714. */
  2715. lockdep_assert_held(&memcg_create_mutex);
  2716. rcu_read_lock();
  2717. ret = css_next_child(NULL, &memcg->css);
  2718. rcu_read_unlock();
  2719. return ret;
  2720. }
  2721. /*
  2722. * Reclaims as many pages from the given memcg as possible and moves
  2723. * the rest to the parent.
  2724. *
  2725. * Caller is responsible for holding css reference for memcg.
  2726. */
  2727. static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
  2728. {
  2729. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2730. /* we call try-to-free pages for make this cgroup empty */
  2731. lru_add_drain_all();
  2732. /* try to free all pages in this cgroup */
  2733. while (nr_retries && page_counter_read(&memcg->memory)) {
  2734. int progress;
  2735. if (signal_pending(current))
  2736. return -EINTR;
  2737. progress = try_to_free_mem_cgroup_pages(memcg, 1,
  2738. GFP_KERNEL, true);
  2739. if (!progress) {
  2740. nr_retries--;
  2741. /* maybe some writeback is necessary */
  2742. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2743. }
  2744. }
  2745. return 0;
  2746. }
  2747. static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
  2748. char *buf, size_t nbytes,
  2749. loff_t off)
  2750. {
  2751. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2752. if (mem_cgroup_is_root(memcg))
  2753. return -EINVAL;
  2754. return mem_cgroup_force_empty(memcg) ?: nbytes;
  2755. }
  2756. static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
  2757. struct cftype *cft)
  2758. {
  2759. return mem_cgroup_from_css(css)->use_hierarchy;
  2760. }
  2761. static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
  2762. struct cftype *cft, u64 val)
  2763. {
  2764. int retval = 0;
  2765. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2766. struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
  2767. mutex_lock(&memcg_create_mutex);
  2768. if (memcg->use_hierarchy == val)
  2769. goto out;
  2770. /*
  2771. * If parent's use_hierarchy is set, we can't make any modifications
  2772. * in the child subtrees. If it is unset, then the change can
  2773. * occur, provided the current cgroup has no children.
  2774. *
  2775. * For the root cgroup, parent_mem is NULL, we allow value to be
  2776. * set if there are no children.
  2777. */
  2778. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  2779. (val == 1 || val == 0)) {
  2780. if (!memcg_has_children(memcg))
  2781. memcg->use_hierarchy = val;
  2782. else
  2783. retval = -EBUSY;
  2784. } else
  2785. retval = -EINVAL;
  2786. out:
  2787. mutex_unlock(&memcg_create_mutex);
  2788. return retval;
  2789. }
  2790. static unsigned long tree_stat(struct mem_cgroup *memcg,
  2791. enum mem_cgroup_stat_index idx)
  2792. {
  2793. struct mem_cgroup *iter;
  2794. long val = 0;
  2795. /* Per-cpu values can be negative, use a signed accumulator */
  2796. for_each_mem_cgroup_tree(iter, memcg)
  2797. val += mem_cgroup_read_stat(iter, idx);
  2798. if (val < 0) /* race ? */
  2799. val = 0;
  2800. return val;
  2801. }
  2802. static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  2803. {
  2804. u64 val;
  2805. if (mem_cgroup_is_root(memcg)) {
  2806. val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
  2807. val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
  2808. if (swap)
  2809. val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
  2810. } else {
  2811. if (!swap)
  2812. val = page_counter_read(&memcg->memory);
  2813. else
  2814. val = page_counter_read(&memcg->memsw);
  2815. }
  2816. return val << PAGE_SHIFT;
  2817. }
  2818. enum {
  2819. RES_USAGE,
  2820. RES_LIMIT,
  2821. RES_MAX_USAGE,
  2822. RES_FAILCNT,
  2823. RES_SOFT_LIMIT,
  2824. };
  2825. static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
  2826. struct cftype *cft)
  2827. {
  2828. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2829. struct page_counter *counter;
  2830. switch (MEMFILE_TYPE(cft->private)) {
  2831. case _MEM:
  2832. counter = &memcg->memory;
  2833. break;
  2834. case _MEMSWAP:
  2835. counter = &memcg->memsw;
  2836. break;
  2837. case _KMEM:
  2838. counter = &memcg->kmem;
  2839. break;
  2840. default:
  2841. BUG();
  2842. }
  2843. switch (MEMFILE_ATTR(cft->private)) {
  2844. case RES_USAGE:
  2845. if (counter == &memcg->memory)
  2846. return mem_cgroup_usage(memcg, false);
  2847. if (counter == &memcg->memsw)
  2848. return mem_cgroup_usage(memcg, true);
  2849. return (u64)page_counter_read(counter) * PAGE_SIZE;
  2850. case RES_LIMIT:
  2851. return (u64)counter->limit * PAGE_SIZE;
  2852. case RES_MAX_USAGE:
  2853. return (u64)counter->watermark * PAGE_SIZE;
  2854. case RES_FAILCNT:
  2855. return counter->failcnt;
  2856. case RES_SOFT_LIMIT:
  2857. return (u64)memcg->soft_limit * PAGE_SIZE;
  2858. default:
  2859. BUG();
  2860. }
  2861. }
  2862. #ifdef CONFIG_MEMCG_KMEM
  2863. static int memcg_activate_kmem(struct mem_cgroup *memcg,
  2864. unsigned long nr_pages)
  2865. {
  2866. int err = 0;
  2867. int memcg_id;
  2868. if (memcg_kmem_is_active(memcg))
  2869. return 0;
  2870. /*
  2871. * For simplicity, we won't allow this to be disabled. It also can't
  2872. * be changed if the cgroup has children already, or if tasks had
  2873. * already joined.
  2874. *
  2875. * If tasks join before we set the limit, a person looking at
  2876. * kmem.usage_in_bytes will have no way to determine when it took
  2877. * place, which makes the value quite meaningless.
  2878. *
  2879. * After it first became limited, changes in the value of the limit are
  2880. * of course permitted.
  2881. */
  2882. mutex_lock(&memcg_create_mutex);
  2883. if (cgroup_has_tasks(memcg->css.cgroup) ||
  2884. (memcg->use_hierarchy && memcg_has_children(memcg)))
  2885. err = -EBUSY;
  2886. mutex_unlock(&memcg_create_mutex);
  2887. if (err)
  2888. goto out;
  2889. memcg_id = memcg_alloc_cache_id();
  2890. if (memcg_id < 0) {
  2891. err = memcg_id;
  2892. goto out;
  2893. }
  2894. /*
  2895. * We couldn't have accounted to this cgroup, because it hasn't got
  2896. * activated yet, so this should succeed.
  2897. */
  2898. err = page_counter_limit(&memcg->kmem, nr_pages);
  2899. VM_BUG_ON(err);
  2900. static_key_slow_inc(&memcg_kmem_enabled_key);
  2901. /*
  2902. * A memory cgroup is considered kmem-active as soon as it gets
  2903. * kmemcg_id. Setting the id after enabling static branching will
  2904. * guarantee no one starts accounting before all call sites are
  2905. * patched.
  2906. */
  2907. memcg->kmemcg_id = memcg_id;
  2908. out:
  2909. return err;
  2910. }
  2911. static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
  2912. unsigned long limit)
  2913. {
  2914. int ret;
  2915. mutex_lock(&memcg_limit_mutex);
  2916. if (!memcg_kmem_is_active(memcg))
  2917. ret = memcg_activate_kmem(memcg, limit);
  2918. else
  2919. ret = page_counter_limit(&memcg->kmem, limit);
  2920. mutex_unlock(&memcg_limit_mutex);
  2921. return ret;
  2922. }
  2923. static int memcg_propagate_kmem(struct mem_cgroup *memcg)
  2924. {
  2925. int ret = 0;
  2926. struct mem_cgroup *parent = parent_mem_cgroup(memcg);
  2927. if (!parent)
  2928. return 0;
  2929. mutex_lock(&memcg_limit_mutex);
  2930. /*
  2931. * If the parent cgroup is not kmem-active now, it cannot be activated
  2932. * after this point, because it has at least one child already.
  2933. */
  2934. if (memcg_kmem_is_active(parent))
  2935. ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
  2936. mutex_unlock(&memcg_limit_mutex);
  2937. return ret;
  2938. }
  2939. #else
  2940. static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
  2941. unsigned long limit)
  2942. {
  2943. return -EINVAL;
  2944. }
  2945. #endif /* CONFIG_MEMCG_KMEM */
  2946. /*
  2947. * The user of this function is...
  2948. * RES_LIMIT.
  2949. */
  2950. static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
  2951. char *buf, size_t nbytes, loff_t off)
  2952. {
  2953. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2954. unsigned long nr_pages;
  2955. int ret;
  2956. buf = strstrip(buf);
  2957. ret = page_counter_memparse(buf, &nr_pages);
  2958. if (ret)
  2959. return ret;
  2960. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2961. case RES_LIMIT:
  2962. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  2963. ret = -EINVAL;
  2964. break;
  2965. }
  2966. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2967. case _MEM:
  2968. ret = mem_cgroup_resize_limit(memcg, nr_pages);
  2969. break;
  2970. case _MEMSWAP:
  2971. ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
  2972. break;
  2973. case _KMEM:
  2974. ret = memcg_update_kmem_limit(memcg, nr_pages);
  2975. break;
  2976. }
  2977. break;
  2978. case RES_SOFT_LIMIT:
  2979. memcg->soft_limit = nr_pages;
  2980. ret = 0;
  2981. break;
  2982. }
  2983. return ret ?: nbytes;
  2984. }
  2985. static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
  2986. size_t nbytes, loff_t off)
  2987. {
  2988. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2989. struct page_counter *counter;
  2990. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2991. case _MEM:
  2992. counter = &memcg->memory;
  2993. break;
  2994. case _MEMSWAP:
  2995. counter = &memcg->memsw;
  2996. break;
  2997. case _KMEM:
  2998. counter = &memcg->kmem;
  2999. break;
  3000. default:
  3001. BUG();
  3002. }
  3003. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  3004. case RES_MAX_USAGE:
  3005. page_counter_reset_watermark(counter);
  3006. break;
  3007. case RES_FAILCNT:
  3008. counter->failcnt = 0;
  3009. break;
  3010. default:
  3011. BUG();
  3012. }
  3013. return nbytes;
  3014. }
  3015. static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
  3016. struct cftype *cft)
  3017. {
  3018. return mem_cgroup_from_css(css)->move_charge_at_immigrate;
  3019. }
  3020. #ifdef CONFIG_MMU
  3021. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  3022. struct cftype *cft, u64 val)
  3023. {
  3024. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3025. if (val >= (1 << NR_MOVE_TYPE))
  3026. return -EINVAL;
  3027. /*
  3028. * No kind of locking is needed in here, because ->can_attach() will
  3029. * check this value once in the beginning of the process, and then carry
  3030. * on with stale data. This means that changes to this value will only
  3031. * affect task migrations starting after the change.
