smp.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version 2
  5. * of the License, or (at your option) any later version.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. *
  12. * You should have received a copy of the GNU General Public License
  13. * along with this program; if not, write to the Free Software
  14. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  15. *
  16. * Copyright (C) 2000, 2001 Kanoj Sarcar
  17. * Copyright (C) 2000, 2001 Ralf Baechle
  18. * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  19. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  20. */
  21. #include <linux/cache.h>
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/smp.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/threads.h>
  28. #include <linux/module.h>
  29. #include <linux/time.h>
  30. #include <linux/timex.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpumask.h>
  33. #include <linux/cpu.h>
  34. #include <linux/err.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/atomic.h>
  37. #include <asm/cpu.h>
  38. #include <asm/processor.h>
  39. #include <asm/idle.h>
  40. #include <asm/r4k-timer.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/time.h>
  43. #include <asm/setup.h>
  44. volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
  45. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  46. EXPORT_SYMBOL(__cpu_number_map);
  47. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  48. EXPORT_SYMBOL(__cpu_logical_map);
  49. /* Number of TCs (or siblings in Intel speak) per CPU core */
  50. int smp_num_siblings = 1;
  51. EXPORT_SYMBOL(smp_num_siblings);
  52. /* representing the TCs (or siblings in Intel speak) of each logical CPU */
  53. cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  54. EXPORT_SYMBOL(cpu_sibling_map);
  55. /* representing the core map of multi-core chips of each logical CPU */
  56. cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
  57. EXPORT_SYMBOL(cpu_core_map);
  58. /* representing cpus for which sibling maps can be computed */
  59. static cpumask_t cpu_sibling_setup_map;
  60. /* representing cpus for which core maps can be computed */
  61. static cpumask_t cpu_core_setup_map;
  62. cpumask_t cpu_coherent_mask;
  63. static inline void set_cpu_sibling_map(int cpu)
  64. {
  65. int i;
  66. cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
  67. if (smp_num_siblings > 1) {
  68. for_each_cpu(i, &cpu_sibling_setup_map) {
  69. if (cpu_data[cpu].package == cpu_data[i].package &&
  70. cpu_data[cpu].core == cpu_data[i].core) {
  71. cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
  72. cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
  73. }
  74. }
  75. } else
  76. cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
  77. }
  78. static inline void set_cpu_core_map(int cpu)
  79. {
  80. int i;
  81. cpumask_set_cpu(cpu, &cpu_core_setup_map);
  82. for_each_cpu(i, &cpu_core_setup_map) {
  83. if (cpu_data[cpu].package == cpu_data[i].package) {
  84. cpumask_set_cpu(i, &cpu_core_map[cpu]);
  85. cpumask_set_cpu(cpu, &cpu_core_map[i]);
  86. }
  87. }
  88. }
  89. struct plat_smp_ops *mp_ops;
  90. EXPORT_SYMBOL(mp_ops);
  91. void register_smp_ops(struct plat_smp_ops *ops)
  92. {
  93. if (mp_ops)
  94. printk(KERN_WARNING "Overriding previously set SMP ops\n");
  95. mp_ops = ops;
  96. }
  97. /*
  98. * First C code run on the secondary CPUs after being started up by
  99. * the master.
  100. */
  101. asmlinkage void start_secondary(void)
  102. {
  103. unsigned int cpu;
  104. cpu_probe();
  105. per_cpu_trap_init(false);
  106. mips_clockevent_init();
  107. mp_ops->init_secondary();
  108. cpu_report();
  109. /*
  110. * XXX parity protection should be folded in here when it's converted
  111. * to an option instead of something based on .cputype
  112. */
  113. calibrate_delay();
  114. preempt_disable();
  115. cpu = smp_processor_id();
  116. cpu_data[cpu].udelay_val = loops_per_jiffy;
  117. cpumask_set_cpu(cpu, &cpu_coherent_mask);
  118. notify_cpu_starting(cpu);
  119. set_cpu_online(cpu, true);
  120. set_cpu_sibling_map(cpu);
  121. set_cpu_core_map(cpu);
  122. cpumask_set_cpu(cpu, &cpu_callin_map);
  123. synchronise_count_slave(cpu);
  124. /*
  125. * irq will be enabled in ->smp_finish(), enabling it too early
  126. * is dangerous.
