intel_pm.c 189 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. /**
  33. * RC6 is a special power stage which allows the GPU to enter an very
  34. * low-voltage mode when idle, using down to 0V while at this stage. This
  35. * stage is entered automatically when the GPU is idle when RC6 support is
  36. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  37. *
  38. * There are different RC6 modes available in Intel GPU, which differentiate
  39. * among each other with the latency required to enter and leave RC6 and
  40. * voltage consumed by the GPU in different states.
  41. *
  42. * The combination of the following flags define which states GPU is allowed
  43. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  44. * RC6pp is deepest RC6. Their support by hardware varies according to the
  45. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  46. * which brings the most power savings; deeper states save more power, but
  47. * require higher latency to switch to and wake up.
  48. */
  49. #define INTEL_RC6_ENABLE (1<<0)
  50. #define INTEL_RC6p_ENABLE (1<<1)
  51. #define INTEL_RC6pp_ENABLE (1<<2)
  52. static void gen9_init_clock_gating(struct drm_device *dev)
  53. {
  54. struct drm_i915_private *dev_priv = dev->dev_private;
  55. /* WaEnableLbsSlaRetryTimerDecrement:skl */
  56. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  57. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  58. }
  59. static void skl_init_clock_gating(struct drm_device *dev)
  60. {
  61. struct drm_i915_private *dev_priv = dev->dev_private;
  62. gen9_init_clock_gating(dev);
  63. if (INTEL_REVID(dev) == SKL_REVID_A0) {
  64. /*
  65. * WaDisableSDEUnitClockGating:skl
  66. * WaSetGAPSunitClckGateDisable:skl
  67. */
  68. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  69. GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
  70. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  71. }
  72. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  73. /* WaDisableHDCInvalidation:skl */
  74. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  75. BDW_DISABLE_HDC_INVALIDATION);
  76. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  77. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  78. I915_READ(FF_SLICE_CS_CHICKEN2) |
  79. GEN9_TSG_BARRIER_ACK_DISABLE);
  80. }
  81. if (INTEL_REVID(dev) <= SKL_REVID_E0)
  82. /* WaDisableLSQCROPERFforOCL:skl */
  83. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  84. GEN8_LQSC_RO_PERF_DIS);
  85. }
  86. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  87. {
  88. struct drm_i915_private *dev_priv = dev->dev_private;
  89. u32 tmp;
  90. tmp = I915_READ(CLKCFG);
  91. switch (tmp & CLKCFG_FSB_MASK) {
  92. case CLKCFG_FSB_533:
  93. dev_priv->fsb_freq = 533; /* 133*4 */
  94. break;
  95. case CLKCFG_FSB_800:
  96. dev_priv->fsb_freq = 800; /* 200*4 */
  97. break;
  98. case CLKCFG_FSB_667:
  99. dev_priv->fsb_freq = 667; /* 167*4 */
  100. break;
  101. case CLKCFG_FSB_400:
  102. dev_priv->fsb_freq = 400; /* 100*4 */
  103. break;
  104. }
  105. switch (tmp & CLKCFG_MEM_MASK) {
  106. case CLKCFG_MEM_533:
  107. dev_priv->mem_freq = 533;
  108. break;
  109. case CLKCFG_MEM_667:
  110. dev_priv->mem_freq = 667;
  111. break;
  112. case CLKCFG_MEM_800:
  113. dev_priv->mem_freq = 800;
  114. break;
  115. }
  116. /* detect pineview DDR3 setting */
  117. tmp = I915_READ(CSHRDDR3CTL);
  118. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  119. }
  120. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  121. {
  122. struct drm_i915_private *dev_priv = dev->dev_private;
  123. u16 ddrpll, csipll;
  124. ddrpll = I915_READ16(DDRMPLL1);
  125. csipll = I915_READ16(CSIPLL0);
  126. switch (ddrpll & 0xff) {
  127. case 0xc:
  128. dev_priv->mem_freq = 800;
  129. break;
  130. case 0x10:
  131. dev_priv->mem_freq = 1066;
  132. break;
  133. case 0x14:
  134. dev_priv->mem_freq = 1333;
  135. break;
  136. case 0x18:
  137. dev_priv->mem_freq = 1600;
  138. break;
  139. default:
  140. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  141. ddrpll & 0xff);
  142. dev_priv->mem_freq = 0;
  143. break;
  144. }
  145. dev_priv->ips.r_t = dev_priv->mem_freq;
  146. switch (csipll & 0x3ff) {
  147. case 0x00c:
  148. dev_priv->fsb_freq = 3200;
  149. break;
  150. case 0x00e:
  151. dev_priv->fsb_freq = 3733;
  152. break;
  153. case 0x010:
  154. dev_priv->fsb_freq = 4266;
  155. break;
  156. case 0x012:
  157. dev_priv->fsb_freq = 4800;
  158. break;
  159. case 0x014:
  160. dev_priv->fsb_freq = 5333;
  161. break;
  162. case 0x016:
  163. dev_priv->fsb_freq = 5866;
  164. break;
  165. case 0x018:
  166. dev_priv->fsb_freq = 6400;
  167. break;
  168. default:
  169. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  170. csipll & 0x3ff);
  171. dev_priv->fsb_freq = 0;
  172. break;
  173. }
  174. if (dev_priv->fsb_freq == 3200) {
  175. dev_priv->ips.c_m = 0;
  176. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  177. dev_priv->ips.c_m = 1;
  178. } else {
  179. dev_priv->ips.c_m = 2;
  180. }
  181. }
  182. static const struct cxsr_latency cxsr_latency_table[] = {
  183. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  184. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  185. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  186. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  187. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  188. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  189. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  190. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  191. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  192. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  193. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  194. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  195. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  196. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  197. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  198. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  199. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  200. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  201. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  202. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  203. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  204. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  205. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  206. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  207. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  208. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  209. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  210. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  211. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  212. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  213. };
  214. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  215. int is_ddr3,
  216. int fsb,
  217. int mem)
  218. {
  219. const struct cxsr_latency *latency;
  220. int i;
  221. if (fsb == 0 || mem == 0)
  222. return NULL;
  223. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  224. latency = &cxsr_latency_table[i];
  225. if (is_desktop == latency->is_desktop &&
  226. is_ddr3 == latency->is_ddr3 &&
  227. fsb == latency->fsb_freq && mem == latency->mem_freq)
  228. return latency;
  229. }
  230. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  231. return NULL;
  232. }
  233. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  234. {
  235. u32 val;
  236. mutex_lock(&dev_priv->rps.hw_lock);
  237. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  238. if (enable)
  239. val &= ~FORCE_DDR_HIGH_FREQ;
  240. else
  241. val |= FORCE_DDR_HIGH_FREQ;
  242. val &= ~FORCE_DDR_LOW_FREQ;
  243. val |= FORCE_DDR_FREQ_REQ_ACK;
  244. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  245. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  246. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  247. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  248. mutex_unlock(&dev_priv->rps.hw_lock);
  249. }
  250. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  251. {
  252. u32 val;
  253. mutex_lock(&dev_priv->rps.hw_lock);
  254. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  255. if (enable)
  256. val |= DSP_MAXFIFO_PM5_ENABLE;
  257. else
  258. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  259. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  260. mutex_unlock(&dev_priv->rps.hw_lock);
  261. }
  262. #define FW_WM(value, plane) \
  263. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  264. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  265. {
  266. struct drm_device *dev = dev_priv->dev;
  267. u32 val;
  268. if (IS_VALLEYVIEW(dev)) {
  269. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  270. if (IS_CHERRYVIEW(dev))
  271. chv_set_memory_pm5(dev_priv, enable);
  272. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  273. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  274. } else if (IS_PINEVIEW(dev)) {
  275. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  276. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  277. I915_WRITE(DSPFW3, val);
  278. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  279. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  280. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  281. I915_WRITE(FW_BLC_SELF, val);
  282. } else if (IS_I915GM(dev)) {
  283. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  284. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  285. I915_WRITE(INSTPM, val);
  286. } else {
  287. return;
  288. }
  289. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  290. enable ? "enabled" : "disabled");
  291. }
  292. /*
  293. * Latency for FIFO fetches is dependent on several factors:
  294. * - memory configuration (speed, channels)
  295. * - chipset
  296. * - current MCH state
  297. * It can be fairly high in some situations, so here we assume a fairly
  298. * pessimal value. It's a tradeoff between extra memory fetches (if we
  299. * set this value too high, the FIFO will fetch frequently to stay full)
  300. * and power consumption (set it too low to save power and we might see
  301. * FIFO underruns and display "flicker").
  302. *
  303. * A value of 5us seems to be a good balance; safe for very low end
  304. * platforms but not overly aggressive on lower latency configs.
  305. */
  306. static const int pessimal_latency_ns = 5000;
  307. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  308. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  309. static int vlv_get_fifo_size(struct drm_device *dev,
  310. enum pipe pipe, int plane)
  311. {
  312. struct drm_i915_private *dev_priv = dev->dev_private;
  313. int sprite0_start, sprite1_start, size;
  314. switch (pipe) {
  315. uint32_t dsparb, dsparb2, dsparb3;
  316. case PIPE_A:
  317. dsparb = I915_READ(DSPARB);
  318. dsparb2 = I915_READ(DSPARB2);
  319. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  320. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  321. break;
  322. case PIPE_B:
  323. dsparb = I915_READ(DSPARB);
  324. dsparb2 = I915_READ(DSPARB2);
  325. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  326. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  327. break;
  328. case PIPE_C:
  329. dsparb2 = I915_READ(DSPARB2);
  330. dsparb3 = I915_READ(DSPARB3);
  331. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  332. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  333. break;
  334. default:
  335. return 0;
  336. }
  337. switch (plane) {
  338. case 0:
  339. size = sprite0_start;
  340. break;
  341. case 1:
  342. size = sprite1_start - sprite0_start;
  343. break;
  344. case 2:
  345. size = 512 - 1 - sprite1_start;
  346. break;
  347. default:
  348. return 0;
  349. }
  350. DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
  351. pipe_name(pipe), plane == 0 ? "primary" : "sprite",
  352. plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
  353. size);
  354. return size;
  355. }
  356. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  357. {
  358. struct drm_i915_private *dev_priv = dev->dev_private;
  359. uint32_t dsparb = I915_READ(DSPARB);
  360. int size;
  361. size = dsparb & 0x7f;
  362. if (plane)
  363. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  364. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  365. plane ? "B" : "A", size);
  366. return size;
  367. }
  368. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  369. {
  370. struct drm_i915_private *dev_priv = dev->dev_private;
  371. uint32_t dsparb = I915_READ(DSPARB);
  372. int size;
  373. size = dsparb & 0x1ff;
  374. if (plane)
  375. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  376. size >>= 1; /* Convert to cachelines */
  377. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  378. plane ? "B" : "A", size);
  379. return size;
  380. }
  381. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  382. {
  383. struct drm_i915_private *dev_priv = dev->dev_private;
  384. uint32_t dsparb = I915_READ(DSPARB);
  385. int size;
  386. size = dsparb & 0x7f;
  387. size >>= 2; /* Convert to cachelines */
  388. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  389. plane ? "B" : "A",
  390. size);
  391. return size;
  392. }
  393. /* Pineview has different values for various configs */
  394. static const struct intel_watermark_params pineview_display_wm = {
  395. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  396. .max_wm = PINEVIEW_MAX_WM,
  397. .default_wm = PINEVIEW_DFT_WM,
  398. .guard_size = PINEVIEW_GUARD_WM,
  399. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  400. };
  401. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  402. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  403. .max_wm = PINEVIEW_MAX_WM,
  404. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  405. .guard_size = PINEVIEW_GUARD_WM,
  406. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  407. };
  408. static const struct intel_watermark_params pineview_cursor_wm = {
  409. .fifo_size = PINEVIEW_CURSOR_FIFO,
  410. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  411. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  412. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  413. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  414. };
  415. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  416. .fifo_size = PINEVIEW_CURSOR_FIFO,
  417. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  418. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  419. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  420. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  421. };
  422. static const struct intel_watermark_params g4x_wm_info = {
  423. .fifo_size = G4X_FIFO_SIZE,
  424. .max_wm = G4X_MAX_WM,
  425. .default_wm = G4X_MAX_WM,
  426. .guard_size = 2,
  427. .cacheline_size = G4X_FIFO_LINE_SIZE,
  428. };
  429. static const struct intel_watermark_params g4x_cursor_wm_info = {
  430. .fifo_size = I965_CURSOR_FIFO,
  431. .max_wm = I965_CURSOR_MAX_WM,
  432. .default_wm = I965_CURSOR_DFT_WM,
  433. .guard_size = 2,
  434. .cacheline_size = G4X_FIFO_LINE_SIZE,
  435. };
  436. static const struct intel_watermark_params valleyview_wm_info = {
  437. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  438. .max_wm = VALLEYVIEW_MAX_WM,
  439. .default_wm = VALLEYVIEW_MAX_WM,
  440. .guard_size = 2,
  441. .cacheline_size = G4X_FIFO_LINE_SIZE,
  442. };
  443. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  444. .fifo_size = I965_CURSOR_FIFO,
  445. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  446. .default_wm = I965_CURSOR_DFT_WM,
  447. .guard_size = 2,
  448. .cacheline_size = G4X_FIFO_LINE_SIZE,
  449. };
  450. static const struct intel_watermark_params i965_cursor_wm_info = {
  451. .fifo_size = I965_CURSOR_FIFO,
  452. .max_wm = I965_CURSOR_MAX_WM,
  453. .default_wm = I965_CURSOR_DFT_WM,
  454. .guard_size = 2,
  455. .cacheline_size = I915_FIFO_LINE_SIZE,
  456. };
  457. static const struct intel_watermark_params i945_wm_info = {
  458. .fifo_size = I945_FIFO_SIZE,
  459. .max_wm = I915_MAX_WM,
  460. .default_wm = 1,
  461. .guard_size = 2,
  462. .cacheline_size = I915_FIFO_LINE_SIZE,
  463. };
  464. static const struct intel_watermark_params i915_wm_info = {
  465. .fifo_size = I915_FIFO_SIZE,
  466. .max_wm = I915_MAX_WM,
  467. .default_wm = 1,
  468. .guard_size = 2,
  469. .cacheline_size = I915_FIFO_LINE_SIZE,
  470. };
  471. static const struct intel_watermark_params i830_a_wm_info = {
  472. .fifo_size = I855GM_FIFO_SIZE,
  473. .max_wm = I915_MAX_WM,
  474. .default_wm = 1,
  475. .guard_size = 2,
  476. .cacheline_size = I830_FIFO_LINE_SIZE,
  477. };
  478. static const struct intel_watermark_params i830_bc_wm_info = {
  479. .fifo_size = I855GM_FIFO_SIZE,
  480. .max_wm = I915_MAX_WM/2,
  481. .default_wm = 1,
  482. .guard_size = 2,
  483. .cacheline_size = I830_FIFO_LINE_SIZE,
  484. };
  485. static const struct intel_watermark_params i845_wm_info = {
  486. .fifo_size = I830_FIFO_SIZE,
  487. .max_wm = I915_MAX_WM,
  488. .default_wm = 1,
  489. .guard_size = 2,
  490. .cacheline_size = I830_FIFO_LINE_SIZE,
  491. };
  492. /**
  493. * intel_calculate_wm - calculate watermark level
  494. * @clock_in_khz: pixel clock
  495. * @wm: chip FIFO params
  496. * @pixel_size: display pixel size
  497. * @latency_ns: memory latency for the platform
  498. *
  499. * Calculate the watermark level (the level at which the display plane will
  500. * start fetching from memory again). Each chip has a different display
  501. * FIFO size and allocation, so the caller needs to figure that out and pass
  502. * in the correct intel_watermark_params structure.
  503. *
  504. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  505. * on the pixel size. When it reaches the watermark level, it'll start
  506. * fetching FIFO line sized based chunks from memory until the FIFO fills
  507. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  508. * will occur, and a display engine hang could result.
  509. */
  510. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  511. const struct intel_watermark_params *wm,
  512. int fifo_size,
  513. int pixel_size,
  514. unsigned long latency_ns)
  515. {
  516. long entries_required, wm_size;
  517. /*
  518. * Note: we need to make sure we don't overflow for various clock &
  519. * latency values.
  520. * clocks go from a few thousand to several hundred thousand.
  521. * latency is usually a few thousand
  522. */
  523. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  524. 1000;
  525. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  526. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  527. wm_size = fifo_size - (entries_required + wm->guard_size);
  528. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  529. /* Don't promote wm_size to unsigned... */
  530. if (wm_size > (long)wm->max_wm)
  531. wm_size = wm->max_wm;
  532. if (wm_size <= 0)
  533. wm_size = wm->default_wm;
  534. /*
  535. * Bspec seems to indicate that the value shouldn't be lower than
  536. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  537. * Lets go for 8 which is the burst size since certain platforms
  538. * already use a hardcoded 8 (which is what the spec says should be
  539. * done).
  540. */
  541. if (wm_size <= 8)
  542. wm_size = 8;
  543. return wm_size;
  544. }
  545. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  546. {
  547. struct drm_crtc *crtc, *enabled = NULL;
  548. for_each_crtc(dev, crtc) {
  549. if (intel_crtc_active(crtc)) {
  550. if (enabled)
  551. return NULL;
  552. enabled = crtc;
  553. }
  554. }
  555. return enabled;
  556. }
  557. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  558. {
  559. struct drm_device *dev = unused_crtc->dev;
  560. struct drm_i915_private *dev_priv = dev->dev_private;
  561. struct drm_crtc *crtc;
  562. const struct cxsr_latency *latency;
  563. u32 reg;
  564. unsigned long wm;
  565. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  566. dev_priv->fsb_freq, dev_priv->mem_freq);
  567. if (!latency) {
  568. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  569. intel_set_memory_cxsr(dev_priv, false);
  570. return;
  571. }
  572. crtc = single_enabled_crtc(dev);
  573. if (crtc) {
  574. const struct drm_display_mode *adjusted_mode;
  575. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  576. int clock;
  577. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  578. clock = adjusted_mode->crtc_clock;
  579. /* Display SR */
  580. wm = intel_calculate_wm(clock, &pineview_display_wm,
  581. pineview_display_wm.fifo_size,
  582. pixel_size, latency->display_sr);
  583. reg = I915_READ(DSPFW1);
  584. reg &= ~DSPFW_SR_MASK;
  585. reg |= FW_WM(wm, SR);
  586. I915_WRITE(DSPFW1, reg);
  587. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  588. /* cursor SR */
  589. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  590. pineview_display_wm.fifo_size,
  591. pixel_size, latency->cursor_sr);
  592. reg = I915_READ(DSPFW3);
  593. reg &= ~DSPFW_CURSOR_SR_MASK;
  594. reg |= FW_WM(wm, CURSOR_SR);
  595. I915_WRITE(DSPFW3, reg);
  596. /* Display HPLL off SR */
  597. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  598. pineview_display_hplloff_wm.fifo_size,
  599. pixel_size, latency->display_hpll_disable);
  600. reg = I915_READ(DSPFW3);
  601. reg &= ~DSPFW_HPLL_SR_MASK;
  602. reg |= FW_WM(wm, HPLL_SR);
  603. I915_WRITE(DSPFW3, reg);
  604. /* cursor HPLL off SR */
  605. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  606. pineview_display_hplloff_wm.fifo_size,
  607. pixel_size, latency->cursor_hpll_disable);
  608. reg = I915_READ(DSPFW3);
  609. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  610. reg |= FW_WM(wm, HPLL_CURSOR);
  611. I915_WRITE(DSPFW3, reg);
  612. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  613. intel_set_memory_cxsr(dev_priv, true);
  614. } else {
  615. intel_set_memory_cxsr(dev_priv, false);
  616. }
  617. }
  618. static bool g4x_compute_wm0(struct drm_device *dev,
  619. int plane,
  620. const struct intel_watermark_params *display,
  621. int display_latency_ns,
  622. const struct intel_watermark_params *cursor,
  623. int cursor_latency_ns,
  624. int *plane_wm,
  625. int *cursor_wm)
  626. {
  627. struct drm_crtc *crtc;
  628. const struct drm_display_mode *adjusted_mode;
  629. int htotal, hdisplay, clock, pixel_size;
  630. int line_time_us, line_count;
  631. int entries, tlb_miss;
  632. crtc = intel_get_crtc_for_plane(dev, plane);
  633. if (!intel_crtc_active(crtc)) {
  634. *cursor_wm = cursor->guard_size;
  635. *plane_wm = display->guard_size;
  636. return false;
  637. }
  638. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  639. clock = adjusted_mode->crtc_clock;
  640. htotal = adjusted_mode->crtc_htotal;
  641. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  642. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  643. /* Use the small buffer method to calculate plane watermark */
  644. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  645. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  646. if (tlb_miss > 0)
  647. entries += tlb_miss;
  648. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  649. *plane_wm = entries + display->guard_size;
  650. if (*plane_wm > (int)display->max_wm)
  651. *plane_wm = display->max_wm;
  652. /* Use the large buffer method to calculate cursor watermark */
  653. line_time_us = max(htotal * 1000 / clock, 1);
  654. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  655. entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
  656. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  657. if (tlb_miss > 0)
  658. entries += tlb_miss;
  659. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  660. *cursor_wm = entries + cursor->guard_size;
  661. if (*cursor_wm > (int)cursor->max_wm)
  662. *cursor_wm = (int)cursor->max_wm;
  663. return true;
  664. }
  665. /*
  666. * Check the wm result.
  667. *
  668. * If any calculated watermark values is larger than the maximum value that
  669. * can be programmed into the associated watermark register, that watermark
  670. * must be disabled.
  671. */
  672. static bool g4x_check_srwm(struct drm_device *dev,
  673. int display_wm, int cursor_wm,
  674. const struct intel_watermark_params *display,
  675. const struct intel_watermark_params *cursor)
  676. {
  677. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  678. display_wm, cursor_wm);
  679. if (display_wm > display->max_wm) {
  680. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  681. display_wm, display->max_wm);
  682. return false;
  683. }
  684. if (cursor_wm > cursor->max_wm) {
  685. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  686. cursor_wm, cursor->max_wm);
  687. return false;
  688. }
  689. if (!(display_wm || cursor_wm)) {
  690. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  691. return false;
  692. }
  693. return true;
  694. }
  695. static bool g4x_compute_srwm(struct drm_device *dev,
  696. int plane,
  697. int latency_ns,
  698. const struct intel_watermark_params *display,
  699. const struct intel_watermark_params *cursor,
  700. int *display_wm, int *cursor_wm)
  701. {
  702. struct drm_crtc *crtc;
  703. const struct drm_display_mode *adjusted_mode;
  704. int hdisplay, htotal, pixel_size, clock;
  705. unsigned long line_time_us;
  706. int line_count, line_size;
  707. int small, large;
  708. int entries;
  709. if (!latency_ns) {
  710. *display_wm = *cursor_wm = 0;
  711. return false;
  712. }
  713. crtc = intel_get_crtc_for_plane(dev, plane);
  714. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  715. clock = adjusted_mode->crtc_clock;
  716. htotal = adjusted_mode->crtc_htotal;
  717. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  718. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  719. line_time_us = max(htotal * 1000 / clock, 1);
  720. line_count = (latency_ns / line_time_us + 1000) / 1000;
  721. line_size = hdisplay * pixel_size;
  722. /* Use the minimum of the small and large buffer method for primary */
  723. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  724. large = line_count * line_size;
  725. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  726. *display_wm = entries + display->guard_size;
  727. /* calculate the self-refresh watermark for display cursor */
  728. entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
  729. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  730. *cursor_wm = entries + cursor->guard_size;
  731. return g4x_check_srwm(dev,
  732. *display_wm, *cursor_wm,
  733. display, cursor);
  734. }
  735. #define FW_WM_VLV(value, plane) \
  736. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  737. static void vlv_write_wm_values(struct intel_crtc *crtc,
  738. const struct vlv_wm_values *wm)
  739. {
  740. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  741. enum pipe pipe = crtc->pipe;
  742. I915_WRITE(VLV_DDL(pipe),
  743. (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
  744. (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
  745. (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
  746. (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
  747. I915_WRITE(DSPFW1,
  748. FW_WM(wm->sr.plane, SR) |
  749. FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
  750. FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
  751. FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
  752. I915_WRITE(DSPFW2,
  753. FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
  754. FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
  755. FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
  756. I915_WRITE(DSPFW3,
  757. FW_WM(wm->sr.cursor, CURSOR_SR));
  758. if (IS_CHERRYVIEW(dev_priv)) {
  759. I915_WRITE(DSPFW7_CHV,
  760. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  761. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  762. I915_WRITE(DSPFW8_CHV,
  763. FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
  764. FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
  765. I915_WRITE(DSPFW9_CHV,
  766. FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
  767. FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
  768. I915_WRITE(DSPHOWM,
  769. FW_WM(wm->sr.plane >> 9, SR_HI) |
  770. FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
  771. FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
  772. FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
  773. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  774. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  775. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  776. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  777. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  778. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  779. } else {
  780. I915_WRITE(DSPFW7,
  781. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  782. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  783. I915_WRITE(DSPHOWM,
  784. FW_WM(wm->sr.plane >> 9, SR_HI) |
  785. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  786. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  787. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  788. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  789. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  790. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  791. }
  792. POSTING_READ(DSPFW1);
  793. dev_priv->wm.vlv = *wm;
  794. }
  795. #undef FW_WM_VLV
  796. static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
  797. struct drm_plane *plane)
  798. {
  799. struct drm_device *dev = crtc->dev;
  800. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  801. int entries, prec_mult, drain_latency, pixel_size;
  802. int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
  803. const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
  804. /*
  805. * FIXME the plane might have an fb
  806. * but be invisible (eg. due to clipping)
  807. */
  808. if (!intel_crtc->active || !plane->state->fb)
  809. return 0;
  810. if (WARN(clock == 0, "Pixel clock is zero!\n"))
  811. return 0;
  812. pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);
  813. if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
  814. return 0;
  815. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  816. prec_mult = high_precision;
  817. drain_latency = 64 * prec_mult * 4 / entries;
  818. if (drain_latency > DRAIN_LATENCY_MASK) {
  819. prec_mult /= 2;
  820. drain_latency = 64 * prec_mult * 4 / entries;
  821. }
  822. if (drain_latency > DRAIN_LATENCY_MASK)
  823. drain_latency = DRAIN_LATENCY_MASK;
  824. return drain_latency | (prec_mult == high_precision ?