  3032. */
  3033. memcg->move_charge_at_immigrate = val;
  3034. return 0;
  3035. }
  3036. #else
  3037. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  3038. struct cftype *cft, u64 val)
  3039. {
  3040. return -ENOSYS;
  3041. }
  3042. #endif
  3043. #ifdef CONFIG_NUMA
  3044. static int memcg_numa_stat_show(struct seq_file *m, void *v)
  3045. {
  3046. struct numa_stat {
  3047. const char *name;
  3048. unsigned int lru_mask;
  3049. };
  3050. static const struct numa_stat stats[] = {
  3051. { "total", LRU_ALL },
  3052. { "file", LRU_ALL_FILE },
  3053. { "anon", LRU_ALL_ANON },
  3054. { "unevictable", BIT(LRU_UNEVICTABLE) },
  3055. };
  3056. const struct numa_stat *stat;
  3057. int nid;
  3058. unsigned long nr;
  3059. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  3060. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  3061. nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
  3062. seq_printf(m, "%s=%lu", stat->name, nr);
  3063. for_each_node_state(nid, N_MEMORY) {
  3064. nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  3065. stat->lru_mask);
  3066. seq_printf(m, " N%d=%lu", nid, nr);
  3067. }
  3068. seq_putc(m, '\n');
  3069. }
  3070. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  3071. struct mem_cgroup *iter;
  3072. nr = 0;
  3073. for_each_mem_cgroup_tree(iter, memcg)
  3074. nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
  3075. seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
  3076. for_each_node_state(nid, N_MEMORY) {
  3077. nr = 0;
  3078. for_each_mem_cgroup_tree(iter, memcg)
  3079. nr += mem_cgroup_node_nr_lru_pages(
  3080. iter, nid, stat->lru_mask);
  3081. seq_printf(m, " N%d=%lu", nid, nr);
  3082. }
  3083. seq_putc(m, '\n');
  3084. }
  3085. return 0;
  3086. }
  3087. #endif /* CONFIG_NUMA */
  3088. static int memcg_stat_show(struct seq_file *m, void *v)
  3089. {
  3090. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  3091. unsigned long memory, memsw;
  3092. struct mem_cgroup *mi;
  3093. unsigned int i;
  3094. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
  3095. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  3096. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  3097. continue;
  3098. seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
  3099. mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
  3100. }
  3101. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
  3102. seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
  3103. mem_cgroup_read_events(memcg, i));
  3104. for (i = 0; i < NR_LRU_LISTS; i++)
  3105. seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
  3106. mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
  3107. /* Hierarchical information */
  3108. memory = memsw = PAGE_COUNTER_MAX;
  3109. for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
  3110. memory = min(memory, mi->memory.limit);
  3111. memsw = min(memsw, mi->memsw.limit);
  3112. }
  3113. seq_printf(m, "hierarchical_memory_limit %llu\n",
  3114. (u64)memory * PAGE_SIZE);
  3115. if (do_swap_account)
  3116. seq_printf(m, "hierarchical_memsw_limit %llu\n",
  3117. (u64)memsw * PAGE_SIZE);
  3118. for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
  3119. long long val = 0;
  3120. if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
  3121. continue;
  3122. for_each_mem_cgroup_tree(mi, memcg)
  3123. val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
  3124. seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
  3125. }
  3126. for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
  3127. unsigned long long val = 0;
  3128. for_each_mem_cgroup_tree(mi, memcg)
  3129. val += mem_cgroup_read_events(mi, i);
  3130. seq_printf(m, "total_%s %llu\n",
  3131. mem_cgroup_events_names[i], val);
  3132. }
  3133. for (i = 0; i < NR_LRU_LISTS; i++) {
  3134. unsigned long long val = 0;
  3135. for_each_mem_cgroup_tree(mi, memcg)
  3136. val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
  3137. seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
  3138. }
  3139. #ifdef CONFIG_DEBUG_VM
  3140. {
  3141. int nid, zid;
  3142. struct mem_cgroup_per_zone *mz;
  3143. struct zone_reclaim_stat *rstat;
  3144. unsigned long recent_rotated[2] = {0, 0};
  3145. unsigned long recent_scanned[2] = {0, 0};
  3146. for_each_online_node(nid)
  3147. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  3148. mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
  3149. rstat = &mz->lruvec.reclaim_stat;
  3150. recent_rotated[0] += rstat->recent_rotated[0];
  3151. recent_rotated[1] += rstat->recent_rotated[1];
  3152. recent_scanned[0] += rstat->recent_scanned[0];
  3153. recent_scanned[1] += rstat->recent_scanned[1];
  3154. }
  3155. seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
  3156. seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
  3157. seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
  3158. seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
  3159. }
  3160. #endif
  3161. return 0;
  3162. }
  3163. static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
  3164. struct cftype *cft)
  3165. {
  3166. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3167. return mem_cgroup_swappiness(memcg);
  3168. }
  3169. static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
  3170. struct cftype *cft, u64 val)
  3171. {
  3172. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3173. if (val > 100)
  3174. return -EINVAL;
  3175. if (css->parent)
  3176. memcg->swappiness = val;
  3177. else
  3178. vm_swappiness = val;
  3179. return 0;
  3180. }
  3181. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  3182. {
  3183. struct mem_cgroup_threshold_ary *t;
  3184. unsigned long usage;
  3185. int i;
  3186. rcu_read_lock();
  3187. if (!swap)
  3188. t = rcu_dereference(memcg->thresholds.primary);
  3189. else
  3190. t = rcu_dereference(memcg->memsw_thresholds.primary);
  3191. if (!t)
  3192. goto unlock;
  3193. usage = mem_cgroup_usage(memcg, swap);
  3194. /*
  3195. * current_threshold points to threshold just below or equal to usage.
  3196. * If it's not true, a threshold was crossed after last
  3197. * call of __mem_cgroup_threshold().
  3198. */
  3199. i = t->current_threshold;
  3200. /*
  3201. * Iterate backward over array of thresholds starting from
  3202. * current_threshold and check if a threshold is crossed.
  3203. * If none of thresholds below usage is crossed, we read
  3204. * only one element of the array here.
  3205. */
  3206. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  3207. eventfd_signal(t->entries[i].eventfd, 1);
  3208. /* i = current_threshold + 1 */
  3209. i++;
  3210. /*
  3211. * Iterate forward over array of thresholds starting from
  3212. * current_threshold+1 and check if a threshold is crossed.
  3213. * If none of thresholds above usage is crossed, we read
  3214. * only one element of the array here.
  3215. */
  3216. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  3217. eventfd_signal(t->entries[i].eventfd, 1);
  3218. /* Update current_threshold */
  3219. t->current_threshold = i - 1;
  3220. unlock:
  3221. rcu_read_unlock();
  3222. }
  3223. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  3224. {
  3225. while (memcg) {
  3226. __mem_cgroup_threshold(memcg, false);
  3227. if (do_swap_account)
  3228. __mem_cgroup_threshold(memcg, true);
  3229. memcg = parent_mem_cgroup(memcg);
  3230. }
  3231. }
  3232. static int compare_thresholds(const void *a, const void *b)
  3233. {
  3234. const struct mem_cgroup_threshold *_a = a;
  3235. const struct mem_cgroup_threshold *_b = b;
  3236. if (_a->threshold > _b->threshold)
  3237. return 1;
  3238. if (_a->threshold < _b->threshold)
  3239. return -1;
  3240. return 0;
  3241. }
  3242. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  3243. {
  3244. struct mem_cgroup_eventfd_list *ev;
  3245. spin_lock(&memcg_oom_lock);
  3246. list_for_each_entry(ev, &memcg->oom_notify, list)
  3247. eventfd_signal(ev->eventfd, 1);
  3248. spin_unlock(&memcg_oom_lock);
  3249. return 0;
  3250. }
  3251. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  3252. {
  3253. struct mem_cgroup *iter;
  3254. for_each_mem_cgroup_tree(iter, memcg)
  3255. mem_cgroup_oom_notify_cb(iter);
  3256. }
  3257. static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  3258. struct eventfd_ctx *eventfd, const char *args, enum res_type type)
  3259. {
  3260. struct mem_cgroup_thresholds *thresholds;
  3261. struct mem_cgroup_threshold_ary *new;
  3262. unsigned long threshold;
  3263. unsigned long usage;
  3264. int i, size, ret;
  3265. ret = page_counter_memparse(args, &threshold);
  3266. if (ret)
  3267. return ret;
  3268. mutex_lock(&memcg->thresholds_lock);
  3269. if (type == _MEM) {
  3270. thresholds = &memcg->thresholds;
  3271. usage = mem_cgroup_usage(memcg, false);
  3272. } else if (type == _MEMSWAP) {
  3273. thresholds = &memcg->memsw_thresholds;
  3274. usage = mem_cgroup_usage(memcg, true);
  3275. } else
  3276. BUG();
  3277. /* Check if a threshold crossed before adding a new one */
  3278. if (thresholds->primary)
  3279. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  3280. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  3281. /* Allocate memory for new array of thresholds */
  3282. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  3283. GFP_KERNEL);
  3284. if (!new) {
  3285. ret = -ENOMEM;
  3286. goto unlock;
  3287. }
  3288. new->size = size;
  3289. /* Copy thresholds (if any) to new array */
  3290. if (thresholds->primary) {
  3291. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  3292. sizeof(struct mem_cgroup_threshold));
  3293. }
  3294. /* Add new threshold */
  3295. new->entries[size - 1].eventfd = eventfd;
  3296. new->entries[size - 1].threshold = threshold;
  3297. /* Sort thresholds. Registering of new threshold isn't time-critical */
  3298. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  3299. compare_thresholds, NULL);
  3300. /* Find current threshold */
  3301. new->current_threshold = -1;
  3302. for (i = 0; i < size; i++) {
  3303. if (new->entries[i].threshold <= usage) {
  3304. /*
  3305. * new->current_threshold will not be used until
  3306. * rcu_assign_pointer(), so it's safe to increment
  3307. * it here.