  127. */
  128. WARN_ON_ONCE(!irqs_disabled());
  129. mp_ops->smp_finish();
  130. cpu_startup_entry(CPUHP_ONLINE);
  131. }
  132. /*
  133. * Call into both interrupt handlers, as we share the IPI for them
  134. */
  135. void __irq_entry smp_call_function_interrupt(void)
  136. {
  137. irq_enter();
  138. generic_smp_call_function_interrupt();
  139. irq_exit();
  140. }
  141. static void stop_this_cpu(void *dummy)
  142. {
  143. /*
  144. * Remove this CPU:
  145. */
  146. set_cpu_online(smp_processor_id(), false);
  147. local_irq_disable();
  148. while (1);
  149. }
  150. void smp_send_stop(void)
  151. {
  152. smp_call_function(stop_this_cpu, NULL, 0);
  153. }
  154. void __init smp_cpus_done(unsigned int max_cpus)
  155. {
  156. }
  157. /* called from main before smp_init() */
  158. void __init smp_prepare_cpus(unsigned int max_cpus)
  159. {
  160. init_new_context(current, &init_mm);
  161. current_thread_info()->cpu = 0;
  162. mp_ops->prepare_cpus(max_cpus);
  163. set_cpu_sibling_map(0);
  164. set_cpu_core_map(0);
  165. #ifndef CONFIG_HOTPLUG_CPU
  166. init_cpu_present(cpu_possible_mask);
  167. #endif
  168. cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
  169. }
  170. /* preload SMP state for boot cpu */
  171. void smp_prepare_boot_cpu(void)
  172. {
  173. set_cpu_possible(0, true);
  174. set_cpu_online(0, true);
  175. cpumask_set_cpu(0, &cpu_callin_map);
  176. }
  177. int __cpu_up(unsigned int cpu, struct task_struct *tidle)
  178. {
  179. mp_ops->boot_secondary(cpu, tidle);
  180. /*
  181. * Trust is futile. We should really have timeouts ...
  182. */
  183. while (!cpumask_test_cpu(cpu, &cpu_callin_map))
  184. udelay(100);
  185. synchronise_count_master(cpu);
  186. return 0;
  187. }
  188. /* Not really SMP stuff ... */
  189. int setup_profiling_timer(unsigned int multiplier)
  190. {
  191. return 0;
  192. }
  193. static void flush_tlb_all_ipi(void *info)
  194. {
  195. local_flush_tlb_all();
  196. }
  197. void flush_tlb_all(void)
  198. {
  199. on_each_cpu(flush_tlb_all_ipi, NULL, 1);
  200. }
  201. static void flush_tlb_mm_ipi(void *mm)
  202. {
  203. local_flush_tlb_mm((struct mm_struct *)mm);
  204. }
  205. /*
  206. * Special Variant of smp_call_function for use by TLB functions:
  207. *
  208. * o No return value
  209. * o collapses to normal function call on UP kernels
  210. * o collapses to normal function call on systems with a single shared
  211. * primary cache.
  212. */
  213. static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
  214. {
  215. smp_call_function(func, info, 1);
  216. }
  217. static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
  218. {
  219. preempt_disable();
  220. smp_on_other_tlbs(func, info);
  221. func(info);
  222. preempt_enable();
  223. }
  224. /*
  225. * The following tlb flush calls are invoked when old translations are
  226. * being torn down, or pte attributes are changing. For single threaded
  227. * address spaces, a new context is obtained on the current cpu, and tlb
  228. * context on other cpus are invalidated to force a new context allocation
  229. * at switch_mm time, should the mm ever be used on other cpus. For
  230. * multithreaded address spaces, intercpu interrupts have to be sent.
  231. * Another case where intercpu interrupts are required is when the target
  232. * mm might be active on another cpu (eg debuggers doing the flushes on
  233. * behalf of debugees, kswapd stealing pages from another process etc).
  234. * Kanoj 07/00.