  825. DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
  826. }
  827. static int vlv_compute_wm(struct intel_crtc *crtc,
  828. struct intel_plane *plane,
  829. int fifo_size)
  830. {
  831. int clock, entries, pixel_size;
  832. /*
  833. * FIXME the plane might have an fb
  834. * but be invisible (eg. due to clipping)
  835. */
  836. if (!crtc->active || !plane->base.state->fb)
  837. return 0;
  838. pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
  839. clock = crtc->config->base.adjusted_mode.crtc_clock;
  840. entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
  841. /*
  842. * Set up the watermark such that we don't start issuing memory
  843. * requests until we are within PND's max deadline value (256us).
  844. * Idea being to be idle as long as possible while still taking
  845. * advatange of PND's deadline scheduling. The limit of 8
  846. * cachelines (used when the FIFO will anyway drain in less time
  847. * than 256us) should match what we would be done if trickle
  848. * feed were enabled.
  849. */
  850. return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
  851. }
  852. static bool vlv_compute_sr_wm(struct drm_device *dev,
  853. struct vlv_wm_values *wm)
  854. {
  855. struct drm_i915_private *dev_priv = to_i915(dev);
  856. struct drm_crtc *crtc;
  857. enum pipe pipe = INVALID_PIPE;
  858. int num_planes = 0;
  859. int fifo_size = 0;
  860. struct intel_plane *plane;
  861. wm->sr.cursor = wm->sr.plane = 0;
  862. crtc = single_enabled_crtc(dev);
  863. /* maxfifo not supported on pipe C */
  864. if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
  865. pipe = to_intel_crtc(crtc)->pipe;
  866. num_planes = !!wm->pipe[pipe].primary +
  867. !!wm->pipe[pipe].sprite[0] +
  868. !!wm->pipe[pipe].sprite[1];
  869. fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
  870. }
  871. if (fifo_size == 0 || num_planes > 1)
  872. return false;
  873. wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
  874. to_intel_plane(crtc->cursor), 0x3f);
  875. list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
  876. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  877. continue;
  878. if (plane->pipe != pipe)
  879. continue;
  880. wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
  881. plane, fifo_size);
  882. if (wm->sr.plane != 0)
  883. break;
  884. }
  885. return true;
  886. }
  887. static void valleyview_update_wm(struct drm_crtc *crtc)
  888. {
  889. struct drm_device *dev = crtc->dev;
  890. struct drm_i915_private *dev_priv = dev->dev_private;
  891. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  892. enum pipe pipe = intel_crtc->pipe;
  893. bool cxsr_enabled;
  894. struct vlv_wm_values wm = dev_priv->wm.vlv;
  895. wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
  896. wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
  897. to_intel_plane(crtc->primary),
  898. vlv_get_fifo_size(dev, pipe, 0));
  899. wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
  900. wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
  901. to_intel_plane(crtc->cursor),
  902. 0x3f);
  903. cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
  904. if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
  905. return;
  906. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  907. "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
  908. wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
  909. wm.sr.plane, wm.sr.cursor);
  910. /*
  911. * FIXME DDR DVFS introduces massive memory latencies which
  912. * are not known to system agent so any deadline specified
  913. * by the display may not be respected. To support DDR DVFS
  914. * the watermark code needs to be rewritten to essentially
  915. * bypass deadline mechanism and rely solely on the
  916. * watermarks. For now disable DDR DVFS.
  917. */
  918. if (IS_CHERRYVIEW(dev_priv))
  919. chv_set_memory_dvfs(dev_priv, false);
  920. if (!cxsr_enabled)
  921. intel_set_memory_cxsr(dev_priv, false);
  922. vlv_write_wm_values(intel_crtc, &wm);
  923. if (cxsr_enabled)
  924. intel_set_memory_cxsr(dev_priv, true);
  925. }
  926. static void valleyview_update_sprite_wm(struct drm_plane *plane,
  927. struct drm_crtc *crtc,
  928. uint32_t sprite_width,
  929. uint32_t sprite_height,
  930. int pixel_size,
  931. bool enabled, bool scaled)
  932. {
  933. struct drm_device *dev = crtc->dev;
  934. struct drm_i915_private *dev_priv = dev->dev_private;
  935. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  936. enum pipe pipe = intel_crtc->pipe;
  937. int sprite = to_intel_plane(plane)->plane;
  938. bool cxsr_enabled;
  939. struct vlv_wm_values wm = dev_priv->wm.vlv;
  940. if (enabled) {
  941. wm.ddl[pipe].sprite[sprite] =
  942. vlv_compute_drain_latency(crtc, plane);
  943. wm.pipe[pipe].sprite[sprite] =
  944. vlv_compute_wm(intel_crtc,
  945. to_intel_plane(plane),
  946. vlv_get_fifo_size(dev, pipe, sprite+1));
  947. } else {
  948. wm.ddl[pipe].sprite[sprite] = 0;
  949. wm.pipe[pipe].sprite[sprite] = 0;
  950. }
  951. cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
  952. if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
  953. return;
  954. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
  955. "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
  956. sprite_name(pipe, sprite),
  957. wm.pipe[pipe].sprite[sprite],
  958. wm.sr.plane, wm.sr.cursor);
  959. if (!cxsr_enabled)
  960. intel_set_memory_cxsr(dev_priv, false);
  961. vlv_write_wm_values(intel_crtc, &wm);
  962. if (cxsr_enabled)
  963. intel_set_memory_cxsr(dev_priv, true);
  964. }
  965. #define single_plane_enabled(mask) is_power_of_2(mask)
  966. static void g4x_update_wm(struct drm_crtc *crtc)
  967. {
  968. struct drm_device *dev = crtc->dev;
  969. static const int sr_latency_ns = 12000;
  970. struct drm_i915_private *dev_priv = dev->dev_private;
  971. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  972. int plane_sr, cursor_sr;
  973. unsigned int enabled = 0;
  974. bool cxsr_enabled;
  975. if (g4x_compute_wm0(dev, PIPE_A,
  976. &g4x_wm_info, pessimal_latency_ns,
  977. &g4x_cursor_wm_info, pessimal_latency_ns,
  978. &planea_wm, &cursora_wm))
  979. enabled |= 1 << PIPE_A;
  980. if (g4x_compute_wm0(dev, PIPE_B,
  981. &g4x_wm_info, pessimal_latency_ns,
  982. &g4x_cursor_wm_info, pessimal_latency_ns,
  983. &planeb_wm, &cursorb_wm))
  984. enabled |= 1 << PIPE_B;
  985. if (single_plane_enabled(enabled) &&
  986. g4x_compute_srwm(dev, ffs(enabled) - 1,
  987. sr_latency_ns,
  988. &g4x_wm_info,
  989. &g4x_cursor_wm_info,
  990. &plane_sr, &cursor_sr)) {
  991. cxsr_enabled = true;
  992. } else {
  993. cxsr_enabled = false;
  994. intel_set_memory_cxsr(dev_priv, false);
  995. plane_sr = cursor_sr = 0;
  996. }
  997. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  998. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  999. planea_wm, cursora_wm,
  1000. planeb_wm, cursorb_wm,
  1001. plane_sr, cursor_sr);
  1002. I915_WRITE(DSPFW1,
  1003. FW_WM(plane_sr, SR) |
  1004. FW_WM(cursorb_wm, CURSORB) |
  1005. FW_WM(planeb_wm, PLANEB) |
  1006. FW_WM(planea_wm, PLANEA));
  1007. I915_WRITE(DSPFW2,
  1008. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1009. FW_WM(cursora_wm, CURSORA));
  1010. /* HPLL off in SR has some issues on G4x... disable it */
  1011. I915_WRITE(DSPFW3,
  1012. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1013. FW_WM(cursor_sr, CURSOR_SR));
  1014. if (cxsr_enabled)
  1015. intel_set_memory_cxsr(dev_priv, true);
  1016. }
  1017. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1018. {
  1019. struct drm_device *dev = unused_crtc->dev;
  1020. struct drm_i915_private *dev_priv = dev->dev_private;
  1021. struct drm_crtc *crtc;
  1022. int srwm = 1;
  1023. int cursor_sr = 16;
  1024. bool cxsr_enabled;
  1025. /* Calc sr entries for one plane configs */
  1026. crtc = single_enabled_crtc(dev);
  1027. if (crtc) {
  1028. /* self-refresh has much higher latency */
  1029. static const int sr_latency_ns = 12000;
  1030. const struct drm_display_mode *adjusted_mode =
  1031. &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1032. int clock = adjusted_mode->crtc_clock;
  1033. int htotal = adjusted_mode->crtc_htotal;
  1034. int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  1035. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  1036. unsigned long line_time_us;
  1037. int entries;
  1038. line_time_us = max(htotal * 1000 / clock, 1);
  1039. /* Use ns/us then divide to preserve precision */
  1040. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1041. pixel_size * hdisplay;
  1042. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1043. srwm = I965_FIFO_SIZE - entries;
  1044. if (srwm < 0)
  1045. srwm = 1;
  1046. srwm &= 0x1ff;
  1047. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1048. entries, srwm);
  1049. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1050. pixel_size * crtc->cursor->state->crtc_w;
  1051. entries = DIV_ROUND_UP(entries,
  1052. i965_cursor_wm_info.cacheline_size);
  1053. cursor_sr = i965_cursor_wm_info.fifo_size -
  1054. (entries + i965_cursor_wm_info.guard_size);
  1055. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1056. cursor_sr = i965_cursor_wm_info.max_wm;
  1057. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1058. "cursor %d\n", srwm, cursor_sr);
  1059. cxsr_enabled = true;
  1060. } else {
  1061. cxsr_enabled = false;
  1062. /* Turn off self refresh if both pipes are enabled */
  1063. intel_set_memory_cxsr(dev_priv, false);
  1064. }
  1065. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1066. srwm);
  1067. /* 965 has limitations... */
  1068. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1069. FW_WM(8, CURSORB) |
  1070. FW_WM(8, PLANEB) |
  1071. FW_WM(8, PLANEA));
  1072. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1073. FW_WM(8, PLANEC_OLD));
  1074. /* update cursor SR watermark */
  1075. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1076. if (cxsr_enabled)
  1077. intel_set_memory_cxsr(dev_priv, true);
  1078. }
  1079. #undef FW_WM
  1080. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1081. {
  1082. struct drm_device *dev = unused_crtc->dev;
  1083. struct drm_i915_private *dev_priv = dev->dev_private;
  1084. const struct intel_watermark_params *wm_info;
  1085. uint32_t fwater_lo;
  1086. uint32_t fwater_hi;
  1087. int cwm, srwm = 1;
  1088. int fifo_size;
  1089. int planea_wm, planeb_wm;
  1090. struct drm_crtc *crtc, *enabled = NULL;
  1091. if (IS_I945GM(dev))
  1092. wm_info = &i945_wm_info;
  1093. else if (!IS_GEN2(dev))
  1094. wm_info = &i915_wm_info;
  1095. else
  1096. wm_info = &i830_a_wm_info;
  1097. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1098. crtc = intel_get_crtc_for_plane(dev, 0);
  1099. if (intel_crtc_active(crtc)) {
  1100. const struct drm_display_mode *adjusted_mode;
  1101. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1102. if (IS_GEN2(dev))
  1103. cpp = 4;
  1104. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1105. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1106. wm_info, fifo_size, cpp,
  1107. pessimal_latency_ns);
  1108. enabled = crtc;
  1109. } else {
  1110. planea_wm = fifo_size - wm_info->guard_size;
  1111. if (planea_wm > (long)wm_info->max_wm)
  1112. planea_wm = wm_info->max_wm;
  1113. }
  1114. if (IS_GEN2(dev))
  1115. wm_info = &i830_bc_wm_info;
  1116. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1117. crtc = intel_get_crtc_for_plane(dev, 1);
  1118. if (intel_crtc_active(crtc)) {
  1119. const struct drm_display_mode *adjusted_mode;
  1120. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1121. if (IS_GEN2(dev))
  1122. cpp = 4;
  1123. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1124. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1125. wm_info, fifo_size, cpp,
  1126. pessimal_latency_ns);
  1127. if (enabled == NULL)
  1128. enabled = crtc;
  1129. else
  1130. enabled = NULL;
  1131. } else {
  1132. planeb_wm = fifo_size - wm_info->guard_size;
  1133. if (planeb_wm > (long)wm_info->max_wm)
  1134. planeb_wm = wm_info->max_wm;
  1135. }
  1136. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1137. if (IS_I915GM(dev) && enabled) {
  1138. struct drm_i915_gem_object *obj;
  1139. obj = intel_fb_obj(enabled->primary->state->fb);
  1140. /* self-refresh seems busted with untiled */
  1141. if (obj->tiling_mode == I915_TILING_NONE)
  1142. enabled = NULL;
  1143. }
  1144. /*
  1145. * Overlay gets an aggressive default since video jitter is bad.
  1146. */
  1147. cwm = 2;
  1148. /* Play safe and disable self-refresh before adjusting watermarks. */
  1149. intel_set_memory_cxsr(dev_priv, false);
  1150. /* Calc sr entries for one plane configs */
  1151. if (HAS_FW_BLC(dev) && enabled) {
  1152. /* self-refresh has much higher latency */
  1153. static const int sr_latency_ns = 6000;
  1154. const struct drm_display_mode *adjusted_mode =
  1155. &to_intel_crtc(enabled)->config->base.adjusted_mode;
  1156. int clock = adjusted_mode->crtc_clock;
  1157. int htotal = adjusted_mode->crtc_htotal;
  1158. int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
  1159. int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
  1160. unsigned long line_time_us;
  1161. int entries;
  1162. line_time_us = max(htotal * 1000 / clock, 1);
  1163. /* Use ns/us then divide to preserve precision */
  1164. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1165. pixel_size * hdisplay;
  1166. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1167. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1168. srwm = wm_info->fifo_size - entries;
  1169. if (srwm < 0)
  1170. srwm = 1;
  1171. if (IS_I945G(dev) || IS_I945GM(dev))
  1172. I915_WRITE(FW_BLC_SELF,
  1173. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1174. else if (IS_I915GM(dev))
  1175. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1176. }
  1177. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1178. planea_wm, planeb_wm, cwm, srwm);
  1179. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1180. fwater_hi = (cwm & 0x1f);
  1181. /* Set request length to 8 cachelines per fetch */
  1182. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1183. fwater_hi = fwater_hi | (1 << 8);
  1184. I915_WRITE(FW_BLC, fwater_lo);
  1185. I915_WRITE(FW_BLC2, fwater_hi);
  1186. if (enabled)
  1187. intel_set_memory_cxsr(dev_priv, true);
  1188. }
  1189. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1190. {
  1191. struct drm_device *dev = unused_crtc->dev;
  1192. struct drm_i915_private *dev_priv = dev->dev_private;
  1193. struct drm_crtc *crtc;
  1194. const struct drm_display_mode *adjusted_mode;
  1195. uint32_t fwater_lo;
  1196. int planea_wm;
  1197. crtc = single_enabled_crtc(dev);
  1198. if (crtc == NULL)
  1199. return;
  1200. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1201. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1202. &i845_wm_info,
  1203. dev_priv->display.get_fifo_size(dev, 0),
  1204. 4, pessimal_latency_ns);
  1205. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1206. fwater_lo |= (3<<8) | planea_wm;
  1207. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1208. I915_WRITE(FW_BLC, fwater_lo);
  1209. }
  1210. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1211. struct drm_crtc *crtc)
  1212. {
  1213. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1214. uint32_t pixel_rate;
  1215. pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
  1216. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1217. * adjust the pixel_rate here. */
  1218. if (intel_crtc->config->pch_pfit.enabled) {
  1219. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1220. uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
  1221. pipe_w = intel_crtc->config->pipe_src_w;
  1222. pipe_h = intel_crtc->config->pipe_src_h;
  1223. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1224. pfit_h = pfit_size & 0xFFFF;
  1225. if (pipe_w < pfit_w)
  1226. pipe_w = pfit_w;
  1227. if (pipe_h < pfit_h)
  1228. pipe_h = pfit_h;
  1229. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1230. pfit_w * pfit_h);
  1231. }
  1232. return pixel_rate;
  1233. }
  1234. /* latency must be in 0.1us units. */
  1235. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1236. uint32_t latency)
  1237. {
  1238. uint64_t ret;
  1239. if (WARN(latency == 0, "Latency value missing\n"))
  1240. return UINT_MAX;
  1241. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1242. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1243. return ret;
  1244. }
  1245. /* latency must be in 0.1us units. */
  1246. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1247. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1248. uint32_t latency)
  1249. {
  1250. uint32_t ret;
  1251. if (WARN(latency == 0, "Latency value missing\n"))
  1252. return UINT_MAX;
  1253. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1254. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1255. ret = DIV_ROUND_UP(ret, 64) + 2;
  1256. return ret;
  1257. }
  1258. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1259. uint8_t bytes_per_pixel)
  1260. {
  1261. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1262. }
  1263. struct skl_pipe_wm_parameters {
  1264. bool active;
  1265. uint32_t pipe_htotal;
  1266. uint32_t pixel_rate; /* in KHz */
  1267. struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
  1268. struct intel_plane_wm_parameters cursor;
  1269. };
  1270. struct ilk_pipe_wm_parameters {
  1271. bool active;
  1272. uint32_t pipe_htotal;
  1273. uint32_t pixel_rate;
  1274. struct intel_plane_wm_parameters pri;
  1275. struct intel_plane_wm_parameters spr;
  1276. struct intel_plane_wm_parameters cur;
  1277. };
  1278. struct ilk_wm_maximums {
  1279. uint16_t pri;
  1280. uint16_t spr;
  1281. uint16_t cur;
  1282. uint16_t fbc;
  1283. };
  1284. /* used in computing the new watermarks state */
  1285. struct intel_wm_config {
  1286. unsigned int num_pipes_active;
  1287. bool sprites_enabled;
  1288. bool sprites_scaled;
  1289. };
  1290. /*
  1291. * For both WM_PIPE and WM_LP.
  1292. * mem_value must be in 0.1us units.
  1293. */
  1294. static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
  1295. uint32_t mem_value,
  1296. bool is_lp)
  1297. {
  1298. uint32_t method1, method2;
  1299. if (!params->active || !params->pri.enabled)
  1300. return 0;
  1301. method1 = ilk_wm_method1(params->pixel_rate,
  1302. params->pri.bytes_per_pixel,
  1303. mem_value);
  1304. if (!is_lp)
  1305. return method1;
  1306. method2 = ilk_wm_method2(params->pixel_rate,
  1307. params->pipe_htotal,
  1308. params->pri.horiz_pixels,
  1309. params->pri.bytes_per_pixel,
  1310. mem_value);
  1311. return min(method1, method2);
  1312. }
  1313. /*
  1314. * For both WM_PIPE and WM_LP.
  1315. * mem_value must be in 0.1us units.
  1316. */
  1317. static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
  1318. uint32_t mem_value)
  1319. {
  1320. uint32_t method1, method2;
  1321. if (!params->active || !params->spr.enabled)
  1322. return 0;
  1323. method1 = ilk_wm_method1(params->pixel_rate,
  1324. params->spr.bytes_per_pixel,
  1325. mem_value);
  1326. method2 = ilk_wm_method2(params->pixel_rate,
  1327. params->pipe_htotal,
  1328. params->spr.horiz_pixels,
  1329. params->spr.bytes_per_pixel,
  1330. mem_value);
  1331. return min(method1, method2);
  1332. }
  1333. /*
  1334. * For both WM_PIPE and WM_LP.
  1335. * mem_value must be in 0.1us units.
  1336. */
  1337. static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
  1338. uint32_t mem_value)
  1339. {
  1340. if (!params->active || !params->cur.enabled)
  1341. return 0;
  1342. return ilk_wm_method2(params->pixel_rate,
  1343. params->pipe_htotal,
  1344. params->cur.horiz_pixels,
  1345. params->cur.bytes_per_pixel,
  1346. mem_value);
  1347. }
  1348. /* Only for WM_LP. */
  1349. static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
  1350. uint32_t pri_val)
  1351. {
  1352. if (!params->active || !params->pri.enabled)
  1353. return 0;
  1354. return ilk_wm_fbc(pri_val,
  1355. params->pri.horiz_pixels,
  1356. params->pri.bytes_per_pixel);
  1357. }
  1358. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1359. {
  1360. if (INTEL_INFO(dev)->gen >= 8)
  1361. return 3072;
  1362. else if (INTEL_INFO(dev)->gen >= 7)
  1363. return 768;
  1364. else
  1365. return 512;
  1366. }
  1367. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1368. int level, bool is_sprite)
  1369. {
  1370. if (INTEL_INFO(dev)->gen >= 8)
  1371. /* BDW primary/sprite plane watermarks */
  1372. return level == 0 ? 255 : 2047;
  1373. else if (INTEL_INFO(dev)->gen >= 7)
  1374. /* IVB/HSW primary/sprite plane watermarks */
  1375. return level == 0 ? 127 : 1023;
  1376. else if (!is_sprite)
  1377. /* ILK/SNB primary plane watermarks */
  1378. return level == 0 ? 127 : 511;
  1379. else
  1380. /* ILK/SNB sprite plane watermarks */
  1381. return level == 0 ? 63 : 255;
  1382. }
  1383. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1384. int level)
  1385. {
  1386. if (INTEL_INFO(dev)->gen >= 7)
  1387. return level == 0 ? 63 : 255;
  1388. else
  1389. return level == 0 ? 31 : 63;
  1390. }
  1391. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1392. {
  1393. if (INTEL_INFO(dev)->gen >= 8)
  1394. return 31;
  1395. else
  1396. return 15;
  1397. }
  1398. /* Calculate the maximum primary/sprite plane watermark */
  1399. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1400. int level,
  1401. const struct intel_wm_config *config,
  1402. enum intel_ddb_partitioning ddb_partitioning,
  1403. bool is_sprite)
  1404. {
  1405. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1406. /* if sprites aren't enabled, sprites get nothing */
  1407. if (is_sprite && !config->sprites_enabled)
  1408. return 0;
  1409. /* HSW allows LP1+ watermarks even with multiple pipes */
  1410. if (level == 0 || config->num_pipes_active > 1) {
  1411. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1412. /*
  1413. * For some reason the non self refresh
  1414. * FIFO size is only half of the self
  1415. * refresh FIFO size on ILK/SNB.
  1416. */
  1417. if (INTEL_INFO(dev)->gen <= 6)
  1418. fifo_size /= 2;
  1419. }
  1420. if (config->sprites_enabled) {
  1421. /* level 0 is always calculated with 1:1 split */
  1422. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1423. if (is_sprite)
  1424. fifo_size *= 5;
  1425. fifo_size /= 6;
  1426. } else {
  1427. fifo_size /= 2;
  1428. }
  1429. }
  1430. /* clamp to max that the registers can hold */
  1431. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1432. }
  1433. /* Calculate the maximum cursor plane watermark */
  1434. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1435. int level,
  1436. const struct intel_wm_config *config)
  1437. {
  1438. /* HSW LP1+ watermarks w/ multiple pipes */
  1439. if (level > 0 && config->num_pipes_active > 1)
  1440. return 64;
  1441. /* otherwise just report max that registers can hold */
  1442. return ilk_cursor_wm_reg_max(dev, level);
  1443. }
  1444. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1445. int level,
  1446. const struct intel_wm_config *config,
  1447. enum intel_ddb_partitioning ddb_partitioning,
  1448. struct ilk_wm_maximums *max)
  1449. {
  1450. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1451. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1452. max->cur = ilk_cursor_wm_max(dev, level, config);
  1453. max->fbc = ilk_fbc_wm_reg_max(dev);
  1454. }
  1455. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1456. int level,
  1457. struct ilk_wm_maximums *max)
  1458. {
  1459. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1460. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1461. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1462. max->fbc = ilk_fbc_wm_reg_max(dev);
  1463. }
  1464. static bool ilk_validate_wm_level(int level,
  1465. const struct ilk_wm_maximums *max,
  1466. struct intel_wm_level *result)
  1467. {
  1468. bool ret;
  1469. /* already determined to be invalid? */
  1470. if (!result->enable)
  1471. return false;
  1472. result->enable = result->pri_val <= max->pri &&
  1473. result->spr_val <= max->spr &&
  1474. result->cur_val <= max->cur;
  1475. ret = result->enable;
  1476. /*
  1477. * HACK until we can pre-compute everything,
  1478. * and thus fail gracefully if LP0 watermarks
  1479. * are exceeded...
  1480. */
  1481. if (level == 0 && !result->enable) {
  1482. if (result->pri_val > max->pri)
  1483. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1484. level, result->pri_val, max->pri);
  1485. if (result->spr_val > max->spr)
  1486. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1487. level, result->spr_val, max->spr);
  1488. if (result->cur_val > max->cur)
  1489. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1490. level, result->cur_val, max->cur);
  1491. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1492. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1493. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1494. result->enable = true;
  1495. }
  1496. return ret;
  1497. }
  1498. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1499. int level,
  1500. const struct ilk_pipe_wm_parameters *p,
  1501. struct intel_wm_level *result)
  1502. {
  1503. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1504. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1505. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1506. /* WM1+ latency values stored in 0.5us units */
  1507. if (level > 0) {
  1508. pri_latency *= 5;
  1509. spr_latency *= 5;
  1510. cur_latency *= 5;
  1511. }
  1512. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  1513. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  1514. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  1515. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  1516. result->enable = true;
  1517. }
  1518. static uint32_t
  1519. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  1520. {
  1521. struct drm_i915_private *dev_priv = dev->dev_private;
  1522. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1523. struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
  1524. u32 linetime, ips_linetime;
  1525. if (!intel_crtc->active)
  1526. return 0;
  1527. /* The WM are computed with base on how long it takes to fill a single
  1528. * row at the given clock rate, multiplied by 8.
  1529. * */
  1530. linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1531. mode->crtc_clock);
  1532. ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
  1533. intel_ddi_get_cdclk_freq(dev_priv));
  1534. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1535. PIPE_WM_LINETIME_TIME(linetime);
  1536. }
  1537. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
  1538. {
  1539. struct drm_i915_private *dev_priv = dev->dev_private;
  1540. if (IS_GEN9(dev)) {
  1541. uint32_t val;
  1542. int ret, i;
  1543. int level, max_level = ilk_wm_max_level(dev);
  1544. /* read the first set of memory latencies[0:3] */
  1545. val = 0; /* data0 to be programmed to 0 for first set */
  1546. mutex_lock(&dev_priv->rps.hw_lock);
  1547. ret = sandybridge_pcode_read(dev_priv,
  1548. GEN9_PCODE_READ_MEM_LATENCY,
  1549. &val);
  1550. mutex_unlock(&dev_priv->rps.hw_lock);
  1551. if (ret) {
  1552. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1553. return;
  1554. }
  1555. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1556. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1557. GEN9_MEM_LATENCY_LEVEL_MASK;
  1558. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1559. GEN9_MEM_LATENCY_LEVEL_MASK;
  1560. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1561. GEN9_MEM_LATENCY_LEVEL_MASK;
  1562. /* read the second set of memory latencies[4:7] */
  1563. val = 1; /* data0 to be programmed to 1 for second set */
  1564. mutex_lock(&dev_priv->rps.hw_lock);
  1565. ret = sandybridge_pcode_read(dev_priv,
  1566. GEN9_PCODE_READ_MEM_LATENCY,
  1567. &val);
  1568. mutex_unlock(&dev_priv->rps.hw_lock);
  1569. if (ret) {
  1570. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1571. return;
  1572. }
  1573. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1574. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1575. GEN9_MEM_LATENCY_LEVEL_MASK;
  1576. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1577. GEN9_MEM_LATENCY_LEVEL_MASK;
  1578. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1579. GEN9_MEM_LATENCY_LEVEL_MASK;
  1580. /*
  1581. * WaWmMemoryReadLatency:skl
  1582. *
  1583. * punit doesn't take into account the read latency so we need
  1584. * to add 2us to the various latency levels we retrieve from
  1585. * the punit.
  1586. * - W0 is a bit special in that it's the only level that
  1587. * can't be disabled if we want to have display working, so
  1588. * we always add 2us there.
  1589. * - For levels >=1, punit returns 0us latency when they are
  1590. * disabled, so we respect that and don't add 2us then
  1591. *
  1592. * Additionally, if a level n (n > 1) has a 0us latency, all
  1593. * levels m (m >= n) need to be disabled. We make sure to
  1594. * sanitize the values out of the punit to satisfy this
  1595. * requirement.
  1596. */
  1597. wm[0] += 2;
  1598. for (level = 1; level <= max_level; level++)
  1599. if (wm[level] != 0)
  1600. wm[level] += 2;
  1601. else {
  1602. for (i = level + 1; i <= max_level; i++)
  1603. wm[i] = 0;
  1604. break;
  1605. }
  1606. } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1607. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1608. wm[0] = (sskpd >> 56) & 0xFF;
  1609. if (wm[0] == 0)
  1610. wm[0] = sskpd & 0xF;
  1611. wm[1] = (sskpd >> 4) & 0xFF;
  1612. wm[2] = (sskpd >> 12) & 0xFF;
  1613. wm[3] = (sskpd >> 20) & 0x1FF;
  1614. wm[4] = (sskpd >> 32) & 0x1FF;
  1615. } else if (INTEL_INFO(dev)->gen >= 6) {
  1616. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1617. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1618. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1619. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1620. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1621. } else if (INTEL_INFO(dev)->gen >= 5) {
  1622. uint32_t mltr = I915_READ(MLTR_ILK);
  1623. /* ILK primary LP0 latency is 700 ns */
  1624. wm[0] = 7;
  1625. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1626. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1627. }
  1628. }
  1629. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1630. {
  1631. /* ILK sprite LP0 latency is 1300 ns */
  1632. if (INTEL_INFO(dev)->gen == 5)
  1633. wm[0] = 13;
  1634. }
  1635. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1636. {
  1637. /* ILK cursor LP0 latency is 1300 ns */
  1638. if (INTEL_INFO(dev)->gen == 5)
  1639. wm[0] = 13;
  1640. /* WaDoubleCursorLP3Latency:ivb */
  1641. if (IS_IVYBRIDGE(dev))
  1642. wm[3] *= 2;
  1643. }
  1644. int ilk_wm_max_level(const struct drm_device *dev)
  1645. {
  1646. /* how many WM levels are we expecting */
  1647. if (IS_GEN9(dev))
  1648. return 7;
  1649. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1650. return 4;
  1651. else if (INTEL_INFO(dev)->gen >= 6)
  1652. return 3;
  1653. else
  1654. return 2;
  1655. }
  1656. static void intel_print_wm_latency(struct drm_device *dev,
  1657. const char *name,
  1658. const uint16_t wm[8])
  1659. {
  1660. int level, max_level = ilk_wm_max_level(dev);
  1661. for (level = 0; level <= max_level; level++) {
  1662. unsigned int latency = wm[level];
  1663. if (latency == 0) {
  1664. DRM_ERROR("%s WM%d latency not provided\n",
  1665. name, level);
  1666. continue;
  1667. }
  1668. /*
  1669. * - latencies are in us on gen9.
  1670. * - before then, WM1+ latency values are in 0.5us units
  1671. */
  1672. if (IS_GEN9(dev))
  1673. latency *= 10;
  1674. else if (level > 0)
  1675. latency *= 5;
  1676. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1677. name, level, wm[level],
  1678. latency / 10, latency % 10);
  1679. }
  1680. }
  1681. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1682. uint16_t wm[5], uint16_t min)
  1683. {
  1684. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1685. if (wm[0] >= min)
  1686. return false;
  1687. wm[0] = max(wm[0], min);
  1688. for (level = 1; level <= max_level; level++)
  1689. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1690. return true;
  1691. }
  1692. static void snb_wm_latency_quirk(struct drm_device *dev)
  1693. {
  1694. struct drm_i915_private *dev_priv = dev->dev_private;
  1695. bool changed;
  1696. /*
  1697. * The BIOS provided WM memory latency values are often
  1698. * inadequate for high resolution displays. Adjust them.
  1699. */
  1700. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1701. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1702. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1703. if (!changed)
  1704. return;
  1705. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1706. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1707. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1708. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1709. }
  1710. static void ilk_setup_wm_latency(struct drm_device *dev)
  1711. {
  1712. struct drm_i915_private *dev_priv = dev->dev_private;
  1713. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1714. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1715. sizeof(dev_priv->wm.pri_latency));
  1716. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1717. sizeof(dev_priv->wm.pri_latency));
  1718. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1719. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1720. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1721. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1722. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1723. if (IS_GEN6(dev))
  1724. snb_wm_latency_quirk(dev);
  1725. }
  1726. static void skl_setup_wm_latency(struct drm_device *dev)
  1727. {
  1728. struct drm_i915_private *dev_priv = dev->dev_private;
  1729. intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
  1730. intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
  1731. }
  1732. static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
  1733. struct ilk_pipe_wm_parameters *p)
  1734. {
  1735. struct drm_device *dev = crtc->dev;
  1736. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1737. enum pipe pipe = intel_crtc->pipe;
  1738. struct drm_plane *plane;
  1739. if (!intel_crtc->active)
  1740. return;
  1741. p->active = true;
  1742. p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
  1743. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  1744. if (crtc->primary->state->fb) {
  1745. p->pri.enabled = true;
  1746. p->pri.bytes_per_pixel =
  1747. crtc->primary->state->fb->bits_per_pixel / 8;
  1748. } else {
  1749. p->pri.enabled = false;
  1750. p->pri.bytes_per_pixel = 0;
  1751. }
  1752. if (crtc->cursor->state->fb) {
  1753. p->cur.enabled = true;
  1754. p->cur.bytes_per_pixel = 4;
  1755. } else {
  1756. p->cur.enabled = false;
  1757. p->cur.bytes_per_pixel = 0;
  1758. }
  1759. p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
  1760. p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
  1761. drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
  1762. struct intel_plane *intel_plane = to_intel_plane(plane);
  1763. if (intel_plane->pipe == pipe) {
  1764. p->spr = intel_plane->wm;
  1765. break;
  1766. }
  1767. }
  1768. }
  1769. static void ilk_compute_wm_config(struct drm_device *dev,
  1770. struct intel_wm_config *config)
  1771. {
  1772. struct intel_crtc *intel_crtc;
  1773. /* Compute the currently _active_ config */
  1774. for_each_intel_crtc(dev, intel_crtc) {
  1775. const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
  1776. if (!wm->pipe_enabled)
  1777. continue;
  1778. config->sprites_enabled |= wm->sprites_enabled;
  1779. config->sprites_scaled |= wm->sprites_scaled;
  1780. config->num_pipes_active++;
  1781. }
  1782. }
  1783. /* Compute new watermarks for the pipe */
  1784. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  1785. const struct ilk_pipe_wm_parameters *params,
  1786. struct intel_pipe_wm *pipe_wm)
  1787. {
  1788. struct drm_device *dev = crtc->dev;
  1789. const struct drm_i915_private *dev_priv = dev->dev_private;
  1790. int level, max_level = ilk_wm_max_level(dev);
  1791. /* LP0 watermark maximums depend on this pipe alone */
  1792. struct intel_wm_config config = {
  1793. .num_pipes_active = 1,
  1794. .sprites_enabled = params->spr.enabled,
  1795. .sprites_scaled = params->spr.scaled,
  1796. };
  1797. struct ilk_wm_maximums max;
  1798. pipe_wm->pipe_enabled = params->active;
  1799. pipe_wm->sprites_enabled = params->spr.enabled;
  1800. pipe_wm->sprites_scaled = params->spr.scaled;
  1801. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1802. if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
  1803. max_level = 1;
  1804. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1805. if (params->spr.scaled)
  1806. max_level = 0;
  1807. ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
  1808. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1809. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  1810. /* LP0 watermarks always use 1/2 DDB partitioning */
  1811. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1812. /* At least LP0 must be valid */
  1813. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1814. return false;
  1815. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1816. for (level = 1; level <= max_level; level++) {
  1817. struct intel_wm_level wm = {};
  1818. ilk_compute_wm_level(dev_priv, level, params, &wm);
  1819. /*
  1820. * Disable any watermark level that exceeds the
  1821. * register maximums since such watermarks are
  1822. * always invalid.
  1823. */
  1824. if (!ilk_validate_wm_level(level, &max, &wm))
  1825. break;
  1826. pipe_wm->wm[level] = wm;
  1827. }
  1828. return true;
  1829. }
  1830. /*
  1831. * Merge the watermarks from all active pipes for a specific level.
  1832. */
  1833. static void ilk_merge_wm_level(struct drm_device *dev,
  1834. int level,
  1835. struct intel_wm_level *ret_wm)
  1836. {
  1837. const struct intel_crtc *intel_crtc;
  1838. ret_wm->enable = true;
  1839. for_each_intel_crtc(dev, intel_crtc) {
  1840. const struct intel_pipe_wm *active = &intel_crtc->wm.active;
  1841. const struct intel_wm_level *wm = &active->wm[level];
  1842. if (!active->pipe_enabled)
  1843. continue;
  1844. /*
  1845. * The watermark values may have been used in the past,
  1846. * so we must maintain them in the registers for some
  1847. * time even if the level is now disabled.
  1848. */
  1849. if (!wm->enable)
  1850. ret_wm->enable = false;
  1851. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  1852. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  1853. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  1854. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  1855. }
  1856. }
  1857. /*
  1858. * Merge all low power watermarks for all active pipes.
  1859. */
  1860. static void ilk_wm_merge(struct drm_device *dev,
  1861. const struct intel_wm_config *config,
  1862. const struct ilk_wm_maximums *max,
  1863. struct intel_pipe_wm *merged)
  1864. {
  1865. int level, max_level = ilk_wm_max_level(dev);
  1866. int last_enabled_level = max_level;
  1867. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  1868. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  1869. config->num_pipes_active > 1)
  1870. return;
  1871. /* ILK: FBC WM must be disabled always */
  1872. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  1873. /* merge each WM1+ level */
  1874. for (level = 1; level <= max_level; level++) {
  1875. struct intel_wm_level *wm = &merged->wm[level];
  1876. ilk_merge_wm_level(dev, level, wm);
  1877. if (level > last_enabled_level)
  1878. wm->enable = false;
  1879. else if (!ilk_validate_wm_level(level, max, wm))
  1880. /* make sure all following levels get disabled */
  1881. last_enabled_level = level - 1;
  1882. /*
  1883. * The spec says it is preferred to disable
  1884. * FBC WMs instead of disabling a WM level.
  1885. */
  1886. if (wm->fbc_val > max->fbc) {
  1887. if (wm->enable)
  1888. merged->fbc_wm_enabled = false;
  1889. wm->fbc_val = 0;
  1890. }
  1891. }
  1892. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  1893. /*
  1894. * FIXME this is racy. FBC might get enabled later.
  1895. * What we should check here is whether FBC can be
  1896. * enabled sometime later.
  1897. */
  1898. if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
  1899. for (level = 2; level <= max_level; level++) {
  1900. struct intel_wm_level *wm = &merged->wm[level];
  1901. wm->enable = false;
  1902. }
  1903. }
  1904. }
  1905. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  1906. {
  1907. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  1908. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  1909. }
  1910. /* The value we need to program into the WM_LPx latency field */
  1911. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  1912. {
  1913. struct drm_i915_private *dev_priv = dev->dev_private;
  1914. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1915. return 2 * level;
  1916. else
  1917. return dev_priv->wm.pri_latency[level];
  1918. }
  1919. static void ilk_compute_wm_results(struct drm_device *dev,
  1920. const struct intel_pipe_wm *merged,
  1921. enum intel_ddb_partitioning partitioning,
  1922. struct ilk_wm_values *results)
  1923. {
  1924. struct intel_crtc *intel_crtc;
  1925. int level, wm_lp;
  1926. results->enable_fbc_wm = merged->fbc_wm_enabled;
  1927. results->partitioning = partitioning;
  1928. /* LP1+ register values */
  1929. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  1930. const struct intel_wm_level *r;
  1931. level = ilk_wm_lp_to_level(wm_lp, merged);
  1932. r = &merged->wm[level];
  1933. /*
  1934. * Maintain the watermark values even if the level is
  1935. * disabled. Doing otherwise could cause underruns.
  1936. */
  1937. results->wm_lp[wm_lp - 1] =
  1938. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  1939. (r->pri_val << WM1_LP_SR_SHIFT) |
  1940. r->cur_val;
  1941. if (r->enable)
  1942. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  1943. if (INTEL_INFO(dev)->gen >= 8)
  1944. results->wm_lp[wm_lp - 1] |=
  1945. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  1946. else
  1947. results->wm_lp[wm_lp - 1] |=
  1948. r->fbc_val << WM1_LP_FBC_SHIFT;
  1949. /*
  1950. * Always set WM1S_LP_EN when spr_val != 0, even if the
  1951. * level is disabled. Doing otherwise could cause underruns.
  1952. */
  1953. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  1954. WARN_ON(wm_lp != 1);
  1955. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  1956. } else
  1957. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  1958. }
  1959. /* LP0 register values */
  1960. for_each_intel_crtc(dev, intel_crtc) {
  1961. enum pipe pipe = intel_crtc->pipe;
  1962. const struct intel_wm_level *r =
  1963. &intel_crtc->wm.active.wm[0];
  1964. if (WARN_ON(!r->enable))
  1965. continue;
  1966. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  1967. results->wm_pipe[pipe] =
  1968. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  1969. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  1970. r->cur_val;
  1971. }
  1972. }
  1973. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  1974. * case both are at the same level. Prefer r1 in case they're the same. */
  1975. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  1976. struct intel_pipe_wm *r1,
  1977. struct intel_pipe_wm *r2)
  1978. {
  1979. int level, max_level = ilk_wm_max_level(dev);
  1980. int level1 = 0, level2 = 0;
  1981. for (level = 1; level <= max_level; level++) {
  1982. if (r1->wm[level].enable)
  1983. level1 = level;
  1984. if (r2->wm[level].enable)
  1985. level2 = level;
  1986. }
  1987. if (level1 == level2) {
  1988. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  1989. return r2;
  1990. else
  1991. return r1;
  1992. } else if (level1 > level2) {
  1993. return r1;
  1994. } else {
  1995. return r2;
  1996. }
  1997. }
  1998. /* dirty bits used to track which watermarks need changes */
  1999. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2000. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2001. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2002. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2003. #define WM_DIRTY_FBC (1 << 24)
  2004. #define WM_DIRTY_DDB (1 << 25)
  2005. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2006. const struct ilk_wm_values *old,
  2007. const struct ilk_wm_values *new)
  2008. {
  2009. unsigned int dirty = 0;
  2010. enum pipe pipe;
  2011. int wm_lp;
  2012. for_each_pipe(dev_priv, pipe) {
  2013. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2014. dirty |= WM_DIRTY_LINETIME(pipe);
  2015. /* Must disable LP1+ watermarks too */
  2016. dirty |= WM_DIRTY_LP_ALL;
  2017. }
  2018. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2019. dirty |= WM_DIRTY_PIPE(pipe);
  2020. /* Must disable LP1+ watermarks too */
  2021. dirty |= WM_DIRTY_LP_ALL;
  2022. }
  2023. }
  2024. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2025. dirty |= WM_DIRTY_FBC;
  2026. /* Must disable LP1+ watermarks too */
  2027. dirty |= WM_DIRTY_LP_ALL;
  2028. }
  2029. if (old->partitioning != new->partitioning) {
  2030. dirty |= WM_DIRTY_DDB;
  2031. /* Must disable LP1+ watermarks too */
  2032. dirty |= WM_DIRTY_LP_ALL;
  2033. }
  2034. /* LP1+ watermarks already deemed dirty, no need to continue */
  2035. if (dirty & WM_DIRTY_LP_ALL)
  2036. return dirty;
  2037. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2038. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2039. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2040. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2041. break;
  2042. }
  2043. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2044. for (; wm_lp <= 3; wm_lp++)
  2045. dirty |= WM_DIRTY_LP(wm_lp);
  2046. return dirty;
  2047. }
  2048. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2049. unsigned int dirty)
  2050. {
  2051. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2052. bool changed = false;
  2053. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2054. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2055. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2056. changed = true;
  2057. }
  2058. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2059. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2060. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2061. changed = true;
  2062. }
  2063. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2064. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2065. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2066. changed = true;
  2067. }
  2068. /*
  2069. * Don't touch WM1S_LP_EN here.
  2070. * Doing so could cause underruns.
  2071. */
  2072. return changed;
  2073. }
  2074. /*
  2075. * The spec says we shouldn't write when we don't need, because every write
  2076. * causes WMs to be re-evaluated, expending some power.
  2077. */
  2078. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2079. struct ilk_wm_values *results)
  2080. {
  2081. struct drm_device *dev = dev_priv->dev;
  2082. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2083. unsigned int dirty;
  2084. uint32_t val;
  2085. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2086. if (!dirty)
  2087. return;
  2088. _ilk_disable_lp_wm(dev_priv, dirty);
  2089. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2090. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2091. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2092. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2093. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2094. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2095. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2096. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2097. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2098. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2099. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2100. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2101. if (dirty & WM_DIRTY_DDB) {
  2102. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2103. val = I915_READ(WM_MISC);
  2104. if (results->partitioning == INTEL_DDB_PART_1_2)
  2105. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2106. else
  2107. val |= WM_MISC_DATA_PARTITION_5_6;
  2108. I915_WRITE(WM_MISC, val);
  2109. } else {
  2110. val = I915_READ(DISP_ARB_CTL2);
  2111. if (results->partitioning == INTEL_DDB_PART_1_2)
  2112. val &= ~DISP_DATA_PARTITION_5_6;
  2113. else
  2114. val |= DISP_DATA_PARTITION_5_6;
  2115. I915_WRITE(DISP_ARB_CTL2, val);
  2116. }
  2117. }
  2118. if (dirty & WM_DIRTY_FBC) {
  2119. val = I915_READ(DISP_ARB_CTL);
  2120. if (results->enable_fbc_wm)
  2121. val &= ~DISP_FBC_WM_DIS;
  2122. else
  2123. val |= DISP_FBC_WM_DIS;
  2124. I915_WRITE(DISP_ARB_CTL, val);
  2125. }
  2126. if (dirty & WM_DIRTY_LP(1) &&
  2127. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2128. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2129. if (INTEL_INFO(dev)->gen >= 7) {
  2130. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2131. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2132. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2133. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2134. }
  2135. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2136. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2137. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2138. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2139. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2140. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2141. dev_priv->wm.hw = *results;
  2142. }
  2143. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2144. {
  2145. struct drm_i915_private *dev_priv = dev->dev_private;
  2146. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2147. }
  2148. /*
  2149. * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
  2150. * different active planes.
  2151. */
  2152. #define SKL_DDB_SIZE 896 /* in blocks */
  2153. static void
  2154. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2155. struct drm_crtc *for_crtc,
  2156. const struct intel_wm_config *config,
  2157. const struct skl_pipe_wm_parameters *params,
  2158. struct skl_ddb_entry *alloc /* out */)
  2159. {
  2160. struct drm_crtc *crtc;
  2161. unsigned int pipe_size, ddb_size;
  2162. int nth_active_pipe;
  2163. if (!params->active) {
  2164. alloc->start = 0;
  2165. alloc->end = 0;
  2166. return;
  2167. }
  2168. ddb_size = SKL_DDB_SIZE;
  2169. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2170. nth_active_pipe = 0;
  2171. for_each_crtc(dev, crtc) {
  2172. if (!to_intel_crtc(crtc)->active)
  2173. continue;
  2174. if (crtc == for_crtc)
  2175. break;
  2176. nth_active_pipe++;
  2177. }
  2178. pipe_size = ddb_size / config->num_pipes_active;
  2179. alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
  2180. alloc->end = alloc->start + pipe_size;
  2181. }
  2182. static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
  2183. {
  2184. if (config->num_pipes_active == 1)
  2185. return 32;
  2186. return 8;
  2187. }
  2188. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2189. {
  2190. entry->start = reg & 0x3ff;
  2191. entry->end = (reg >> 16) & 0x3ff;
  2192. if (entry->end)
  2193. entry->end += 1;
  2194. }
  2195. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2196. struct skl_ddb_allocation *ddb /* out */)
  2197. {
  2198. enum pipe pipe;
  2199. int plane;
  2200. u32 val;
  2201. for_each_pipe(dev_priv, pipe) {
  2202. for_each_plane(dev_priv, pipe, plane) {
  2203. val = I915_READ(PLANE_BUF_CFG(pipe, plane));
  2204. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
  2205. val);
  2206. }
  2207. val = I915_READ(CUR_BUF_CFG(pipe));
  2208. skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
  2209. }
  2210. }
  2211. static unsigned int
  2212. skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
  2213. {
  2214. return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
  2215. }
  2216. /*
  2217. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2218. * a 8192x4096@32bpp framebuffer:
  2219. * 3 * 4096 * 8192 * 4 < 2^32
  2220. */
  2221. static unsigned int
  2222. skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
  2223. const struct skl_pipe_wm_parameters *params)
  2224. {
  2225. unsigned int total_data_rate = 0;
  2226. int plane;
  2227. for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
  2228. const struct intel_plane_wm_parameters *p;
  2229. p = &params->plane[plane];
  2230. if (!p->enabled)
  2231. continue;
  2232. total_data_rate += skl_plane_relative_data_rate(p);
  2233. }
  2234. return total_data_rate;
  2235. }
  2236. static void
  2237. skl_allocate_pipe_ddb(struct drm_crtc *crtc,
  2238. const struct intel_wm_config *config,
  2239. const struct skl_pipe_wm_parameters *params,
  2240. struct skl_ddb_allocation *ddb /* out */)
  2241. {
  2242. struct drm_device *dev = crtc->dev;
  2243. struct drm_i915_private *dev_priv = dev->dev_private;
  2244. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2245. enum pipe pipe = intel_crtc->pipe;
  2246. struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
  2247. uint16_t alloc_size, start, cursor_blocks;
  2248. uint16_t minimum[I915_MAX_PLANES];
  2249. unsigned int total_data_rate;
  2250. int plane;
  2251. skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
  2252. alloc_size = skl_ddb_entry_size(alloc);
  2253. if (alloc_size == 0) {
  2254. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2255. memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
  2256. return;
  2257. }
  2258. cursor_blocks = skl_cursor_allocation(config);
  2259. ddb->cursor[pipe].start = alloc->end - cursor_blocks;
  2260. ddb->cursor[pipe].end = alloc->end;
  2261. alloc_size -= cursor_blocks;
  2262. alloc->end -= cursor_blocks;
  2263. /* 1. Allocate the mininum required blocks for each active plane */
  2264. for_each_plane(dev_priv, pipe, plane) {
  2265. const struct intel_plane_wm_parameters *p;
  2266. p = &params->plane[plane];
  2267. if (!p->enabled)
  2268. continue;
  2269. minimum[plane] = 8;
  2270. alloc_size -= minimum[plane];
  2271. }
  2272. /*
  2273. * 2. Distribute the remaining space in proportion to the amount of
  2274. * data each plane needs to fetch from memory.
  2275. *
  2276. * FIXME: we may not allocate every single block here.
  2277. */
  2278. total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
  2279. start = alloc->start;
  2280. for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
  2281. const struct intel_plane_wm_parameters *p;
  2282. unsigned int data_rate;
  2283. uint16_t plane_blocks;
  2284. p = &params->plane[plane];
  2285. if (!p->enabled)
  2286. continue;
  2287. data_rate = skl_plane_relative_data_rate(p);
  2288. /*
  2289. * promote the expression to 64 bits to avoid overflowing, the
  2290. * result is < available as data_rate / total_data_rate < 1
  2291. */
  2292. plane_blocks = minimum[plane];
  2293. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  2294. total_data_rate);
  2295. ddb->plane[pipe][plane].start = start;
  2296. ddb->plane[pipe][plane].end = start + plane_blocks;
  2297. start += plane_blocks;
  2298. }
  2299. }
  2300. static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
  2301. {
  2302. /* TODO: Take into account the scalers once we support them */
  2303. return config->base.adjusted_mode.crtc_clock;
  2304. }
  2305. /*
  2306. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  2307. * for the read latency) and bytes_per_pixel should always be <= 8, so that
  2308. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  2309. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  2310. */
  2311. static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  2312. uint32_t latency)
  2313. {
  2314. uint32_t wm_intermediate_val, ret;
  2315. if (latency == 0)
  2316. return UINT_MAX;
  2317. wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
  2318. ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
  2319. return ret;
  2320. }
  2321. static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  2322. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  2323. uint64_t tiling, uint32_t latency)
  2324. {
  2325. uint32_t ret;
  2326. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2327. uint32_t wm_intermediate_val;
  2328. if (latency == 0)
  2329. return UINT_MAX;
  2330. plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
  2331. if (tiling == I915_FORMAT_MOD_Y_TILED ||
  2332. tiling == I915_FORMAT_MOD_Yf_TILED) {
  2333. plane_bytes_per_line *= 4;
  2334. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2335. plane_blocks_per_line /= 4;
  2336. } else {
  2337. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2338. }
  2339. wm_intermediate_val = latency * pixel_rate;
  2340. ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
  2341. plane_blocks_per_line;
  2342. return ret;
  2343. }
  2344. static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
  2345. const struct intel_crtc *intel_crtc)
  2346. {
  2347. struct drm_device *dev = intel_crtc->base.dev;
  2348. struct drm_i915_private *dev_priv = dev->dev_private;
  2349. const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2350. enum pipe pipe = intel_crtc->pipe;
  2351. if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
  2352. sizeof(new_ddb->plane[pipe])))
  2353. return true;
  2354. if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
  2355. sizeof(new_ddb->cursor[pipe])))
  2356. return true;
  2357. return false;
  2358. }
  2359. static void skl_compute_wm_global_parameters(struct drm_device *dev,
  2360. struct intel_wm_config *config)
  2361. {
  2362. struct drm_crtc *crtc;
  2363. struct drm_plane *plane;
  2364. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2365. config->num_pipes_active += to_intel_crtc(crtc)->active;
  2366. /* FIXME: I don't think we need those two global parameters on SKL */
  2367. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2368. struct intel_plane *intel_plane = to_intel_plane(plane);
  2369. config->sprites_enabled |= intel_plane->wm.enabled;
  2370. config->sprites_scaled |= intel_plane->wm.scaled;
  2371. }
  2372. }
  2373. static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
  2374. struct skl_pipe_wm_parameters *p)
  2375. {
  2376. struct drm_device *dev = crtc->dev;
  2377. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2378. enum pipe pipe = intel_crtc->pipe;
  2379. struct drm_plane *plane;
  2380. struct drm_framebuffer *fb;
  2381. int i = 1; /* Index for sprite planes start */
  2382. p->active = intel_crtc->active;
  2383. if (p->active) {
  2384. p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
  2385. p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
  2386. fb = crtc->primary->state->fb;
  2387. if (fb) {
  2388. p->plane[0].enabled = true;
  2389. p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
  2390. p->plane[0].tiling = fb->modifier[0];
  2391. } else {
  2392. p->plane[0].enabled = false;
  2393. p->plane[0].bytes_per_pixel = 0;
  2394. p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
  2395. }
  2396. p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
  2397. p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
  2398. p->plane[0].rotation = crtc->primary->state->rotation;
  2399. fb = crtc->cursor->state->fb;
  2400. if (fb) {
  2401. p->cursor.enabled = true;
  2402. p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
  2403. p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
  2404. p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
  2405. } else {
  2406. p->cursor.enabled = false;
  2407. p->cursor.bytes_per_pixel = 0;
  2408. p->cursor.horiz_pixels = 64;
  2409. p->cursor.vert_pixels = 64;
  2410. }
  2411. }
  2412. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2413. struct intel_plane *intel_plane = to_intel_plane(plane);
  2414. if (intel_plane->pipe == pipe &&
  2415. plane->type == DRM_PLANE_TYPE_OVERLAY)
  2416. p->plane[i++] = intel_plane->wm;
  2417. }
  2418. }
  2419. static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  2420. struct skl_pipe_wm_parameters *p,
  2421. struct intel_plane_wm_parameters *p_params,
  2422. uint16_t ddb_allocation,
  2423. int level,
  2424. uint16_t *out_blocks, /* out */
  2425. uint8_t *out_lines /* out */)
  2426. {
  2427. uint32_t latency = dev_priv->wm.skl_latency[level];
  2428. uint32_t method1, method2;
  2429. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2430. uint32_t res_blocks, res_lines;
  2431. uint32_t selected_result;
  2432. if (latency == 0 || !p->active || !p_params->enabled)
  2433. return false;
  2434. method1 = skl_wm_method1(p->pixel_rate,
  2435. p_params->bytes_per_pixel,
  2436. latency);
  2437. method2 = skl_wm_method2(p->pixel_rate,
  2438. p->pipe_htotal,
  2439. p_params->horiz_pixels,
  2440. p_params->bytes_per_pixel,
  2441. p_params->tiling,
  2442. latency);
  2443. plane_bytes_per_line = p_params->horiz_pixels *
  2444. p_params->bytes_per_pixel;
  2445. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2446. if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
  2447. p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
  2448. uint32_t min_scanlines = 4;
  2449. uint32_t y_tile_minimum;
  2450. if (intel_rotation_90_or_270(p_params->rotation)) {
  2451. switch (p_params->bytes_per_pixel) {
  2452. case 1:
  2453. min_scanlines = 16;
  2454. break;
  2455. case 2:
  2456. min_scanlines = 8;
  2457. break;
  2458. case 8:
  2459. WARN(1, "Unsupported pixel depth for rotation");
  2460. }
  2461. }
  2462. y_tile_minimum = plane_blocks_per_line * min_scanlines;
  2463. selected_result = max(method2, y_tile_minimum);
  2464. } else {
  2465. if ((ddb_allocation / plane_blocks_per_line) >= 1)
  2466. selected_result = min(method1, method2);
  2467. else
  2468. selected_result = method1;
  2469. }
  2470. res_blocks = selected_result + 1;
  2471. res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
  2472. if (level >= 1 && level <= 7) {
  2473. if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
  2474. p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
  2475. res_lines += 4;
  2476. else
  2477. res_blocks++;
  2478. }
  2479. if (res_blocks >= ddb_allocation || res_lines > 31)
  2480. return false;
  2481. *out_blocks = res_blocks;
  2482. *out_lines = res_lines;
  2483. return true;
  2484. }
  2485. static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  2486. struct skl_ddb_allocation *ddb,
  2487. struct skl_pipe_wm_parameters *p,
  2488. enum pipe pipe,
  2489. int level,
  2490. int num_planes,
  2491. struct skl_wm_level *result)
  2492. {
  2493. uint16_t ddb_blocks;
  2494. int i;
  2495. for (i = 0; i < num_planes; i++) {
  2496. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
  2497. result->plane_en[i] = skl_compute_plane_wm(dev_priv,
  2498. p, &p->plane[i],
  2499. ddb_blocks,
  2500. level,
  2501. &result->plane_res_b[i],
  2502. &result->plane_res_l[i]);
  2503. }
  2504. ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
  2505. result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
  2506. ddb_blocks, level,
  2507. &result->cursor_res_b,
  2508. &result->cursor_res_l);
  2509. }
  2510. static uint32_t
  2511. skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
  2512. {
  2513. if (!to_intel_crtc(crtc)->active)
  2514. return 0;
  2515. return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
  2516. }
  2517. static void skl_compute_transition_wm(struct drm_crtc *crtc,
  2518. struct skl_pipe_wm_parameters *params,
  2519. struct skl_wm_level *trans_wm /* out */)
  2520. {
  2521. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2522. int i;
  2523. if (!params->active)
  2524. return;
  2525. /* Until we know more, just disable transition WMs */
  2526. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2527. trans_wm->plane_en[i] = false;
  2528. trans_wm->cursor_en = false;
  2529. }
  2530. static void skl_compute_pipe_wm(struct drm_crtc *crtc,
  2531. struct skl_ddb_allocation *ddb,
  2532. struct skl_pipe_wm_parameters *params,
  2533. struct skl_pipe_wm *pipe_wm)
  2534. {
  2535. struct drm_device *dev = crtc->dev;
  2536. const struct drm_i915_private *dev_priv = dev->dev_private;
  2537. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2538. int level, max_level = ilk_wm_max_level(dev);
  2539. for (level = 0; level <= max_level; level++) {
  2540. skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
  2541. level, intel_num_planes(intel_crtc),
  2542. &pipe_wm->wm[level]);
  2543. }
  2544. pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
  2545. skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
  2546. }
  2547. static void skl_compute_wm_results(struct drm_device *dev,
  2548. struct skl_pipe_wm_parameters *p,
  2549. struct skl_pipe_wm *p_wm,
  2550. struct skl_wm_values *r,
  2551. struct intel_crtc *intel_crtc)
  2552. {
  2553. int level, max_level = ilk_wm_max_level(dev);
  2554. enum pipe pipe = intel_crtc->pipe;
  2555. uint32_t temp;
  2556. int i;
  2557. for (level = 0; level <= max_level; level++) {
  2558. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2559. temp = 0;
  2560. temp |= p_wm->wm[level].plane_res_l[i] <<
  2561. PLANE_WM_LINES_SHIFT;
  2562. temp |= p_wm->wm[level].plane_res_b[i];
  2563. if (p_wm->wm[level].plane_en[i])
  2564. temp |= PLANE_WM_EN;
  2565. r->plane[pipe][i][level] = temp;
  2566. }
  2567. temp = 0;
  2568. temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
  2569. temp |= p_wm->wm[level].cursor_res_b;
  2570. if (p_wm->wm[level].cursor_en)
  2571. temp |= PLANE_WM_EN;
  2572. r->cursor[pipe][level] = temp;
  2573. }
  2574. /* transition WMs */
  2575. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2576. temp = 0;
  2577. temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
  2578. temp |= p_wm->trans_wm.plane_res_b[i];
  2579. if (p_wm->trans_wm.plane_en[i])
  2580. temp |= PLANE_WM_EN;
  2581. r->plane_trans[pipe][i] = temp;
  2582. }
  2583. temp = 0;
  2584. temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
  2585. temp |= p_wm->trans_wm.cursor_res_b;
  2586. if (p_wm->trans_wm.cursor_en)
  2587. temp |= PLANE_WM_EN;
  2588. r->cursor_trans[pipe] = temp;
  2589. r->wm_linetime[pipe] = p_wm->linetime;
  2590. }
  2591. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
  2592. const struct skl_ddb_entry *entry)
  2593. {
  2594. if (entry->end)
  2595. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  2596. else
  2597. I915_WRITE(reg, 0);
  2598. }
  2599. static void skl_write_wm_values(struct drm_i915_private *dev_priv,
  2600. const struct skl_wm_values *new)
  2601. {
  2602. struct drm_device *dev = dev_priv->dev;
  2603. struct intel_crtc *crtc;
  2604. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  2605. int i, level, max_level = ilk_wm_max_level(dev);
  2606. enum pipe pipe = crtc->pipe;
  2607. if (!new->dirty[pipe])
  2608. continue;
  2609. I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
  2610. for (level = 0; level <= max_level; level++) {
  2611. for (i = 0; i < intel_num_planes(crtc); i++)
  2612. I915_WRITE(PLANE_WM(pipe, i, level),
  2613. new->plane[pipe][i][level]);
  2614. I915_WRITE(CUR_WM(pipe, level),
  2615. new->cursor[pipe][level]);
  2616. }
  2617. for (i = 0; i < intel_num_planes(crtc); i++)
  2618. I915_WRITE(PLANE_WM_TRANS(pipe, i),
  2619. new->plane_trans[pipe][i]);
  2620. I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
  2621. for (i = 0; i < intel_num_planes(crtc); i++)
  2622. skl_ddb_entry_write(dev_priv,
  2623. PLANE_BUF_CFG(pipe, i),
  2624. &new->ddb.plane[pipe][i]);
  2625. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  2626. &new->ddb.cursor[pipe]);
  2627. }
  2628. }
  2629. /*
  2630. * When setting up a new DDB allocation arrangement, we need to correctly
  2631. * sequence the times at which the new allocations for the pipes are taken into
  2632. * account or we'll have pipes fetching from space previously allocated to
  2633. * another pipe.
  2634. *
  2635. * Roughly the sequence looks like:
  2636. * 1. re-allocate the pipe(s) with the allocation being reduced and not
  2637. * overlapping with a previous light-up pipe (another way to put it is:
  2638. * pipes with their new allocation strickly included into their old ones).
  2639. * 2. re-allocate the other pipes that get their allocation reduced
  2640. * 3. allocate the pipes having their allocation increased
  2641. *
  2642. * Steps 1. and 2. are here to take care of the following case:
  2643. * - Initially DDB looks like this:
  2644. * | B | C |
  2645. * - enable pipe A.
  2646. * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
  2647. * allocation
  2648. * | A | B | C |
  2649. *
  2650. * We need to sequence the re-allocation: C, B, A (and not B, C, A).
  2651. */
  2652. static void
  2653. skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
  2654. {
  2655. int plane;
  2656. DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
  2657. for_each_plane(dev_priv, pipe, plane) {
  2658. I915_WRITE(PLANE_SURF(pipe, plane),
  2659. I915_READ(PLANE_SURF(pipe, plane)));
  2660. }
  2661. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  2662. }
  2663. static bool
  2664. skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
  2665. const struct skl_ddb_allocation *new,
  2666. enum pipe pipe)
  2667. {
  2668. uint16_t old_size, new_size;
  2669. old_size = skl_ddb_entry_size(&old->pipe[pipe]);
  2670. new_size = skl_ddb_entry_size(&new->pipe[pipe]);
  2671. return old_size != new_size &&
  2672. new->pipe[pipe].start >= old->pipe[pipe].start &&
  2673. new->pipe[pipe].end <= old->pipe[pipe].end;
  2674. }
  2675. static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
  2676. struct skl_wm_values *new_values)
  2677. {
  2678. struct drm_device *dev = dev_priv->dev;
  2679. struct skl_ddb_allocation *cur_ddb, *new_ddb;
  2680. bool reallocated[I915_MAX_PIPES] = {false, false, false};
  2681. struct intel_crtc *crtc;
  2682. enum pipe pipe;
  2683. new_ddb = &new_values->ddb;
  2684. cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2685. /*
  2686. * First pass: flush the pipes with the new allocation contained into
  2687. * the old space.
  2688. *
  2689. * We'll wait for the vblank on those pipes to ensure we can safely
  2690. * re-allocate the freed space without this pipe fetching from it.
  2691. */
  2692. for_each_intel_crtc(dev, crtc) {
  2693. if (!crtc->active)
  2694. continue;
  2695. pipe = crtc->pipe;
  2696. if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
  2697. continue;
  2698. skl_wm_flush_pipe(dev_priv, pipe, 1);
  2699. intel_wait_for_vblank(dev, pipe);
  2700. reallocated[pipe] = true;
  2701. }
  2702. /*
  2703. * Second pass: flush the pipes that are having their allocation
  2704. * reduced, but overlapping with a previous allocation.
  2705. *
  2706. * Here as well we need to wait for the vblank to make sure the freed
  2707. * space is not used anymore.
  2708. */
  2709. for_each_intel_crtc(dev, crtc) {
  2710. if (!crtc->active)
  2711. continue;
  2712. pipe = crtc->pipe;
  2713. if (reallocated[pipe])
  2714. continue;
  2715. if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
  2716. skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
  2717. skl_wm_flush_pipe(dev_priv, pipe, 2);
  2718. intel_wait_for_vblank(dev, pipe);
  2719. reallocated[pipe] = true;
  2720. }
  2721. }
  2722. /*
  2723. * Third pass: flush the pipes that got more space allocated.
  2724. *
  2725. * We don't need to actively wait for the update here, next vblank
  2726. * will just get more DDB space with the correct WM values.
  2727. */
  2728. for_each_intel_crtc(dev, crtc) {
  2729. if (!crtc->active)
  2730. continue;
  2731. pipe = crtc->pipe;
  2732. /*
  2733. * At this point, only the pipes more space than before are
  2734. * left to re-allocate.
  2735. */
  2736. if (reallocated[pipe])
  2737. continue;
  2738. skl_wm_flush_pipe(dev_priv, pipe, 3);
  2739. }
  2740. }
  2741. static bool skl_update_pipe_wm(struct drm_crtc *crtc,
  2742. struct skl_pipe_wm_parameters *params,
  2743. struct intel_wm_config *config,
  2744. struct skl_ddb_allocation *ddb, /* out */
  2745. struct skl_pipe_wm *pipe_wm /* out */)
  2746. {
  2747. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2748. skl_compute_wm_pipe_parameters(crtc, params);
  2749. skl_allocate_pipe_ddb(crtc, config, params, ddb);
  2750. skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
  2751. if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
  2752. return false;
  2753. intel_crtc->wm.skl_active = *pipe_wm;
  2754. return true;
  2755. }
  2756. static void skl_update_other_pipe_wm(struct drm_device *dev,
  2757. struct drm_crtc *crtc,
  2758. struct intel_wm_config *config,
  2759. struct skl_wm_values *r)
  2760. {
  2761. struct intel_crtc *intel_crtc;
  2762. struct intel_crtc *this_crtc = to_intel_crtc(crtc);
  2763. /*
  2764. * If the WM update hasn't changed the allocation for this_crtc (the
  2765. * crtc we are currently computing the new WM values for), other
  2766. * enabled crtcs will keep the same allocation and we don't need to
  2767. * recompute anything for them.
  2768. */
  2769. if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
  2770. return;
  2771. /*
  2772. * Otherwise, because of this_crtc being freshly enabled/disabled, the
  2773. * other active pipes need new DDB allocation and WM values.
  2774. */
  2775. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  2776. base.head) {
  2777. struct skl_pipe_wm_parameters params = {};
  2778. struct skl_pipe_wm pipe_wm = {};
  2779. bool wm_changed;
  2780. if (this_crtc->pipe == intel_crtc->pipe)
  2781. continue;
  2782. if (!intel_crtc->active)
  2783. continue;
  2784. wm_changed = skl_update_pipe_wm(&intel_crtc->base,
  2785. &params, config,
  2786. &r->ddb, &pipe_wm);
  2787. /*
  2788. * If we end up re-computing the other pipe WM values, it's
  2789. * because it was really needed, so we expect the WM values to
  2790. * be different.
  2791. */
  2792. WARN_ON(!wm_changed);
  2793. skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
  2794. r->dirty[intel_crtc->pipe] = true;
  2795. }
  2796. }
  2797. static void skl_update_wm(struct drm_crtc *crtc)
  2798. {
  2799. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2800. struct drm_device *dev = crtc->dev;
  2801. struct drm_i915_private *dev_priv = dev->dev_private;
  2802. struct skl_pipe_wm_parameters params = {};
  2803. struct skl_wm_values *results = &dev_priv->wm.skl_results;
  2804. struct skl_pipe_wm pipe_wm = {};
  2805. struct intel_wm_config config = {};
  2806. memset(results, 0, sizeof(*results));
  2807. skl_compute_wm_global_parameters(dev, &config);
  2808. if (!skl_update_pipe_wm(crtc, &params, &config,
  2809. &results->ddb, &pipe_wm))
  2810. return;
  2811. skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
  2812. results->dirty[intel_crtc->pipe] = true;
  2813. skl_update_other_pipe_wm(dev, crtc, &config, results);
  2814. skl_write_wm_values(dev_priv, results);
  2815. skl_flush_wm_values(dev_priv, results);
  2816. /* store the new configuration */
  2817. dev_priv->wm.skl_hw = *results;
  2818. }
  2819. static void
  2820. skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
  2821. uint32_t sprite_width, uint32_t sprite_height,
  2822. int pixel_size, bool enabled, bool scaled)
  2823. {
  2824. struct intel_plane *intel_plane = to_intel_plane(plane);
  2825. struct drm_framebuffer *fb = plane->state->fb;
  2826. intel_plane->wm.enabled = enabled;
  2827. intel_plane->wm.scaled = scaled;
  2828. intel_plane->wm.horiz_pixels = sprite_width;
  2829. intel_plane->wm.vert_pixels = sprite_height;
  2830. intel_plane->wm.bytes_per_pixel = pixel_size;
  2831. intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
  2832. /*
  2833. * Framebuffer can be NULL on plane disable, but it does not
  2834. * matter for watermarks if we assume no tiling in that case.
  2835. */
  2836. if (fb)
  2837. intel_plane->wm.tiling = fb->modifier[0];
  2838. intel_plane->wm.rotation = plane->state->rotation;
  2839. skl_update_wm(crtc);
  2840. }
  2841. static void ilk_update_wm(struct drm_crtc *crtc)
  2842. {
  2843. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2844. struct drm_device *dev = crtc->dev;
  2845. struct drm_i915_private *dev_priv = dev->dev_private;
  2846. struct ilk_wm_maximums max;
  2847. struct ilk_pipe_wm_parameters params = {};
  2848. struct ilk_wm_values results = {};
  2849. enum intel_ddb_partitioning partitioning;
  2850. struct intel_pipe_wm pipe_wm = {};
  2851. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  2852. struct intel_wm_config config = {};
  2853. ilk_compute_wm_parameters(crtc, &params);
  2854. intel_compute_pipe_wm(crtc, &params, &pipe_wm);
  2855. if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
  2856. return;
  2857. intel_crtc->wm.active = pipe_wm;
  2858. ilk_compute_wm_config(dev, &config);
  2859. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  2860. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  2861. /* 5/6 split only in single pipe config on IVB+ */
  2862. if (INTEL_INFO(dev)->gen >= 7 &&
  2863. config.num_pipes_active == 1 && config.sprites_enabled) {
  2864. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  2865. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  2866. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  2867. } else {
  2868. best_lp_wm = &lp_wm_1_2;
  2869. }
  2870. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  2871. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2872. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  2873. ilk_write_wm_values(dev_priv, &results);
  2874. }
  2875. static void
  2876. ilk_update_sprite_wm(struct drm_plane *plane,
  2877. struct drm_crtc *crtc,
  2878. uint32_t sprite_width, uint32_t sprite_height,
  2879. int pixel_size, bool enabled, bool scaled)
  2880. {
  2881. struct drm_device *dev = plane->dev;
  2882. struct intel_plane *intel_plane = to_intel_plane(plane);
  2883. intel_plane->wm.enabled = enabled;
  2884. intel_plane->wm.scaled = scaled;
  2885. intel_plane->wm.horiz_pixels = sprite_width;
  2886. intel_plane->wm.vert_pixels = sprite_width;
  2887. intel_plane->wm.bytes_per_pixel = pixel_size;
  2888. /*
  2889. * IVB workaround: must disable low power watermarks for at least
  2890. * one frame before enabling scaling. LP watermarks can be re-enabled
  2891. * when scaling is disabled.
  2892. *
  2893. * WaCxSRDisabledForSpriteScaling:ivb
  2894. */
  2895. if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
  2896. intel_wait_for_vblank(dev, intel_plane->pipe);
  2897. ilk_update_wm(crtc);
  2898. }
  2899. static void skl_pipe_wm_active_state(uint32_t val,
  2900. struct skl_pipe_wm *active,
  2901. bool is_transwm,
  2902. bool is_cursor,
  2903. int i,
  2904. int level)
  2905. {
  2906. bool is_enabled = (val & PLANE_WM_EN) != 0;
  2907. if (!is_transwm) {
  2908. if (!is_cursor) {
  2909. active->wm[level].plane_en[i] = is_enabled;
  2910. active->wm[level].plane_res_b[i] =
  2911. val & PLANE_WM_BLOCKS_MASK;
  2912. active->wm[level].plane_res_l[i] =
  2913. (val >> PLANE_WM_LINES_SHIFT) &
  2914. PLANE_WM_LINES_MASK;
  2915. } else {
  2916. active->wm[level].cursor_en = is_enabled;
  2917. active->wm[level].cursor_res_b =
  2918. val & PLANE_WM_BLOCKS_MASK;
  2919. active->wm[level].cursor_res_l =
  2920. (val >> PLANE_WM_LINES_SHIFT) &
  2921. PLANE_WM_LINES_MASK;
  2922. }
  2923. } else {
  2924. if (!is_cursor) {
  2925. active->trans_wm.plane_en[i] = is_enabled;
  2926. active->trans_wm.plane_res_b[i] =
  2927. val & PLANE_WM_BLOCKS_MASK;
  2928. active->trans_wm.plane_res_l[i] =
  2929. (val >> PLANE_WM_LINES_SHIFT) &
  2930. PLANE_WM_LINES_MASK;
  2931. } else {
  2932. active->trans_wm.cursor_en = is_enabled;
  2933. active->trans_wm.cursor_res_b =
  2934. val & PLANE_WM_BLOCKS_MASK;
  2935. active->trans_wm.cursor_res_l =
  2936. (val >> PLANE_WM_LINES_SHIFT) &
  2937. PLANE_WM_LINES_MASK;
  2938. }
  2939. }
  2940. }
  2941. static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2942. {
  2943. struct drm_device *dev = crtc->dev;
  2944. struct drm_i915_private *dev_priv = dev->dev_private;
  2945. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  2946. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2947. struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
  2948. enum pipe pipe = intel_crtc->pipe;
  2949. int level, i, max_level;
  2950. uint32_t temp;
  2951. max_level = ilk_wm_max_level(dev);
  2952. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  2953. for (level = 0; level <= max_level; level++) {
  2954. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2955. hw->plane[pipe][i][level] =
  2956. I915_READ(PLANE_WM(pipe, i, level));
  2957. hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
  2958. }
  2959. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  2960. hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
  2961. hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
  2962. if (!intel_crtc->active)
  2963. return;
  2964. hw->dirty[pipe] = true;
  2965. active->linetime = hw->wm_linetime[pipe];
  2966. for (level = 0; level <= max_level; level++) {
  2967. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2968. temp = hw->plane[pipe][i][level];
  2969. skl_pipe_wm_active_state(temp, active, false,
  2970. false, i, level);
  2971. }
  2972. temp = hw->cursor[pipe][level];
  2973. skl_pipe_wm_active_state(temp, active, false, true, i, level);
  2974. }
  2975. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2976. temp = hw->plane_trans[pipe][i];
  2977. skl_pipe_wm_active_state(temp, active, true, false, i, 0);
  2978. }
  2979. temp = hw->cursor_trans[pipe];
  2980. skl_pipe_wm_active_state(temp, active, true, true, i, 0);
  2981. }
  2982. void skl_wm_get_hw_state(struct drm_device *dev)
  2983. {
  2984. struct drm_i915_private *dev_priv = dev->dev_private;
  2985. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  2986. struct drm_crtc *crtc;
  2987. skl_ddb_get_hw_state(dev_priv, ddb);
  2988. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  2989. skl_pipe_wm_get_hw_state(crtc);
  2990. }
  2991. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  2992. {
  2993. struct drm_device *dev = crtc->dev;
  2994. struct drm_i915_private *dev_priv = dev->dev_private;
  2995. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  2996. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2997. struct intel_pipe_wm *active = &intel_crtc->wm.active;
  2998. enum pipe pipe = intel_crtc->pipe;
  2999. static const unsigned int wm0_pipe_reg[] = {
  3000. [PIPE_A] = WM0_PIPEA_ILK,
  3001. [PIPE_B] = WM0_PIPEB_ILK,
  3002. [PIPE_C] = WM0_PIPEC_IVB,
  3003. };
  3004. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3005. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3006. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3007. active->pipe_enabled = intel_crtc->active;
  3008. if (active->pipe_enabled) {
  3009. u32 tmp = hw->wm_pipe[pipe];
  3010. /*
  3011. * For active pipes LP0 watermark is marked as
  3012. * enabled, and LP1+ watermaks as disabled since
  3013. * we can't really reverse compute them in case
  3014. * multiple pipes are active.
  3015. */
  3016. active->wm[0].enable = true;
  3017. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3018. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3019. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3020. active->linetime = hw->wm_linetime[pipe];
  3021. } else {
  3022. int level, max_level = ilk_wm_max_level(dev);
  3023. /*
  3024. * For inactive pipes, all watermark levels
  3025. * should be marked as enabled but zeroed,
  3026. * which is what we'd compute them to.
  3027. */
  3028. for (level = 0; level <= max_level; level++)
  3029. active->wm[level].enable = true;
  3030. }
  3031. }
  3032. void ilk_wm_get_hw_state(struct drm_device *dev)
  3033. {
  3034. struct drm_i915_private *dev_priv = dev->dev_private;
  3035. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3036. struct drm_crtc *crtc;
  3037. for_each_crtc(dev, crtc)
  3038. ilk_pipe_wm_get_hw_state(crtc);
  3039. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  3040. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  3041. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  3042. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  3043. if (INTEL_INFO(dev)->gen >= 7) {
  3044. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  3045. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  3046. }
  3047. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3048. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  3049. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3050. else if (IS_IVYBRIDGE(dev))
  3051. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  3052. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3053. hw->enable_fbc_wm =
  3054. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  3055. }
  3056. /**
  3057. * intel_update_watermarks - update FIFO watermark values based on current modes
  3058. *
  3059. * Calculate watermark values for the various WM regs based on current mode
  3060. * and plane configuration.
  3061. *
  3062. * There are several cases to deal with here:
  3063. * - normal (i.e. non-self-refresh)
  3064. * - self-refresh (SR) mode
  3065. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3066. * - lines are small relative to FIFO size (buffer can hold more than 2
  3067. * lines), so need to account for TLB latency
  3068. *
  3069. * The normal calculation is:
  3070. * watermark = dotclock * bytes per pixel * latency
  3071. * where latency is platform & configuration dependent (we assume pessimal
  3072. * values here).
  3073. *
  3074. * The SR calculation is:
  3075. * watermark = (trunc(latency/line time)+1) * surface width *
  3076. * bytes per pixel
  3077. * where
  3078. * line time = htotal / dotclock
  3079. * surface width = hdisplay for normal plane and 64 for cursor
  3080. * and latency is assumed to be high, as above.
  3081. *
  3082. * The final value programmed to the register should always be rounded up,
  3083. * and include an extra 2 entries to account for clock crossings.
  3084. *
  3085. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3086. * to set the non-SR watermarks to 8.
  3087. */
  3088. void intel_update_watermarks(struct drm_crtc *crtc)
  3089. {
  3090. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  3091. if (dev_priv->display.update_wm)
  3092. dev_priv->display.update_wm(crtc);
  3093. }
  3094. void intel_update_sprite_watermarks(struct drm_plane *plane,
  3095. struct drm_crtc *crtc,
  3096. uint32_t sprite_width,
  3097. uint32_t sprite_height,
  3098. int pixel_size,
  3099. bool enabled, bool scaled)
  3100. {
  3101. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  3102. if (dev_priv->display.update_sprite_wm)
  3103. dev_priv->display.update_sprite_wm(plane, crtc,
  3104. sprite_width, sprite_height,
  3105. pixel_size, enabled, scaled);
  3106. }
  3107. /**
  3108. * Lock protecting IPS related data structures
  3109. */
  3110. DEFINE_SPINLOCK(mchdev_lock);
  3111. /* Global for IPS driver to get at the current i915 device. Protected by
  3112. * mchdev_lock. */
  3113. static struct drm_i915_private *i915_mch_dev;
  3114. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  3115. {
  3116. struct drm_i915_private *dev_priv = dev->dev_private;
  3117. u16 rgvswctl;
  3118. assert_spin_locked(&mchdev_lock);
  3119. rgvswctl = I915_READ16(MEMSWCTL);
  3120. if (rgvswctl & MEMCTL_CMD_STS) {
  3121. DRM_DEBUG("gpu busy, RCS change rejected\n");
  3122. return false; /* still busy with another command */
  3123. }
  3124. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  3125. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  3126. I915_WRITE16(MEMSWCTL, rgvswctl);
  3127. POSTING_READ16(MEMSWCTL);
  3128. rgvswctl |= MEMCTL_CMD_STS;
  3129. I915_WRITE16(MEMSWCTL, rgvswctl);
  3130. return true;
  3131. }
  3132. static void ironlake_enable_drps(struct drm_device *dev)
  3133. {
  3134. struct drm_i915_private *dev_priv = dev->dev_private;
  3135. u32 rgvmodectl = I915_READ(MEMMODECTL);
  3136. u8 fmax, fmin, fstart, vstart;
  3137. spin_lock_irq(&mchdev_lock);
  3138. /* Enable temp reporting */
  3139. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  3140. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  3141. /* 100ms RC evaluation intervals */
  3142. I915_WRITE(RCUPEI, 100000);
  3143. I915_WRITE(RCDNEI, 100000);
  3144. /* Set max/min thresholds to 90ms and 80ms respectively */
  3145. I915_WRITE(RCBMAXAVG, 90000);
  3146. I915_WRITE(RCBMINAVG, 80000);
  3147. I915_WRITE(MEMIHYST, 1);
  3148. /* Set up min, max, and cur for interrupt handling */
  3149. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  3150. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  3151. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  3152. MEMMODE_FSTART_SHIFT;
  3153. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  3154. PXVFREQ_PX_SHIFT;
  3155. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  3156. dev_priv->ips.fstart = fstart;
  3157. dev_priv->ips.max_delay = fstart;
  3158. dev_priv->ips.min_delay = fmin;
  3159. dev_priv->ips.cur_delay = fstart;
  3160. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  3161. fmax, fmin, fstart);
  3162. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  3163. /*
  3164. * Interrupts will be enabled in ironlake_irq_postinstall
  3165. */
  3166. I915_WRITE(VIDSTART, vstart);
  3167. POSTING_READ(VIDSTART);
  3168. rgvmodectl |= MEMMODE_SWMODE_EN;
  3169. I915_WRITE(MEMMODECTL, rgvmodectl);
  3170. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  3171. DRM_ERROR("stuck trying to change perf mode\n");
  3172. mdelay(1);
  3173. ironlake_set_drps(dev, fstart);
  3174. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  3175. I915_READ(0x112e0);
  3176. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  3177. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  3178. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  3179. spin_unlock_irq(&mchdev_lock);
  3180. }
  3181. static void ironlake_disable_drps(struct drm_device *dev)
  3182. {
  3183. struct drm_i915_private *dev_priv = dev->dev_private;
  3184. u16 rgvswctl;
  3185. spin_lock_irq(&mchdev_lock);
  3186. rgvswctl = I915_READ16(MEMSWCTL);
  3187. /* Ack interrupts, disable EFC interrupt */
  3188. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  3189. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  3190. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  3191. I915_WRITE(DEIIR, DE_PCU_EVENT);
  3192. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  3193. /* Go back to the starting frequency */
  3194. ironlake_set_drps(dev, dev_priv->ips.fstart);
  3195. mdelay(1);
  3196. rgvswctl |= MEMCTL_CMD_STS;
  3197. I915_WRITE(MEMSWCTL, rgvswctl);
  3198. mdelay(1);
  3199. spin_unlock_irq(&mchdev_lock);
  3200. }
  3201. /* There's a funny hw issue where the hw returns all 0 when reading from
  3202. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  3203. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  3204. * all limits and the gpu stuck at whatever frequency it is at atm).
  3205. */
  3206. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  3207. {
  3208. u32 limits;
  3209. /* Only set the down limit when we've reached the lowest level to avoid
  3210. * getting more interrupts, otherwise leave this clear. This prevents a
  3211. * race in the hw when coming out of rc6: There's a tiny window where
  3212. * the hw runs at the minimal clock before selecting the desired
  3213. * frequency, if the down threshold expires in that window we will not
  3214. * receive a down interrupt. */
  3215. if (IS_GEN9(dev_priv->dev)) {
  3216. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  3217. if (val <= dev_priv->rps.min_freq_softlimit)
  3218. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  3219. } else {
  3220. limits = dev_priv->rps.max_freq_softlimit << 24;
  3221. if (val <= dev_priv->rps.min_freq_softlimit)
  3222. limits |= dev_priv->rps.min_freq_softlimit << 16;
  3223. }
  3224. return limits;
  3225. }
  3226. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  3227. {
  3228. int new_power;
  3229. u32 threshold_up = 0, threshold_down = 0; /* in % */
  3230. u32 ei_up = 0, ei_down = 0;
  3231. new_power = dev_priv->rps.power;
  3232. switch (dev_priv->rps.power) {
  3233. case LOW_POWER:
  3234. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  3235. new_power = BETWEEN;
  3236. break;
  3237. case BETWEEN:
  3238. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  3239. new_power = LOW_POWER;
  3240. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  3241. new_power = HIGH_POWER;
  3242. break;
  3243. case HIGH_POWER:
  3244. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  3245. new_power = BETWEEN;
  3246. break;
  3247. }
  3248. /* Max/min bins are special */
  3249. if (val <= dev_priv->rps.min_freq_softlimit)
  3250. new_power = LOW_POWER;
  3251. if (val >= dev_priv->rps.max_freq_softlimit)
  3252. new_power = HIGH_POWER;
  3253. if (new_power == dev_priv->rps.power)
  3254. return;
  3255. /* Note the units here are not exactly 1us, but 1280ns. */
  3256. switch (new_power) {
  3257. case LOW_POWER:
  3258. /* Upclock if more than 95% busy over 16ms */
  3259. ei_up = 16000;
  3260. threshold_up = 95;
  3261. /* Downclock if less than 85% busy over 32ms */
  3262. ei_down = 32000;
  3263. threshold_down = 85;
  3264. break;
  3265. case BETWEEN:
  3266. /* Upclock if more than 90% busy over 13ms */
  3267. ei_up = 13000;
  3268. threshold_up = 90;
  3269. /* Downclock if less than 75% busy over 32ms */
  3270. ei_down = 32000;
  3271. threshold_down = 75;
  3272. break;
  3273. case HIGH_POWER:
  3274. /* Upclock if more than 85% busy over 10ms */
  3275. ei_up = 10000;
  3276. threshold_up = 85;
  3277. /* Downclock if less than 60% busy over 32ms */
  3278. ei_down = 32000;
  3279. threshold_down = 60;
  3280. break;
  3281. }
  3282. I915_WRITE(GEN6_RP_UP_EI,
  3283. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  3284. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3285. GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
  3286. I915_WRITE(GEN6_RP_DOWN_EI,
  3287. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  3288. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3289. GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
  3290. I915_WRITE(GEN6_RP_CONTROL,
  3291. GEN6_RP_MEDIA_TURBO |
  3292. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3293. GEN6_RP_MEDIA_IS_GFX |
  3294. GEN6_RP_ENABLE |
  3295. GEN6_RP_UP_BUSY_AVG |
  3296. GEN6_RP_DOWN_IDLE_AVG);
  3297. dev_priv->rps.power = new_power;
  3298. dev_priv->rps.last_adj = 0;
  3299. }
  3300. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  3301. {
  3302. u32 mask = 0;
  3303. if (val > dev_priv->rps.min_freq_softlimit)
  3304. mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  3305. if (val < dev_priv->rps.max_freq_softlimit)
  3306. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  3307. mask &= dev_priv->pm_rps_events;
  3308. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  3309. }
  3310. /* gen6_set_rps is called to update the frequency request, but should also be
  3311. * called when the range (min_delay and max_delay) is modified so that we can
  3312. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  3313. static void gen6_set_rps(struct drm_device *dev, u8 val)
  3314. {
  3315. struct drm_i915_private *dev_priv = dev->dev_private;
  3316. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3317. WARN_ON(val > dev_priv->rps.max_freq);
  3318. WARN_ON(val < dev_priv->rps.min_freq);
  3319. /* min/max delay may still have been modified so be sure to
  3320. * write the limits value.
  3321. */
  3322. if (val != dev_priv->rps.cur_freq) {
  3323. gen6_set_rps_thresholds(dev_priv, val);
  3324. if (IS_GEN9(dev))
  3325. I915_WRITE(GEN6_RPNSWREQ,
  3326. GEN9_FREQUENCY(val));
  3327. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3328. I915_WRITE(GEN6_RPNSWREQ,
  3329. HSW_FREQUENCY(val));
  3330. else
  3331. I915_WRITE(GEN6_RPNSWREQ,
  3332. GEN6_FREQUENCY(val) |
  3333. GEN6_OFFSET(0) |
  3334. GEN6_AGGRESSIVE_TURBO);
  3335. }
  3336. /* Make sure we continue to get interrupts
  3337. * until we hit the minimum or maximum frequencies.
  3338. */
  3339. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  3340. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3341. POSTING_READ(GEN6_RPNSWREQ);
  3342. dev_priv->rps.cur_freq = val;
  3343. trace_intel_gpu_freq_change(val * 50);
  3344. }
  3345. static void valleyview_set_rps(struct drm_device *dev, u8 val)
  3346. {
  3347. struct drm_i915_private *dev_priv = dev->dev_private;
  3348. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3349. WARN_ON(val > dev_priv->rps.max_freq);
  3350. WARN_ON(val < dev_priv->rps.min_freq);
  3351. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  3352. "Odd GPU freq value\n"))
  3353. val &= ~1;
  3354. if (val != dev_priv->rps.cur_freq)
  3355. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3356. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3357. dev_priv->rps.cur_freq = val;
  3358. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3359. }
  3360. /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
  3361. *
  3362. * * If Gfx is Idle, then
  3363. * 1. Mask Turbo interrupts
  3364. * 2. Bring up Gfx clock
  3365. * 3. Change the freq to Rpn and wait till P-Unit updates freq
  3366. * 4. Clear the Force GFX CLK ON bit so that Gfx can down
  3367. * 5. Unmask Turbo interrupts
  3368. */
  3369. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  3370. {
  3371. struct drm_device *dev = dev_priv->dev;
  3372. u32 val = dev_priv->rps.idle_freq;
  3373. /* CHV and latest VLV don't need to force the gfx clock */
  3374. if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
  3375. valleyview_set_rps(dev_priv->dev, val);
  3376. return;
  3377. }
  3378. /*
  3379. * When we are idle. Drop to min voltage state.
  3380. */
  3381. if (dev_priv->rps.cur_freq <= val)
  3382. return;
  3383. /* Mask turbo interrupt so that they will not come in between */
  3384. I915_WRITE(GEN6_PMINTRMSK,
  3385. gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  3386. vlv_force_gfx_clock(dev_priv, true);
  3387. dev_priv->rps.cur_freq = val;
  3388. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3389. if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
  3390. & GENFREQSTATUS) == 0, 100))
  3391. DRM_ERROR("timed out waiting for Punit\n");
  3392. vlv_force_gfx_clock(dev_priv, false);
  3393. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3394. }
  3395. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  3396. {
  3397. mutex_lock(&dev_priv->rps.hw_lock);
  3398. if (dev_priv->rps.enabled) {
  3399. if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  3400. gen6_rps_reset_ei(dev_priv);
  3401. I915_WRITE(GEN6_PMINTRMSK,
  3402. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  3403. }
  3404. mutex_unlock(&dev_priv->rps.hw_lock);
  3405. }
  3406. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3407. {
  3408. struct drm_device *dev = dev_priv->dev;
  3409. mutex_lock(&dev_priv->rps.hw_lock);
  3410. if (dev_priv->rps.enabled) {
  3411. if (IS_VALLEYVIEW(dev))
  3412. vlv_set_rps_idle(dev_priv);
  3413. else
  3414. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3415. dev_priv->rps.last_adj = 0;
  3416. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3417. }
  3418. mutex_unlock(&dev_priv->rps.hw_lock);
  3419. }
  3420. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  3421. {
  3422. u32 val;
  3423. mutex_lock(&dev_priv->rps.hw_lock);
  3424. val = dev_priv->rps.max_freq_softlimit;
  3425. if (dev_priv->rps.enabled &&
  3426. dev_priv->mm.busy &&
  3427. dev_priv->rps.cur_freq < val) {
  3428. intel_set_rps(dev_priv->dev, val);
  3429. dev_priv->rps.last_adj = 0;
  3430. }
  3431. mutex_unlock(&dev_priv->rps.hw_lock);
  3432. }
  3433. void intel_set_rps(struct drm_device *dev, u8 val)
  3434. {
  3435. if (IS_VALLEYVIEW(dev))
  3436. valleyview_set_rps(dev, val);
  3437. else
  3438. gen6_set_rps(dev, val);
  3439. }
  3440. static void gen9_disable_rps(struct drm_device *dev)
  3441. {
  3442. struct drm_i915_private *dev_priv = dev->dev_private;
  3443. I915_WRITE(GEN6_RC_CONTROL, 0);
  3444. I915_WRITE(GEN9_PG_ENABLE, 0);
  3445. }
  3446. static void gen6_disable_rps(struct drm_device *dev)
  3447. {
  3448. struct drm_i915_private *dev_priv = dev->dev_private;
  3449. I915_WRITE(GEN6_RC_CONTROL, 0);
  3450. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3451. }
  3452. static void cherryview_disable_rps(struct drm_device *dev)
  3453. {
  3454. struct drm_i915_private *dev_priv = dev->dev_private;
  3455. I915_WRITE(GEN6_RC_CONTROL, 0);
  3456. }
  3457. static void valleyview_disable_rps(struct drm_device *dev)
  3458. {
  3459. struct drm_i915_private *dev_priv = dev->dev_private;
  3460. /* we're doing forcewake before Disabling RC6,
  3461. * This what the BIOS expects when going into suspend */
  3462. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3463. I915_WRITE(GEN6_RC_CONTROL, 0);
  3464. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3465. }
  3466. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3467. {
  3468. if (IS_VALLEYVIEW(dev)) {
  3469. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3470. mode = GEN6_RC_CTL_RC6_ENABLE;
  3471. else
  3472. mode = 0;
  3473. }
  3474. if (HAS_RC6p(dev))
  3475. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
  3476. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3477. (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3478. (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3479. else
  3480. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
  3481. (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
  3482. }
  3483. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3484. {
  3485. /* No RC6 before Ironlake */
  3486. if (INTEL_INFO(dev)->gen < 5)
  3487. return 0;
  3488. /* RC6 is only on Ironlake mobile not on desktop */
  3489. if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
  3490. return 0;
  3491. /* Respect the kernel parameter if it is set */
  3492. if (enable_rc6 >= 0) {
  3493. int mask;
  3494. if (HAS_RC6p(dev))
  3495. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3496. INTEL_RC6pp_ENABLE;
  3497. else
  3498. mask = INTEL_RC6_ENABLE;
  3499. if ((enable_rc6 & mask) != enable_rc6)
  3500. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3501. enable_rc6 & mask, enable_rc6, mask);
  3502. return enable_rc6 & mask;
  3503. }
  3504. /* Disable RC6 on Ironlake */
  3505. if (INTEL_INFO(dev)->gen == 5)
  3506. return 0;
  3507. if (IS_IVYBRIDGE(dev))
  3508. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3509. return INTEL_RC6_ENABLE;
  3510. }
  3511. int intel_enable_rc6(const struct drm_device *dev)
  3512. {
  3513. return i915.enable_rc6;
  3514. }
  3515. static void gen6_init_rps_frequencies(struct drm_device *dev)
  3516. {
  3517. struct drm_i915_private *dev_priv = dev->dev_private;
  3518. uint32_t rp_state_cap;
  3519. u32 ddcc_status = 0;
  3520. int ret;
  3521. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3522. /* All of these values are in units of 50MHz */
  3523. dev_priv->rps.cur_freq = 0;
  3524. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  3525. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3526. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3527. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3528. if (IS_SKYLAKE(dev)) {
  3529. /* Store the frequency values in 16.66 MHZ units, which is
  3530. the natural hardware unit for SKL */
  3531. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  3532. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  3533. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  3534. }
  3535. /* hw_max = RP0 until we check for overclocking */
  3536. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3537. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3538. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  3539. ret = sandybridge_pcode_read(dev_priv,
  3540. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  3541. &ddcc_status);
  3542. if (0 == ret)
  3543. dev_priv->rps.efficient_freq =
  3544. clamp_t(u8,
  3545. ((ddcc_status >> 8) & 0xff),
  3546. dev_priv->rps.min_freq,
  3547. dev_priv->rps.max_freq);
  3548. }
  3549. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  3550. /* Preserve min/max settings in case of re-init */
  3551. if (dev_priv->rps.max_freq_softlimit == 0)
  3552. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3553. if (dev_priv->rps.min_freq_softlimit == 0) {
  3554. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3555. dev_priv->rps.min_freq_softlimit =
  3556. /* max(RPe, 450 MHz) */
  3557. max(dev_priv->rps.efficient_freq, (u8) 9);
  3558. else
  3559. dev_priv->rps.min_freq_softlimit =
  3560. dev_priv->rps.min_freq;
  3561. }
  3562. }
  3563. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  3564. static void gen9_enable_rps(struct drm_device *dev)
  3565. {
  3566. struct drm_i915_private *dev_priv = dev->dev_private;
  3567. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3568. gen6_init_rps_frequencies(dev);
  3569. /* Program defaults and thresholds for RPS*/
  3570. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3571. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  3572. /* 1 second timeout*/
  3573. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  3574. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  3575. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  3576. /* Leaning on the below call to gen6_set_rps to program/setup the
  3577. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  3578. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  3579. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3580. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3581. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3582. }
  3583. static void gen9_enable_rc6(struct drm_device *dev)
  3584. {
  3585. struct drm_i915_private *dev_priv = dev->dev_private;
  3586. struct intel_engine_cs *ring;
  3587. uint32_t rc6_mask = 0;
  3588. int unused;
  3589. /* 1a: Software RC state - RC0 */
  3590. I915_WRITE(GEN6_RC_STATE, 0);
  3591. /* 1b: Get forcewake during program sequence. Although the driver
  3592. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3593. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3594. /* 2a: Disable RC states. */
  3595. I915_WRITE(GEN6_RC_CONTROL, 0);
  3596. /* 2b: Program RC6 thresholds.*/
  3597. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  3598. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3599. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3600. for_each_ring(ring, dev_priv, unused)
  3601. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3602. I915_WRITE(GEN6_RC_SLEEP, 0);
  3603. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  3604. /* 2c: Program Coarse Power Gating Policies. */
  3605. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  3606. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  3607. /* 3a: Enable RC6 */
  3608. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3609. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3610. DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  3611. "on" : "off");
  3612. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3613. GEN6_RC_CTL_EI_MODE(1) |
  3614. rc6_mask);
  3615. /* 3b: Enable Coarse Power Gating only when RC6 is enabled */
  3616. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
  3617. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3618. }
  3619. static void gen8_enable_rps(struct drm_device *dev)
  3620. {
  3621. struct drm_i915_private *dev_priv = dev->dev_private;
  3622. struct intel_engine_cs *ring;
  3623. uint32_t rc6_mask = 0;
  3624. int unused;
  3625. /* 1a: Software RC state - RC0 */
  3626. I915_WRITE(GEN6_RC_STATE, 0);
  3627. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3628. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3629. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3630. /* 2a: Disable RC states. */
  3631. I915_WRITE(GEN6_RC_CONTROL, 0);
  3632. /* Initialize rps frequencies */
  3633. gen6_init_rps_frequencies(dev);
  3634. /* 2b: Program RC6 thresholds.*/
  3635. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3636. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3637. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3638. for_each_ring(ring, dev_priv, unused)
  3639. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3640. I915_WRITE(GEN6_RC_SLEEP, 0);
  3641. if (IS_BROADWELL(dev))
  3642. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  3643. else
  3644. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  3645. /* 3: Enable RC6 */
  3646. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3647. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3648. intel_print_rc6_info(dev, rc6_mask);
  3649. if (IS_BROADWELL(dev))
  3650. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3651. GEN7_RC_CTL_TO_MODE |
  3652. rc6_mask);
  3653. else
  3654. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3655. GEN6_RC_CTL_EI_MODE(1) |
  3656. rc6_mask);
  3657. /* 4 Program defaults and thresholds for RPS*/
  3658. I915_WRITE(GEN6_RPNSWREQ,
  3659. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3660. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3661. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  3662. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  3663. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  3664. /* Docs recommend 900MHz, and 300 MHz respectively */
  3665. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  3666. dev_priv->rps.max_freq_softlimit << 24 |
  3667. dev_priv->rps.min_freq_softlimit << 16);
  3668. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  3669. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  3670. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  3671. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  3672. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3673. /* 5: Enable RPS */
  3674. I915_WRITE(GEN6_RP_CONTROL,
  3675. GEN6_RP_MEDIA_TURBO |
  3676. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3677. GEN6_RP_MEDIA_IS_GFX |
  3678. GEN6_RP_ENABLE |
  3679. GEN6_RP_UP_BUSY_AVG |
  3680. GEN6_RP_DOWN_IDLE_AVG);
  3681. /* 6: Ring frequency + overclocking (our driver does this later */
  3682. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3683. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3684. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3685. }
  3686. static void gen6_enable_rps(struct drm_device *dev)
  3687. {
  3688. struct drm_i915_private *dev_priv = dev->dev_private;
  3689. struct intel_engine_cs *ring;
  3690. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  3691. u32 gtfifodbg;
  3692. int rc6_mode;
  3693. int i, ret;
  3694. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3695. /* Here begins a magic sequence of register writes to enable
  3696. * auto-downclocking.
  3697. *
  3698. * Perhaps there might be some value in exposing these to
  3699. * userspace...
  3700. */
  3701. I915_WRITE(GEN6_RC_STATE, 0);
  3702. /* Clear the DBG now so we don't confuse earlier errors */
  3703. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3704. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3705. I915_WRITE(GTFIFODBG, gtfifodbg);
  3706. }
  3707. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3708. /* Initialize rps frequencies */
  3709. gen6_init_rps_frequencies(dev);
  3710. /* disable the counters and set deterministic thresholds */
  3711. I915_WRITE(GEN6_RC_CONTROL, 0);
  3712. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3713. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3714. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3715. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3716. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3717. for_each_ring(ring, dev_priv, i)
  3718. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3719. I915_WRITE(GEN6_RC_SLEEP, 0);
  3720. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3721. if (IS_IVYBRIDGE(dev))
  3722. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3723. else
  3724. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3725. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3726. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3727. /* Check if we are enabling RC6 */
  3728. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3729. if (rc6_mode & INTEL_RC6_ENABLE)
  3730. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3731. /* We don't use those on Haswell */
  3732. if (!IS_HASWELL(dev)) {
  3733. if (rc6_mode & INTEL_RC6p_ENABLE)
  3734. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3735. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3736. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3737. }
  3738. intel_print_rc6_info(dev, rc6_mask);
  3739. I915_WRITE(GEN6_RC_CONTROL,
  3740. rc6_mask |
  3741. GEN6_RC_CTL_EI_MODE(1) |
  3742. GEN6_RC_CTL_HW_ENABLE);
  3743. /* Power down if completely idle for over 50ms */
  3744. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3745. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3746. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3747. if (ret)
  3748. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3749. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3750. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3751. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3752. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  3753. (pcu_mbox & 0xff) * 50);
  3754. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  3755. }
  3756. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3757. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3758. rc6vids = 0;
  3759. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3760. if (IS_GEN6(dev) && ret) {
  3761. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3762. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3763. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3764. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3765. rc6vids &= 0xffff00;
  3766. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3767. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3768. if (ret)
  3769. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3770. }
  3771. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3772. }
  3773. static void __gen6_update_ring_freq(struct drm_device *dev)
  3774. {
  3775. struct drm_i915_private *dev_priv = dev->dev_private;
  3776. int min_freq = 15;
  3777. unsigned int gpu_freq;
  3778. unsigned int max_ia_freq, min_ring_freq;
  3779. int scaling_factor = 180;
  3780. struct cpufreq_policy *policy;
  3781. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3782. policy = cpufreq_cpu_get(0);
  3783. if (policy) {
  3784. max_ia_freq = policy->cpuinfo.max_freq;
  3785. cpufreq_cpu_put(policy);
  3786. } else {
  3787. /*
  3788. * Default to measured freq if none found, PCU will ensure we
  3789. * don't go over
  3790. */
  3791. max_ia_freq = tsc_khz;
  3792. }
  3793. /* Convert from kHz to MHz */
  3794. max_ia_freq /= 1000;
  3795. min_ring_freq = I915_READ(DCLK) & 0xf;
  3796. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3797. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3798. /*
  3799. * For each potential GPU frequency, load a ring frequency we'd like
  3800. * to use for memory access. We do this by specifying the IA frequency
  3801. * the PCU should use as a reference to determine the ring frequency.
  3802. */
  3803. for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
  3804. gpu_freq--) {
  3805. int diff = dev_priv->rps.max_freq - gpu_freq;
  3806. unsigned int ia_freq = 0, ring_freq = 0;
  3807. if (INTEL_INFO(dev)->gen >= 8) {
  3808. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  3809. ring_freq = max(min_ring_freq, gpu_freq);
  3810. } else if (IS_HASWELL(dev)) {
  3811. ring_freq = mult_frac(gpu_freq, 5, 4);
  3812. ring_freq = max(min_ring_freq, ring_freq);
  3813. /* leave ia_freq as the default, chosen by cpufreq */
  3814. } else {
  3815. /* On older processors, there is no separate ring
  3816. * clock domain, so in order to boost the bandwidth
  3817. * of the ring, we need to upclock the CPU (ia_freq).
  3818. *
  3819. * For GPU frequencies less than 750MHz,
  3820. * just use the lowest ring freq.
  3821. */
  3822. if (gpu_freq < min_freq)
  3823. ia_freq = 800;
  3824. else
  3825. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3826. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3827. }
  3828. sandybridge_pcode_write(dev_priv,
  3829. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3830. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3831. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3832. gpu_freq);
  3833. }
  3834. }
  3835. void gen6_update_ring_freq(struct drm_device *dev)
  3836. {
  3837. struct drm_i915_private *dev_priv = dev->dev_private;
  3838. if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
  3839. return;
  3840. mutex_lock(&dev_priv->rps.hw_lock);
  3841. __gen6_update_ring_freq(dev);
  3842. mutex_unlock(&dev_priv->rps.hw_lock);
  3843. }
  3844. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  3845. {
  3846. struct drm_device *dev = dev_priv->dev;
  3847. u32 val, rp0;
  3848. if (dev->pdev->revision >= 0x20) {
  3849. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  3850. switch (INTEL_INFO(dev)->eu_total) {
  3851. case 8:
  3852. /* (2 * 4) config */
  3853. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  3854. break;
  3855. case 12:
  3856. /* (2 * 6) config */
  3857. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  3858. break;
  3859. case 16:
  3860. /* (2 * 8) config */
  3861. default:
  3862. /* Setting (2 * 8) Min RP0 for any other combination */
  3863. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  3864. break;
  3865. }
  3866. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  3867. } else {
  3868. /* For pre-production hardware */
  3869. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3870. rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
  3871. PUNIT_GPU_STATUS_MAX_FREQ_MASK;
  3872. }
  3873. return rp0;
  3874. }
  3875. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3876. {
  3877. u32 val, rpe;
  3878. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  3879. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  3880. return rpe;
  3881. }
  3882. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3883. {
  3884. struct drm_device *dev = dev_priv->dev;
  3885. u32 val, rp1;
  3886. if (dev->pdev->revision >= 0x20) {
  3887. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  3888. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  3889. } else {
  3890. /* For pre-production hardware */
  3891. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3892. rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
  3893. PUNIT_GPU_STATUS_MAX_FREQ_MASK);
  3894. }
  3895. return rp1;
  3896. }
  3897. static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
  3898. {
  3899. struct drm_device *dev = dev_priv->dev;
  3900. u32 val, rpn;
  3901. if (dev->pdev->revision >= 0x20) {
  3902. val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
  3903. rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
  3904. FB_GFX_FREQ_FUSE_MASK);
  3905. } else { /* For pre-production hardware */
  3906. val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
  3907. rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
  3908. PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
  3909. }
  3910. return rpn;
  3911. }
  3912. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  3913. {
  3914. u32 val, rp1;
  3915. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3916. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  3917. return rp1;
  3918. }
  3919. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3920. {
  3921. u32 val, rp0;
  3922. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3923. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3924. /* Clamp to max */
  3925. rp0 = min_t(u32, rp0, 0xea);
  3926. return rp0;
  3927. }
  3928. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3929. {
  3930. u32 val, rpe;
  3931. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3932. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3933. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3934. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3935. return rpe;
  3936. }
  3937. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3938. {
  3939. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3940. }
  3941. /* Check that the pctx buffer wasn't move under us. */
  3942. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  3943. {
  3944. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3945. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  3946. dev_priv->vlv_pctx->stolen->start);
  3947. }
  3948. /* Check that the pcbr address is not empty. */
  3949. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  3950. {
  3951. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  3952. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  3953. }
  3954. static void cherryview_setup_pctx(struct drm_device *dev)
  3955. {
  3956. struct drm_i915_private *dev_priv = dev->dev_private;
  3957. unsigned long pctx_paddr, paddr;
  3958. struct i915_gtt *gtt = &dev_priv->gtt;
  3959. u32 pcbr;
  3960. int pctx_size = 32*1024;
  3961. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3962. pcbr = I915_READ(VLV_PCBR);
  3963. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  3964. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  3965. paddr = (dev_priv->mm.stolen_base +
  3966. (gtt->stolen_size - pctx_size));
  3967. pctx_paddr = (paddr & (~4095));
  3968. I915_WRITE(VLV_PCBR, pctx_paddr);
  3969. }
  3970. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  3971. }
  3972. static void valleyview_setup_pctx(struct drm_device *dev)
  3973. {
  3974. struct drm_i915_private *dev_priv = dev->dev_private;
  3975. struct drm_i915_gem_object *pctx;
  3976. unsigned long pctx_paddr;
  3977. u32 pcbr;
  3978. int pctx_size = 24*1024;
  3979. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3980. pcbr = I915_READ(VLV_PCBR);
  3981. if (pcbr) {
  3982. /* BIOS set it up already, grab the pre-alloc'd space */
  3983. int pcbr_offset;
  3984. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3985. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3986. pcbr_offset,
  3987. I915_GTT_OFFSET_NONE,
  3988. pctx_size);
  3989. goto out;
  3990. }
  3991. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  3992. /*
  3993. * From the Gunit register HAS:
  3994. * The Gfx driver is expected to program this register and ensure
  3995. * proper allocation within Gfx stolen memory. For example, this
  3996. * register should be programmed such than the PCBR range does not
  3997. * overlap with other ranges, such as the frame buffer, protected
  3998. * memory, or any other relevant ranges.
  3999. */
  4000. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  4001. if (!pctx) {
  4002. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  4003. return;
  4004. }
  4005. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  4006. I915_WRITE(VLV_PCBR, pctx_paddr);
  4007. out:
  4008. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4009. dev_priv->vlv_pctx = pctx;
  4010. }
  4011. static void valleyview_cleanup_pctx(struct drm_device *dev)
  4012. {
  4013. struct drm_i915_private *dev_priv = dev->dev_private;
  4014. if (WARN_ON(!dev_priv->vlv_pctx))
  4015. return;
  4016. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  4017. dev_priv->vlv_pctx = NULL;
  4018. }
  4019. static void valleyview_init_gt_powersave(struct drm_device *dev)
  4020. {
  4021. struct drm_i915_private *dev_priv = dev->dev_private;
  4022. u32 val;
  4023. valleyview_setup_pctx(dev);
  4024. mutex_lock(&dev_priv->rps.hw_lock);
  4025. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4026. switch ((val >> 6) & 3) {
  4027. case 0:
  4028. case 1:
  4029. dev_priv->mem_freq = 800;
  4030. break;
  4031. case 2:
  4032. dev_priv->mem_freq = 1066;
  4033. break;
  4034. case 3:
  4035. dev_priv->mem_freq = 1333;
  4036. break;
  4037. }
  4038. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4039. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  4040. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4041. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4042. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4043. dev_priv->rps.max_freq);
  4044. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  4045. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4046. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4047. dev_priv->rps.efficient_freq);
  4048. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  4049. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  4050. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4051. dev_priv->rps.rp1_freq);
  4052. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  4053. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4054. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4055. dev_priv->rps.min_freq);
  4056. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4057. /* Preserve min/max settings in case of re-init */
  4058. if (dev_priv->rps.max_freq_softlimit == 0)
  4059. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4060. if (dev_priv->rps.min_freq_softlimit == 0)
  4061. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4062. mutex_unlock(&dev_priv->rps.hw_lock);
  4063. }
  4064. static void cherryview_init_gt_powersave(struct drm_device *dev)
  4065. {
  4066. struct drm_i915_private *dev_priv = dev->dev_private;
  4067. u32 val;
  4068. cherryview_setup_pctx(dev);
  4069. mutex_lock(&dev_priv->rps.hw_lock);
  4070. mutex_lock(&dev_priv->dpio_lock);
  4071. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  4072. mutex_unlock(&dev_priv->dpio_lock);
  4073. switch ((val >> 2) & 0x7) {
  4074. case 0:
  4075. case 1:
  4076. dev_priv->rps.cz_freq = 200;
  4077. dev_priv->mem_freq = 1600;
  4078. break;
  4079. case 2:
  4080. dev_priv->rps.cz_freq = 267;
  4081. dev_priv->mem_freq = 1600;
  4082. break;
  4083. case 3:
  4084. dev_priv->rps.cz_freq = 333;
  4085. dev_priv->mem_freq = 2000;
  4086. break;
  4087. case 4:
  4088. dev_priv->rps.cz_freq = 320;
  4089. dev_priv->mem_freq = 1600;
  4090. break;
  4091. case 5:
  4092. dev_priv->rps.cz_freq = 400;
  4093. dev_priv->mem_freq = 1600;
  4094. break;
  4095. }
  4096. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4097. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  4098. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4099. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4100. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4101. dev_priv->rps.max_freq);
  4102. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  4103. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4104. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4105. dev_priv->rps.efficient_freq);
  4106. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  4107. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  4108. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4109. dev_priv->rps.rp1_freq);
  4110. dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
  4111. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4112. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4113. dev_priv->rps.min_freq);
  4114. WARN_ONCE((dev_priv->rps.max_freq |
  4115. dev_priv->rps.efficient_freq |
  4116. dev_priv->rps.rp1_freq |
  4117. dev_priv->rps.min_freq) & 1,
  4118. "Odd GPU freq values\n");
  4119. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4120. /* Preserve min/max settings in case of re-init */
  4121. if (dev_priv->rps.max_freq_softlimit == 0)
  4122. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4123. if (dev_priv->rps.min_freq_softlimit == 0)
  4124. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4125. mutex_unlock(&dev_priv->rps.hw_lock);
  4126. }
  4127. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  4128. {
  4129. valleyview_cleanup_pctx(dev);
  4130. }
  4131. static void cherryview_enable_rps(struct drm_device *dev)
  4132. {
  4133. struct drm_i915_private *dev_priv = dev->dev_private;
  4134. struct intel_engine_cs *ring;
  4135. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  4136. int i;
  4137. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4138. gtfifodbg = I915_READ(GTFIFODBG);
  4139. if (gtfifodbg) {
  4140. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4141. gtfifodbg);
  4142. I915_WRITE(GTFIFODBG, gtfifodbg);
  4143. }
  4144. cherryview_check_pctx(dev_priv);
  4145. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  4146. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4147. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4148. /* Disable RC states. */
  4149. I915_WRITE(GEN6_RC_CONTROL, 0);
  4150. /* 2a: Program RC6 thresholds.*/
  4151. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4152. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4153. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4154. for_each_ring(ring, dev_priv, i)
  4155. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4156. I915_WRITE(GEN6_RC_SLEEP, 0);
  4157. /* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
  4158. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4159. /* allows RC6 residency counter to work */
  4160. I915_WRITE(VLV_COUNTER_CONTROL,
  4161. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  4162. VLV_MEDIA_RC6_COUNT_EN |
  4163. VLV_RENDER_RC6_COUNT_EN));
  4164. /* For now we assume BIOS is allocating and populating the PCBR */
  4165. pcbr = I915_READ(VLV_PCBR);
  4166. /* 3: Enable RC6 */
  4167. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  4168. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  4169. rc6_mode = GEN7_RC_CTL_TO_MODE;
  4170. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4171. /* 4 Program defaults and thresholds for RPS*/
  4172. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4173. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4174. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4175. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4176. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4177. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4178. /* 5: Enable RPS */
  4179. I915_WRITE(GEN6_RP_CONTROL,
  4180. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4181. GEN6_RP_MEDIA_IS_GFX |
  4182. GEN6_RP_ENABLE |
  4183. GEN6_RP_UP_BUSY_AVG |
  4184. GEN6_RP_DOWN_IDLE_AVG);
  4185. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4186. /* RPS code assumes GPLL is used */
  4187. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4188. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
  4189. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4190. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4191. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4192. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4193. dev_priv->rps.cur_freq);
  4194. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4195. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4196. dev_priv->rps.efficient_freq);
  4197. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4198. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4199. }
  4200. static void valleyview_enable_rps(struct drm_device *dev)
  4201. {
  4202. struct drm_i915_private *dev_priv = dev->dev_private;
  4203. struct intel_engine_cs *ring;
  4204. u32 gtfifodbg, val, rc6_mode = 0;
  4205. int i;
  4206. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4207. valleyview_check_pctx(dev_priv);
  4208. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4209. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4210. gtfifodbg);
  4211. I915_WRITE(GTFIFODBG, gtfifodbg);
  4212. }
  4213. /* If VLV, Forcewake all wells, else re-direct to regular path */
  4214. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4215. /* Disable RC states. */
  4216. I915_WRITE(GEN6_RC_CONTROL, 0);
  4217. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4218. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4219. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4220. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4221. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4222. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4223. I915_WRITE(GEN6_RP_CONTROL,
  4224. GEN6_RP_MEDIA_TURBO |
  4225. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4226. GEN6_RP_MEDIA_IS_GFX |
  4227. GEN6_RP_ENABLE |
  4228. GEN6_RP_UP_BUSY_AVG |
  4229. GEN6_RP_DOWN_IDLE_CONT);
  4230. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  4231. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4232. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4233. for_each_ring(ring, dev_priv, i)
  4234. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4235. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4236. /* allows RC6 residency counter to work */
  4237. I915_WRITE(VLV_COUNTER_CONTROL,
  4238. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  4239. VLV_RENDER_RC0_COUNT_EN |
  4240. VLV_MEDIA_RC6_COUNT_EN |
  4241. VLV_RENDER_RC6_COUNT_EN));
  4242. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4243. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  4244. intel_print_rc6_info(dev, rc6_mode);
  4245. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4246. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4247. /* RPS code assumes GPLL is used */
  4248. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4249. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
  4250. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4251. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4252. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4253. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4254. dev_priv->rps.cur_freq);
  4255. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4256. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4257. dev_priv->rps.efficient_freq);
  4258. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4259. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4260. }
  4261. static unsigned long intel_pxfreq(u32 vidfreq)
  4262. {
  4263. unsigned long freq;
  4264. int div = (vidfreq & 0x3f0000) >> 16;
  4265. int post = (vidfreq & 0x3000) >> 12;
  4266. int pre = (vidfreq & 0x7);
  4267. if (!pre)
  4268. return 0;
  4269. freq = ((div * 133333) / ((1<<post) * pre));
  4270. return freq;
  4271. }
  4272. static const struct cparams {
  4273. u16 i;
  4274. u16 t;
  4275. u16 m;
  4276. u16 c;
  4277. } cparams[] = {
  4278. { 1, 1333, 301, 28664 },
  4279. { 1, 1066, 294, 24460 },
  4280. { 1, 800, 294, 25192 },
  4281. { 0, 1333, 276, 27605 },
  4282. { 0, 1066, 276, 27605 },
  4283. { 0, 800, 231, 23784 },
  4284. };
  4285. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  4286. {
  4287. u64 total_count, diff, ret;
  4288. u32 count1, count2, count3, m = 0, c = 0;
  4289. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  4290. int i;
  4291. assert_spin_locked(&mchdev_lock);
  4292. diff1 = now - dev_priv->ips.last_time1;
  4293. /* Prevent division-by-zero if we are asking too fast.
