bpf_jit_comp.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220
  1. /*
  2. * BPF Jit compiler for s390.
  3. *
  4. * Minimum build requirements:
  5. *
  6. * - HAVE_MARCH_Z196_FEATURES: laal, laalg
  7. * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
  8. * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
  9. * - PACK_STACK
  10. * - 64BIT
  11. *
  12. * Copyright IBM Corp. 2012,2015
  13. *
  14. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  15. * Michael Holzheu <holzheu@linux.vnet.ibm.com>
  16. */
  17. #define KMSG_COMPONENT "bpf_jit"
  18. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  19. #include <linux/netdevice.h>
  20. #include <linux/filter.h>
  21. #include <linux/init.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/dis.h>
  24. #include "bpf_jit.h"
  25. int bpf_jit_enable __read_mostly;
  26. struct bpf_jit {
  27. u32 seen; /* Flags to remember seen eBPF instructions */
  28. u32 seen_reg[16]; /* Array to remember which registers are used */
  29. u32 *addrs; /* Array with relative instruction addresses */
  30. u8 *prg_buf; /* Start of program */
  31. int size; /* Size of program and literal pool */
  32. int size_prg; /* Size of program */
  33. int prg; /* Current position in program */
  34. int lit_start; /* Start of literal pool */
  35. int lit; /* Current position in literal pool */
  36. int base_ip; /* Base address for literal pool */
  37. int ret0_ip; /* Address of return 0 */
  38. int exit_ip; /* Address of exit */
  39. };
  40. #define BPF_SIZE_MAX 4096 /* Max size for program */
  41. #define SEEN_SKB 1 /* skb access */
  42. #define SEEN_MEM 2 /* use mem[] for temporary storage */
  43. #define SEEN_RET0 4 /* ret0_ip points to a valid return 0 */
  44. #define SEEN_LITERAL 8 /* code uses literals */
  45. #define SEEN_FUNC 16 /* calls C functions */
  46. #define SEEN_STACK (SEEN_FUNC | SEEN_MEM | SEEN_SKB)
  47. /*
  48. * s390 registers
  49. */
  50. #define REG_W0 (__MAX_BPF_REG+0) /* Work register 1 (even) */
  51. #define REG_W1 (__MAX_BPF_REG+1) /* Work register 2 (odd) */
  52. #define REG_SKB_DATA (__MAX_BPF_REG+2) /* SKB data register */
  53. #define REG_L (__MAX_BPF_REG+3) /* Literal pool register */
  54. #define REG_15 (__MAX_BPF_REG+4) /* Register 15 */
  55. #define REG_0 REG_W0 /* Register 0 */
  56. #define REG_2 BPF_REG_1 /* Register 2 */
  57. #define REG_14 BPF_REG_0 /* Register 14 */
  58. /*
  59. * Mapping of BPF registers to s390 registers
  60. */
  61. static const int reg2hex[] = {
  62. /* Return code */
  63. [BPF_REG_0] = 14,
  64. /* Function parameters */
  65. [BPF_REG_1] = 2,
  66. [BPF_REG_2] = 3,
  67. [BPF_REG_3] = 4,
  68. [BPF_REG_4] = 5,
  69. [BPF_REG_5] = 6,
  70. /* Call saved registers */
  71. [BPF_REG_6] = 7,
  72. [BPF_REG_7] = 8,
  73. [BPF_REG_8] = 9,
  74. [BPF_REG_9] = 10,
  75. /* BPF stack pointer */
  76. [BPF_REG_FP] = 13,
  77. /* SKB data pointer */
  78. [REG_SKB_DATA] = 12,
  79. /* Work registers for s390x backend */
  80. [REG_W0] = 0,
  81. [REG_W1] = 1,
  82. [REG_L] = 11,
  83. [REG_15] = 15,
  84. };
  85. static inline u32 reg(u32 dst_reg, u32 src_reg)
  86. {
  87. return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
  88. }
  89. static inline u32 reg_high(u32 reg)
  90. {
  91. return reg2hex[reg] << 4;
  92. }
  93. static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
  94. {
  95. u32 r1 = reg2hex[b1];
  96. if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
  97. jit->seen_reg[r1] = 1;
  98. }
  99. #define REG_SET_SEEN(b1) \
  100. ({ \
  101. reg_set_seen(jit, b1); \
  102. })
  103. #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
  104. /*
  105. * EMIT macros for code generation
  106. */
  107. #define _EMIT2(op) \
  108. ({ \
  109. if (jit->prg_buf) \
  110. *(u16 *) (jit->prg_buf + jit->prg) = op; \
  111. jit->prg += 2; \
  112. })
  113. #define EMIT2(op, b1, b2) \
  114. ({ \
  115. _EMIT2(op | reg(b1, b2)); \
  116. REG_SET_SEEN(b1); \
  117. REG_SET_SEEN(b2); \
  118. })
  119. #define _EMIT4(op) \
  120. ({ \
  121. if (jit->prg_buf) \
  122. *(u32 *) (jit->prg_buf + jit->prg) = op; \
  123. jit->prg += 4; \
  124. })
  125. #define EMIT4(op, b1, b2) \
  126. ({ \
  127. _EMIT4(op | reg(b1, b2)); \
  128. REG_SET_SEEN(b1); \
  129. REG_SET_SEEN(b2); \
  130. })
  131. #define EMIT4_RRF(op, b1, b2, b3) \
  132. ({ \
  133. _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
  134. REG_SET_SEEN(b1); \
  135. REG_SET_SEEN(b2); \
  136. REG_SET_SEEN(b3); \
  137. })
  138. #define _EMIT4_DISP(op, disp) \
  139. ({ \
  140. unsigned int __disp = (disp) & 0xfff; \
  141. _EMIT4(op | __disp); \
  142. })
  143. #define EMIT4_DISP(op, b1, b2, disp) \
  144. ({ \
  145. _EMIT4_DISP(op | reg_high(b1) << 16 | \