  235. */
  236. void flush_tlb_mm(struct mm_struct *mm)
  237. {
  238. preempt_disable();
  239. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  240. smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
  241. } else {
  242. unsigned int cpu;
  243. for_each_online_cpu(cpu) {
  244. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  245. cpu_context(cpu, mm) = 0;
  246. }
  247. }
  248. local_flush_tlb_mm(mm);
  249. preempt_enable();
  250. }
  251. struct flush_tlb_data {
  252. struct vm_area_struct *vma;
  253. unsigned long addr1;
  254. unsigned long addr2;
  255. };
  256. static void flush_tlb_range_ipi(void *info)
  257. {
  258. struct flush_tlb_data *fd = info;
  259. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  260. }
  261. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  262. {
  263. struct mm_struct *mm = vma->vm_mm;
  264. preempt_disable();
  265. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  266. struct flush_tlb_data fd = {
  267. .vma = vma,
  268. .addr1 = start,
  269. .addr2 = end,
  270. };
  271. smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
  272. } else {
  273. unsigned int cpu;
  274. for_each_online_cpu(cpu) {
  275. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  276. cpu_context(cpu, mm) = 0;
  277. }
  278. }
  279. local_flush_tlb_range(vma, start, end);
  280. preempt_enable();
  281. }
  282. static void flush_tlb_kernel_range_ipi(void *info)
  283. {
  284. struct flush_tlb_data *fd = info;
  285. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  286. }
  287. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  288. {
  289. struct flush_tlb_data fd = {
  290. .addr1 = start,
  291. .addr2 = end,
  292. };
  293. on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
  294. }
  295. static void flush_tlb_page_ipi(void *info)
  296. {
  297. struct flush_tlb_data *fd = info;
  298. local_flush_tlb_page(fd->vma, fd->addr1);
  299. }
  300. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  301. {
  302. preempt_disable();
  303. if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
  304. struct flush_tlb_data fd = {
  305. .vma = vma,
  306. .addr1 = page,
  307. };
  308. smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
  309. } else {
  310. unsigned int cpu;
  311. for_each_online_cpu(cpu) {
  312. if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
  313. cpu_context(cpu, vma->vm_mm) = 0;
  314. }
  315. }
  316. local_flush_tlb_page(vma, page);
  317. preempt_enable();
  318. }
  319. static void flush_tlb_one_ipi(void *info)
  320. {
  321. unsigned long vaddr = (unsigned long) info;
  322. local_flush_tlb_one(vaddr);
  323. }
  324. void flush_tlb_one(unsigned long vaddr)
  325. {
  326. smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
  327. }
  328. EXPORT_SYMBOL(flush_tlb_page);
  329. EXPORT_SYMBOL(flush_tlb_one);
  330. #if defined(CONFIG_KEXEC)
  331. void (*dump_ipi_function_ptr)(void *) = NULL;
  332. void dump_send_ipi(void (*dump_ipi_callback)(void *))
  333. {
  334. int i;
  335. int cpu = smp_processor_id();
  336. dump_ipi_function_ptr = dump_ipi_callback;
  337. smp_mb();
  338. for_each_online_cpu(i)
  339. if (i != cpu)
  340. mp_ops->send_ipi_single(i, SMP_DUMP);
  341. }
  342. EXPORT_SYMBOL(dump_send_ipi);
  343. #endif
  344. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  345. static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
  346. static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
  347. void tick_broadcast(const struct cpumask *mask)
  348. {
  349. atomic_t *count;
  350. struct call_single_data *csd;
  351. int cpu;
  352. for_each_cpu(cpu, mask) {
  353. count = &per_cpu(tick_broadcast_count, cpu);
  354. csd = &per_cpu(tick_broadcast_csd, cpu);
  355. if (atomic_inc_return(count) == 1)
  356. smp_call_function_single_async(cpu, csd);
  357. }
  358. }
  359. static void tick_broadcast_callee(void *info)
  360. {
  361. int cpu = smp_processor_id();
  362. tick_receive_broadcast();
  363. atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
  364. }
  365. static int __init tick_broadcast_init(void)
  366. {
  367. struct call_single_data *csd;
  368. int cpu;
  369. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  370. csd = &per_cpu(tick_broadcast_csd, cpu);
  371. csd->func = tick_broadcast_callee;
  372. }
  373. return 0;
  374. }
  375. early_initcall(tick_broadcast_init);
  376. #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */