dma-mapping.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. /*
  2. * SWIOTLB-based DMA API implementation
  3. *
  4. * Copyright (C) 2012 ARM Ltd.
  5. * Author: Catalin Marinas <catalin.marinas@arm.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include <linux/gfp.h>
  20. #include <linux/export.h>
  21. #include <linux/slab.h>
  22. #include <linux/genalloc.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/dma-contiguous.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/swiotlb.h>
  27. #include <asm/cacheflush.h>
  28. struct dma_map_ops *dma_ops;
  29. EXPORT_SYMBOL(dma_ops);
  30. static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
  31. bool coherent)
  32. {
  33. if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
  34. return pgprot_writecombine(prot);
  35. return prot;
  36. }
  37. static struct gen_pool *atomic_pool;
  38. #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
  39. static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
  40. static int __init early_coherent_pool(char *p)
  41. {
  42. atomic_pool_size = memparse(p, &p);
  43. return 0;
  44. }
  45. early_param("coherent_pool", early_coherent_pool);
  46. static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
  47. {
  48. unsigned long val;
  49. void *ptr = NULL;
  50. if (!atomic_pool) {
  51. WARN(1, "coherent pool not initialised!\n");
  52. return NULL;
  53. }
  54. val = gen_pool_alloc(atomic_pool, size);
  55. if (val) {
  56. phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
  57. *ret_page = phys_to_page(phys);
  58. ptr = (void *)val;
  59. if (flags & __GFP_ZERO)
  60. memset(ptr, 0, size);
  61. }
  62. return ptr;
  63. }
  64. static bool __in_atomic_pool(void *start, size_t size)
  65. {
  66. return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
  67. }
  68. static int __free_from_pool(void *start, size_t size)
  69. {
  70. if (!__in_atomic_pool(start, size))
  71. return 0;
  72. gen_pool_free(atomic_pool, (unsigned long)start, size);
  73. return 1;
  74. }
  75. static void *__dma_alloc_coherent(struct device *dev, size_t size,
  76. dma_addr_t *dma_handle, gfp_t flags,
  77. struct dma_attrs *attrs)
  78. {
  79. if (dev == NULL) {
  80. WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
  81. return NULL;
  82. }
  83. if (IS_ENABLED(CONFIG_ZONE_DMA) &&
  84. dev->coherent_dma_mask <= DMA_BIT_MASK(32))
  85. flags |= GFP_DMA;
  86. if (IS_ENABLED(CONFIG_DMA_CMA) && (flags & __GFP_WAIT)) {
  87. struct page *page;
  88. void *addr;
  89. size = PAGE_ALIGN(size);
  90. page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
  91. get_order(size));
  92. if (!page)
  93. return NULL;
  94. *dma_handle = phys_to_dma(dev, page_to_phys(page));
  95. addr = page_address(page);
  96. if (flags & __GFP_ZERO)
  97. memset(addr, 0, size);
  98. return addr;
  99. } else {
  100. return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
  101. }
  102. }
  103. static void __dma_free_coherent(struct device *dev, size_t size,
  104. void *vaddr, dma_addr_t dma_handle,
  105. struct dma_attrs *attrs)
  106. {
  107. bool freed;
  108. phys_addr_t paddr = dma_to_phys(dev, dma_handle);
  109. if (dev == NULL) {
  110. WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
  111. return;
  112. }
  113. freed = dma_release_from_contiguous(dev,
  114. phys_to_page(paddr),
  115. size >> PAGE_SHIFT);
  116. if (!freed)
  117. swiotlb_free_coherent(dev, size, vaddr, dma_handle);
  118. }
  119. static void *__dma_alloc(struct device *dev, size_t size,
  120. dma_addr_t *dma_handle, gfp_t flags,
  121. struct dma_attrs *attrs)
  122. {
  123. struct page *page;
  124. void *ptr, *coherent_ptr;
  125. bool coherent = is_device_dma_coherent(dev);
  126. size = PAGE_ALIGN(size);
  127. if (!coherent && !(flags & __GFP_WAIT)) {
  128. struct page *page = NULL;
  129. void *addr = __alloc_from_pool(size, &page, flags);
  130. if (addr)
  131. *dma_handle = phys_to_dma(dev, page_to_phys(page));
  132. return addr;
  133. }
  134. ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
  135. if (!ptr)
  136. goto no_mem;