  146. reg_high(b2) << 8, disp); \
  147. REG_SET_SEEN(b1); \
  148. REG_SET_SEEN(b2); \
  149. })
  150. #define EMIT4_IMM(op, b1, imm) \
  151. ({ \
  152. unsigned int __imm = (imm) & 0xffff; \
  153. _EMIT4(op | reg_high(b1) << 16 | __imm); \
  154. REG_SET_SEEN(b1); \
  155. })
  156. #define EMIT4_PCREL(op, pcrel) \
  157. ({ \
  158. long __pcrel = ((pcrel) >> 1) & 0xffff; \
  159. _EMIT4(op | __pcrel); \
  160. })
  161. #define _EMIT6(op1, op2) \
  162. ({ \
  163. if (jit->prg_buf) { \
  164. *(u32 *) (jit->prg_buf + jit->prg) = op1; \
  165. *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
  166. } \
  167. jit->prg += 6; \
  168. })
  169. #define _EMIT6_DISP(op1, op2, disp) \
  170. ({ \
  171. unsigned int __disp = (disp) & 0xfff; \
  172. _EMIT6(op1 | __disp, op2); \
  173. })
  174. #define EMIT6_DISP(op1, op2, b1, b2, b3, disp) \
  175. ({ \
  176. _EMIT6_DISP(op1 | reg(b1, b2) << 16 | \
  177. reg_high(b3) << 8, op2, disp); \
  178. REG_SET_SEEN(b1); \
  179. REG_SET_SEEN(b2); \
  180. REG_SET_SEEN(b3); \
  181. })
  182. #define _EMIT6_DISP_LH(op1, op2, disp) \
  183. ({ \
  184. unsigned int __disp_h = ((u32)disp) & 0xff000; \
  185. unsigned int __disp_l = ((u32)disp) & 0x00fff; \
  186. _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
  187. })
  188. #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
  189. ({ \
  190. _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
  191. reg_high(b3) << 8, op2, disp); \
  192. REG_SET_SEEN(b1); \
  193. REG_SET_SEEN(b2); \
  194. REG_SET_SEEN(b3); \
  195. })
  196. #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
  197. ({ \
  198. /* Branch instruction needs 6 bytes */ \
  199. int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
  200. _EMIT6(op1 | reg(b1, b2) << 16 | rel, op2 | mask); \
  201. REG_SET_SEEN(b1); \
  202. REG_SET_SEEN(b2); \
  203. })
  204. #define _EMIT6_IMM(op, imm) \
  205. ({ \
  206. unsigned int __imm = (imm); \
  207. _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
  208. })
  209. #define EMIT6_IMM(op, b1, imm) \
  210. ({ \
  211. _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
  212. REG_SET_SEEN(b1); \
  213. })
  214. #define EMIT_CONST_U32(val) \
  215. ({ \
  216. unsigned int ret; \
  217. ret = jit->lit - jit->base_ip; \
  218. jit->seen |= SEEN_LITERAL; \
  219. if (jit->prg_buf) \
  220. *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
  221. jit->lit += 4; \
  222. ret; \
  223. })
  224. #define EMIT_CONST_U64(val) \
  225. ({ \
  226. unsigned int ret; \
  227. ret = jit->lit - jit->base_ip; \
  228. jit->seen |= SEEN_LITERAL; \
  229. if (jit->prg_buf) \
  230. *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
  231. jit->lit += 8; \
  232. ret; \
  233. })
  234. #define EMIT_ZERO(b1) \
  235. ({ \
  236. /* llgfr %dst,%dst (zero extend to 64 bit) */ \
  237. EMIT4(0xb9160000, b1, b1); \
  238. REG_SET_SEEN(b1); \
  239. })
  240. /*
  241. * Fill whole space with illegal instructions
  242. */
  243. static void jit_fill_hole(void *area, unsigned int size)
  244. {
  245. memset(area, 0, size);
  246. }
  247. /*
  248. * Save registers from "rs" (register start) to "re" (register end) on stack
  249. */
  250. static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
  251. {
  252. u32 off = 72 + (rs - 6) * 8;
  253. if (rs == re)
  254. /* stg %rs,off(%r15) */
  255. _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
  256. else
  257. /* stmg %rs,%re,off(%r15) */
  258. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
  259. }
  260. /*
  261. * Restore registers from "rs" (register start) to "re" (register end) on stack
  262. */
  263. static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
  264. {
  265. u32 off = 72 + (rs - 6) * 8;
  266. if (jit->seen & SEEN_STACK)
  267. off += STK_OFF;
  268. if (rs == re)
  269. /* lg %rs,off(%r15) */
  270. _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
  271. else
  272. /* lmg %rs,%re,off(%r15) */
  273. _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
  274. }
  275. /*
  276. * Return first seen register (from start)
  277. */
  278. static int get_start(struct bpf_jit *jit, int start)
  279. {
  280. int i;
  281. for (i = start; i <= 15; i++) {
  282. if (jit->seen_reg[i])
  283. return i;
  284. }
  285. return 0;
  286. }
  287. /*
  288. * Return last seen register (from start) (gap >= 2)
  289. */
  290. static int get_end(struct bpf_jit *jit, int start)
  291. {
  292. int i;
  293. for (i = start; i < 15; i++) {
  294. if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
  295. return i - 1;
  296. }
  297. return jit->seen_reg[15] ? 15 : 14;
  298. }
  299. #define REGS_SAVE 1
  300. #define REGS_RESTORE 0
  301. /*
  302. * Save and restore clobbered registers (6-15) on stack.