  3308. */
  3309. ++new->current_threshold;
  3310. } else
  3311. break;
  3312. }
  3313. /* Free old spare buffer and save old primary buffer as spare */
  3314. kfree(thresholds->spare);
  3315. thresholds->spare = thresholds->primary;
  3316. rcu_assign_pointer(thresholds->primary, new);
  3317. /* To be sure that nobody uses thresholds */
  3318. synchronize_rcu();
  3319. unlock:
  3320. mutex_unlock(&memcg->thresholds_lock);
  3321. return ret;
  3322. }
  3323. static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  3324. struct eventfd_ctx *eventfd, const char *args)
  3325. {
  3326. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
  3327. }
  3328. static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
  3329. struct eventfd_ctx *eventfd, const char *args)
  3330. {
  3331. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
  3332. }
  3333. static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3334. struct eventfd_ctx *eventfd, enum res_type type)
  3335. {
  3336. struct mem_cgroup_thresholds *thresholds;
  3337. struct mem_cgroup_threshold_ary *new;
  3338. unsigned long usage;
  3339. int i, j, size;
  3340. mutex_lock(&memcg->thresholds_lock);
  3341. if (type == _MEM) {
  3342. thresholds = &memcg->thresholds;
  3343. usage = mem_cgroup_usage(memcg, false);
  3344. } else if (type == _MEMSWAP) {
  3345. thresholds = &memcg->memsw_thresholds;
  3346. usage = mem_cgroup_usage(memcg, true);
  3347. } else
  3348. BUG();
  3349. if (!thresholds->primary)
  3350. goto unlock;
  3351. /* Check if a threshold crossed before removing */
  3352. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  3353. /* Calculate new number of threshold */
  3354. size = 0;
  3355. for (i = 0; i < thresholds->primary->size; i++) {
  3356. if (thresholds->primary->entries[i].eventfd != eventfd)
  3357. size++;
  3358. }
  3359. new = thresholds->spare;
  3360. /* Set thresholds array to NULL if we don't have thresholds */
  3361. if (!size) {
  3362. kfree(new);
  3363. new = NULL;
  3364. goto swap_buffers;
  3365. }
  3366. new->size = size;
  3367. /* Copy thresholds and find current threshold */
  3368. new->current_threshold = -1;
  3369. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  3370. if (thresholds->primary->entries[i].eventfd == eventfd)
  3371. continue;
  3372. new->entries[j] = thresholds->primary->entries[i];
  3373. if (new->entries[j].threshold <= usage) {
  3374. /*
  3375. * new->current_threshold will not be used
  3376. * until rcu_assign_pointer(), so it's safe to increment
  3377. * it here.
  3378. */
  3379. ++new->current_threshold;
  3380. }
  3381. j++;
  3382. }
  3383. swap_buffers:
  3384. /* Swap primary and spare array */
  3385. thresholds->spare = thresholds->primary;
  3386. /* If all events are unregistered, free the spare array */
  3387. if (!new) {
  3388. kfree(thresholds->spare);
  3389. thresholds->spare = NULL;
  3390. }
  3391. rcu_assign_pointer(thresholds->primary, new);
  3392. /* To be sure that nobody uses thresholds */
  3393. synchronize_rcu();
  3394. unlock:
  3395. mutex_unlock(&memcg->thresholds_lock);
  3396. }
  3397. static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3398. struct eventfd_ctx *eventfd)
  3399. {
  3400. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
  3401. }
  3402. static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  3403. struct eventfd_ctx *eventfd)
  3404. {
  3405. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
  3406. }
  3407. static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
  3408. struct eventfd_ctx *eventfd, const char *args)
  3409. {
  3410. struct mem_cgroup_eventfd_list *event;
  3411. event = kmalloc(sizeof(*event), GFP_KERNEL);
  3412. if (!event)
  3413. return -ENOMEM;
  3414. spin_lock(&memcg_oom_lock);
  3415. event->eventfd = eventfd;
  3416. list_add(&event->list, &memcg->oom_notify);
  3417. /* already in OOM ? */
  3418. if (atomic_read(&memcg->under_oom))
  3419. eventfd_signal(eventfd, 1);
  3420. spin_unlock(&memcg_oom_lock);
  3421. return 0;
  3422. }
  3423. static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
  3424. struct eventfd_ctx *eventfd)
  3425. {
  3426. struct mem_cgroup_eventfd_list *ev, *tmp;
  3427. spin_lock(&memcg_oom_lock);
  3428. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  3429. if (ev->eventfd == eventfd) {
  3430. list_del(&ev->list);
  3431. kfree(ev);
  3432. }
  3433. }
  3434. spin_unlock(&memcg_oom_lock);
  3435. }
  3436. static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
  3437. {
  3438. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
  3439. seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
  3440. seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
  3441. return 0;
  3442. }
  3443. static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
  3444. struct cftype *cft, u64 val)
  3445. {
  3446. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3447. /* cannot set to root cgroup and only 0 and 1 are allowed */
  3448. if (!css->parent || !((val == 0) || (val == 1)))
  3449. return -EINVAL;
  3450. memcg->oom_kill_disable = val;
  3451. if (!val)
  3452. memcg_oom_recover(memcg);
  3453. return 0;
  3454. }
  3455. #ifdef CONFIG_MEMCG_KMEM
  3456. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  3457. {
  3458. int ret;
  3459. ret = memcg_propagate_kmem(memcg);
  3460. if (ret)
  3461. return ret;
  3462. return mem_cgroup_sockets_init(memcg, ss);
  3463. }
  3464. static void memcg_destroy_kmem(struct mem_cgroup *memcg)
  3465. {
  3466. memcg_destroy_kmem_caches(memcg);
  3467. mem_cgroup_sockets_destroy(memcg);
  3468. }
  3469. #else
  3470. static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  3471. {
  3472. return 0;
  3473. }
  3474. static void memcg_destroy_kmem(struct mem_cgroup *memcg)
  3475. {
  3476. }
  3477. #endif
  3478. /*
  3479. * DO NOT USE IN NEW FILES.
  3480. *
  3481. * "cgroup.event_control" implementation.
  3482. *
  3483. * This is way over-engineered. It tries to support fully configurable
  3484. * events for each user. Such level of flexibility is completely
  3485. * unnecessary especially in the light of the planned unified hierarchy.
  3486. *
  3487. * Please deprecate this and replace with something simpler if at all
  3488. * possible.
  3489. */
  3490. /*
  3491. * Unregister event and free resources.
  3492. *
  3493. * Gets called from workqueue.
  3494. */
  3495. static void memcg_event_remove(struct work_struct *work)
  3496. {
  3497. struct mem_cgroup_event *event =
  3498. container_of(work, struct mem_cgroup_event, remove);
  3499. struct mem_cgroup *memcg = event->memcg;
  3500. remove_wait_queue(event->wqh, &event->wait);
  3501. event->unregister_event(memcg, event->eventfd);
  3502. /* Notify userspace the event is going away. */
  3503. eventfd_signal(event->eventfd, 1);
  3504. eventfd_ctx_put(event->eventfd);
  3505. kfree(event);
  3506. css_put(&memcg->css);
  3507. }
  3508. /*
  3509. * Gets called on POLLHUP on eventfd when user closes it.
  3510. *
  3511. * Called with wqh->lock held and interrupts disabled.
  3512. */
  3513. static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
  3514. int sync, void *key)
  3515. {
  3516. struct mem_cgroup_event *event =
  3517. container_of(wait, struct mem_cgroup_event, wait);
  3518. struct mem_cgroup *memcg = event->memcg;
  3519. unsigned long flags = (unsigned long)key;
  3520. if (flags & POLLHUP) {
  3521. /*
  3522. * If the event has been detached at cgroup removal, we
  3523. * can simply return knowing the other side will cleanup
  3524. * for us.
  3525. *
  3526. * We can't race against event freeing since the other
  3527. * side will require wqh->lock via remove_wait_queue(),
  3528. * which we hold.
  3529. */
  3530. spin_lock(&memcg->event_list_lock);
  3531. if (!list_empty(&event->list)) {
  3532. list_del_init(&event->list);
  3533. /*
  3534. * We are in atomic context, but cgroup_event_remove()
  3535. * may sleep, so we have to call it in workqueue.
  3536. */
  3537. schedule_work(&event->remove);
  3538. }
  3539. spin_unlock(&memcg->event_list_lock);
  3540. }
  3541. return 0;
  3542. }
  3543. static void memcg_event_ptable_queue_proc(struct file *file,
  3544. wait_queue_head_t *wqh, poll_table *pt)
  3545. {
  3546. struct mem_cgroup_event *event =
  3547. container_of(pt, struct mem_cgroup_event, pt);
  3548. event->wqh = wqh;
  3549. add_wait_queue(wqh, &event->wait);
  3550. }
  3551. /*
  3552. * DO NOT USE IN NEW FILES.
  3553. *
  3554. * Parse input and register new cgroup event handler.
  3555. *
  3556. * Input must be in format '<event_fd> <control_fd> <args>'.
  3557. * Interpretation of args is defined by control file implementation.
