hugetlbpage.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106
  1. /*
  2. * PPC Huge TLB Page Support for Kernel.
  3. *
  4. * Copyright (C) 2003 David Gibson, IBM Corporation.
  5. * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
  6. *
  7. * Based on the IA-32 version:
  8. * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/io.h>
  12. #include <linux/slab.h>
  13. #include <linux/hugetlb.h>
  14. #include <linux/export.h>
  15. #include <linux/of_fdt.h>
  16. #include <linux/memblock.h>
  17. #include <linux/bootmem.h>
  18. #include <linux/moduleparam.h>
  19. #include <asm/pgtable.h>
  20. #include <asm/pgalloc.h>
  21. #include <asm/tlb.h>
  22. #include <asm/setup.h>
  23. #include <asm/hugetlb.h>
  24. #ifdef CONFIG_HUGETLB_PAGE
  25. #define PAGE_SHIFT_64K 16
  26. #define PAGE_SHIFT_16M 24
  27. #define PAGE_SHIFT_16G 34
  28. unsigned int HPAGE_SHIFT;
  29. /*
  30. * Tracks gpages after the device tree is scanned and before the
  31. * huge_boot_pages list is ready. On non-Freescale implementations, this is
  32. * just used to track 16G pages and so is a single array. FSL-based
  33. * implementations may have more than one gpage size, so we need multiple
  34. * arrays
  35. */
  36. #ifdef CONFIG_PPC_FSL_BOOK3E
  37. #define MAX_NUMBER_GPAGES 128
  38. struct psize_gpages {
  39. u64 gpage_list[MAX_NUMBER_GPAGES];
  40. unsigned int nr_gpages;
  41. };
  42. static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
  43. #else
  44. #define MAX_NUMBER_GPAGES 1024
  45. static u64 gpage_freearray[MAX_NUMBER_GPAGES];
  46. static unsigned nr_gpages;
  47. #endif
  48. #define hugepd_none(hpd) ((hpd).pd == 0)
  49. #ifdef CONFIG_PPC_BOOK3S_64
  50. /*
  51. * At this point we do the placement change only for BOOK3S 64. This would
  52. * possibly work on other subarchs.
  53. */
  54. /*
  55. * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
  56. * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
  57. *
  58. * Defined in such a way that we can optimize away code block at build time
  59. * if CONFIG_HUGETLB_PAGE=n.
  60. */
  61. int pmd_huge(pmd_t pmd)
  62. {
  63. /*
  64. * leaf pte for huge page, bottom two bits != 00
  65. */
  66. return ((pmd_val(pmd) & 0x3) != 0x0);
  67. }
  68. int pud_huge(pud_t pud)
  69. {
  70. /*
  71. * leaf pte for huge page, bottom two bits != 00
  72. */
  73. return ((pud_val(pud) & 0x3) != 0x0);
  74. }
  75. int pgd_huge(pgd_t pgd)
  76. {
  77. /*
  78. * leaf pte for huge page, bottom two bits != 00
  79. */
  80. return ((pgd_val(pgd) & 0x3) != 0x0);
  81. }
  82. #else
  83. int pmd_huge(pmd_t pmd)
  84. {
  85. return 0;
  86. }
  87. int pud_huge(pud_t pud)
  88. {
  89. return 0;
  90. }
  91. int pgd_huge(pgd_t pgd)
  92. {
  93. return 0;
  94. }
  95. #endif
  96. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  97. {
  98. /* Only called for hugetlbfs pages, hence can ignore THP */
  99. return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
  100. }
  101. static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
  102. unsigned long address, unsigned pdshift, unsigned pshift)
  103. {
  104. struct kmem_cache *cachep;
  105. pte_t *new;
  106. #ifdef CONFIG_PPC_FSL_BOOK3E
  107. int i;
  108. int num_hugepd = 1 << (pshift - pdshift);
  109. cachep = hugepte_cache;
  110. #else
  111. cachep = PGT_CACHE(pdshift - pshift);
  112. #endif
  113. new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
  114. BUG_ON(pshift > HUGEPD_SHIFT_MASK);
  115. BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
  116. if (! new)
  117. return -ENOMEM;
  118. spin_lock(&mm->page_table_lock);
  119. #ifdef CONFIG_PPC_FSL_BOOK3E
  120. /*
  121. * We have multiple higher-level entries that point to the same
  122. * actual pte location. Fill in each as we go and backtrack on error.