  303. * We save/restore registers in chunks with gap >= 2 registers.
  304. */
  305. static void save_restore_regs(struct bpf_jit *jit, int op)
  306. {
  307. int re = 6, rs;
  308. do {
  309. rs = get_start(jit, re);
  310. if (!rs)
  311. break;
  312. re = get_end(jit, rs + 1);
  313. if (op == REGS_SAVE)
  314. save_regs(jit, rs, re);
  315. else
  316. restore_regs(jit, rs, re);
  317. re++;
  318. } while (re <= 15);
  319. }
  320. /*
  321. * Emit function prologue
  322. *
  323. * Save registers and create stack frame if necessary.
  324. * See stack frame layout desription in "bpf_jit.h"!
  325. */
  326. static void bpf_jit_prologue(struct bpf_jit *jit)
  327. {
  328. /* Save registers */
  329. save_restore_regs(jit, REGS_SAVE);
  330. /* Setup literal pool */
  331. if (jit->seen & SEEN_LITERAL) {
  332. /* basr %r13,0 */
  333. EMIT2(0x0d00, REG_L, REG_0);
  334. jit->base_ip = jit->prg;
  335. }
  336. /* Setup stack and backchain */
  337. if (jit->seen & SEEN_STACK) {
  338. /* lgr %bfp,%r15 (BPF frame pointer) */
  339. EMIT4(0xb9040000, BPF_REG_FP, REG_15);
  340. /* aghi %r15,-STK_OFF */
  341. EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
  342. if (jit->seen & SEEN_FUNC)
  343. /* stg %bfp,152(%r15) (backchain) */
  344. EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_FP, REG_0,
  345. REG_15, 152);
  346. }
  347. /*
  348. * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
  349. * we store the SKB header length on the stack and the SKB data
  350. * pointer in REG_SKB_DATA.
  351. */
  352. if (jit->seen & SEEN_SKB) {
  353. /* Header length: llgf %w1,<len>(%b1) */
  354. EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
  355. offsetof(struct sk_buff, len));
  356. /* s %w1,<data_len>(%b1) */
  357. EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
  358. offsetof(struct sk_buff, data_len));
  359. /* stg %w1,ST_OFF_HLEN(%r0,%r15) */
  360. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15,
  361. STK_OFF_HLEN);
  362. /* lg %skb_data,data_off(%b1) */
  363. EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
  364. BPF_REG_1, offsetof(struct sk_buff, data));
  365. }
  366. /* BPF compatibility: clear A (%b7) and X (%b8) registers */
  367. if (REG_SEEN(BPF_REG_7))
  368. /* lghi %b7,0 */
  369. EMIT4_IMM(0xa7090000, BPF_REG_7, 0);
  370. if (REG_SEEN(BPF_REG_8))
  371. /* lghi %b8,0 */
  372. EMIT4_IMM(0xa7090000, BPF_REG_8, 0);
  373. }
  374. /*
  375. * Function epilogue
  376. */
  377. static void bpf_jit_epilogue(struct bpf_jit *jit)
  378. {
  379. /* Return 0 */
  380. if (jit->seen & SEEN_RET0) {
  381. jit->ret0_ip = jit->prg;
  382. /* lghi %b0,0 */
  383. EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
  384. }
  385. jit->exit_ip = jit->prg;
  386. /* Load exit code: lgr %r2,%b0 */
  387. EMIT4(0xb9040000, REG_2, BPF_REG_0);
  388. /* Restore registers */
  389. save_restore_regs(jit, REGS_RESTORE);
  390. /* br %r14 */
  391. _EMIT2(0x07fe);
  392. }
  393. /*
  394. * Compile one eBPF instruction into s390x code
  395. */
  396. static int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
  397. {
  398. struct bpf_insn *insn = &fp->insnsi[i];
  399. int jmp_off, last, insn_count = 1;
  400. unsigned int func_addr, mask;
  401. u32 dst_reg = insn->dst_reg;
  402. u32 src_reg = insn->src_reg;
  403. u32 *addrs = jit->addrs;
  404. s32 imm = insn->imm;
  405. s16 off = insn->off;
  406. switch (insn->code) {
  407. /*
  408. * BPF_MOV
  409. */
  410. case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
  411. /* llgfr %dst,%src */
  412. EMIT4(0xb9160000, dst_reg, src_reg);
  413. break;
  414. case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
  415. /* lgr %dst,%src */
  416. EMIT4(0xb9040000, dst_reg, src_reg);
  417. break;
  418. case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
  419. /* llilf %dst,imm */
  420. EMIT6_IMM(0xc00f0000, dst_reg, imm);
  421. break;
  422. case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
  423. /* lgfi %dst,imm */
  424. EMIT6_IMM(0xc0010000, dst_reg, imm);
  425. break;
  426. /*
  427. * BPF_LD 64
  428. */
  429. case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
  430. {
  431. /* 16 byte instruction that uses two 'struct bpf_insn' */
  432. u64 imm64;
  433. imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
  434. /* lg %dst,<d(imm)>(%l) */
  435. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
  436. EMIT_CONST_U64(imm64));
  437. insn_count = 2;
  438. break;
  439. }
  440. /*
  441. * BPF_ADD
  442. */
  443. case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
  444. /* ar %dst,%src */
  445. EMIT2(0x1a00, dst_reg, src_reg);
  446. EMIT_ZERO(dst_reg);
  447. break;
  448. case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
  449. /* agr %dst,%src */
  450. EMIT4(0xb9080000, dst_reg, src_reg);
  451. break;
  452. case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
  453. if (!imm)
  454. break;
  455. /* alfi %dst,imm */
  456. EMIT6_IMM(0xc20b0000, dst_reg, imm);
  457. EMIT_ZERO(dst_reg);
  458. break;
  459. case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
  460. if (!imm)
  461. break;
  462. /* agfi %dst,imm */
  463. EMIT6_IMM(0xc2080000, dst_reg, imm);
  464. break;
  465. /*
  466. * BPF_SUB
  467. */
  468. case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
  469. /* sr %dst,%src */
  470. EMIT2(0x1b00, dst_reg, src_reg);
  471. EMIT_ZERO(dst_reg);
  472. break;
  473. case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
  474. /* sgr %dst,%src */
  475. EMIT4(0xb9090000, dst_reg, src_reg);
  476. break;
  477. case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
  478. if (!imm)
  479. break;
  480. /* alfi %dst,-imm */
  481. EMIT6_IMM(0xc20b0000, dst_reg, -imm);
  482. EMIT_ZERO(dst_reg);
  483. break;
  484. case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
  485. if (!imm)
  486. break;
  487. /* agfi %dst,-imm */
  488. EMIT6_IMM(0xc2080000, dst_reg, -imm);
  489. break;
  490. /*
  491. * BPF_MUL
  492. */
  493. case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
  494. /* msr %dst,%src */
  495. EMIT4(0xb2520000, dst_reg, src_reg);
  496. EMIT_ZERO(dst_reg);
  497. break;
  498. case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
  499. /* msgr %dst,%src */
  500. EMIT4(0xb90c0000, dst_reg, src_reg);
  501. break;
  502. case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
  503. if (imm == 1)
  504. break;
  505. /* msfi %r5,imm */
  506. EMIT6_IMM(0xc2010000, dst_reg, imm);
  507. EMIT_ZERO(dst_reg);
  508. break;
  509. case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
  510. if (imm == 1)
  511. break;
  512. /* msgfi %dst,imm */
  513. EMIT6_IMM(0xc2000000, dst_reg, imm);
  514. break;
  515. /*
  516. * BPF_DIV / BPF_MOD
  517. */
  518. case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
  519. case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
  520. {
  521. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  522. jit->seen |= SEEN_RET0;
  523. /* ltr %src,%src (if src == 0 goto fail) */
  524. EMIT2(0x1200, src_reg, src_reg);
  525. /* jz <ret0> */
  526. EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
  527. /* lhi %w0,0 */
  528. EMIT4_IMM(0xa7080000, REG_W0, 0);
  529. /* lr %w1,%dst */
  530. EMIT2(0x1800, REG_W1, dst_reg);
  531. /* dlr %w0,%src */
  532. EMIT4(0xb9970000, REG_W0, src_reg);
  533. /* llgfr %dst,%rc */
  534. EMIT4(0xb9160000, dst_reg, rc_reg);
  535. break;
  536. }
  537. case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / (u32) src */
  538. case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % (u32) src */
  539. {
  540. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  541. jit->seen |= SEEN_RET0;
  542. /* ltgr %src,%src (if src == 0 goto fail) */
  543. EMIT4(0xb9020000, src_reg, src_reg);
  544. /* jz <ret0> */
  545. EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
  546. /* lghi %w0,0 */
  547. EMIT4_IMM(0xa7090000, REG_W0, 0);
  548. /* lgr %w1,%dst */
  549. EMIT4(0xb9040000, REG_W1, dst_reg);
  550. /* llgfr %dst,%src (u32 cast) */
  551. EMIT4(0xb9160000, dst_reg, src_reg);
  552. /* dlgr %w0,%dst */
  553. EMIT4(0xb9870000, REG_W0, dst_reg);
  554. /* lgr %dst,%rc */
  555. EMIT4(0xb9040000, dst_reg, rc_reg);
  556. break;
  557. }
  558. case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
  559. case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
  560. {
  561. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  562. if (imm == 1) {
  563. if (BPF_OP(insn->code) == BPF_MOD)
  564. /* lhgi %dst,0 */
  565. EMIT4_IMM(0xa7090000, dst_reg, 0);
  566. break;
  567. }
  568. /* lhi %w0,0 */
  569. EMIT4_IMM(0xa7080000, REG_W0, 0);
  570. /* lr %w1,%dst */
  571. EMIT2(0x1800, REG_W1, dst_reg);
  572. /* dl %w0,<d(imm)>(%l) */
  573. EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
  574. EMIT_CONST_U32(imm));
  575. /* llgfr %dst,%rc */
  576. EMIT4(0xb9160000, dst_reg, rc_reg);
  577. break;
  578. }
  579. case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / (u32) imm */
  580. case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % (u32) imm */
  581. {
  582. int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
  583. if (imm == 1) {
  584. if (BPF_OP(insn->code) == BPF_MOD)
  585. /* lhgi %dst,0 */
  586. EMIT4_IMM(0xa7090000, dst_reg, 0);
  587. break;
  588. }
  589. /* lghi %w0,0 */
  590. EMIT4_IMM(0xa7090000, REG_W0, 0);
  591. /* lgr %w1,%dst */
  592. EMIT4(0xb9040000, REG_W1, dst_reg);