  3558. */
  3559. static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
  3560. char *buf, size_t nbytes, loff_t off)
  3561. {
  3562. struct cgroup_subsys_state *css = of_css(of);
  3563. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3564. struct mem_cgroup_event *event;
  3565. struct cgroup_subsys_state *cfile_css;
  3566. unsigned int efd, cfd;
  3567. struct fd efile;
  3568. struct fd cfile;
  3569. const char *name;
  3570. char *endp;
  3571. int ret;
  3572. buf = strstrip(buf);
  3573. efd = simple_strtoul(buf, &endp, 10);
  3574. if (*endp != ' ')
  3575. return -EINVAL;
  3576. buf = endp + 1;
  3577. cfd = simple_strtoul(buf, &endp, 10);
  3578. if ((*endp != ' ') && (*endp != '\0'))
  3579. return -EINVAL;
  3580. buf = endp + 1;
  3581. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3582. if (!event)
  3583. return -ENOMEM;
  3584. event->memcg = memcg;
  3585. INIT_LIST_HEAD(&event->list);
  3586. init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
  3587. init_waitqueue_func_entry(&event->wait, memcg_event_wake);
  3588. INIT_WORK(&event->remove, memcg_event_remove);
  3589. efile = fdget(efd);
  3590. if (!efile.file) {
  3591. ret = -EBADF;
  3592. goto out_kfree;
  3593. }
  3594. event->eventfd = eventfd_ctx_fileget(efile.file);
  3595. if (IS_ERR(event->eventfd)) {
  3596. ret = PTR_ERR(event->eventfd);
  3597. goto out_put_efile;
  3598. }
  3599. cfile = fdget(cfd);
  3600. if (!cfile.file) {
  3601. ret = -EBADF;
  3602. goto out_put_eventfd;
  3603. }
  3604. /* the process need read permission on control file */
  3605. /* AV: shouldn't we check that it's been opened for read instead? */
  3606. ret = inode_permission(file_inode(cfile.file), MAY_READ);
  3607. if (ret < 0)
  3608. goto out_put_cfile;
  3609. /*
  3610. * Determine the event callbacks and set them in @event. This used
  3611. * to be done via struct cftype but cgroup core no longer knows
  3612. * about these events. The following is crude but the whole thing
  3613. * is for compatibility anyway.
  3614. *
  3615. * DO NOT ADD NEW FILES.
  3616. */
  3617. name = cfile.file->f_path.dentry->d_name.name;
  3618. if (!strcmp(name, "memory.usage_in_bytes")) {
  3619. event->register_event = mem_cgroup_usage_register_event;
  3620. event->unregister_event = mem_cgroup_usage_unregister_event;
  3621. } else if (!strcmp(name, "memory.oom_control")) {
  3622. event->register_event = mem_cgroup_oom_register_event;
  3623. event->unregister_event = mem_cgroup_oom_unregister_event;
  3624. } else if (!strcmp(name, "memory.pressure_level")) {
  3625. event->register_event = vmpressure_register_event;
  3626. event->unregister_event = vmpressure_unregister_event;
  3627. } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
  3628. event->register_event = memsw_cgroup_usage_register_event;
  3629. event->unregister_event = memsw_cgroup_usage_unregister_event;
  3630. } else {
  3631. ret = -EINVAL;
  3632. goto out_put_cfile;
  3633. }
  3634. /*
  3635. * Verify @cfile should belong to @css. Also, remaining events are
  3636. * automatically removed on cgroup destruction but the removal is
  3637. * asynchronous, so take an extra ref on @css.
  3638. */
  3639. cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
  3640. &memory_cgrp_subsys);
  3641. ret = -EINVAL;
  3642. if (IS_ERR(cfile_css))
  3643. goto out_put_cfile;
  3644. if (cfile_css != css) {
  3645. css_put(cfile_css);
  3646. goto out_put_cfile;
  3647. }
  3648. ret = event->register_event(memcg, event->eventfd, buf);
  3649. if (ret)
  3650. goto out_put_css;
  3651. efile.file->f_op->poll(efile.file, &event->pt);
  3652. spin_lock(&memcg->event_list_lock);
  3653. list_add(&event->list, &memcg->event_list);
  3654. spin_unlock(&memcg->event_list_lock);
  3655. fdput(cfile);
  3656. fdput(efile);
  3657. return nbytes;
  3658. out_put_css:
  3659. css_put(css);
  3660. out_put_cfile:
  3661. fdput(cfile);
  3662. out_put_eventfd:
  3663. eventfd_ctx_put(event->eventfd);
  3664. out_put_efile:
  3665. fdput(efile);
  3666. out_kfree:
  3667. kfree(event);
  3668. return ret;
  3669. }
  3670. static struct cftype mem_cgroup_files[] = {
  3671. {
  3672. .name = "usage_in_bytes",
  3673. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  3674. .read_u64 = mem_cgroup_read_u64,
  3675. },
  3676. {
  3677. .name = "max_usage_in_bytes",
  3678. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  3679. .write = mem_cgroup_reset,
  3680. .read_u64 = mem_cgroup_read_u64,
  3681. },
  3682. {
  3683. .name = "limit_in_bytes",
  3684. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  3685. .write = mem_cgroup_write,
  3686. .read_u64 = mem_cgroup_read_u64,
  3687. },
  3688. {
  3689. .name = "soft_limit_in_bytes",
  3690. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  3691. .write = mem_cgroup_write,
  3692. .read_u64 = mem_cgroup_read_u64,
  3693. },
  3694. {
  3695. .name = "failcnt",
  3696. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  3697. .write = mem_cgroup_reset,
  3698. .read_u64 = mem_cgroup_read_u64,
  3699. },
  3700. {
  3701. .name = "stat",
  3702. .seq_show = memcg_stat_show,
  3703. },
  3704. {
  3705. .name = "force_empty",
  3706. .write = mem_cgroup_force_empty_write,
  3707. },
  3708. {
  3709. .name = "use_hierarchy",
  3710. .write_u64 = mem_cgroup_hierarchy_write,
  3711. .read_u64 = mem_cgroup_hierarchy_read,
  3712. },
  3713. {
  3714. .name = "cgroup.event_control", /* XXX: for compat */
  3715. .write = memcg_write_event_control,
  3716. .flags = CFTYPE_NO_PREFIX,
  3717. .mode = S_IWUGO,
  3718. },
  3719. {
  3720. .name = "swappiness",
  3721. .read_u64 = mem_cgroup_swappiness_read,
  3722. .write_u64 = mem_cgroup_swappiness_write,
  3723. },
  3724. {
  3725. .name = "move_charge_at_immigrate",
  3726. .read_u64 = mem_cgroup_move_charge_read,
  3727. .write_u64 = mem_cgroup_move_charge_write,
  3728. },
  3729. {
  3730. .name = "oom_control",
  3731. .seq_show = mem_cgroup_oom_control_read,
  3732. .write_u64 = mem_cgroup_oom_control_write,
  3733. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  3734. },
  3735. {
  3736. .name = "pressure_level",
  3737. },
  3738. #ifdef CONFIG_NUMA
  3739. {
  3740. .name = "numa_stat",
  3741. .seq_show = memcg_numa_stat_show,
  3742. },
  3743. #endif
  3744. #ifdef CONFIG_MEMCG_KMEM
  3745. {
  3746. .name = "kmem.limit_in_bytes",
  3747. .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
  3748. .write = mem_cgroup_write,
  3749. .read_u64 = mem_cgroup_read_u64,
  3750. },
  3751. {
  3752. .name = "kmem.usage_in_bytes",
  3753. .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
  3754. .read_u64 = mem_cgroup_read_u64,
  3755. },
  3756. {
  3757. .name = "kmem.failcnt",
  3758. .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
  3759. .write = mem_cgroup_reset,
  3760. .read_u64 = mem_cgroup_read_u64,
  3761. },
  3762. {
  3763. .name = "kmem.max_usage_in_bytes",
  3764. .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
  3765. .write = mem_cgroup_reset,
  3766. .read_u64 = mem_cgroup_read_u64,
  3767. },
  3768. #ifdef CONFIG_SLABINFO
  3769. {
  3770. .name = "kmem.slabinfo",
  3771. .seq_start = slab_start,
  3772. .seq_next = slab_next,
  3773. .seq_stop = slab_stop,
  3774. .seq_show = memcg_slab_show,
  3775. },
  3776. #endif
  3777. #endif
  3778. { }, /* terminate */
  3779. };
  3780. #ifdef CONFIG_MEMCG_SWAP
  3781. static struct cftype memsw_cgroup_files[] = {
  3782. {
  3783. .name = "memsw.usage_in_bytes",
  3784. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  3785. .read_u64 = mem_cgroup_read_u64,
  3786. },
  3787. {
  3788. .name = "memsw.max_usage_in_bytes",
  3789. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  3790. .write = mem_cgroup_reset,
  3791. .read_u64 = mem_cgroup_read_u64,
  3792. },
  3793. {
  3794. .name = "memsw.limit_in_bytes",
  3795. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  3796. .write = mem_cgroup_write,
  3797. .read_u64 = mem_cgroup_read_u64,
  3798. },
  3799. {
  3800. .name = "memsw.failcnt",
  3801. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  3802. .write = mem_cgroup_reset,
  3803. .read_u64 = mem_cgroup_read_u64,
  3804. },
  3805. { }, /* terminate */
  3806. };
  3807. #endif
  3808. static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  3809. {
  3810. struct mem_cgroup_per_node *pn;
  3811. struct mem_cgroup_per_zone *mz;
  3812. int zone, tmp = node;
  3813. /*
  3814. * This routine is called against possible nodes.
  3815. * But it's BUG to call kmalloc() against offline node.
  3816. *
  3817. * TODO: this routine can waste much memory for nodes which will
  3818. * never be onlined. It's better to use memory hotplug callback
  3819. * function.
  3820. */
  3821. if (!node_state(node, N_NORMAL_MEMORY))
  3822. tmp = -1;
  3823. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  3824. if (!pn)
  3825. return 1;
  3826. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  3827. mz = &pn->zoneinfo[zone];
  3828. lruvec_init(&mz->lruvec);
  3829. mz->usage_in_excess = 0;
  3830. mz->on_tree = false;
  3831. mz->memcg = memcg;
  3832. }
  3833. memcg->nodeinfo[node] = pn;
  3834. return 0;
  3835. }
  3836. static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
  3837. {
  3838. kfree(memcg->nodeinfo[node]);
  3839. }
  3840. static struct mem_cgroup *mem_cgroup_alloc(void)
  3841. {
  3842. struct mem_cgroup *memcg;
  3843. size_t size;
  3844. size = sizeof(struct mem_cgroup);
  3845. size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
  3846. memcg = kzalloc(size, GFP_KERNEL);
  3847. if (!memcg)
  3848. return NULL;
  3849. memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
  3850. if (!memcg->stat)
  3851. goto out_free;
  3852. spin_lock_init(&memcg->pcp_counter_lock);
  3853. return memcg;
  3854. out_free:
  3855. kfree(memcg);
  3856. return NULL;
  3857. }
  3858. /*
  3859. * At destroying mem_cgroup, references from swap_cgroup can remain.
  3860. * (scanning all at force_empty is too costly...)
  3861. *
  3862. * Instead of clearing all references at force_empty, we remember
  3863. * the number of reference from swap_cgroup and free mem_cgroup when
  3864. * it goes down to 0.
  3865. *
  3866. * Removal of cgroup itself succeeds regardless of refs from swap.
  3867. */
  3868. static void __mem_cgroup_free(struct mem_cgroup *memcg)
  3869. {
  3870. int node;
  3871. mem_cgroup_remove_from_trees(memcg);
  3872. for_each_node(node)
  3873. free_mem_cgroup_per_zone_info(memcg, node);
  3874. free_percpu(memcg->stat);
  3875. disarm_static_keys(memcg);
  3876. kfree(memcg);
  3877. }
  3878. /*
  3879. * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
  3880. */
  3881. struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
  3882. {
  3883. if (!memcg->memory.parent)
  3884. return NULL;
  3885. return mem_cgroup_from_counter(memcg->memory.parent, memory);
  3886. }
  3887. EXPORT_SYMBOL(parent_mem_cgroup);
  3888. static void __init mem_cgroup_soft_limit_tree_init(void)
  3889. {
  3890. struct mem_cgroup_tree_per_node *rtpn;
  3891. struct mem_cgroup_tree_per_zone *rtpz;
  3892. int tmp, node, zone;
  3893. for_each_node(node) {
  3894. tmp = node;
  3895. if (!node_state(node, N_NORMAL_MEMORY))
  3896. tmp = -1;
  3897. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
  3898. BUG_ON(!rtpn);
  3899. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  3900. for (zone = 0; zone < MAX_NR_ZONES; zone++) {
  3901. rtpz = &rtpn->rb_tree_per_zone[zone];
  3902. rtpz->rb_root = RB_ROOT;
  3903. spin_lock_init(&rtpz->lock);
  3904. }
  3905. }
  3906. }
  3907. static struct cgroup_subsys_state * __ref
  3908. mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  3909. {
  3910. struct mem_cgroup *memcg;
  3911. long error = -ENOMEM;
  3912. int node;
  3913. memcg = mem_cgroup_alloc();
  3914. if (!memcg)
  3915. return ERR_PTR(error);
  3916. for_each_node(node)
  3917. if (alloc_mem_cgroup_per_zone_info(memcg, node))
  3918. goto free_out;
  3919. /* root ? */
  3920. if (parent_css == NULL) {
  3921. root_mem_cgroup = memcg;
  3922. page_counter_init(&memcg->memory, NULL);
  3923. memcg->soft_limit = PAGE_COUNTER_MAX;
  3924. page_counter_init(&memcg->memsw, NULL);
  3925. page_counter_init(&memcg->kmem, NULL);
  3926. }
  3927. memcg->last_scanned_node = MAX_NUMNODES;
  3928. INIT_LIST_HEAD(&memcg->oom_notify);
  3929. memcg->move_charge_at_immigrate = 0;
  3930. mutex_init(&memcg->thresholds_lock);
  3931. spin_lock_init(&memcg->move_lock);
  3932. vmpressure_init(&memcg->vmpressure);
  3933. INIT_LIST_HEAD(&memcg->event_list);
  3934. spin_lock_init(&memcg->event_list_lock);
  3935. #ifdef CONFIG_MEMCG_KMEM
  3936. memcg->kmemcg_id = -1;
  3937. #endif
  3938. return &memcg->css;
  3939. free_out:
  3940. __mem_cgroup_free(memcg);
  3941. return ERR_PTR(error);
  3942. }
  3943. static int
  3944. mem_cgroup_css_online(struct cgroup_subsys_state *css)
  3945. {
  3946. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3947. struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
  3948. int ret;
  3949. if (css->id > MEM_CGROUP_ID_MAX)
  3950. return -ENOSPC;
  3951. if (!parent)
  3952. return 0;
  3953. mutex_lock(&memcg_create_mutex);
  3954. memcg->use_hierarchy = parent->use_hierarchy;
  3955. memcg->oom_kill_disable = parent->oom_kill_disable;
  3956. memcg->swappiness = mem_cgroup_swappiness(parent);
  3957. if (parent->use_hierarchy) {
  3958. page_counter_init(&memcg->memory, &parent->memory);
  3959. memcg->soft_limit = PAGE_COUNTER_MAX;
  3960. page_counter_init(&memcg->memsw, &parent->memsw);
  3961. page_counter_init(&memcg->kmem, &parent->kmem);
  3962. /*
  3963. * No need to take a reference to the parent because cgroup
  3964. * core guarantees its existence.
  3965. */
  3966. } else {
  3967. page_counter_init(&memcg->memory, NULL);
  3968. memcg->soft_limit = PAGE_COUNTER_MAX;
  3969. page_counter_init(&memcg->memsw, NULL);
  3970. page_counter_init(&memcg->kmem, NULL);
  3971. /*
  3972. * Deeper hierachy with use_hierarchy == false doesn't make
  3973. * much sense so let cgroup subsystem know about this
  3974. * unfortunate state in our controller.
  3975. */
  3976. if (parent != root_mem_cgroup)
  3977. memory_cgrp_subsys.broken_hierarchy = true;
  3978. }
  3979. mutex_unlock(&memcg_create_mutex);
  3980. ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
  3981. if (ret)
  3982. return ret;
  3983. /*
  3984. * Make sure the memcg is initialized: mem_cgroup_iter()
  3985. * orders reading memcg->initialized against its callers
  3986. * reading the memcg members.
  3987. */
  3988. smp_store_release(&memcg->initialized, 1);
  3989. return 0;
  3990. }
  3991. static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
  3992. {
  3993. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3994. struct mem_cgroup_event *event, *tmp;
  3995. /*
  3996. * Unregister events and notify userspace.
  3997. * Notify userspace about cgroup removing only after rmdir of cgroup
  3998. * directory to avoid race between userspace and kernelspace.
  3999. */
  4000. spin_lock(&memcg->event_list_lock);
  4001. list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
  4002. list_del_init(&event->list);
  4003. schedule_work(&event->remove);
  4004. }
  4005. spin_unlock(&memcg->event_list_lock);
  4006. vmpressure_cleanup(&memcg->vmpressure);
  4007. }
  4008. static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
  4009. {
  4010. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  4011. memcg_destroy_kmem(memcg);
  4012. __mem_cgroup_free(memcg);
  4013. }
  4014. /**
  4015. * mem_cgroup_css_reset - reset the states of a mem_cgroup
  4016. * @css: the target css
  4017. *
  4018. * Reset the states of the mem_cgroup associated with @css. This is
  4019. * invoked when the userland requests disabling on the default hierarchy
  4020. * but the memcg is pinned through dependency. The memcg should stop
  4021. * applying policies and should revert to the vanilla state as it may be
  4022. * made visible again.
  4023. *
  4024. * The current implementation only resets the essential configurations.
  4025. * This needs to be expanded to cover all the visible parts.
  4026. */
  4027. static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
  4028. {
  4029. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  4030. mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
  4031. mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
  4032. memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
  4033. memcg->soft_limit = PAGE_COUNTER_MAX;
  4034. }
  4035. #ifdef CONFIG_MMU
  4036. /* Handlers for move charge at task migration. */
  4037. static int mem_cgroup_do_precharge(unsigned long count)
  4038. {
  4039. int ret;
  4040. /* Try a single bulk charge without reclaim first */
  4041. ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
  4042. if (!ret) {
  4043. mc.precharge += count;
  4044. return ret;
  4045. }
  4046. if (ret == -EINTR) {
  4047. cancel_charge(root_mem_cgroup, count);
  4048. return ret;
  4049. }
  4050. /* Try charges one by one with reclaim */
  4051. while (count--) {
  4052. ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
  4053. /*
  4054. * In case of failure, any residual charges against
  4055. * mc.to will be dropped by mem_cgroup_clear_mc()
  4056. * later on. However, cancel any charges that are
  4057. * bypassed to root right away or they'll be lost.
  4058. */
  4059. if (ret == -EINTR)
  4060. cancel_charge(root_mem_cgroup, 1);
  4061. if (ret)
  4062. return ret;
  4063. mc.precharge++;
  4064. cond_resched();
  4065. }
  4066. return 0;
  4067. }
  4068. /**
  4069. * get_mctgt_type - get target type of moving charge
  4070. * @vma: the vma the pte to be checked belongs
  4071. * @addr: the address corresponding to the pte to be checked
  4072. * @ptent: the pte to be checked
  4073. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  4074. *
  4075. * Returns
  4076. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  4077. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  4078. * move charge. if @target is not NULL, the page is stored in target->page
  4079. * with extra refcnt got(Callers should handle it).
  4080. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  4081. * target for charge migration. if @target is not NULL, the entry is stored
  4082. * in target->ent.
  4083. *
  4084. * Called with pte lock held.
  4085. */
  4086. union mc_target {
  4087. struct page *page;
  4088. swp_entry_t ent;
  4089. };
  4090. enum mc_target_type {
  4091. MC_TARGET_NONE = 0,
  4092. MC_TARGET_PAGE,
  4093. MC_TARGET_SWAP,
  4094. };
  4095. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  4096. unsigned long addr, pte_t ptent)
  4097. {
  4098. struct page *page = vm_normal_page(vma, addr, ptent);
  4099. if (!page || !page_mapped(page))
  4100. return NULL;
  4101. if (PageAnon(page)) {
  4102. /* we don't move shared anon */
  4103. if (!move_anon())
  4104. return NULL;
  4105. } else if (!move_file())
  4106. /* we ignore mapcount for file pages */
  4107. return NULL;
  4108. if (!get_page_unless_zero(page))
  4109. return NULL;
  4110. return page;
  4111. }
  4112. #ifdef CONFIG_SWAP
  4113. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  4114. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  4115. {
  4116. struct page *page = NULL;
  4117. swp_entry_t ent = pte_to_swp_entry(ptent);
  4118. if (!move_anon() || non_swap_entry(ent))
  4119. return NULL;
  4120. /*
  4121. * Because lookup_swap_cache() updates some statistics counter,
  4122. * we call find_get_page() with swapper_space directly.
  4123. */
  4124. page = find_get_page(swap_address_space(ent), ent.val);
  4125. if (do_swap_account)
  4126. entry->val = ent.val;
  4127. return page;
  4128. }
  4129. #else
  4130. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  4131. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  4132. {
  4133. return NULL;
  4134. }
  4135. #endif
  4136. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  4137. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  4138. {
  4139. struct page *page = NULL;
  4140. struct address_space *mapping;
  4141. pgoff_t pgoff;
  4142. if (!vma->vm_file) /* anonymous vma */
  4143. return NULL;
  4144. if (!move_file())
  4145. return NULL;
  4146. mapping = vma->vm_file->f_mapping;
  4147. pgoff = linear_page_index(vma, addr);
  4148. /* page is moved even if it's not RSS of this task(page-faulted). */
  4149. #ifdef CONFIG_SWAP
  4150. /* shmem/tmpfs may report page out on swap: account for that too. */
  4151. if (shmem_mapping(mapping)) {
  4152. page = find_get_entry(mapping, pgoff);
  4153. if (radix_tree_exceptional_entry(page)) {
  4154. swp_entry_t swp = radix_to_swp_entry(page);
  4155. if (do_swap_account)
  4156. *entry = swp;
  4157. page = find_get_page(swap_address_space(swp), swp.val);
  4158. }
  4159. } else
  4160. page = find_get_page(mapping, pgoff);
  4161. #else
  4162. page = find_get_page(mapping, pgoff);
  4163. #endif
  4164. return page;
  4165. }
  4166. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  4167. unsigned long addr, pte_t ptent, union mc_target *target)
  4168. {
  4169. struct page *page = NULL;
  4170. enum mc_target_type ret = MC_TARGET_NONE;
  4171. swp_entry_t ent = { .val = 0 };
  4172. if (pte_present(ptent))
  4173. page = mc_handle_present_pte(vma, addr, ptent);
  4174. else if (is_swap_pte(ptent))
  4175. page = mc_handle_swap_pte(vma, addr, ptent, &ent);
  4176. else if (pte_none(ptent))
  4177. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  4178. if (!page && !ent.val)
  4179. return ret;
  4180. if (page) {
  4181. /*
  4182. * Do only loose check w/o serialization.
  4183. * mem_cgroup_move_account() checks the page is valid or
  4184. * not under LRU exclusion.
  4185. */
  4186. if (page->mem_cgroup == mc.from) {
  4187. ret = MC_TARGET_PAGE;
  4188. if (target)
  4189. target->page = page;
  4190. }
  4191. if (!ret || !target)
  4192. put_page(page);
  4193. }
  4194. /* There is a swap entry and a page doesn't exist or isn't charged */
  4195. if (ent.val && !ret &&
  4196. mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
  4197. ret = MC_TARGET_SWAP;
  4198. if (target)
  4199. target->ent = ent;
  4200. }
  4201. return ret;
  4202. }
  4203. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  4204. /*
  4205. * We don't consider swapping or file mapped pages because THP does not
  4206. * support them for now.
  4207. * Caller should make sure that pmd_trans_huge(pmd) is true.
  4208. */
  4209. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4210. unsigned long addr, pmd_t pmd, union mc_target *target)
  4211. {
  4212. struct page *page = NULL;
  4213. enum mc_target_type ret = MC_TARGET_NONE;
  4214. page = pmd_page(pmd);
  4215. VM_BUG_ON_PAGE(!page || !PageHead(page), page);
  4216. if (!move_anon())
  4217. return ret;
  4218. if (page->mem_cgroup == mc.from) {
  4219. ret = MC_TARGET_PAGE;
  4220. if (target) {
  4221. get_page(page);
  4222. target->page = page;
  4223. }
  4224. }
  4225. return ret;
  4226. }
  4227. #else
  4228. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4229. unsigned long addr, pmd_t pmd, union mc_target *target)
  4230. {
  4231. return MC_TARGET_NONE;
  4232. }
  4233. #endif
  4234. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  4235. unsigned long addr, unsigned long end,
  4236. struct mm_walk *walk)
  4237. {
  4238. struct vm_area_struct *vma = walk->private;
  4239. pte_t *pte;
  4240. spinlock_t *ptl;
  4241. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  4242. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  4243. mc.precharge += HPAGE_PMD_NR;
  4244. spin_unlock(ptl);
  4245. return 0;
  4246. }
  4247. if (pmd_trans_unstable(pmd))
  4248. return 0;
  4249. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4250. for (; addr != end; pte++, addr += PAGE_SIZE)
  4251. if (get_mctgt_type(vma, addr, *pte, NULL))
  4252. mc.precharge++; /* increment precharge temporarily */
  4253. pte_unmap_unlock(pte - 1, ptl);
  4254. cond_resched();
  4255. return 0;
  4256. }
  4257. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  4258. {
  4259. unsigned long precharge;
  4260. struct vm_area_struct *vma;
  4261. down_read(&mm->mmap_sem);
  4262. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  4263. struct mm_walk mem_cgroup_count_precharge_walk = {
  4264. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  4265. .mm = mm,
  4266. .private = vma,
  4267. };
  4268. if (is_vm_hugetlb_page(vma))
  4269. continue;
  4270. walk_page_range(vma->vm_start, vma->vm_end,
  4271. &mem_cgroup_count_precharge_walk);
  4272. }
  4273. up_read(&mm->mmap_sem);
  4274. precharge = mc.precharge;
  4275. mc.precharge = 0;
  4276. return precharge;
  4277. }
  4278. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  4279. {
  4280. unsigned long precharge = mem_cgroup_count_precharge(mm);
  4281. VM_BUG_ON(mc.moving_task);
  4282. mc.moving_task = current;
  4283. return mem_cgroup_do_precharge(precharge);
  4284. }
  4285. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  4286. static void __mem_cgroup_clear_mc(void)
  4287. {
  4288. struct mem_cgroup *from = mc.from;
  4289. struct mem_cgroup *to = mc.to;
  4290. /* we must uncharge all the leftover precharges from mc.to */
  4291. if (mc.precharge) {
  4292. cancel_charge(mc.to, mc.precharge);
  4293. mc.precharge = 0;
  4294. }
  4295. /*
  4296. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  4297. * we must uncharge here.
  4298. */
  4299. if (mc.moved_charge) {
  4300. cancel_charge(mc.from, mc.moved_charge);
  4301. mc.moved_charge = 0;
  4302. }
  4303. /* we must fixup refcnts and charges */
  4304. if (mc.moved_swap) {
  4305. /* uncharge swap account from the old cgroup */
  4306. if (!mem_cgroup_is_root(mc.from))
  4307. page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
  4308. /*
  4309. * we charged both to->memory and to->memsw, so we
  4310. * should uncharge to->memory.
  4311. */
  4312. if (!mem_cgroup_is_root(mc.to))
  4313. page_counter_uncharge(&mc.to->memory, mc.moved_swap);
  4314. css_put_many(&mc.from->css, mc.moved_swap);
  4315. /* we've already done css_get(mc.to) */
  4316. mc.moved_swap = 0;
  4317. }
  4318. memcg_oom_recover(from);
  4319. memcg_oom_recover(to);
  4320. wake_up_all(&mc.waitq);
  4321. }
  4322. static void mem_cgroup_clear_mc(void)
  4323. {
  4324. /*
  4325. * we must clear moving_task before waking up waiters at the end of
  4326. * task migration.
  4327. */
  4328. mc.moving_task = NULL;
  4329. __mem_cgroup_clear_mc();
  4330. spin_lock(&mc.lock);
  4331. mc.from = NULL;
  4332. mc.to = NULL;
  4333. spin_unlock(&mc.lock);
  4334. }
  4335. static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
  4336. struct cgroup_taskset *tset)
  4337. {
  4338. struct task_struct *p = cgroup_taskset_first(tset);
  4339. int ret = 0;
  4340. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  4341. unsigned long move_charge_at_immigrate;
  4342. /*
  4343. * We are now commited to this value whatever it is. Changes in this
  4344. * tunable will only affect upcoming migrations, not the current one.
  4345. * So we need to save it, and keep it going.
  4346. */
  4347. move_charge_at_immigrate = memcg->move_charge_at_immigrate;
  4348. if (move_charge_at_immigrate) {
  4349. struct mm_struct *mm;
  4350. struct mem_cgroup *from = mem_cgroup_from_task(p);
  4351. VM_BUG_ON(from == memcg);
  4352. mm = get_task_mm(p);
  4353. if (!mm)
  4354. return 0;
  4355. /* We move charges only when we move a owner of the mm */
  4356. if (mm->owner == p) {
  4357. VM_BUG_ON(mc.from);
  4358. VM_BUG_ON(mc.to);
  4359. VM_BUG_ON(mc.precharge);
  4360. VM_BUG_ON(mc.moved_charge);
  4361. VM_BUG_ON(mc.moved_swap);
  4362. spin_lock(&mc.lock);
  4363. mc.from = from;
  4364. mc.to = memcg;
  4365. mc.immigrate_flags = move_charge_at_immigrate;
  4366. spin_unlock(&mc.lock);
  4367. /* We set mc.moving_task later */
  4368. ret = mem_cgroup_precharge_mc(mm);
  4369. if (ret)
  4370. mem_cgroup_clear_mc();
  4371. }
  4372. mmput(mm);
  4373. }
  4374. return ret;
  4375. }
  4376. static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
  4377. struct cgroup_taskset *tset)
  4378. {
  4379. if (mc.to)
  4380. mem_cgroup_clear_mc();
  4381. }
  4382. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  4383. unsigned long addr, unsigned long end,
  4384. struct mm_walk *walk)
  4385. {
  4386. int ret = 0;
  4387. struct vm_area_struct *vma = walk->private;
  4388. pte_t *pte;
  4389. spinlock_t *ptl;
  4390. enum mc_target_type target_type;
  4391. union mc_target target;
  4392. struct page *page;
  4393. /*
  4394. * We don't take compound_lock() here but no race with splitting thp
  4395. * happens because:
  4396. * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
  4397. * under splitting, which means there's no concurrent thp split,
  4398. * - if another thread runs into split_huge_page() just after we
  4399. * entered this if-block, the thread must wait for page table lock
  4400. * to be unlocked in __split_huge_page_splitting(), where the main
  4401. * part of thp split is not executed yet.
  4402. */
  4403. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  4404. if (mc.precharge < HPAGE_PMD_NR) {
  4405. spin_unlock(ptl);
  4406. return 0;
  4407. }
  4408. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  4409. if (target_type == MC_TARGET_PAGE) {
  4410. page = target.page;
  4411. if (!isolate_lru_page(page)) {
  4412. if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
  4413. mc.from, mc.to)) {
  4414. mc.precharge -= HPAGE_PMD_NR;
  4415. mc.moved_charge += HPAGE_PMD_NR;
  4416. }
  4417. putback_lru_page(page);
  4418. }
  4419. put_page(page);
  4420. }
  4421. spin_unlock(ptl);
  4422. return 0;
  4423. }
  4424. if (pmd_trans_unstable(pmd))
  4425. return 0;
  4426. retry:
  4427. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4428. for (; addr != end; addr += PAGE_SIZE) {
  4429. pte_t ptent = *(pte++);
  4430. swp_entry_t ent;
  4431. if (!mc.precharge)
  4432. break;
  4433. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  4434. case MC_TARGET_PAGE:
  4435. page = target.page;
  4436. if (isolate_lru_page(page))
  4437. goto put;
  4438. if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
  4439. mc.precharge--;
  4440. /* we uncharge from mc.from later. */
  4441. mc.moved_charge++;
  4442. }
  4443. putback_lru_page(page);
  4444. put: /* get_mctgt_type() gets the page */
  4445. put_page(page);
  4446. break;
  4447. case MC_TARGET_SWAP:
  4448. ent = target.ent;
  4449. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  4450. mc.precharge--;
  4451. /* we fixup refcnts and charges later. */
  4452. mc.moved_swap++;
  4453. }
  4454. break;
  4455. default:
  4456. break;
  4457. }
  4458. }
  4459. pte_unmap_unlock(pte - 1, ptl);
  4460. cond_resched();
  4461. if (addr != end) {
  4462. /*
  4463. * We have consumed all precharges we got in can_attach().
  4464. * We try charge one by one, but don't do any additional
  4465. * charges to mc.to if we have failed in charge once in attach()
  4466. * phase.
  4467. */
  4468. ret = mem_cgroup_do_precharge(1);
  4469. if (!ret)
  4470. goto retry;
  4471. }
  4472. return ret;
  4473. }
  4474. static void mem_cgroup_move_charge(struct mm_struct *mm)
  4475. {
  4476. struct vm_area_struct *vma;
  4477. lru_add_drain_all();
  4478. /*
  4479. * Signal mem_cgroup_begin_page_stat() to take the memcg's
  4480. * move_lock while we're moving its pages to another memcg.
  4481. * Then wait for already started RCU-only updates to finish.
  4482. */
  4483. atomic_inc(&mc.from->moving_account);
  4484. synchronize_rcu();
  4485. retry:
  4486. if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
  4487. /*
  4488. * Someone who are holding the mmap_sem might be waiting in
  4489. * waitq. So we cancel all extra charges, wake up all waiters,
  4490. * and retry. Because we cancel precharges, we might not be able
  4491. * to move enough charges, but moving charge is a best-effort
  4492. * feature anyway, so it wouldn't be a big problem.
  4493. */
  4494. __mem_cgroup_clear_mc();
  4495. cond_resched();
  4496. goto retry;
  4497. }
  4498. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  4499. int ret;
  4500. struct mm_walk mem_cgroup_move_charge_walk = {
  4501. .pmd_entry = mem_cgroup_move_charge_pte_range,
  4502. .mm = mm,
  4503. .private = vma,
  4504. };
  4505. if (is_vm_hugetlb_page(vma))
  4506. continue;
  4507. ret = walk_page_range(vma->vm_start, vma->vm_end,
  4508. &mem_cgroup_move_charge_walk);
  4509. if (ret)
  4510. /*
  4511. * means we have consumed all precharges and failed in
  4512. * doing additional charge. Just abandon here.
  4513. */
  4514. break;
  4515. }
  4516. up_read(&mm->mmap_sem);
  4517. atomic_dec(&mc.from->moving_account);
  4518. }
  4519. static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
  4520. struct cgroup_taskset *tset)
  4521. {
  4522. struct task_struct *p = cgroup_taskset_first(tset);
  4523. struct mm_struct *mm = get_task_mm(p);
  4524. if (mm) {
  4525. if (mc.to)
  4526. mem_cgroup_move_charge(mm);
  4527. mmput(mm);
  4528. }
  4529. if (mc.to)
  4530. mem_cgroup_clear_mc();
  4531. }
  4532. #else /* !CONFIG_MMU */
  4533. static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
  4534. struct cgroup_taskset *tset)
  4535. {
  4536. return 0;
  4537. }
  4538. static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
  4539. struct cgroup_taskset *tset)
  4540. {
  4541. }
  4542. static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
  4543. struct cgroup_taskset *tset)
  4544. {
  4545. }
  4546. #endif
  4547. /*
  4548. * Cgroup retains root cgroups across [un]mount cycles making it necessary
  4549. * to verify whether we're attached to the default hierarchy on each mount
  4550. * attempt.
  4551. */
  4552. static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
  4553. {
  4554. /*
  4555. * use_hierarchy is forced on the default hierarchy. cgroup core
  4556. * guarantees that @root doesn't have any children, so turning it
  4557. * on for the root memcg is enough.
  4558. */
  4559. if (cgroup_on_dfl(root_css->cgroup))
  4560. mem_cgroup_from_css(root_css)->use_hierarchy = true;
  4561. }
  4562. struct cgroup_subsys memory_cgrp_subsys = {
  4563. .css_alloc = mem_cgroup_css_alloc,
  4564. .css_online = mem_cgroup_css_online,
  4565. .css_offline = mem_cgroup_css_offline,
  4566. .css_free = mem_cgroup_css_free,
  4567. .css_reset = mem_cgroup_css_reset,
  4568. .can_attach = mem_cgroup_can_attach,
  4569. .cancel_attach = mem_cgroup_cancel_attach,
  4570. .attach = mem_cgroup_move_task,
  4571. .bind = mem_cgroup_bind,
  4572. .legacy_cftypes = mem_cgroup_files,
  4573. .early_init = 0,
  4574. };
  4575. #ifdef CONFIG_MEMCG_SWAP
  4576. static int __init enable_swap_account(char *s)
  4577. {
  4578. if (!strcmp(s, "1"))
  4579. really_do_swap_account = 1;
  4580. else if (!strcmp(s, "0"))
  4581. really_do_swap_account = 0;
  4582. return 1;
  4583. }
  4584. __setup("swapaccount=", enable_swap_account);
  4585. static void __init memsw_file_init(void)
  4586. {
  4587. WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
  4588. memsw_cgroup_files));
  4589. }
  4590. static void __init enable_swap_cgroup(void)
  4591. {
  4592. if (!mem_cgroup_disabled() && really_do_swap_account) {
  4593. do_swap_account = 1;
  4594. memsw_file_init();
  4595. }
  4596. }
  4597. #else
  4598. static void __init enable_swap_cgroup(void)
  4599. {
  4600. }
  4601. #endif
  4602. #ifdef CONFIG_MEMCG_SWAP
  4603. /**
  4604. * mem_cgroup_swapout - transfer a memsw charge to swap
  4605. * @page: page whose memsw charge to transfer
  4606. * @entry: swap entry to move the charge to
  4607. *
  4608. * Transfer the memsw charge of @page to @entry.
  4609. */
  4610. void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
  4611. {
  4612. struct mem_cgroup *memcg;
  4613. unsigned short oldid;
  4614. VM_BUG_ON_PAGE(PageLRU(page), page);
  4615. VM_BUG_ON_PAGE(page_count(page), page);
  4616. if (!do_swap_account)
  4617. return;
  4618. memcg = page->mem_cgroup;
  4619. /* Readahead page, never charged */
  4620. if (!memcg)
  4621. return;
  4622. oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
  4623. VM_BUG_ON_PAGE(oldid, page);
  4624. mem_cgroup_swap_statistics(memcg, true);
  4625. page->mem_cgroup = NULL;
  4626. if (!mem_cgroup_is_root(memcg))
  4627. page_counter_uncharge(&memcg->memory, 1);
  4628. /* XXX: caller holds IRQ-safe mapping->tree_lock */
  4629. VM_BUG_ON(!irqs_disabled());
  4630. mem_cgroup_charge_statistics(memcg, page, -1);
  4631. memcg_check_events(memcg, page);
  4632. }
  4633. /**
  4634. * mem_cgroup_uncharge_swap - uncharge a swap entry
  4635. * @entry: swap entry to uncharge
  4636. *
  4637. * Drop the memsw charge associated with @entry.
  4638. */
  4639. void mem_cgroup_uncharge_swap(swp_entry_t entry)
  4640. {
  4641. struct mem_cgroup *memcg;
  4642. unsigned short id;
  4643. if (!do_swap_account)
  4644. return;
  4645. id = swap_cgroup_record(entry, 0);
  4646. rcu_read_lock();
  4647. memcg = mem_cgroup_lookup(id);
  4648. if (memcg) {
  4649. if (!mem_cgroup_is_root(memcg))
  4650. page_counter_uncharge(&memcg->memsw, 1);
  4651. mem_cgroup_swap_statistics(memcg, false);
  4652. css_put(&memcg->css);
  4653. }
  4654. rcu_read_unlock();
  4655. }
  4656. #endif
  4657. /**
  4658. * mem_cgroup_try_charge - try charging a page
  4659. * @page: page to charge
  4660. * @mm: mm context of the victim
  4661. * @gfp_mask: reclaim mode
  4662. * @memcgp: charged memcg return
  4663. *
  4664. * Try to charge @page to the memcg that @mm belongs to, reclaiming
  4665. * pages according to @gfp_mask if necessary.
  4666. *
  4667. * Returns 0 on success, with *@memcgp pointing to the charged memcg.
  4668. * Otherwise, an error code is returned.
  4669. *
  4670. * After page->mapping has been set up, the caller must finalize the
  4671. * charge with mem_cgroup_commit_charge(). Or abort the transaction
  4672. * with mem_cgroup_cancel_charge() in case page instantiation fails.