  137. /* no need for non-cacheable mapping if coherent */
  138. if (coherent)
  139. return ptr;
  140. /* remove any dirty cache lines on the kernel alias */
  141. __dma_flush_range(ptr, ptr + size);
  142. /* create a coherent mapping */
  143. page = virt_to_page(ptr);
  144. coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
  145. __get_dma_pgprot(attrs,
  146. __pgprot(PROT_NORMAL_NC), false),
  147. NULL);
  148. if (!coherent_ptr)
  149. goto no_map;
  150. return coherent_ptr;
  151. no_map:
  152. __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
  153. no_mem:
  154. *dma_handle = DMA_ERROR_CODE;
  155. return NULL;
  156. }
  157. static void __dma_free(struct device *dev, size_t size,
  158. void *vaddr, dma_addr_t dma_handle,
  159. struct dma_attrs *attrs)
  160. {
  161. void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
  162. if (!is_device_dma_coherent(dev)) {
  163. if (__free_from_pool(vaddr, size))
  164. return;
  165. vunmap(vaddr);
  166. }
  167. __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
  168. }
  169. static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
  170. unsigned long offset, size_t size,
  171. enum dma_data_direction dir,
  172. struct dma_attrs *attrs)
  173. {
  174. dma_addr_t dev_addr;
  175. dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
  176. if (!is_device_dma_coherent(dev))
  177. __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  178. return dev_addr;
  179. }
  180. static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
  181. size_t size, enum dma_data_direction dir,
  182. struct dma_attrs *attrs)
  183. {
  184. if (!is_device_dma_coherent(dev))
  185. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  186. swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
  187. }
  188. static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
  189. int nelems, enum dma_data_direction dir,
  190. struct dma_attrs *attrs)
  191. {
  192. struct scatterlist *sg;
  193. int i, ret;
  194. ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
  195. if (!is_device_dma_coherent(dev))
  196. for_each_sg(sgl, sg, ret, i)
  197. __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  198. sg->length, dir);
  199. return ret;
  200. }
  201. static void __swiotlb_unmap_sg_attrs(struct device *dev,
  202. struct scatterlist *sgl, int nelems,
  203. enum dma_data_direction dir,
  204. struct dma_attrs *attrs)
  205. {
  206. struct scatterlist *sg;
  207. int i;
  208. if (!is_device_dma_coherent(dev))
  209. for_each_sg(sgl, sg, nelems, i)
  210. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  211. sg->length, dir);
  212. swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
  213. }
  214. static void __swiotlb_sync_single_for_cpu(struct device *dev,
  215. dma_addr_t dev_addr, size_t size,
  216. enum dma_data_direction dir)
  217. {
  218. if (!is_device_dma_coherent(dev))
  219. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  220. swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
  221. }
  222. static void __swiotlb_sync_single_for_device(struct device *dev,
  223. dma_addr_t dev_addr, size_t size,
  224. enum dma_data_direction dir)
  225. {
  226. swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
  227. if (!is_device_dma_coherent(dev))
  228. __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
  229. }
  230. static void __swiotlb_sync_sg_for_cpu(struct device *dev,
  231. struct scatterlist *sgl, int nelems,
  232. enum dma_data_direction dir)
  233. {
  234. struct scatterlist *sg;
  235. int i;
  236. if (!is_device_dma_coherent(dev))
  237. for_each_sg(sgl, sg, nelems, i)
  238. __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  239. sg->length, dir);
  240. swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
  241. }
  242. static void __swiotlb_sync_sg_for_device(struct device *dev,
  243. struct scatterlist *sgl, int nelems,
  244. enum dma_data_direction dir)
  245. {
  246. struct scatterlist *sg;
  247. int i;
  248. swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
  249. if (!is_device_dma_coherent(dev))
  250. for_each_sg(sgl, sg, nelems, i)