  593. /* dlg %w0,<d(imm)>(%l) */
  594. EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
  595. EMIT_CONST_U64((u32) imm));
  596. /* lgr %dst,%rc */
  597. EMIT4(0xb9040000, dst_reg, rc_reg);
  598. break;
  599. }
  600. /*
  601. * BPF_AND
  602. */
  603. case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
  604. /* nr %dst,%src */
  605. EMIT2(0x1400, dst_reg, src_reg);
  606. EMIT_ZERO(dst_reg);
  607. break;
  608. case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
  609. /* ngr %dst,%src */
  610. EMIT4(0xb9800000, dst_reg, src_reg);
  611. break;
  612. case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
  613. /* nilf %dst,imm */
  614. EMIT6_IMM(0xc00b0000, dst_reg, imm);
  615. EMIT_ZERO(dst_reg);
  616. break;
  617. case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
  618. /* ng %dst,<d(imm)>(%l) */
  619. EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
  620. EMIT_CONST_U64(imm));
  621. break;
  622. /*
  623. * BPF_OR
  624. */
  625. case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
  626. /* or %dst,%src */
  627. EMIT2(0x1600, dst_reg, src_reg);
  628. EMIT_ZERO(dst_reg);
  629. break;
  630. case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
  631. /* ogr %dst,%src */
  632. EMIT4(0xb9810000, dst_reg, src_reg);
  633. break;
  634. case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
  635. /* oilf %dst,imm */
  636. EMIT6_IMM(0xc00d0000, dst_reg, imm);
  637. EMIT_ZERO(dst_reg);
  638. break;
  639. case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
  640. /* og %dst,<d(imm)>(%l) */
  641. EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
  642. EMIT_CONST_U64(imm));
  643. break;
  644. /*
  645. * BPF_XOR
  646. */
  647. case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
  648. /* xr %dst,%src */
  649. EMIT2(0x1700, dst_reg, src_reg);
  650. EMIT_ZERO(dst_reg);
  651. break;
  652. case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
  653. /* xgr %dst,%src */
  654. EMIT4(0xb9820000, dst_reg, src_reg);
  655. break;
  656. case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
  657. if (!imm)
  658. break;
  659. /* xilf %dst,imm */
  660. EMIT6_IMM(0xc0070000, dst_reg, imm);
  661. EMIT_ZERO(dst_reg);
  662. break;
  663. case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
  664. /* xg %dst,<d(imm)>(%l) */
  665. EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
  666. EMIT_CONST_U64(imm));
  667. break;
  668. /*
  669. * BPF_LSH
  670. */
  671. case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
  672. /* sll %dst,0(%src) */
  673. EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
  674. EMIT_ZERO(dst_reg);
  675. break;
  676. case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
  677. /* sllg %dst,%dst,0(%src) */
  678. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
  679. break;
  680. case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
  681. if (imm == 0)
  682. break;
  683. /* sll %dst,imm(%r0) */
  684. EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
  685. EMIT_ZERO(dst_reg);
  686. break;
  687. case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
  688. if (imm == 0)
  689. break;
  690. /* sllg %dst,%dst,imm(%r0) */
  691. EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
  692. break;
  693. /*
  694. * BPF_RSH
  695. */
  696. case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
  697. /* srl %dst,0(%src) */
  698. EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
  699. EMIT_ZERO(dst_reg);
  700. break;
  701. case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
  702. /* srlg %dst,%dst,0(%src) */
  703. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
  704. break;
  705. case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
  706. if (imm == 0)
  707. break;
  708. /* srl %dst,imm(%r0) */
  709. EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
  710. EMIT_ZERO(dst_reg);
  711. break;
  712. case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
  713. if (imm == 0)
  714. break;
  715. /* srlg %dst,%dst,imm(%r0) */
  716. EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
  717. break;
  718. /*
  719. * BPF_ARSH
  720. */
  721. case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
  722. /* srag %dst,%dst,0(%src) */
  723. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
  724. break;
  725. case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
  726. if (imm == 0)
  727. break;
  728. /* srag %dst,%dst,imm(%r0) */
  729. EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
  730. break;
  731. /*
  732. * BPF_NEG
  733. */
  734. case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
  735. /* lcr %dst,%dst */
  736. EMIT2(0x1300, dst_reg, dst_reg);