  123. * We need all of these so the DTLB pgtable walk code can find the
  124. * right higher-level entry without knowing if it's a hugepage or not.
  125. */
  126. for (i = 0; i < num_hugepd; i++, hpdp++) {
  127. if (unlikely(!hugepd_none(*hpdp)))
  128. break;
  129. else
  130. /* We use the old format for PPC_FSL_BOOK3E */
  131. hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
  132. }
  133. /* If we bailed from the for loop early, an error occurred, clean up */
  134. if (i < num_hugepd) {
  135. for (i = i - 1 ; i >= 0; i--, hpdp--)
  136. hpdp->pd = 0;
  137. kmem_cache_free(cachep, new);
  138. }
  139. #else
  140. if (!hugepd_none(*hpdp))
  141. kmem_cache_free(cachep, new);
  142. else {
  143. #ifdef CONFIG_PPC_BOOK3S_64
  144. hpdp->pd = (unsigned long)new |
  145. (shift_to_mmu_psize(pshift) << 2);
  146. #else
  147. hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
  148. #endif
  149. }
  150. #endif
  151. spin_unlock(&mm->page_table_lock);
  152. return 0;
  153. }
  154. /*
  155. * These macros define how to determine which level of the page table holds
  156. * the hpdp.
  157. */
  158. #ifdef CONFIG_PPC_FSL_BOOK3E
  159. #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
  160. #define HUGEPD_PUD_SHIFT PUD_SHIFT
  161. #else
  162. #define HUGEPD_PGD_SHIFT PUD_SHIFT
  163. #define HUGEPD_PUD_SHIFT PMD_SHIFT
  164. #endif
  165. #ifdef CONFIG_PPC_BOOK3S_64
  166. /*
  167. * At this point we do the placement change only for BOOK3S 64. This would
  168. * possibly work on other subarchs.
  169. */
  170. pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
  171. {
  172. pgd_t *pg;
  173. pud_t *pu;
  174. pmd_t *pm;
  175. hugepd_t *hpdp = NULL;
  176. unsigned pshift = __ffs(sz);
  177. unsigned pdshift = PGDIR_SHIFT;
  178. addr &= ~(sz-1);
  179. pg = pgd_offset(mm, addr);
  180. if (pshift == PGDIR_SHIFT)
  181. /* 16GB huge page */
  182. return (pte_t *) pg;
  183. else if (pshift > PUD_SHIFT)
  184. /*
  185. * We need to use hugepd table
  186. */
  187. hpdp = (hugepd_t *)pg;
  188. else {
  189. pdshift = PUD_SHIFT;
  190. pu = pud_alloc(mm, pg, addr);
  191. if (pshift == PUD_SHIFT)
  192. return (pte_t *)pu;
  193. else if (pshift > PMD_SHIFT)
  194. hpdp = (hugepd_t *)pu;
  195. else {
  196. pdshift = PMD_SHIFT;
  197. pm = pmd_alloc(mm, pu, addr);
  198. if (pshift == PMD_SHIFT)
  199. /* 16MB hugepage */
  200. return (pte_t *)pm;
  201. else
  202. hpdp = (hugepd_t *)pm;
  203. }
  204. }
  205. if (!hpdp)
  206. return NULL;
  207. BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
  208. if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
  209. return NULL;
  210. return hugepte_offset(*hpdp, addr, pdshift);
  211. }
  212. #else
  213. pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
  214. {
  215. pgd_t *pg;
  216. pud_t *pu;
  217. pmd_t *pm;
  218. hugepd_t *hpdp = NULL;
  219. unsigned pshift = __ffs(sz);
  220. unsigned pdshift = PGDIR_SHIFT;
  221. addr &= ~(sz-1);
  222. pg = pgd_offset(mm, addr);
  223. if (pshift >= HUGEPD_PGD_SHIFT) {
  224. hpdp = (hugepd_t *)pg;
  225. } else {
  226. pdshift = PUD_SHIFT;
  227. pu = pud_alloc(mm, pg, addr);
  228. if (pshift >= HUGEPD_PUD_SHIFT) {
  229. hpdp = (hugepd_t *)pu;
  230. } else {
  231. pdshift = PMD_SHIFT;
  232. pm = pmd_alloc(mm, pu, addr);
  233. hpdp = (hugepd_t *)pm;
  234. }
  235. }
  236. if (!hpdp)
  237. return NULL;
  238. BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
  239. if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
  240. return NULL;
  241. return hugepte_offset(*hpdp, addr, pdshift);
  242. }
  243. #endif
  244. #ifdef CONFIG_PPC_FSL_BOOK3E
  245. /* Build list of addresses of gigantic pages. This function is used in early
  246. * boot before the buddy allocator is setup.
