vmx.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/profile.h>
  25. #include <linux/sched.h>
  26. #include <asm/io.h>
  27. #include <asm/desc.h>
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static int init_rmode_tss(struct kvm *kvm);
  31. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  32. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  33. static struct page *vmx_io_bitmap_a;
  34. static struct page *vmx_io_bitmap_b;
  35. #ifdef CONFIG_X86_64
  36. #define HOST_IS_64 1
  37. #else
  38. #define HOST_IS_64 0
  39. #endif
  40. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  41. static struct vmcs_descriptor {
  42. int size;
  43. int order;
  44. u32 revision_id;
  45. } vmcs_descriptor;
  46. #define VMX_SEGMENT_FIELD(seg) \
  47. [VCPU_SREG_##seg] = { \
  48. .selector = GUEST_##seg##_SELECTOR, \
  49. .base = GUEST_##seg##_BASE, \
  50. .limit = GUEST_##seg##_LIMIT, \
  51. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  52. }
  53. static struct kvm_vmx_segment_field {
  54. unsigned selector;
  55. unsigned base;
  56. unsigned limit;
  57. unsigned ar_bytes;
  58. } kvm_vmx_segment_fields[] = {
  59. VMX_SEGMENT_FIELD(CS),
  60. VMX_SEGMENT_FIELD(DS),
  61. VMX_SEGMENT_FIELD(ES),
  62. VMX_SEGMENT_FIELD(FS),
  63. VMX_SEGMENT_FIELD(GS),
  64. VMX_SEGMENT_FIELD(SS),
  65. VMX_SEGMENT_FIELD(TR),
  66. VMX_SEGMENT_FIELD(LDTR),
  67. };
  68. /*
  69. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  70. * away by decrementing the array size.
  71. */
  72. static const u32 vmx_msr_index[] = {
  73. #ifdef CONFIG_X86_64
  74. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  75. #endif
  76. MSR_EFER, MSR_K6_STAR,
  77. };
  78. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  79. static inline u64 msr_efer_save_restore_bits(struct vmx_msr_entry msr)
  80. {
  81. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  82. }
  83. static inline int msr_efer_need_save_restore(struct kvm_vcpu *vcpu)
  84. {
  85. int efer_offset = vcpu->msr_offset_efer;
  86. return msr_efer_save_restore_bits(vcpu->host_msrs[efer_offset]) !=
  87. msr_efer_save_restore_bits(vcpu->guest_msrs[efer_offset]);
  88. }
  89. static inline int is_page_fault(u32 intr_info)
  90. {
  91. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  92. INTR_INFO_VALID_MASK)) ==
  93. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  94. }
  95. static inline int is_no_device(u32 intr_info)
  96. {
  97. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  98. INTR_INFO_VALID_MASK)) ==
  99. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  100. }
  101. static inline int is_external_interrupt(u32 intr_info)
  102. {
  103. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  104. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  105. }
  106. static int __find_msr_index(struct kvm_vcpu *vcpu, u32 msr)
  107. {
  108. int i;
  109. for (i = 0; i < vcpu->nmsrs; ++i)
  110. if (vcpu->guest_msrs[i].index == msr)
  111. return i;
  112. return -1;
  113. }
  114. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  115. {
  116. int i;
  117. i = __find_msr_index(vcpu, msr);
  118. if (i >= 0)
  119. return &vcpu->guest_msrs[i];
  120. return NULL;
  121. }
  122. static void vmcs_clear(struct vmcs *vmcs)
  123. {
  124. u64 phys_addr = __pa(vmcs);
  125. u8 error;
  126. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  127. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  128. : "cc", "memory");
  129. if (error)
  130. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  131. vmcs, phys_addr);
  132. }
  133. static void __vcpu_clear(void *arg)
  134. {
  135. struct kvm_vcpu *vcpu = arg;
  136. int cpu = raw_smp_processor_id();
  137. if (vcpu->cpu == cpu)
  138. vmcs_clear(vcpu->vmcs);
  139. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  140. per_cpu(current_vmcs, cpu) = NULL;
  141. rdtscll(vcpu->host_tsc);
  142. }
  143. static void vcpu_clear(struct kvm_vcpu *vcpu)
  144. {
  145. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  146. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  147. else
  148. __vcpu_clear(vcpu);
  149. vcpu->launched = 0;
  150. }
  151. static unsigned long vmcs_readl(unsigned long field)
  152. {
  153. unsigned long value;
  154. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  155. : "=a"(value) : "d"(field) : "cc");
  156. return value;
  157. }
  158. static u16 vmcs_read16(unsigned long field)
  159. {
  160. return vmcs_readl(field);
  161. }
  162. static u32 vmcs_read32(unsigned long field)
  163. {
  164. return vmcs_readl(field);
  165. }
  166. static u64 vmcs_read64(unsigned long field)
  167. {
  168. #ifdef CONFIG_X86_64
  169. return vmcs_readl(field);
  170. #else
  171. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  172. #endif
  173. }
  174. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  175. {
  176. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  177. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  178. dump_stack();
  179. }
  180. static void vmcs_writel(unsigned long field, unsigned long value)
  181. {
  182. u8 error;
  183. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  184. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  185. if (unlikely(error))
  186. vmwrite_error(field, value);
  187. }
  188. static void vmcs_write16(unsigned long field, u16 value)
  189. {
  190. vmcs_writel(field, value);
  191. }
  192. static void vmcs_write32(unsigned long field, u32 value)
  193. {
  194. vmcs_writel(field, value);
  195. }
  196. static void vmcs_write64(unsigned long field, u64 value)
  197. {
  198. #ifdef CONFIG_X86_64
  199. vmcs_writel(field, value);
  200. #else
  201. vmcs_writel(field, value);
  202. asm volatile ("");
  203. vmcs_writel(field+1, value >> 32);
  204. #endif
  205. }
  206. static void vmcs_clear_bits(unsigned long field, u32 mask)
  207. {
  208. vmcs_writel(field, vmcs_readl(field) & ~mask);
  209. }
  210. static void vmcs_set_bits(unsigned long field, u32 mask)
  211. {
  212. vmcs_writel(field, vmcs_readl(field) | mask);
  213. }
  214. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  215. {
  216. u32 eb;
  217. eb = 1u << PF_VECTOR;
  218. if (!vcpu->fpu_active)
  219. eb |= 1u << NM_VECTOR;
  220. if (vcpu->guest_debug.enabled)
  221. eb |= 1u << 1;
  222. if (vcpu->rmode.active)
  223. eb = ~0;
  224. vmcs_write32(EXCEPTION_BITMAP, eb);
  225. }
  226. static void reload_tss(void)
  227. {
  228. #ifndef CONFIG_X86_64
  229. /*
  230. * VT restores TR but not its size. Useless.