  4673. */
  4674. int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
  4675. gfp_t gfp_mask, struct mem_cgroup **memcgp)
  4676. {
  4677. struct mem_cgroup *memcg = NULL;
  4678. unsigned int nr_pages = 1;
  4679. int ret = 0;
  4680. if (mem_cgroup_disabled())
  4681. goto out;
  4682. if (PageSwapCache(page)) {
  4683. /*
  4684. * Every swap fault against a single page tries to charge the
  4685. * page, bail as early as possible. shmem_unuse() encounters
  4686. * already charged pages, too. The USED bit is protected by
  4687. * the page lock, which serializes swap cache removal, which
  4688. * in turn serializes uncharging.
  4689. */
  4690. if (page->mem_cgroup)
  4691. goto out;
  4692. }
  4693. if (PageTransHuge(page)) {
  4694. nr_pages <<= compound_order(page);
  4695. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  4696. }
  4697. if (do_swap_account && PageSwapCache(page))
  4698. memcg = try_get_mem_cgroup_from_page(page);
  4699. if (!memcg)
  4700. memcg = get_mem_cgroup_from_mm(mm);
  4701. ret = try_charge(memcg, gfp_mask, nr_pages);
  4702. css_put(&memcg->css);
  4703. if (ret == -EINTR) {
  4704. memcg = root_mem_cgroup;
  4705. ret = 0;
  4706. }
  4707. out:
  4708. *memcgp = memcg;
  4709. return ret;
  4710. }
  4711. /**
  4712. * mem_cgroup_commit_charge - commit a page charge
  4713. * @page: page to charge
  4714. * @memcg: memcg to charge the page to
  4715. * @lrucare: page might be on LRU already
  4716. *
  4717. * Finalize a charge transaction started by mem_cgroup_try_charge(),
  4718. * after page->mapping has been set up. This must happen atomically
  4719. * as part of the page instantiation, i.e. under the page table lock
  4720. * for anonymous pages, under the page lock for page and swap cache.
  4721. *
  4722. * In addition, the page must not be on the LRU during the commit, to
  4723. * prevent racing with task migration. If it might be, use @lrucare.
  4724. *
  4725. * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
  4726. */
  4727. void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
  4728. bool lrucare)
  4729. {
  4730. unsigned int nr_pages = 1;
  4731. VM_BUG_ON_PAGE(!page->mapping, page);
  4732. VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
  4733. if (mem_cgroup_disabled())
  4734. return;
  4735. /*
  4736. * Swap faults will attempt to charge the same page multiple
  4737. * times. But reuse_swap_page() might have removed the page
  4738. * from swapcache already, so we can't check PageSwapCache().
  4739. */
  4740. if (!memcg)
  4741. return;
  4742. commit_charge(page, memcg, lrucare);
  4743. if (PageTransHuge(page)) {
  4744. nr_pages <<= compound_order(page);
  4745. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  4746. }
  4747. local_irq_disable();
  4748. mem_cgroup_charge_statistics(memcg, page, nr_pages);
  4749. memcg_check_events(memcg, page);
  4750. local_irq_enable();
  4751. if (do_swap_account && PageSwapCache(page)) {
  4752. swp_entry_t entry = { .val = page_private(page) };
  4753. /*
  4754. * The swap entry might not get freed for a long time,
  4755. * let's not wait for it. The page already received a
  4756. * memory+swap charge, drop the swap entry duplicate.
  4757. */
  4758. mem_cgroup_uncharge_swap(entry);
  4759. }
  4760. }
  4761. /**
  4762. * mem_cgroup_cancel_charge - cancel a page charge
  4763. * @page: page to charge
  4764. * @memcg: memcg to charge the page to
  4765. *
  4766. * Cancel a charge transaction started by mem_cgroup_try_charge().
  4767. */
  4768. void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
  4769. {
  4770. unsigned int nr_pages = 1;
  4771. if (mem_cgroup_disabled())
  4772. return;
  4773. /*
  4774. * Swap faults will attempt to charge the same page multiple
  4775. * times. But reuse_swap_page() might have removed the page
  4776. * from swapcache already, so we can't check PageSwapCache().
  4777. */
  4778. if (!memcg)
  4779. return;
  4780. if (PageTransHuge(page)) {
  4781. nr_pages <<= compound_order(page);
  4782. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  4783. }
  4784. cancel_charge(memcg, nr_pages);
  4785. }
  4786. static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
  4787. unsigned long nr_anon, unsigned long nr_file,
  4788. unsigned long nr_huge, struct page *dummy_page)
  4789. {
  4790. unsigned long nr_pages = nr_anon + nr_file;
  4791. unsigned long flags;
  4792. if (!mem_cgroup_is_root(memcg)) {
  4793. page_counter_uncharge(&memcg->memory, nr_pages);
  4794. if (do_swap_account)
  4795. page_counter_uncharge(&memcg->memsw, nr_pages);
  4796. memcg_oom_recover(memcg);
  4797. }
  4798. local_irq_save(flags);
  4799. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
  4800. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
  4801. __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
  4802. __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
  4803. __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
  4804. memcg_check_events(memcg, dummy_page);
  4805. local_irq_restore(flags);
  4806. if (!mem_cgroup_is_root(memcg))
  4807. css_put_many(&memcg->css, nr_pages);
  4808. }
  4809. static void uncharge_list(struct list_head *page_list)
  4810. {
  4811. struct mem_cgroup *memcg = NULL;
  4812. unsigned long nr_anon = 0;
  4813. unsigned long nr_file = 0;
  4814. unsigned long nr_huge = 0;
  4815. unsigned long pgpgout = 0;
  4816. struct list_head *next;
  4817. struct page *page;
  4818. next = page_list->next;
  4819. do {
  4820. unsigned int nr_pages = 1;
  4821. page = list_entry(next, struct page, lru);
  4822. next = page->lru.next;
  4823. VM_BUG_ON_PAGE(PageLRU(page), page);
  4824. VM_BUG_ON_PAGE(page_count(page), page);
  4825. if (!page->mem_cgroup)
  4826. continue;
  4827. /*
  4828. * Nobody should be changing or seriously looking at
  4829. * page->mem_cgroup at this point, we have fully
  4830. * exclusive access to the page.
  4831. */
  4832. if (memcg != page->mem_cgroup) {
  4833. if (memcg) {
  4834. uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
  4835. nr_huge, page);
  4836. pgpgout = nr_anon = nr_file = nr_huge = 0;
  4837. }
  4838. memcg = page->mem_cgroup;
  4839. }
  4840. if (PageTransHuge(page)) {
  4841. nr_pages <<= compound_order(page);
  4842. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  4843. nr_huge += nr_pages;
  4844. }
  4845. if (PageAnon(page))
  4846. nr_anon += nr_pages;
  4847. else
  4848. nr_file += nr_pages;
  4849. page->mem_cgroup = NULL;
  4850. pgpgout++;
  4851. } while (next != page_list);
  4852. if (memcg)
  4853. uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
  4854. nr_huge, page);
  4855. }
  4856. /**
  4857. * mem_cgroup_uncharge - uncharge a page
  4858. * @page: page to uncharge
  4859. *
  4860. * Uncharge a page previously charged with mem_cgroup_try_charge() and
  4861. * mem_cgroup_commit_charge().
  4862. */
  4863. void mem_cgroup_uncharge(struct page *page)
  4864. {
  4865. if (mem_cgroup_disabled())
  4866. return;
  4867. /* Don't touch page->lru of any random page, pre-check: */
  4868. if (!page->mem_cgroup)
  4869. return;
  4870. INIT_LIST_HEAD(&page->lru);
  4871. uncharge_list(&page->lru);
  4872. }
  4873. /**
  4874. * mem_cgroup_uncharge_list - uncharge a list of page
  4875. * @page_list: list of pages to uncharge
  4876. *
  4877. * Uncharge a list of pages previously charged with
  4878. * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
  4879. */
  4880. void mem_cgroup_uncharge_list(struct list_head *page_list)
  4881. {
  4882. if (mem_cgroup_disabled())
  4883. return;
  4884. if (!list_empty(page_list))
  4885. uncharge_list(page_list);
  4886. }
  4887. /**
  4888. * mem_cgroup_migrate - migrate a charge to another page
  4889. * @oldpage: currently charged page
  4890. * @newpage: page to transfer the charge to
  4891. * @lrucare: either or both pages might be on the LRU already
  4892. *
  4893. * Migrate the charge from @oldpage to @newpage.
  4894. *
  4895. * Both pages must be locked, @newpage->mapping must be set up.
  4896. */
  4897. void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
  4898. bool lrucare)
  4899. {
  4900. struct mem_cgroup *memcg;
  4901. int isolated;
  4902. VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
  4903. VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
  4904. VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
  4905. VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
  4906. VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
  4907. VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
  4908. newpage);
  4909. if (mem_cgroup_disabled())
  4910. return;
  4911. /* Page cache replacement: new page already charged? */
  4912. if (newpage->mem_cgroup)
  4913. return;
  4914. /*
  4915. * Swapcache readahead pages can get migrated before being
  4916. * charged, and migration from compaction can happen to an
  4917. * uncharged page when the PFN walker finds a page that
  4918. * reclaim just put back on the LRU but has not released yet.
  4919. */
  4920. memcg = oldpage->mem_cgroup;
  4921. if (!memcg)
  4922. return;
  4923. if (lrucare)
  4924. lock_page_lru(oldpage, &isolated);
  4925. oldpage->mem_cgroup = NULL;
  4926. if (lrucare)
  4927. unlock_page_lru(oldpage, isolated);
  4928. commit_charge(newpage, memcg, lrucare);
  4929. }
  4930. /*
  4931. * subsys_initcall() for memory controller.
  4932. *
  4933. * Some parts like hotcpu_notifier() have to be initialized from this context
  4934. * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
  4935. * everything that doesn't depend on a specific mem_cgroup structure should
  4936. * be initialized from here.
  4937. */
  4938. static int __init mem_cgroup_init(void)
  4939. {
  4940. hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
  4941. enable_swap_cgroup();
  4942. mem_cgroup_soft_limit_tree_init();
  4943. memcg_stock_init();
  4944. return 0;
  4945. }
  4946. subsys_initcall(mem_cgroup_init);