  4294. * Also, we don't get interesting results if we are polling
  4295. * faster than once in 10ms, so just return the saved value
  4296. * in such cases.
  4297. */
  4298. if (diff1 <= 10)
  4299. return dev_priv->ips.chipset_power;
  4300. count1 = I915_READ(DMIEC);
  4301. count2 = I915_READ(DDREC);
  4302. count3 = I915_READ(CSIEC);
  4303. total_count = count1 + count2 + count3;
  4304. /* FIXME: handle per-counter overflow */
  4305. if (total_count < dev_priv->ips.last_count1) {
  4306. diff = ~0UL - dev_priv->ips.last_count1;
  4307. diff += total_count;
  4308. } else {
  4309. diff = total_count - dev_priv->ips.last_count1;
  4310. }
  4311. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  4312. if (cparams[i].i == dev_priv->ips.c_m &&
  4313. cparams[i].t == dev_priv->ips.r_t) {
  4314. m = cparams[i].m;
  4315. c = cparams[i].c;
  4316. break;
  4317. }
  4318. }
  4319. diff = div_u64(diff, diff1);
  4320. ret = ((m * diff) + c);
  4321. ret = div_u64(ret, 10);
  4322. dev_priv->ips.last_count1 = total_count;
  4323. dev_priv->ips.last_time1 = now;
  4324. dev_priv->ips.chipset_power = ret;
  4325. return ret;
  4326. }
  4327. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  4328. {
  4329. struct drm_device *dev = dev_priv->dev;
  4330. unsigned long val;
  4331. if (INTEL_INFO(dev)->gen != 5)
  4332. return 0;
  4333. spin_lock_irq(&mchdev_lock);
  4334. val = __i915_chipset_val(dev_priv);
  4335. spin_unlock_irq(&mchdev_lock);
  4336. return val;
  4337. }
  4338. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  4339. {
  4340. unsigned long m, x, b;
  4341. u32 tsfs;
  4342. tsfs = I915_READ(TSFS);
  4343. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  4344. x = I915_READ8(TR1);
  4345. b = tsfs & TSFS_INTR_MASK;
  4346. return ((m * x) / 127) - b;
  4347. }
  4348. static int _pxvid_to_vd(u8 pxvid)
  4349. {
  4350. if (pxvid == 0)
  4351. return 0;
  4352. if (pxvid >= 8 && pxvid < 31)
  4353. pxvid = 31;
  4354. return (pxvid + 2) * 125;
  4355. }
  4356. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  4357. {
  4358. struct drm_device *dev = dev_priv->dev;
  4359. const int vd = _pxvid_to_vd(pxvid);
  4360. const int vm = vd - 1125;
  4361. if (INTEL_INFO(dev)->is_mobile)
  4362. return vm > 0 ? vm : 0;
  4363. return vd;
  4364. }
  4365. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4366. {
  4367. u64 now, diff, diffms;
  4368. u32 count;
  4369. assert_spin_locked(&mchdev_lock);
  4370. now = ktime_get_raw_ns();
  4371. diffms = now - dev_priv->ips.last_time2;
  4372. do_div(diffms, NSEC_PER_MSEC);
  4373. /* Don't divide by 0 */
  4374. if (!diffms)
  4375. return;
  4376. count = I915_READ(GFXEC);
  4377. if (count < dev_priv->ips.last_count2) {
  4378. diff = ~0UL - dev_priv->ips.last_count2;
  4379. diff += count;
  4380. } else {
  4381. diff = count - dev_priv->ips.last_count2;
  4382. }
  4383. dev_priv->ips.last_count2 = count;
  4384. dev_priv->ips.last_time2 = now;
  4385. /* More magic constants... */
  4386. diff = diff * 1181;
  4387. diff = div_u64(diff, diffms * 10);
  4388. dev_priv->ips.gfx_power = diff;
  4389. }
  4390. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4391. {
  4392. struct drm_device *dev = dev_priv->dev;
  4393. if (INTEL_INFO(dev)->gen != 5)
  4394. return;
  4395. spin_lock_irq(&mchdev_lock);
  4396. __i915_update_gfx_val(dev_priv);
  4397. spin_unlock_irq(&mchdev_lock);
  4398. }
  4399. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4400. {
  4401. unsigned long t, corr, state1, corr2, state2;
  4402. u32 pxvid, ext_v;
  4403. assert_spin_locked(&mchdev_lock);
  4404. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
  4405. pxvid = (pxvid >> 24) & 0x7f;
  4406. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4407. state1 = ext_v;
  4408. t = i915_mch_val(dev_priv);
  4409. /* Revel in the empirically derived constants */
  4410. /* Correction factor in 1/100000 units */
  4411. if (t > 80)
  4412. corr = ((t * 2349) + 135940);
  4413. else if (t >= 50)
  4414. corr = ((t * 964) + 29317);
  4415. else /* < 50 */
  4416. corr = ((t * 301) + 1004);
  4417. corr = corr * ((150142 * state1) / 10000 - 78642);
  4418. corr /= 100000;
  4419. corr2 = (corr * dev_priv->ips.corr);
  4420. state2 = (corr2 * state1) / 10000;
  4421. state2 /= 100; /* convert to mW */
  4422. __i915_update_gfx_val(dev_priv);
  4423. return dev_priv->ips.gfx_power + state2;
  4424. }
  4425. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4426. {
  4427. struct drm_device *dev = dev_priv->dev;
  4428. unsigned long val;
  4429. if (INTEL_INFO(dev)->gen != 5)
  4430. return 0;
  4431. spin_lock_irq(&mchdev_lock);
  4432. val = __i915_gfx_val(dev_priv);
  4433. spin_unlock_irq(&mchdev_lock);
  4434. return val;
  4435. }
  4436. /**
  4437. * i915_read_mch_val - return value for IPS use
  4438. *
  4439. * Calculate and return a value for the IPS driver to use when deciding whether
  4440. * we have thermal and power headroom to increase CPU or GPU power budget.
  4441. */
  4442. unsigned long i915_read_mch_val(void)
  4443. {
  4444. struct drm_i915_private *dev_priv;
  4445. unsigned long chipset_val, graphics_val, ret = 0;
  4446. spin_lock_irq(&mchdev_lock);
  4447. if (!i915_mch_dev)
  4448. goto out_unlock;
  4449. dev_priv = i915_mch_dev;
  4450. chipset_val = __i915_chipset_val(dev_priv);
  4451. graphics_val = __i915_gfx_val(dev_priv);
  4452. ret = chipset_val + graphics_val;
  4453. out_unlock:
  4454. spin_unlock_irq(&mchdev_lock);
  4455. return ret;
  4456. }
  4457. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4458. /**
  4459. * i915_gpu_raise - raise GPU frequency limit
  4460. *
  4461. * Raise the limit; IPS indicates we have thermal headroom.
  4462. */
  4463. bool i915_gpu_raise(void)
  4464. {
  4465. struct drm_i915_private *dev_priv;
  4466. bool ret = true;
  4467. spin_lock_irq(&mchdev_lock);
  4468. if (!i915_mch_dev) {
  4469. ret = false;
  4470. goto out_unlock;
  4471. }
  4472. dev_priv = i915_mch_dev;
  4473. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4474. dev_priv->ips.max_delay--;
  4475. out_unlock:
  4476. spin_unlock_irq(&mchdev_lock);
  4477. return ret;
  4478. }
  4479. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4480. /**
  4481. * i915_gpu_lower - lower GPU frequency limit
  4482. *
  4483. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4484. * frequency maximum.
  4485. */
  4486. bool i915_gpu_lower(void)
  4487. {
  4488. struct drm_i915_private *dev_priv;
  4489. bool ret = true;
  4490. spin_lock_irq(&mchdev_lock);
  4491. if (!i915_mch_dev) {
  4492. ret = false;
  4493. goto out_unlock;
  4494. }
  4495. dev_priv = i915_mch_dev;
  4496. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4497. dev_priv->ips.max_delay++;
  4498. out_unlock:
  4499. spin_unlock_irq(&mchdev_lock);
  4500. return ret;
  4501. }
  4502. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4503. /**
  4504. * i915_gpu_busy - indicate GPU business to IPS
  4505. *
  4506. * Tell the IPS driver whether or not the GPU is busy.
  4507. */
  4508. bool i915_gpu_busy(void)
  4509. {
  4510. struct drm_i915_private *dev_priv;
  4511. struct intel_engine_cs *ring;
  4512. bool ret = false;
  4513. int i;
  4514. spin_lock_irq(&mchdev_lock);
  4515. if (!i915_mch_dev)
  4516. goto out_unlock;
  4517. dev_priv = i915_mch_dev;
  4518. for_each_ring(ring, dev_priv, i)
  4519. ret |= !list_empty(&ring->request_list);
  4520. out_unlock:
  4521. spin_unlock_irq(&mchdev_lock);
  4522. return ret;
  4523. }
  4524. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4525. /**
  4526. * i915_gpu_turbo_disable - disable graphics turbo
  4527. *
  4528. * Disable graphics turbo by resetting the max frequency and setting the
  4529. * current frequency to the default.
  4530. */
  4531. bool i915_gpu_turbo_disable(void)
  4532. {
  4533. struct drm_i915_private *dev_priv;
  4534. bool ret = true;
  4535. spin_lock_irq(&mchdev_lock);
  4536. if (!i915_mch_dev) {
  4537. ret = false;
  4538. goto out_unlock;
  4539. }
  4540. dev_priv = i915_mch_dev;
  4541. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4542. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4543. ret = false;
  4544. out_unlock:
  4545. spin_unlock_irq(&mchdev_lock);
  4546. return ret;
  4547. }
  4548. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4549. /**
  4550. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4551. * IPS got loaded first.
  4552. *
  4553. * This awkward dance is so that neither module has to depend on the
  4554. * other in order for IPS to do the appropriate communication of
  4555. * GPU turbo limits to i915.
  4556. */
  4557. static void
  4558. ips_ping_for_i915_load(void)
  4559. {
  4560. void (*link)(void);
  4561. link = symbol_get(ips_link_to_i915_driver);
  4562. if (link) {
  4563. link();
  4564. symbol_put(ips_link_to_i915_driver);
  4565. }
  4566. }
  4567. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4568. {
  4569. /* We only register the i915 ips part with intel-ips once everything is
  4570. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4571. spin_lock_irq(&mchdev_lock);
  4572. i915_mch_dev = dev_priv;
  4573. spin_unlock_irq(&mchdev_lock);
  4574. ips_ping_for_i915_load();
  4575. }
  4576. void intel_gpu_ips_teardown(void)
  4577. {
  4578. spin_lock_irq(&mchdev_lock);
  4579. i915_mch_dev = NULL;
  4580. spin_unlock_irq(&mchdev_lock);
  4581. }
  4582. static void intel_init_emon(struct drm_device *dev)
  4583. {
  4584. struct drm_i915_private *dev_priv = dev->dev_private;
  4585. u32 lcfuse;
  4586. u8 pxw[16];
  4587. int i;
  4588. /* Disable to program */
  4589. I915_WRITE(ECR, 0);
  4590. POSTING_READ(ECR);
  4591. /* Program energy weights for various events */
  4592. I915_WRITE(SDEW, 0x15040d00);
  4593. I915_WRITE(CSIEW0, 0x007f0000);
  4594. I915_WRITE(CSIEW1, 0x1e220004);
  4595. I915_WRITE(CSIEW2, 0x04000004);
  4596. for (i = 0; i < 5; i++)
  4597. I915_WRITE(PEW + (i * 4), 0);
  4598. for (i = 0; i < 3; i++)
  4599. I915_WRITE(DEW + (i * 4), 0);
  4600. /* Program P-state weights to account for frequency power adjustment */
  4601. for (i = 0; i < 16; i++) {
  4602. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  4603. unsigned long freq = intel_pxfreq(pxvidfreq);
  4604. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4605. PXVFREQ_PX_SHIFT;
  4606. unsigned long val;
  4607. val = vid * vid;
  4608. val *= (freq / 1000);
  4609. val *= 255;
  4610. val /= (127*127*900);
  4611. if (val > 0xff)
  4612. DRM_ERROR("bad pxval: %ld\n", val);
  4613. pxw[i] = val;
  4614. }
  4615. /* Render standby states get 0 weight */
  4616. pxw[14] = 0;
  4617. pxw[15] = 0;
  4618. for (i = 0; i < 4; i++) {
  4619. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4620. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4621. I915_WRITE(PXW + (i * 4), val);
  4622. }
  4623. /* Adjust magic regs to magic values (more experimental results) */
  4624. I915_WRITE(OGW0, 0);
  4625. I915_WRITE(OGW1, 0);
  4626. I915_WRITE(EG0, 0x00007f00);
  4627. I915_WRITE(EG1, 0x0000000e);
  4628. I915_WRITE(EG2, 0x000e0000);
  4629. I915_WRITE(EG3, 0x68000300);
  4630. I915_WRITE(EG4, 0x42000000);
  4631. I915_WRITE(EG5, 0x00140031);
  4632. I915_WRITE(EG6, 0);
  4633. I915_WRITE(EG7, 0);
  4634. for (i = 0; i < 8; i++)
  4635. I915_WRITE(PXWL + (i * 4), 0);
  4636. /* Enable PMON + select events */
  4637. I915_WRITE(ECR, 0x80000019);
  4638. lcfuse = I915_READ(LCFUSE02);
  4639. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4640. }
  4641. void intel_init_gt_powersave(struct drm_device *dev)
  4642. {
  4643. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4644. if (IS_CHERRYVIEW(dev))
  4645. cherryview_init_gt_powersave(dev);
  4646. else if (IS_VALLEYVIEW(dev))
  4647. valleyview_init_gt_powersave(dev);
  4648. }
  4649. void intel_cleanup_gt_powersave(struct drm_device *dev)
  4650. {
  4651. if (IS_CHERRYVIEW(dev))
  4652. return;
  4653. else if (IS_VALLEYVIEW(dev))
  4654. valleyview_cleanup_gt_powersave(dev);
  4655. }
  4656. static void gen6_suspend_rps(struct drm_device *dev)
  4657. {
  4658. struct drm_i915_private *dev_priv = dev->dev_private;
  4659. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4660. gen6_disable_rps_interrupts(dev);
  4661. }
  4662. /**
  4663. * intel_suspend_gt_powersave - suspend PM work and helper threads
  4664. * @dev: drm device
  4665. *
  4666. * We don't want to disable RC6 or other features here, we just want
  4667. * to make sure any work we've queued has finished and won't bother
  4668. * us while we're suspended.
  4669. */
  4670. void intel_suspend_gt_powersave(struct drm_device *dev)
  4671. {
  4672. struct drm_i915_private *dev_priv = dev->dev_private;
  4673. if (INTEL_INFO(dev)->gen < 6)
  4674. return;
  4675. gen6_suspend_rps(dev);
  4676. /* Force GPU to min freq during suspend */
  4677. gen6_rps_idle(dev_priv);
  4678. }
  4679. void intel_disable_gt_powersave(struct drm_device *dev)
  4680. {
  4681. struct drm_i915_private *dev_priv = dev->dev_private;
  4682. if (IS_IRONLAKE_M(dev)) {
  4683. ironlake_disable_drps(dev);
  4684. } else if (INTEL_INFO(dev)->gen >= 6) {
  4685. intel_suspend_gt_powersave(dev);
  4686. mutex_lock(&dev_priv->rps.hw_lock);
  4687. if (INTEL_INFO(dev)->gen >= 9)
  4688. gen9_disable_rps(dev);
  4689. else if (IS_CHERRYVIEW(dev))
  4690. cherryview_disable_rps(dev);
  4691. else if (IS_VALLEYVIEW(dev))
  4692. valleyview_disable_rps(dev);
  4693. else
  4694. gen6_disable_rps(dev);
  4695. dev_priv->rps.enabled = false;
  4696. mutex_unlock(&dev_priv->rps.hw_lock);
  4697. }
  4698. }
  4699. static void intel_gen6_powersave_work(struct work_struct *work)
  4700. {
  4701. struct drm_i915_private *dev_priv =
  4702. container_of(work, struct drm_i915_private,
  4703. rps.delayed_resume_work.work);
  4704. struct drm_device *dev = dev_priv->dev;
  4705. mutex_lock(&dev_priv->rps.hw_lock);
  4706. gen6_reset_rps_interrupts(dev);
  4707. if (IS_CHERRYVIEW(dev)) {
  4708. cherryview_enable_rps(dev);
  4709. } else if (IS_VALLEYVIEW(dev)) {
  4710. valleyview_enable_rps(dev);
  4711. } else if (INTEL_INFO(dev)->gen >= 9) {
  4712. gen9_enable_rc6(dev);
  4713. gen9_enable_rps(dev);
  4714. __gen6_update_ring_freq(dev);
  4715. } else if (IS_BROADWELL(dev)) {
  4716. gen8_enable_rps(dev);
  4717. __gen6_update_ring_freq(dev);
  4718. } else {
  4719. gen6_enable_rps(dev);
  4720. __gen6_update_ring_freq(dev);
  4721. }
  4722. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  4723. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  4724. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  4725. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  4726. dev_priv->rps.enabled = true;
  4727. gen6_enable_rps_interrupts(dev);
  4728. mutex_unlock(&dev_priv->rps.hw_lock);
  4729. intel_runtime_pm_put(dev_priv);
  4730. }
  4731. void intel_enable_gt_powersave(struct drm_device *dev)
  4732. {
  4733. struct drm_i915_private *dev_priv = dev->dev_private;
  4734. /* Powersaving is controlled by the host when inside a VM */
  4735. if (intel_vgpu_active(dev))
  4736. return;
  4737. if (IS_IRONLAKE_M(dev)) {
  4738. mutex_lock(&dev->struct_mutex);
  4739. ironlake_enable_drps(dev);
  4740. intel_init_emon(dev);
  4741. mutex_unlock(&dev->struct_mutex);
  4742. } else if (INTEL_INFO(dev)->gen >= 6) {
  4743. /*
  4744. * PCU communication is slow and this doesn't need to be
  4745. * done at any specific time, so do this out of our fast path
  4746. * to make resume and init faster.
  4747. *
  4748. * We depend on the HW RC6 power context save/restore
  4749. * mechanism when entering D3 through runtime PM suspend. So
  4750. * disable RPM until RPS/RC6 is properly setup. We can only
  4751. * get here via the driver load/system resume/runtime resume
  4752. * paths, so the _noresume version is enough (and in case of
  4753. * runtime resume it's necessary).
  4754. */
  4755. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4756. round_jiffies_up_relative(HZ)))
  4757. intel_runtime_pm_get_noresume(dev_priv);
  4758. }
  4759. }
  4760. void intel_reset_gt_powersave(struct drm_device *dev)
  4761. {
  4762. struct drm_i915_private *dev_priv = dev->dev_private;
  4763. if (INTEL_INFO(dev)->gen < 6)
  4764. return;
  4765. gen6_suspend_rps(dev);
  4766. dev_priv->rps.enabled = false;
  4767. }
  4768. static void ibx_init_clock_gating(struct drm_device *dev)
  4769. {
  4770. struct drm_i915_private *dev_priv = dev->dev_private;
  4771. /*
  4772. * On Ibex Peak and Cougar Point, we need to disable clock
  4773. * gating for the panel power sequencer or it will fail to
  4774. * start up when no ports are active.
  4775. */
  4776. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4777. }
  4778. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4779. {
  4780. struct drm_i915_private *dev_priv = dev->dev_private;
  4781. int pipe;
  4782. for_each_pipe(dev_priv, pipe) {
  4783. I915_WRITE(DSPCNTR(pipe),
  4784. I915_READ(DSPCNTR(pipe)) |
  4785. DISPPLANE_TRICKLE_FEED_DISABLE);
  4786. intel_flush_primary_plane(dev_priv, pipe);
  4787. }
  4788. }
  4789. static void ilk_init_lp_watermarks(struct drm_device *dev)
  4790. {
  4791. struct drm_i915_private *dev_priv = dev->dev_private;
  4792. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  4793. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  4794. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  4795. /*
  4796. * Don't touch WM1S_LP_EN here.
  4797. * Doing so could cause underruns.
  4798. */
  4799. }
  4800. static void ironlake_init_clock_gating(struct drm_device *dev)
  4801. {
  4802. struct drm_i915_private *dev_priv = dev->dev_private;
  4803. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4804. /*
  4805. * Required for FBC
  4806. * WaFbcDisableDpfcClockGating:ilk
  4807. */
  4808. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4809. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4810. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4811. I915_WRITE(PCH_3DCGDIS0,
  4812. MARIUNIT_CLOCK_GATE_DISABLE |
  4813. SVSMUNIT_CLOCK_GATE_DISABLE);
  4814. I915_WRITE(PCH_3DCGDIS1,
  4815. VFMUNIT_CLOCK_GATE_DISABLE);
  4816. /*
  4817. * According to the spec the following bits should be set in
  4818. * order to enable memory self-refresh
  4819. * The bit 22/21 of 0x42004
  4820. * The bit 5 of 0x42020
  4821. * The bit 15 of 0x45000
  4822. */
  4823. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4824. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4825. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4826. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4827. I915_WRITE(DISP_ARB_CTL,
  4828. (I915_READ(DISP_ARB_CTL) |
  4829. DISP_FBC_WM_DIS));
  4830. ilk_init_lp_watermarks(dev);
  4831. /*
  4832. * Based on the document from hardware guys the following bits
  4833. * should be set unconditionally in order to enable FBC.
  4834. * The bit 22 of 0x42000
  4835. * The bit 22 of 0x42004
  4836. * The bit 7,8,9 of 0x42020.
  4837. */
  4838. if (IS_IRONLAKE_M(dev)) {
  4839. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4840. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4841. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4842. ILK_FBCQ_DIS);
  4843. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4844. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4845. ILK_DPARB_GATE);
  4846. }
  4847. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4848. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4849. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4850. ILK_ELPIN_409_SELECT);
  4851. I915_WRITE(_3D_CHICKEN2,
  4852. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4853. _3D_CHICKEN2_WM_READ_PIPELINED);
  4854. /* WaDisableRenderCachePipelinedFlush:ilk */
  4855. I915_WRITE(CACHE_MODE_0,
  4856. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4857. /* WaDisable_RenderCache_OperationalFlush:ilk */
  4858. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4859. g4x_disable_trickle_feed(dev);
  4860. ibx_init_clock_gating(dev);
  4861. }
  4862. static void cpt_init_clock_gating(struct drm_device *dev)
  4863. {
  4864. struct drm_i915_private *dev_priv = dev->dev_private;
  4865. int pipe;
  4866. uint32_t val;
  4867. /*
  4868. * On Ibex Peak and Cougar Point, we need to disable clock
  4869. * gating for the panel power sequencer or it will fail to
  4870. * start up when no ports are active.
  4871. */
  4872. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  4873. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  4874. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  4875. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4876. DPLS_EDP_PPS_FIX_DIS);
  4877. /* The below fixes the weird display corruption, a few pixels shifted
  4878. * downward, on (only) LVDS of some HP laptops with IVY.
  4879. */
  4880. for_each_pipe(dev_priv, pipe) {
  4881. val = I915_READ(TRANS_CHICKEN2(pipe));
  4882. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4883. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4884. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4885. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4886. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4887. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4888. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4889. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4890. }
  4891. /* WADP0ClockGatingDisable */
  4892. for_each_pipe(dev_priv, pipe) {
  4893. I915_WRITE(TRANS_CHICKEN1(pipe),
  4894. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4895. }
  4896. }
  4897. static void gen6_check_mch_setup(struct drm_device *dev)
  4898. {
  4899. struct drm_i915_private *dev_priv = dev->dev_private;
  4900. uint32_t tmp;
  4901. tmp = I915_READ(MCH_SSKPD);
  4902. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  4903. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  4904. tmp);
  4905. }
  4906. static void gen6_init_clock_gating(struct drm_device *dev)
  4907. {
  4908. struct drm_i915_private *dev_priv = dev->dev_private;
  4909. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4910. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4911. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4912. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4913. ILK_ELPIN_409_SELECT);
  4914. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4915. I915_WRITE(_3D_CHICKEN,
  4916. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4917. /* WaDisable_RenderCache_OperationalFlush:snb */
  4918. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  4919. /*
  4920. * BSpec recoomends 8x4 when MSAA is used,
  4921. * however in practice 16x4 seems fastest.
  4922. *
  4923. * Note that PS/WM thread counts depend on the WIZ hashing
  4924. * disable bit, which we don't touch here, but it's good
  4925. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  4926. */
  4927. I915_WRITE(GEN6_GT_MODE,
  4928. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  4929. ilk_init_lp_watermarks(dev);
  4930. I915_WRITE(CACHE_MODE_0,
  4931. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4932. I915_WRITE(GEN6_UCGCTL1,
  4933. I915_READ(GEN6_UCGCTL1) |
  4934. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4935. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4936. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4937. * gating disable must be set. Failure to set it results in
  4938. * flickering pixels due to Z write ordering failures after
  4939. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4940. * Sanctuary and Tropics, and apparently anything else with
  4941. * alpha test or pixel discard.
  4942. *
  4943. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4944. * but we didn't debug actual testcases to find it out.
  4945. *
  4946. * WaDisableRCCUnitClockGating:snb
  4947. * WaDisableRCPBUnitClockGating:snb
  4948. */
  4949. I915_WRITE(GEN6_UCGCTL2,
  4950. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4951. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4952. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  4953. I915_WRITE(_3D_CHICKEN3,
  4954. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  4955. /*
  4956. * Bspec says:
  4957. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  4958. * 3DSTATE_SF number of SF output attributes is more than 16."
  4959. */
  4960. I915_WRITE(_3D_CHICKEN3,
  4961. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  4962. /*
  4963. * According to the spec the following bits should be
  4964. * set in order to enable memory self-refresh and fbc:
  4965. * The bit21 and bit22 of 0x42000
  4966. * The bit21 and bit22 of 0x42004
  4967. * The bit5 and bit7 of 0x42020
  4968. * The bit14 of 0x70180
  4969. * The bit14 of 0x71180
  4970. *
  4971. * WaFbcAsynchFlipDisableFbcQueue:snb
  4972. */
  4973. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4974. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4975. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4976. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4977. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4978. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4979. I915_WRITE(ILK_DSPCLK_GATE_D,
  4980. I915_READ(ILK_DSPCLK_GATE_D) |
  4981. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4982. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4983. g4x_disable_trickle_feed(dev);
  4984. cpt_init_clock_gating(dev);
  4985. gen6_check_mch_setup(dev);
  4986. }
  4987. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4988. {
  4989. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4990. /*
  4991. * WaVSThreadDispatchOverride:ivb,vlv
  4992. *
  4993. * This actually overrides the dispatch
  4994. * mode for all thread types.
  4995. */
  4996. reg &= ~GEN7_FF_SCHED_MASK;
  4997. reg |= GEN7_FF_TS_SCHED_HW;
  4998. reg |= GEN7_FF_VS_SCHED_HW;
  4999. reg |= GEN7_FF_DS_SCHED_HW;
  5000. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  5001. }
  5002. static void lpt_init_clock_gating(struct drm_device *dev)
  5003. {
  5004. struct drm_i915_private *dev_priv = dev->dev_private;
  5005. /*
  5006. * TODO: this bit should only be enabled when really needed, then
  5007. * disabled when not needed anymore in order to save power.
  5008. */
  5009. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  5010. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  5011. I915_READ(SOUTH_DSPCLK_GATE_D) |
  5012. PCH_LP_PARTITION_LEVEL_DISABLE);
  5013. /* WADPOClockGatingDisable:hsw */
  5014. I915_WRITE(_TRANSA_CHICKEN1,
  5015. I915_READ(_TRANSA_CHICKEN1) |
  5016. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5017. }
  5018. static void lpt_suspend_hw(struct drm_device *dev)
  5019. {
  5020. struct drm_i915_private *dev_priv = dev->dev_private;
  5021. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5022. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5023. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5024. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5025. }
  5026. }
  5027. static void broadwell_init_clock_gating(struct drm_device *dev)
  5028. {
  5029. struct drm_i915_private *dev_priv = dev->dev_private;
  5030. enum pipe pipe;
  5031. I915_WRITE(WM3_LP_ILK, 0);
  5032. I915_WRITE(WM2_LP_ILK, 0);
  5033. I915_WRITE(WM1_LP_ILK, 0);
  5034. /* WaSwitchSolVfFArbitrationPriority:bdw */
  5035. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5036. /* WaPsrDPAMaskVBlankInSRD:bdw */
  5037. I915_WRITE(CHICKEN_PAR1_1,
  5038. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  5039. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  5040. for_each_pipe(dev_priv, pipe) {
  5041. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  5042. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  5043. BDW_DPRS_MASK_VBLANK_SRD);
  5044. }
  5045. /* WaVSRefCountFullforceMissDisable:bdw */
  5046. /* WaDSRefCountFullforceMissDisable:bdw */
  5047. I915_WRITE(GEN7_FF_THREAD_MODE,
  5048. I915_READ(GEN7_FF_THREAD_MODE) &
  5049. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5050. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5051. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5052. /* WaDisableSDEUnitClockGating:bdw */
  5053. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5054. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5055. lpt_init_clock_gating(dev);
  5056. }
  5057. static void haswell_init_clock_gating(struct drm_device *dev)
  5058. {
  5059. struct drm_i915_private *dev_priv = dev->dev_private;
  5060. ilk_init_lp_watermarks(dev);
  5061. /* L3 caching of data atomics doesn't work -- disable it. */
  5062. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  5063. I915_WRITE(HSW_ROW_CHICKEN3,
  5064. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  5065. /* This is required by WaCatErrorRejectionIssue:hsw */
  5066. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5067. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5068. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5069. /* WaVSRefCountFullforceMissDisable:hsw */
  5070. I915_WRITE(GEN7_FF_THREAD_MODE,
  5071. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  5072. /* WaDisable_RenderCache_OperationalFlush:hsw */
  5073. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5074. /* enable HiZ Raw Stall Optimization */
  5075. I915_WRITE(CACHE_MODE_0_GEN7,
  5076. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5077. /* WaDisable4x2SubspanOptimization:hsw */
  5078. I915_WRITE(CACHE_MODE_1,
  5079. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5080. /*
  5081. * BSpec recommends 8x4 when MSAA is used,
  5082. * however in practice 16x4 seems fastest.
  5083. *
  5084. * Note that PS/WM thread counts depend on the WIZ hashing
  5085. * disable bit, which we don't touch here, but it's good
  5086. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5087. */
  5088. I915_WRITE(GEN7_GT_MODE,
  5089. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5090. /* WaSampleCChickenBitEnable:hsw */
  5091. I915_WRITE(HALF_SLICE_CHICKEN3,
  5092. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  5093. /* WaSwitchSolVfFArbitrationPriority:hsw */
  5094. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5095. /* WaRsPkgCStateDisplayPMReq:hsw */
  5096. I915_WRITE(CHICKEN_PAR1_1,
  5097. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  5098. lpt_init_clock_gating(dev);
  5099. }
  5100. static void ivybridge_init_clock_gating(struct drm_device *dev)
  5101. {
  5102. struct drm_i915_private *dev_priv = dev->dev_private;
  5103. uint32_t snpcr;
  5104. ilk_init_lp_watermarks(dev);
  5105. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  5106. /* WaDisableEarlyCull:ivb */
  5107. I915_WRITE(_3D_CHICKEN3,
  5108. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5109. /* WaDisableBackToBackFlipFix:ivb */
  5110. I915_WRITE(IVB_CHICKEN3,
  5111. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5112. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5113. /* WaDisablePSDDualDispatchEnable:ivb */
  5114. if (IS_IVB_GT1(dev))
  5115. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5116. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5117. /* WaDisable_RenderCache_OperationalFlush:ivb */
  5118. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5119. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  5120. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  5121. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  5122. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  5123. I915_WRITE(GEN7_L3CNTLREG1,
  5124. GEN7_WA_FOR_GEN7_L3_CONTROL);
  5125. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  5126. GEN7_WA_L3_CHICKEN_MODE);
  5127. if (IS_IVB_GT1(dev))
  5128. I915_WRITE(GEN7_ROW_CHICKEN2,
  5129. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5130. else {
  5131. /* must write both registers */
  5132. I915_WRITE(GEN7_ROW_CHICKEN2,
  5133. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5134. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  5135. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5136. }
  5137. /* WaForceL3Serialization:ivb */
  5138. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5139. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5140. /*
  5141. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5142. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  5143. */
  5144. I915_WRITE(GEN6_UCGCTL2,
  5145. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5146. /* This is required by WaCatErrorRejectionIssue:ivb */
  5147. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5148. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5149. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5150. g4x_disable_trickle_feed(dev);
  5151. gen7_setup_fixed_func_scheduler(dev_priv);
  5152. if (0) { /* causes HiZ corruption on ivb:gt1 */
  5153. /* enable HiZ Raw Stall Optimization */
  5154. I915_WRITE(CACHE_MODE_0_GEN7,
  5155. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5156. }
  5157. /* WaDisable4x2SubspanOptimization:ivb */
  5158. I915_WRITE(CACHE_MODE_1,
  5159. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5160. /*
  5161. * BSpec recommends 8x4 when MSAA is used,
  5162. * however in practice 16x4 seems fastest.
  5163. *
  5164. * Note that PS/WM thread counts depend on the WIZ hashing
  5165. * disable bit, which we don't touch here, but it's good
  5166. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5167. */
  5168. I915_WRITE(GEN7_GT_MODE,
  5169. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5170. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  5171. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  5172. snpcr |= GEN6_MBC_SNPCR_MED;
  5173. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  5174. if (!HAS_PCH_NOP(dev))
  5175. cpt_init_clock_gating(dev);
  5176. gen6_check_mch_setup(dev);
  5177. }
  5178. static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
  5179. {
  5180. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  5181. /*
  5182. * Disable trickle feed and enable pnd deadline calculation
  5183. */
  5184. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  5185. I915_WRITE(CBR1_VLV, 0);
  5186. }
  5187. static void valleyview_init_clock_gating(struct drm_device *dev)
  5188. {
  5189. struct drm_i915_private *dev_priv = dev->dev_private;
  5190. vlv_init_display_clock_gating(dev_priv);
  5191. /* WaDisableEarlyCull:vlv */
  5192. I915_WRITE(_3D_CHICKEN3,
  5193. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5194. /* WaDisableBackToBackFlipFix:vlv */
  5195. I915_WRITE(IVB_CHICKEN3,
  5196. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5197. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5198. /* WaPsdDispatchEnable:vlv */
  5199. /* WaDisablePSDDualDispatchEnable:vlv */
  5200. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5201. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  5202. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5203. /* WaDisable_RenderCache_OperationalFlush:vlv */
  5204. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5205. /* WaForceL3Serialization:vlv */
  5206. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5207. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5208. /* WaDisableDopClockGating:vlv */
  5209. I915_WRITE(GEN7_ROW_CHICKEN2,
  5210. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5211. /* This is required by WaCatErrorRejectionIssue:vlv */
  5212. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5213. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5214. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5215. gen7_setup_fixed_func_scheduler(dev_priv);
  5216. /*
  5217. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5218. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  5219. */
  5220. I915_WRITE(GEN6_UCGCTL2,
  5221. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5222. /* WaDisableL3Bank2xClockGate:vlv
  5223. * Disabling L3 clock gating- MMIO 940c[25] = 1
  5224. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  5225. I915_WRITE(GEN7_UCGCTL4,
  5226. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  5227. /*
  5228. * BSpec says this must be set, even though
  5229. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  5230. */
  5231. I915_WRITE(CACHE_MODE_1,
  5232. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5233. /*
  5234. * BSpec recommends 8x4 when MSAA is used,
  5235. * however in practice 16x4 seems fastest.
  5236. *
  5237. * Note that PS/WM thread counts depend on the WIZ hashing
  5238. * disable bit, which we don't touch here, but it's good
  5239. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5240. */
  5241. I915_WRITE(GEN7_GT_MODE,
  5242. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5243. /*
  5244. * WaIncreaseL3CreditsForVLVB0:vlv
  5245. * This is the hardware default actually.
  5246. */
  5247. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  5248. /*
  5249. * WaDisableVLVClockGating_VBIIssue:vlv
  5250. * Disable clock gating on th GCFG unit to prevent a delay
  5251. * in the reporting of vblank events.
  5252. */
  5253. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  5254. }
  5255. static void cherryview_init_clock_gating(struct drm_device *dev)
  5256. {
  5257. struct drm_i915_private *dev_priv = dev->dev_private;
  5258. vlv_init_display_clock_gating(dev_priv);
  5259. /* WaVSRefCountFullforceMissDisable:chv */
  5260. /* WaDSRefCountFullforceMissDisable:chv */
  5261. I915_WRITE(GEN7_FF_THREAD_MODE,
  5262. I915_READ(GEN7_FF_THREAD_MODE) &
  5263. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5264. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5265. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5266. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5267. /* WaDisableCSUnitClockGating:chv */
  5268. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5269. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5270. /* WaDisableSDEUnitClockGating:chv */
  5271. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5272. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5273. }
  5274. static void g4x_init_clock_gating(struct drm_device *dev)
  5275. {
  5276. struct drm_i915_private *dev_priv = dev->dev_private;
  5277. uint32_t dspclk_gate;
  5278. I915_WRITE(RENCLK_GATE_D1, 0);
  5279. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5280. GS_UNIT_CLOCK_GATE_DISABLE |
  5281. CL_UNIT_CLOCK_GATE_DISABLE);
  5282. I915_WRITE(RAMCLK_GATE_D, 0);
  5283. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5284. OVRUNIT_CLOCK_GATE_DISABLE |
  5285. OVCUNIT_CLOCK_GATE_DISABLE;
  5286. if (IS_GM45(dev))
  5287. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5288. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5289. /* WaDisableRenderCachePipelinedFlush */
  5290. I915_WRITE(CACHE_MODE_0,
  5291. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5292. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5293. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5294. g4x_disable_trickle_feed(dev);
  5295. }
  5296. static void crestline_init_clock_gating(struct drm_device *dev)
  5297. {
  5298. struct drm_i915_private *dev_priv = dev->dev_private;
  5299. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5300. I915_WRITE(RENCLK_GATE_D2, 0);
  5301. I915_WRITE(DSPCLK_GATE_D, 0);
  5302. I915_WRITE(RAMCLK_GATE_D, 0);
  5303. I915_WRITE16(DEUC, 0);
  5304. I915_WRITE(MI_ARB_STATE,
  5305. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5306. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5307. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5308. }
  5309. static void broadwater_init_clock_gating(struct drm_device *dev)
  5310. {
  5311. struct drm_i915_private *dev_priv = dev->dev_private;
  5312. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5313. I965_RCC_CLOCK_GATE_DISABLE |
  5314. I965_RCPB_CLOCK_GATE_DISABLE |
  5315. I965_ISC_CLOCK_GATE_DISABLE |
  5316. I965_FBC_CLOCK_GATE_DISABLE);
  5317. I915_WRITE(RENCLK_GATE_D2, 0);
  5318. I915_WRITE(MI_ARB_STATE,
  5319. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5320. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5321. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5322. }
  5323. static void gen3_init_clock_gating(struct drm_device *dev)
  5324. {
  5325. struct drm_i915_private *dev_priv = dev->dev_private;
  5326. u32 dstate = I915_READ(D_STATE);
  5327. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5328. DSTATE_DOT_CLOCK_GATING;
  5329. I915_WRITE(D_STATE, dstate);
  5330. if (IS_PINEVIEW(dev))
  5331. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5332. /* IIR "flip pending" means done if this bit is set */
  5333. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5334. /* interrupts should cause a wake up from C3 */
  5335. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5336. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5337. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5338. I915_WRITE(MI_ARB_STATE,
  5339. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5340. }
  5341. static void i85x_init_clock_gating(struct drm_device *dev)
  5342. {
  5343. struct drm_i915_private *dev_priv = dev->dev_private;
  5344. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5345. /* interrupts should cause a wake up from C3 */
  5346. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5347. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5348. I915_WRITE(MEM_MODE,
  5349. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5350. }
  5351. static void i830_init_clock_gating(struct drm_device *dev)
  5352. {
  5353. struct drm_i915_private *dev_priv = dev->dev_private;
  5354. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5355. I915_WRITE(MEM_MODE,
  5356. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5357. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5358. }
  5359. void intel_init_clock_gating(struct drm_device *dev)
  5360. {
  5361. struct drm_i915_private *dev_priv = dev->dev_private;
  5362. if (dev_priv->display.init_clock_gating)
  5363. dev_priv->display.init_clock_gating(dev);
  5364. }
  5365. void intel_suspend_hw(struct drm_device *dev)
  5366. {
  5367. if (HAS_PCH_LPT(dev))
  5368. lpt_suspend_hw(dev);
  5369. }
  5370. /* Set up chip specific power management-related functions */
  5371. void intel_init_pm(struct drm_device *dev)
  5372. {
  5373. struct drm_i915_private *dev_priv = dev->dev_private;
  5374. intel_fbc_init(dev_priv);
  5375. /* For cxsr */
  5376. if (IS_PINEVIEW(dev))
  5377. i915_pineview_get_mem_freq(dev);
  5378. else if (IS_GEN5(dev))
  5379. i915_ironlake_get_mem_freq(dev);
  5380. /* For FIFO watermark updates */
  5381. if (INTEL_INFO(dev)->gen >= 9) {
  5382. skl_setup_wm_latency(dev);
  5383. dev_priv->display.init_clock_gating = skl_init_clock_gating;
  5384. dev_priv->display.update_wm = skl_update_wm;
  5385. dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
  5386. } else if (HAS_PCH_SPLIT(dev)) {
  5387. ilk_setup_wm_latency(dev);
  5388. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5389. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5390. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5391. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5392. dev_priv->display.update_wm = ilk_update_wm;
  5393. dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
  5394. } else {
  5395. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5396. "Disable CxSR\n");
  5397. }
  5398. if (IS_GEN5(dev))
  5399. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5400. else if (IS_GEN6(dev))
  5401. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5402. else if (IS_IVYBRIDGE(dev))
  5403. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5404. else if (IS_HASWELL(dev))
  5405. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5406. else if (INTEL_INFO(dev)->gen == 8)
  5407. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  5408. } else if (IS_CHERRYVIEW(dev)) {
  5409. dev_priv->display.update_wm = valleyview_update_wm;
  5410. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  5411. dev_priv->display.init_clock_gating =
  5412. cherryview_init_clock_gating;
  5413. } else if (IS_VALLEYVIEW(dev)) {
  5414. dev_priv->display.update_wm = valleyview_update_wm;
  5415. dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
  5416. dev_priv->display.init_clock_gating =
  5417. valleyview_init_clock_gating;
  5418. } else if (IS_PINEVIEW(dev)) {
  5419. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5420. dev_priv->is_ddr3,
  5421. dev_priv->fsb_freq,
  5422. dev_priv->mem_freq)) {
  5423. DRM_INFO("failed to find known CxSR latency "
  5424. "(found ddr%s fsb freq %d, mem freq %d), "
  5425. "disabling CxSR\n",
  5426. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5427. dev_priv->fsb_freq, dev_priv->mem_freq);
  5428. /* Disable CxSR and never update its watermark again */
  5429. intel_set_memory_cxsr(dev_priv, false);
  5430. dev_priv->display.update_wm = NULL;
  5431. } else
  5432. dev_priv->display.update_wm = pineview_update_wm;
  5433. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5434. } else if (IS_G4X(dev)) {
  5435. dev_priv->display.update_wm = g4x_update_wm;
  5436. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5437. } else if (IS_GEN4(dev)) {
  5438. dev_priv->display.update_wm = i965_update_wm;
  5439. if (IS_CRESTLINE(dev))
  5440. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5441. else if (IS_BROADWATER(dev))
  5442. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5443. } else if (IS_GEN3(dev)) {
  5444. dev_priv->display.update_wm = i9xx_update_wm;
  5445. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5446. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5447. } else if (IS_GEN2(dev)) {
  5448. if (INTEL_INFO(dev)->num_pipes == 1) {
  5449. dev_priv->display.update_wm = i845_update_wm;
  5450. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5451. } else {
  5452. dev_priv->display.update_wm = i9xx_update_wm;
  5453. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5454. }
  5455. if (IS_I85X(dev) || IS_I865G(dev))
  5456. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5457. else
  5458. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5459. } else {
  5460. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5461. }
  5462. }
  5463. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  5464. {
  5465. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5466. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5467. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5468. return -EAGAIN;
  5469. }
  5470. I915_WRITE(GEN6_PCODE_DATA, *val);
  5471. I915_WRITE(GEN6_PCODE_DATA1, 0);
  5472. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5473. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5474. 500)) {
  5475. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5476. return -ETIMEDOUT;
  5477. }
  5478. *val = I915_READ(GEN6_PCODE_DATA);
  5479. I915_WRITE(GEN6_PCODE_DATA, 0);
  5480. return 0;
  5481. }
  5482. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
  5483. {
  5484. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5485. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5486. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5487. return -EAGAIN;
  5488. }
  5489. I915_WRITE(GEN6_PCODE_DATA, val);
  5490. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5491. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5492. 500)) {
  5493. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5494. return -ETIMEDOUT;
  5495. }
  5496. I915_WRITE(GEN6_PCODE_DATA, 0);
  5497. return 0;
  5498. }
  5499. static int vlv_gpu_freq_div(unsigned int czclk_freq)
  5500. {
  5501. switch (czclk_freq) {
  5502. case 200:
  5503. return 10;
  5504. case 267:
  5505. return 12;
  5506. case 320:
  5507. case 333:
  5508. return 16;
  5509. case 400:
  5510. return 20;
  5511. default:
  5512. return -1;
  5513. }
  5514. }
  5515. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5516. {
  5517. int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
  5518. div = vlv_gpu_freq_div(czclk_freq);
  5519. if (div < 0)
  5520. return div;
  5521. return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
  5522. }
  5523. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5524. {
  5525. int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
  5526. mul = vlv_gpu_freq_div(czclk_freq);
  5527. if (mul < 0)
  5528. return mul;
  5529. return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
  5530. }
  5531. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5532. {
  5533. int div, czclk_freq = dev_priv->rps.cz_freq;
  5534. div = vlv_gpu_freq_div(czclk_freq) / 2;
  5535. if (div < 0)
  5536. return div;
  5537. return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
  5538. }
  5539. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5540. {
  5541. int mul, czclk_freq = dev_priv->rps.cz_freq;
  5542. mul = vlv_gpu_freq_div(czclk_freq) / 2;
  5543. if (mul < 0)
  5544. return mul;
  5545. /* CHV needs even values */
  5546. return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
  5547. }
  5548. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5549. {
  5550. if (IS_GEN9(dev_priv->dev))
  5551. return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
  5552. else if (IS_CHERRYVIEW(dev_priv->dev))
  5553. return chv_gpu_freq(dev_priv, val);
  5554. else if (IS_VALLEYVIEW(dev_priv->dev))
  5555. return byt_gpu_freq(dev_priv, val);
  5556. else
  5557. return val * GT_FREQUENCY_MULTIPLIER;
  5558. }
  5559. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5560. {
  5561. if (IS_GEN9(dev_priv->dev))
  5562. return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
  5563. else if (IS_CHERRYVIEW(dev_priv->dev))
  5564. return chv_freq_opcode(dev_priv, val);
  5565. else if (IS_VALLEYVIEW(dev_priv->dev))
  5566. return byt_freq_opcode(dev_priv, val);
  5567. else
  5568. return val / GT_FREQUENCY_MULTIPLIER;
  5569. }
  5570. void intel_pm_setup(struct drm_device *dev)
  5571. {
  5572. struct drm_i915_private *dev_priv = dev->dev_private;
  5573. mutex_init(&dev_priv->rps.hw_lock);
  5574. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5575. intel_gen6_powersave_work);
  5576. dev_priv->pm.suspended = false;
  5577. }