  737. EMIT_ZERO(dst_reg);
  738. break;
  739. case BPF_ALU64 | BPF_NEG: /* dst = -dst */
  740. /* lcgr %dst,%dst */
  741. EMIT4(0xb9130000, dst_reg, dst_reg);
  742. break;
  743. /*
  744. * BPF_FROM_BE/LE
  745. */
  746. case BPF_ALU | BPF_END | BPF_FROM_BE:
  747. /* s390 is big endian, therefore only clear high order bytes */
  748. switch (imm) {
  749. case 16: /* dst = (u16) cpu_to_be16(dst) */
  750. /* llghr %dst,%dst */
  751. EMIT4(0xb9850000, dst_reg, dst_reg);
  752. break;
  753. case 32: /* dst = (u32) cpu_to_be32(dst) */
  754. /* llgfr %dst,%dst */
  755. EMIT4(0xb9160000, dst_reg, dst_reg);
  756. break;
  757. case 64: /* dst = (u64) cpu_to_be64(dst) */
  758. break;
  759. }
  760. break;
  761. case BPF_ALU | BPF_END | BPF_FROM_LE:
  762. switch (imm) {
  763. case 16: /* dst = (u16) cpu_to_le16(dst) */
  764. /* lrvr %dst,%dst */
  765. EMIT4(0xb91f0000, dst_reg, dst_reg);
  766. /* srl %dst,16(%r0) */
  767. EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
  768. /* llghr %dst,%dst */
  769. EMIT4(0xb9850000, dst_reg, dst_reg);
  770. break;
  771. case 32: /* dst = (u32) cpu_to_le32(dst) */
  772. /* lrvr %dst,%dst */
  773. EMIT4(0xb91f0000, dst_reg, dst_reg);
  774. /* llgfr %dst,%dst */
  775. EMIT4(0xb9160000, dst_reg, dst_reg);
  776. break;
  777. case 64: /* dst = (u64) cpu_to_le64(dst) */
  778. /* lrvgr %dst,%dst */
  779. EMIT4(0xb90f0000, dst_reg, dst_reg);
  780. break;
  781. }
  782. break;
  783. /*
  784. * BPF_ST(X)
  785. */
  786. case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
  787. /* stcy %src,off(%dst) */
  788. EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
  789. jit->seen |= SEEN_MEM;
  790. break;
  791. case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
  792. /* sthy %src,off(%dst) */
  793. EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
  794. jit->seen |= SEEN_MEM;
  795. break;
  796. case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
  797. /* sty %src,off(%dst) */
  798. EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
  799. jit->seen |= SEEN_MEM;
  800. break;
  801. case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
  802. /* stg %src,off(%dst) */
  803. EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
  804. jit->seen |= SEEN_MEM;
  805. break;
  806. case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
  807. /* lhi %w0,imm */
  808. EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
  809. /* stcy %w0,off(dst) */
  810. EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
  811. jit->seen |= SEEN_MEM;
  812. break;
  813. case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
  814. /* lhi %w0,imm */
  815. EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
  816. /* sthy %w0,off(dst) */
  817. EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
  818. jit->seen |= SEEN_MEM;
  819. break;
  820. case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
  821. /* llilf %w0,imm */
  822. EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
  823. /* sty %w0,off(%dst) */
  824. EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
  825. jit->seen |= SEEN_MEM;
  826. break;
  827. case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
  828. /* lgfi %w0,imm */
  829. EMIT6_IMM(0xc0010000, REG_W0, imm);
  830. /* stg %w0,off(%dst) */
  831. EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
  832. jit->seen |= SEEN_MEM;
  833. break;
  834. /*
  835. * BPF_STX XADD (atomic_add)
  836. */
  837. case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
  838. /* laal %w0,%src,off(%dst) */
  839. EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
  840. dst_reg, off);
  841. jit->seen |= SEEN_MEM;
  842. break;
  843. case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
  844. /* laalg %w0,%src,off(%dst) */
  845. EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
  846. dst_reg, off);
  847. jit->seen |= SEEN_MEM;
  848. break;
  849. /*
  850. * BPF_LDX
  851. */
  852. case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
  853. /* llgc %dst,0(off,%src) */
  854. EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
  855. jit->seen |= SEEN_MEM;
  856. break;
  857. case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
  858. /* llgh %dst,0(off,%src) */
  859. EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
  860. jit->seen |= SEEN_MEM;
  861. break;
  862. case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
  863. /* llgf %dst,off(%src) */
  864. jit->seen |= SEEN_MEM;
  865. EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
  866. break;
  867. case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
  868. /* lg %dst,0(off,%src) */
  869. jit->seen |= SEEN_MEM;
  870. EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
  871. break;
  872. /*
  873. * BPF_JMP / CALL
  874. */
  875. case BPF_JMP | BPF_CALL:
  876. {
  877. /*
  878. * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
  879. */
  880. const u64 func = (u64)__bpf_call_base + imm;
  881. REG_SET_SEEN(BPF_REG_5);
  882. jit->seen |= SEEN_FUNC;
  883. /* lg %w1,<d(imm)>(%l) */
  884. EMIT6_DISP(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
  885. EMIT_CONST_U64(func));
  886. /* basr %r14,%w1 */
  887. EMIT2(0x0d00, REG_14, REG_W1);
  888. /* lgr %b0,%r2: load return value into %b0 */
  889. EMIT4(0xb9040000, BPF_REG_0, REG_2);
  890. break;
  891. }
  892. case BPF_JMP | BPF_EXIT: /* return b0 */
  893. last = (i == fp->len - 1) ? 1 : 0;
  894. if (last && !(jit->seen & SEEN_RET0))
  895. break;
  896. /* j <exit> */
  897. EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
  898. break;
  899. /*
  900. * Branch relative (number of skipped instructions) to offset on
  901. * condition.
  902. *
  903. * Condition code to mask mapping:
  904. *
  905. * CC | Description | Mask
  906. * ------------------------------
  907. * 0 | Operands equal | 8
  908. * 1 | First operand low | 4
  909. * 2 | First operand high | 2
  910. * 3 | Unused | 1
  911. *
  912. * For s390x relative branches: ip = ip + off_bytes
  913. * For BPF relative branches: insn = insn + off_insns + 1
  914. *
  915. * For example for s390x with offset 0 we jump to the branch
  916. * instruction itself (loop) and for BPF with offset 0 we
  917. * branch to the instruction behind the branch.
  918. */
  919. case BPF_JMP | BPF_JA: /* if (true) */
  920. mask = 0xf000; /* j */
  921. goto branch_oc;
  922. case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
  923. mask = 0x2000; /* jh */
  924. goto branch_ks;
  925. case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
  926. mask = 0xa000; /* jhe */
  927. goto branch_ks;
  928. case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
  929. mask = 0x2000; /* jh */
  930. goto branch_ku;
  931. case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
  932. mask = 0xa000; /* jhe */
  933. goto branch_ku;
  934. case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
  935. mask = 0x7000; /* jne */
  936. goto branch_ku;
  937. case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
  938. mask = 0x8000; /* je */
  939. goto branch_ku;
  940. case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
  941. mask = 0x7000; /* jnz */
  942. /* lgfi %w1,imm (load sign extend imm) */
  943. EMIT6_IMM(0xc0010000, REG_W1, imm);
  944. /* ngr %w1,%dst */
  945. EMIT4(0xb9800000, REG_W1, dst_reg);
  946. goto branch_oc;
  947. case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
  948. mask = 0x2000; /* jh */
  949. goto branch_xs;
  950. case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
  951. mask = 0xa000; /* jhe */
  952. goto branch_xs;
  953. case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
  954. mask = 0x2000; /* jh */
  955. goto branch_xu;
  956. case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
  957. mask = 0xa000; /* jhe */
  958. goto branch_xu;
  959. case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
  960. mask = 0x7000; /* jne */
  961. goto branch_xu;
  962. case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
  963. mask = 0x8000; /* je */
  964. goto branch_xu;
  965. case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
  966. mask = 0x7000; /* jnz */
  967. /* ngrk %w1,%dst,%src */
  968. EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
  969. goto branch_oc;
  970. branch_ks:
  971. /* lgfi %w1,imm (load sign extend imm) */
  972. EMIT6_IMM(0xc0010000, REG_W1, imm);
  973. /* cgrj %dst,%w1,mask,off */
  974. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
  975. break;
  976. branch_ku:
  977. /* lgfi %w1,imm (load sign extend imm) */
  978. EMIT6_IMM(0xc0010000, REG_W1, imm);
  979. /* clgrj %dst,%w1,mask,off */
  980. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
  981. break;
  982. branch_xs:
  983. /* cgrj %dst,%src,mask,off */
  984. EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
  985. break;
  986. branch_xu:
  987. /* clgrj %dst,%src,mask,off */
  988. EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
  989. break;
  990. branch_oc:
  991. /* brc mask,jmp_off (branch instruction needs 4 bytes) */
  992. jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
  993. EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
  994. break;
  995. /*
  996. * BPF_LD
  997. */
  998. case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
  999. case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
  1000. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1001. func_addr = __pa(sk_load_byte_pos);
  1002. else
  1003. func_addr = __pa(sk_load_byte);
  1004. goto call_fn;
  1005. case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
  1006. case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
  1007. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1008. func_addr = __pa(sk_load_half_pos);
  1009. else
  1010. func_addr = __pa(sk_load_half);
  1011. goto call_fn;
  1012. case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
  1013. case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
  1014. if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
  1015. func_addr = __pa(sk_load_word_pos);
  1016. else
  1017. func_addr = __pa(sk_load_word);
  1018. goto call_fn;
  1019. call_fn:
  1020. jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
  1021. REG_SET_SEEN(REG_14); /* Return address of possible func call */
  1022. /*
  1023. * Implicit input:
  1024. * BPF_REG_6 (R7) : skb pointer
  1025. * REG_SKB_DATA (R12): skb data pointer
  1026. *
  1027. * Calculated input:
  1028. * BPF_REG_2 (R3) : offset of byte(s) to fetch in skb
  1029. * BPF_REG_5 (R6) : return address
  1030. *
  1031. * Output:
  1032. * BPF_REG_0 (R14): data read from skb
  1033. *
  1034. * Scratch registers (BPF_REG_1-5)
  1035. */
  1036. /* Call function: llilf %w1,func_addr */
  1037. EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
  1038. /* Offset: lgfi %b2,imm */
  1039. EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
  1040. if (BPF_MODE(insn->code) == BPF_IND)
  1041. /* agfr %b2,%src (%src is s32 here) */
  1042. EMIT4(0xb9180000, BPF_REG_2, src_reg);
  1043. /* basr %b5,%w1 (%b5 is call saved) */
  1044. EMIT2(0x0d00, BPF_REG_5, REG_W1);
  1045. /*
  1046. * Note: For fast access we jump directly after the
  1047. * jnz instruction from bpf_jit.S
  1048. */
  1049. /* jnz <ret0> */
  1050. EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
  1051. break;
  1052. default: /* too complex, give up */
  1053. pr_err("Unknown opcode %02x\n", insn->code);
  1054. return -1;
  1055. }
  1056. return insn_count;
  1057. }
  1058. /*
  1059. * Compile eBPF program into s390x code
  1060. */
  1061. static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
  1062. {
  1063. int i, insn_count;
  1064. jit->lit = jit->lit_start;
  1065. jit->prg = 0;
  1066. bpf_jit_prologue(jit);
  1067. for (i = 0; i < fp->len; i += insn_count) {
  1068. insn_count = bpf_jit_insn(jit, fp, i);
  1069. if (insn_count < 0)
  1070. return -1;
  1071. jit->addrs[i + 1] = jit->prg; /* Next instruction address */
  1072. }
  1073. bpf_jit_epilogue(jit);
  1074. jit->lit_start = jit->prg;
  1075. jit->size = jit->lit;
  1076. jit->size_prg = jit->prg;
  1077. return 0;
  1078. }
  1079. /*
  1080. * Classic BPF function stub. BPF programs will be converted into
  1081. * eBPF and then bpf_int_jit_compile() will be called.
  1082. */
  1083. void bpf_jit_compile(struct bpf_prog *fp)
  1084. {
  1085. }
  1086. /*
  1087. * Compile eBPF program "fp"
  1088. */
  1089. void bpf_int_jit_compile(struct bpf_prog *fp)
  1090. {
  1091. struct bpf_binary_header *header;
  1092. struct bpf_jit jit;
  1093. int pass;
  1094. if (!bpf_jit_enable)
  1095. return;
  1096. memset(&jit, 0, sizeof(jit));
  1097. jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
  1098. if (jit.addrs == NULL)
  1099. return;
  1100. /*
  1101. * Three initial passes:
  1102. * - 1/2: Determine clobbered registers
  1103. * - 3: Calculate program size and addrs arrray
  1104. */
  1105. for (pass = 1; pass <= 3; pass++) {
  1106. if (bpf_jit_prog(&jit, fp))
  1107. goto free_addrs;
  1108. }
  1109. /*
  1110. * Final pass: Allocate and generate program
  1111. */
  1112. if (jit.size >= BPF_SIZE_MAX)
  1113. goto free_addrs;
  1114. header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
  1115. if (!header)
  1116. goto free_addrs;
  1117. if (bpf_jit_prog(&jit, fp))
  1118. goto free_addrs;
  1119. if (bpf_jit_enable > 1) {
  1120. bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
  1121. if (jit.prg_buf)
  1122. print_fn_code(jit.prg_buf, jit.size_prg);
  1123. }
  1124. if (jit.prg_buf) {
  1125. set_memory_ro((unsigned long)header, header->pages);
  1126. fp->bpf_func = (void *) jit.prg_buf;
  1127. fp->jited = true;
  1128. }
  1129. free_addrs:
  1130. kfree(jit.addrs);
  1131. }
  1132. /*
  1133. * Free eBPF program
  1134. */
  1135. void bpf_jit_free(struct bpf_prog *fp)
  1136. {
  1137. unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
  1138. struct bpf_binary_header *header = (void *)addr;
  1139. if (!fp->jited)
  1140. goto free_filter;
  1141. set_memory_rw(addr, header->pages);
  1142. bpf_jit_binary_free(header);
  1143. free_filter:
  1144. bpf_prog_unlock_free(fp);
  1145. }