  251. __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
  252. sg->length, dir);
  253. }
  254. /* vma->vm_page_prot must be set appropriately before calling this function */
  255. static int __dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
  256. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  257. {
  258. int ret = -ENXIO;
  259. unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
  260. PAGE_SHIFT;
  261. unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  262. unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
  263. unsigned long off = vma->vm_pgoff;
  264. if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
  265. return ret;
  266. if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
  267. ret = remap_pfn_range(vma, vma->vm_start,
  268. pfn + off,
  269. vma->vm_end - vma->vm_start,
  270. vma->vm_page_prot);
  271. }
  272. return ret;
  273. }
  274. static int __swiotlb_mmap(struct device *dev,
  275. struct vm_area_struct *vma,
  276. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  277. struct dma_attrs *attrs)
  278. {
  279. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
  280. is_device_dma_coherent(dev));
  281. return __dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
  282. }
  283. static struct dma_map_ops swiotlb_dma_ops = {
  284. .alloc = __dma_alloc,
  285. .free = __dma_free,
  286. .mmap = __swiotlb_mmap,
  287. .map_page = __swiotlb_map_page,
  288. .unmap_page = __swiotlb_unmap_page,
  289. .map_sg = __swiotlb_map_sg_attrs,
  290. .unmap_sg = __swiotlb_unmap_sg_attrs,
  291. .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
  292. .sync_single_for_device = __swiotlb_sync_single_for_device,
  293. .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
  294. .sync_sg_for_device = __swiotlb_sync_sg_for_device,
  295. .dma_supported = swiotlb_dma_supported,
  296. .mapping_error = swiotlb_dma_mapping_error,
  297. };
  298. static int __init atomic_pool_init(void)
  299. {
  300. pgprot_t prot = __pgprot(PROT_NORMAL_NC);
  301. unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
  302. struct page *page;
  303. void *addr;
  304. unsigned int pool_size_order = get_order(atomic_pool_size);
  305. if (dev_get_cma_area(NULL))
  306. page = dma_alloc_from_contiguous(NULL, nr_pages,
  307. pool_size_order);
  308. else
  309. page = alloc_pages(GFP_DMA, pool_size_order);
  310. if (page) {
  311. int ret;
  312. void *page_addr = page_address(page);
  313. memset(page_addr, 0, atomic_pool_size);
  314. __dma_flush_range(page_addr, page_addr + atomic_pool_size);
  315. atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
  316. if (!atomic_pool)
  317. goto free_page;
  318. addr = dma_common_contiguous_remap(page, atomic_pool_size,
  319. VM_USERMAP, prot, atomic_pool_init);
  320. if (!addr)
  321. goto destroy_genpool;
  322. ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
  323. page_to_phys(page),
  324. atomic_pool_size, -1);
  325. if (ret)
  326. goto remove_mapping;
  327. gen_pool_set_algo(atomic_pool,
  328. gen_pool_first_fit_order_align,
  329. (void *)PAGE_SHIFT);
  330. pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
  331. atomic_pool_size / 1024);
  332. return 0;
  333. }
  334. goto out;
  335. remove_mapping:
  336. dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
  337. destroy_genpool:
  338. gen_pool_destroy(atomic_pool);
  339. atomic_pool = NULL;
  340. free_page:
  341. if (!dma_release_from_contiguous(NULL, page, nr_pages))
  342. __free_pages(page, pool_size_order);
  343. out:
  344. pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
  345. atomic_pool_size / 1024);
  346. return -ENOMEM;
  347. }
  348. static int __init arm64_dma_init(void)
  349. {
  350. int ret;
  351. dma_ops = &swiotlb_dma_ops;
  352. ret = atomic_pool_init();
  353. return ret;
  354. }
  355. arch_initcall(arm64_dma_init);
  356. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  357. static int __init dma_debug_do_init(void)
  358. {
  359. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  360. return 0;
  361. }
  362. fs_initcall(dma_debug_do_init);