  247. */
  248. void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
  249. {
  250. unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
  251. int i;
  252. if (addr == 0)
  253. return;
  254. gpage_freearray[idx].nr_gpages = number_of_pages;
  255. for (i = 0; i < number_of_pages; i++) {
  256. gpage_freearray[idx].gpage_list[i] = addr;
  257. addr += page_size;
  258. }
  259. }
  260. /*
  261. * Moves the gigantic page addresses from the temporary list to the
  262. * huge_boot_pages list.
  263. */
  264. int alloc_bootmem_huge_page(struct hstate *hstate)
  265. {
  266. struct huge_bootmem_page *m;
  267. int idx = shift_to_mmu_psize(huge_page_shift(hstate));
  268. int nr_gpages = gpage_freearray[idx].nr_gpages;
  269. if (nr_gpages == 0)
  270. return 0;
  271. #ifdef CONFIG_HIGHMEM
  272. /*
  273. * If gpages can be in highmem we can't use the trick of storing the
  274. * data structure in the page; allocate space for this
  275. */
  276. m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
  277. m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
  278. #else
  279. m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
  280. #endif
  281. list_add(&m->list, &huge_boot_pages);
  282. gpage_freearray[idx].nr_gpages = nr_gpages;
  283. gpage_freearray[idx].gpage_list[nr_gpages] = 0;
  284. m->hstate = hstate;
  285. return 1;
  286. }
  287. /*
  288. * Scan the command line hugepagesz= options for gigantic pages; store those in
  289. * a list that we use to allocate the memory once all options are parsed.
  290. */
  291. unsigned long gpage_npages[MMU_PAGE_COUNT];
  292. static int __init do_gpage_early_setup(char *param, char *val,
  293. const char *unused)
  294. {
  295. static phys_addr_t size;
  296. unsigned long npages;
  297. /*
  298. * The hugepagesz and hugepages cmdline options are interleaved. We
  299. * use the size variable to keep track of whether or not this was done
  300. * properly and skip over instances where it is incorrect. Other
  301. * command-line parsing code will issue warnings, so we don't need to.
  302. *
  303. */
  304. if ((strcmp(param, "default_hugepagesz") == 0) ||
  305. (strcmp(param, "hugepagesz") == 0)) {
  306. size = memparse(val, NULL);
  307. } else if (strcmp(param, "hugepages") == 0) {
  308. if (size != 0) {
  309. if (sscanf(val, "%lu", &npages) <= 0)
  310. npages = 0;
  311. if (npages > MAX_NUMBER_GPAGES) {
  312. pr_warn("MMU: %lu pages requested for page "
  313. "size %llu KB, limiting to "
  314. __stringify(MAX_NUMBER_GPAGES) "\n",
  315. npages, size / 1024);
  316. npages = MAX_NUMBER_GPAGES;
  317. }
  318. gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
  319. size = 0;
  320. }
  321. }
  322. return 0;
  323. }
  324. /*
  325. * This function allocates physical space for pages that are larger than the
  326. * buddy allocator can handle. We want to allocate these in highmem because
  327. * the amount of lowmem is limited. This means that this function MUST be
  328. * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
  329. * allocate to grab highmem.
  330. */
  331. void __init reserve_hugetlb_gpages(void)
  332. {
  333. static __initdata char cmdline[COMMAND_LINE_SIZE];
  334. phys_addr_t size, base;
  335. int i;
  336. strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
  337. parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
  338. &do_gpage_early_setup);
  339. /*
  340. * Walk gpage list in reverse, allocating larger page sizes first.
  341. * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
  342. * When we reach the point in the list where pages are no longer
  343. * considered gpages, we're done.
  344. */
  345. for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
  346. if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
  347. continue;
  348. else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
  349. break;
  350. size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
  351. base = memblock_alloc_base(size * gpage_npages[i], size,
  352. MEMBLOCK_ALLOC_ANYWHERE);
  353. add_gpage(base, size, gpage_npages[i]);
  354. }
  355. }
  356. #else /* !PPC_FSL_BOOK3E */
  357. /* Build list of addresses of gigantic pages. This function is used in early
  358. * boot before the buddy allocator is setup.
  359. */
  360. void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
  361. {
  362. if (!addr)
  363. return;
  364. while (number_of_pages > 0) {
  365. gpage_freearray[nr_gpages] = addr;
  366. nr_gpages++;
  367. number_of_pages--;
  368. addr += page_size;
  369. }
  370. }
  371. /* Moves the gigantic page addresses from the temporary list to the
  372. * huge_boot_pages list.
  373. */
  374. int alloc_bootmem_huge_page(struct hstate *hstate)
  375. {
  376. struct huge_bootmem_page *m;
  377. if (nr_gpages == 0)
  378. return 0;
  379. m = phys_to_virt(gpage_freearray[--nr_gpages]);
  380. gpage_freearray[nr_gpages] = 0;
  381. list_add(&m->list, &huge_boot_pages);
  382. m->hstate = hstate;
  383. return 1;
  384. }
  385. #endif
  386. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  387. {
  388. return 0;
  389. }
  390. #ifdef CONFIG_PPC_FSL_BOOK3E
  391. #define HUGEPD_FREELIST_SIZE \
  392. ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
  393. struct hugepd_freelist {
  394. struct rcu_head rcu;
  395. unsigned int index;
  396. void *ptes[0];
  397. };
  398. static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
  399. static void hugepd_free_rcu_callback(struct rcu_head *head)
  400. {
  401. struct hugepd_freelist *batch =
  402. container_of(head, struct hugepd_freelist, rcu);
  403. unsigned int i;
  404. for (i = 0; i < batch->index; i++)
  405. kmem_cache_free(hugepte_cache, batch->ptes[i]);
  406. free_page((unsigned long)batch);
  407. }
  408. static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
  409. {
  410. struct hugepd_freelist **batchp;
  411. batchp = this_cpu_ptr(&hugepd_freelist_cur);
  412. if (atomic_read(&tlb->mm->mm_users) < 2 ||
  413. cpumask_equal(mm_cpumask(tlb->mm),
  414. cpumask_of(smp_processor_id()))) {
  415. kmem_cache_free(hugepte_cache, hugepte);
  416. put_cpu_var(hugepd_freelist_cur);
  417. return;
  418. }
  419. if (*batchp == NULL) {
  420. *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
  421. (*batchp)->index = 0;
  422. }
  423. (*batchp)->ptes[(*batchp)->index++] = hugepte;
  424. if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
  425. call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
  426. *batchp = NULL;
  427. }
  428. put_cpu_var(hugepd_freelist_cur);
  429. }
  430. #endif
  431. static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
  432. unsigned long start, unsigned long end,
  433. unsigned long floor, unsigned long ceiling)
  434. {
  435. pte_t *hugepte = hugepd_page(*hpdp);
  436. int i;
  437. unsigned long pdmask = ~((1UL << pdshift) - 1);
  438. unsigned int num_hugepd = 1;
  439. #ifdef CONFIG_PPC_FSL_BOOK3E
  440. /* Note: On fsl the hpdp may be the first of several */
  441. num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
  442. #else
  443. unsigned int shift = hugepd_shift(*hpdp);
  444. #endif
  445. start &= pdmask;
  446. if (start < floor)
  447. return;
  448. if (ceiling) {
  449. ceiling &= pdmask;
  450. if (! ceiling)
  451. return;
  452. }
  453. if (end - 1 > ceiling - 1)
  454. return;
  455. for (i = 0; i < num_hugepd; i++, hpdp++)
  456. hpdp->pd = 0;
  457. #ifdef CONFIG_PPC_FSL_BOOK3E
  458. hugepd_free(tlb, hugepte);
  459. #else
  460. pgtable_free_tlb(tlb, hugepte, pdshift - shift);
  461. #endif
  462. }
  463. static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  464. unsigned long addr, unsigned long end,
  465. unsigned long floor, unsigned long ceiling)
  466. {
  467. pmd_t *pmd;
  468. unsigned long next;
  469. unsigned long start;
  470. start = addr;
  471. do {
  472. pmd = pmd_offset(pud, addr);
  473. next = pmd_addr_end(addr, end);
  474. if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
  475. /*
  476. * if it is not hugepd pointer, we should already find
  477. * it cleared.
  478. */
  479. WARN_ON(!pmd_none_or_clear_bad(pmd));
  480. continue;
  481. }
  482. #ifdef CONFIG_PPC_FSL_BOOK3E
  483. /*
  484. * Increment next by the size of the huge mapping since
  485. * there may be more than one entry at this level for a
  486. * single hugepage, but all of them point to
  487. * the same kmem cache that holds the hugepte.
  488. */
  489. next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
  490. #endif
  491. free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
  492. addr, next, floor, ceiling);
  493. } while (addr = next, addr != end);
  494. start &= PUD_MASK;
  495. if (start < floor)
  496. return;
  497. if (ceiling) {
  498. ceiling &= PUD_MASK;
  499. if (!ceiling)
  500. return;
  501. }
  502. if (end - 1 > ceiling - 1)
  503. return;
  504. pmd = pmd_offset(pud, start);
  505. pud_clear(pud);
  506. pmd_free_tlb(tlb, pmd, start);
  507. mm_dec_nr_pmds(tlb->mm);
  508. }
  509. static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  510. unsigned long addr, unsigned long end,
  511. unsigned long floor, unsigned long ceiling)
  512. {
  513. pud_t *pud;
  514. unsigned long next;
  515. unsigned long start;
  516. start = addr;
  517. do {
  518. pud = pud_offset(pgd, addr);
  519. next = pud_addr_end(addr, end);
  520. if (!is_hugepd(__hugepd(pud_val(*pud)))) {
  521. if (pud_none_or_clear_bad(pud))
  522. continue;
  523. hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
  524. ceiling);
  525. } else {
  526. #ifdef CONFIG_PPC_FSL_BOOK3E
  527. /*
  528. * Increment next by the size of the huge mapping since
  529. * there may be more than one entry at this level for a
  530. * single hugepage, but all of them point to
  531. * the same kmem cache that holds the hugepte.
  532. */
  533. next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
  534. #endif
  535. free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
  536. addr, next, floor, ceiling);
  537. }
  538. } while (addr = next, addr != end);
  539. start &= PGDIR_MASK;
  540. if (start < floor)
  541. return;
  542. if (ceiling) {
  543. ceiling &= PGDIR_MASK;
  544. if (!ceiling)
  545. return;
  546. }
  547. if (end - 1 > ceiling - 1)
  548. return;
  549. pud = pud_offset(pgd, start);
  550. pgd_clear(pgd);
  551. pud_free_tlb(tlb, pud, start);
  552. }
  553. /*
  554. * This function frees user-level page tables of a process.
  555. */
  556. void hugetlb_free_pgd_range(struct mmu_gather *tlb,
  557. unsigned long addr, unsigned long end,
  558. unsigned long floor, unsigned long ceiling)
  559. {
  560. pgd_t *pgd;
  561. unsigned long next;
  562. /*
  563. * Because there are a number of different possible pagetable
  564. * layouts for hugepage ranges, we limit knowledge of how
  565. * things should be laid out to the allocation path
  566. * (huge_pte_alloc(), above). Everything else works out the
  567. * structure as it goes from information in the hugepd
  568. * pointers. That means that we can't here use the
  569. * optimization used in the normal page free_pgd_range(), of
  570. * checking whether we're actually covering a large enough
  571. * range to have to do anything at the top level of the walk
  572. * instead of at the bottom.
  573. *
  574. * To make sense of this, you should probably go read the big
  575. * block comment at the top of the normal free_pgd_range(),
  576. * too.
  577. */
  578. do {
  579. next = pgd_addr_end(addr, end);
  580. pgd = pgd_offset(tlb->mm, addr);
  581. if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
  582. if (pgd_none_or_clear_bad(pgd))
  583. continue;
  584. hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  585. } else {
  586. #ifdef CONFIG_PPC_FSL_BOOK3E
  587. /*
  588. * Increment next by the size of the huge mapping since
  589. * there may be more than one entry at the pgd level
  590. * for a single hugepage, but all of them point to the
  591. * same kmem cache that holds the hugepte.
  592. */
  593. next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
  594. #endif
  595. free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
  596. addr, next, floor, ceiling);
  597. }
  598. } while (addr = next, addr != end);
  599. }
  600. /*
  601. * We are holding mmap_sem, so a parallel huge page collapse cannot run.
  602. * To prevent hugepage split, disable irq.
  603. */
  604. struct page *
  605. follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
  606. {
  607. pte_t *ptep;
  608. struct page *page;
  609. unsigned shift;
  610. unsigned long mask, flags;
  611. /*
  612. * Transparent hugepages are handled by generic code. We can skip them
  613. * here.
  614. */
  615. local_irq_save(flags);
  616. ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
  617. /* Verify it is a huge page else bail. */
  618. if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep)) {
  619. local_irq_restore(flags);
  620. return ERR_PTR(-EINVAL);
  621. }
  622. mask = (1UL << shift) - 1;
  623. page = pte_page(*ptep);
  624. if (page)
  625. page += (address & mask) / PAGE_SIZE;
  626. local_irq_restore(flags);
  627. return page;
  628. }
  629. struct page *
  630. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  631. pmd_t *pmd, int write)
  632. {
  633. BUG();
  634. return NULL;
  635. }
  636. struct page *
  637. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  638. pud_t *pud, int write)
  639. {
  640. BUG();
  641. return NULL;
  642. }
  643. static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
  644. unsigned long sz)
  645. {
  646. unsigned long __boundary = (addr + sz) & ~(sz-1);
  647. return (__boundary - 1 < end - 1) ? __boundary : end;
  648. }
  649. int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
  650. unsigned long end, int write, struct page **pages, int *nr)
  651. {
  652. pte_t *ptep;
  653. unsigned long sz = 1UL << hugepd_shift(hugepd);
  654. unsigned long next;
  655. ptep = hugepte_offset(hugepd, addr, pdshift);
  656. do {
  657. next = hugepte_addr_end(addr, end, sz);
  658. if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
  659. return 0;
  660. } while (ptep++, addr = next, addr != end);
  661. return 1;
  662. }
  663. #ifdef CONFIG_PPC_MM_SLICES
  664. unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  665. unsigned long len, unsigned long pgoff,
  666. unsigned long flags)
  667. {
  668. struct hstate *hstate = hstate_file(file);
  669. int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
  670. return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
  671. }
  672. #endif
  673. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  674. {
  675. #ifdef CONFIG_PPC_MM_SLICES
  676. unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
  677. return 1UL << mmu_psize_to_shift(psize);
  678. #else
  679. if (!is_vm_hugetlb_page(vma))
  680. return PAGE_SIZE;
  681. return huge_page_size(hstate_vma(vma));
  682. #endif
  683. }
  684. static inline bool is_power_of_4(unsigned long x)
  685. {
  686. if (is_power_of_2(x))
  687. return (__ilog2(x) % 2) ? false : true;
  688. return false;
  689. }
  690. static int __init add_huge_page_size(unsigned long long size)
  691. {
  692. int shift = __ffs(size);
  693. int mmu_psize;
  694. /* Check that it is a page size supported by the hardware and
  695. * that it fits within pagetable and slice limits. */
  696. #ifdef CONFIG_PPC_FSL_BOOK3E
  697. if ((size < PAGE_SIZE) || !is_power_of_4(size))
  698. return -EINVAL;
  699. #else
  700. if (!is_power_of_2(size)
  701. || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
  702. return -EINVAL;
  703. #endif
  704. if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
  705. return -EINVAL;
  706. #ifdef CONFIG_SPU_FS_64K_LS
  707. /* Disable support for 64K huge pages when 64K SPU local store
  708. * support is enabled as the current implementation conflicts.
  709. */
  710. if (shift == PAGE_SHIFT_64K)
  711. return -EINVAL;
  712. #endif /* CONFIG_SPU_FS_64K_LS */
  713. BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
  714. /* Return if huge page size has already been setup */
  715. if (size_to_hstate(size))
  716. return 0;
  717. hugetlb_add_hstate(shift - PAGE_SHIFT);
  718. return 0;
  719. }
  720. static int __init hugepage_setup_sz(char *str)
  721. {
  722. unsigned long long size;
  723. size = memparse(str, &str);
  724. if (add_huge_page_size(size) != 0)
  725. printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
  726. return 1;
  727. }
  728. __setup("hugepagesz=", hugepage_setup_sz);
  729. #ifdef CONFIG_PPC_FSL_BOOK3E
  730. struct kmem_cache *hugepte_cache;
  731. static int __init hugetlbpage_init(void)
  732. {
  733. int psize;
  734. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
  735. unsigned shift;
  736. if (!mmu_psize_defs[psize].shift)
  737. continue;
  738. shift = mmu_psize_to_shift(psize);
  739. /* Don't treat normal page sizes as huge... */
  740. if (shift != PAGE_SHIFT)
  741. if (add_huge_page_size(1ULL << shift) < 0)
  742. continue;
  743. }
  744. /*
  745. * Create a kmem cache for hugeptes. The bottom bits in the pte have
  746. * size information encoded in them, so align them to allow this
  747. */
  748. hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
  749. HUGEPD_SHIFT_MASK + 1, 0, NULL);
  750. if (hugepte_cache == NULL)
  751. panic("%s: Unable to create kmem cache for hugeptes\n",
  752. __func__);
  753. /* Default hpage size = 4M */
  754. if (mmu_psize_defs[MMU_PAGE_4M].shift)
  755. HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
  756. else
  757. panic("%s: Unable to set default huge page size\n", __func__);
  758. return 0;
  759. }
  760. #else
  761. static int __init hugetlbpage_init(void)
  762. {
  763. int psize;
  764. if (!mmu_has_feature(MMU_FTR_16M_PAGE))
  765. return -ENODEV;
  766. for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
  767. unsigned shift;
  768. unsigned pdshift;
  769. if (!mmu_psize_defs[psize].shift)
  770. continue;
  771. shift = mmu_psize_to_shift(psize);
  772. if (add_huge_page_size(1ULL << shift) < 0)
  773. continue;
  774. if (shift < PMD_SHIFT)
  775. pdshift = PMD_SHIFT;
  776. else if (shift < PUD_SHIFT)
  777. pdshift = PUD_SHIFT;
  778. else
  779. pdshift = PGDIR_SHIFT;
  780. /*
  781. * if we have pdshift and shift value same, we don't
  782. * use pgt cache for hugepd.
  783. */
  784. if (pdshift != shift) {
  785. pgtable_cache_add(pdshift - shift, NULL);
  786. if (!PGT_CACHE(pdshift - shift))
  787. panic("hugetlbpage_init(): could not create "
  788. "pgtable cache for %d bit pagesize\n", shift);
  789. }
  790. }
  791. /* Set default large page size. Currently, we pick 16M or 1M
  792. * depending on what is available
  793. */
  794. if (mmu_psize_defs[MMU_PAGE_16M].shift)
  795. HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
  796. else if (mmu_psize_defs[MMU_PAGE_1M].shift)
  797. HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
  798. return 0;
  799. }
  800. #endif
  801. module_init(hugetlbpage_init);
  802. void flush_dcache_icache_hugepage(struct page *page)
  803. {
  804. int i;
  805. void *start;
  806. BUG_ON(!PageCompound(page));
  807. for (i = 0; i < (1UL << compound_order(page)); i++) {
  808. if (!PageHighMem(page)) {
  809. __flush_dcache_icache(page_address(page+i));
  810. } else {
  811. start = kmap_atomic(page+i);
  812. __flush_dcache_icache(start);
  813. kunmap_atomic(start);
  814. }
  815. }
  816. }
  817. #endif /* CONFIG_HUGETLB_PAGE */
  818. /*
  819. * We have 4 cases for pgds and pmds:
  820. * (1) invalid (all zeroes)
  821. * (2) pointer to next table, as normal; bottom 6 bits == 0
  822. * (3) leaf pte for huge page, bottom two bits != 00
  823. * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
  824. *
  825. * So long as we atomically load page table pointers we are safe against teardown,
  826. * we can follow the address down to the the page and take a ref on it.
  827. * This function need to be called with interrupts disabled. We use this variant
  828. * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
  829. */
  830. pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
  831. unsigned *shift)
  832. {
  833. pgd_t pgd, *pgdp;
  834. pud_t pud, *pudp;
  835. pmd_t pmd, *pmdp;
  836. pte_t *ret_pte;
  837. hugepd_t *hpdp = NULL;
  838. unsigned pdshift = PGDIR_SHIFT;
  839. if (shift)
  840. *shift = 0;
  841. pgdp = pgdir + pgd_index(ea);
  842. pgd = READ_ONCE(*pgdp);
  843. /*
  844. * Always operate on the local stack value. This make sure the
  845. * value don't get updated by a parallel THP split/collapse,
  846. * page fault or a page unmap. The return pte_t * is still not
  847. * stable. So should be checked there for above conditions.
  848. */
  849. if (pgd_none(pgd))
  850. return NULL;
  851. else if (pgd_huge(pgd)) {
  852. ret_pte = (pte_t *) pgdp;
  853. goto out;
  854. } else if (is_hugepd(__hugepd(pgd_val(pgd))))
  855. hpdp = (hugepd_t *)&pgd;
  856. else {
  857. /*
  858. * Even if we end up with an unmap, the pgtable will not
  859. * be freed, because we do an rcu free and here we are
  860. * irq disabled
  861. */
  862. pdshift = PUD_SHIFT;
  863. pudp = pud_offset(&pgd, ea);
  864. pud = READ_ONCE(*pudp);
  865. if (pud_none(pud))
  866. return NULL;
  867. else if (pud_huge(pud)) {
  868. ret_pte = (pte_t *) pudp;
  869. goto out;
  870. } else if (is_hugepd(__hugepd(pud_val(pud))))
  871. hpdp = (hugepd_t *)&pud;
  872. else {
  873. pdshift = PMD_SHIFT;
  874. pmdp = pmd_offset(&pud, ea);
  875. pmd = READ_ONCE(*pmdp);
  876. /*
  877. * A hugepage collapse is captured by pmd_none, because
  878. * it mark the pmd none and do a hpte invalidate.
  879. *
  880. * We don't worry about pmd_trans_splitting here, The
  881. * caller if it needs to handle the splitting case
  882. * should check for that.
  883. */
  884. if (pmd_none(pmd))
  885. return NULL;
  886. if (pmd_huge(pmd) || pmd_large(pmd)) {
  887. ret_pte = (pte_t *) pmdp;
  888. goto out;
  889. } else if (is_hugepd(__hugepd(pmd_val(pmd))))
  890. hpdp = (hugepd_t *)&pmd;
  891. else
  892. return pte_offset_kernel(&pmd, ea);
  893. }
  894. }
  895. if (!hpdp)
  896. return NULL;
  897. ret_pte = hugepte_offset(*hpdp, ea, pdshift);
  898. pdshift = hugepd_shift(*hpdp);
  899. out:
  900. if (shift)
  901. *shift = pdshift;
  902. return ret_pte;
  903. }
  904. EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
  905. int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
  906. unsigned long end, int write, struct page **pages, int *nr)
  907. {
  908. unsigned long mask;
  909. unsigned long pte_end;
  910. struct page *head, *page, *tail;
  911. pte_t pte;
  912. int refs;
  913. pte_end = (addr + sz) & ~(sz-1);
  914. if (pte_end < end)
  915. end = pte_end;
  916. pte = READ_ONCE(*ptep);
  917. mask = _PAGE_PRESENT | _PAGE_USER;
  918. if (write)
  919. mask |= _PAGE_RW;
  920. if ((pte_val(pte) & mask) != mask)
  921. return 0;
  922. /* hugepages are never "special" */
  923. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  924. refs = 0;
  925. head = pte_page(pte);
  926. page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
  927. tail = page;
  928. do {
  929. VM_BUG_ON(compound_head(page) != head);
  930. pages[*nr] = page;
  931. (*nr)++;
  932. page++;
  933. refs++;
  934. } while (addr += PAGE_SIZE, addr != end);
  935. if (!page_cache_add_speculative(head, refs)) {
  936. *nr -= refs;
  937. return 0;
  938. }
  939. if (unlikely(pte_val(pte) != pte_val(*ptep))) {
  940. /* Could be optimized better */
  941. *nr -= refs;
  942. while (refs--)
  943. put_page(head);
  944. return 0;
  945. }
  946. /*
  947. * Any tail page need their mapcount reference taken before we
  948. * return.
  949. */
  950. while (refs--) {
  951. if (PageTail(tail))
  952. get_huge_page_tail(tail);
  953. tail++;
  954. }
  955. return 1;
  956. }