  231. */
  232. struct descriptor_table gdt;
  233. struct segment_descriptor *descs;
  234. get_gdt(&gdt);
  235. descs = (void *)gdt.base;
  236. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  237. load_TR_desc();
  238. #endif
  239. }
  240. static void load_transition_efer(struct kvm_vcpu *vcpu)
  241. {
  242. u64 trans_efer;
  243. int efer_offset = vcpu->msr_offset_efer;
  244. trans_efer = vcpu->host_msrs[efer_offset].data;
  245. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  246. trans_efer |= msr_efer_save_restore_bits(
  247. vcpu->guest_msrs[efer_offset]);
  248. wrmsrl(MSR_EFER, trans_efer);
  249. vcpu->stat.efer_reload++;
  250. }
  251. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  252. {
  253. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  254. if (hs->loaded)
  255. return;
  256. hs->loaded = 1;
  257. /*
  258. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  259. * allow segment selectors with cpl > 0 or ti == 1.
  260. */
  261. hs->ldt_sel = read_ldt();
  262. hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
  263. hs->fs_sel = read_fs();
  264. if (!(hs->fs_sel & 7))
  265. vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
  266. else {
  267. vmcs_write16(HOST_FS_SELECTOR, 0);
  268. hs->fs_gs_ldt_reload_needed = 1;
  269. }
  270. hs->gs_sel = read_gs();
  271. if (!(hs->gs_sel & 7))
  272. vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
  273. else {
  274. vmcs_write16(HOST_GS_SELECTOR, 0);
  275. hs->fs_gs_ldt_reload_needed = 1;
  276. }
  277. #ifdef CONFIG_X86_64
  278. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  279. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  280. #else
  281. vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
  282. vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
  283. #endif
  284. #ifdef CONFIG_X86_64
  285. if (is_long_mode(vcpu)) {
  286. save_msrs(vcpu->host_msrs + vcpu->msr_offset_kernel_gs_base, 1);
  287. }
  288. #endif
  289. load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  290. if (msr_efer_need_save_restore(vcpu))
  291. load_transition_efer(vcpu);
  292. }
  293. static void vmx_load_host_state(struct kvm_vcpu *vcpu)
  294. {
  295. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  296. if (!hs->loaded)
  297. return;
  298. hs->loaded = 0;
  299. if (hs->fs_gs_ldt_reload_needed) {
  300. load_ldt(hs->ldt_sel);
  301. load_fs(hs->fs_sel);
  302. /*
  303. * If we have to reload gs, we must take care to
  304. * preserve our gs base.
  305. */
  306. local_irq_disable();
  307. load_gs(hs->gs_sel);
  308. #ifdef CONFIG_X86_64
  309. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  310. #endif
  311. local_irq_enable();
  312. reload_tss();
  313. }
  314. save_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  315. load_msrs(vcpu->host_msrs, vcpu->save_nmsrs);
  316. if (msr_efer_need_save_restore(vcpu))
  317. load_msrs(vcpu->host_msrs + vcpu->msr_offset_efer, 1);
  318. }
  319. /*
  320. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  321. * vcpu mutex is already taken.
  322. */
  323. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  324. {
  325. u64 phys_addr = __pa(vcpu->vmcs);
  326. int cpu;
  327. u64 tsc_this, delta;
  328. cpu = get_cpu();
  329. if (vcpu->cpu != cpu)
  330. vcpu_clear(vcpu);
  331. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  332. u8 error;
  333. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  334. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  335. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  336. : "cc");
  337. if (error)
  338. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  339. vcpu->vmcs, phys_addr);
  340. }
  341. if (vcpu->cpu != cpu) {
  342. struct descriptor_table dt;
  343. unsigned long sysenter_esp;
  344. vcpu->cpu = cpu;
  345. /*
  346. * Linux uses per-cpu TSS and GDT, so set these when switching
  347. * processors.
  348. */
  349. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  350. get_gdt(&dt);
  351. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  352. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  353. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  354. /*
  355. * Make sure the time stamp counter is monotonous.
  356. */
  357. rdtscll(tsc_this);
  358. delta = vcpu->host_tsc - tsc_this;
  359. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  360. }
  361. }
  362. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  363. {
  364. vmx_load_host_state(vcpu);
  365. kvm_put_guest_fpu(vcpu);
  366. put_cpu();
  367. }
  368. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  369. {
  370. if (vcpu->fpu_active)
  371. return;
  372. vcpu->fpu_active = 1;
  373. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  374. if (vcpu->cr0 & X86_CR0_TS)
  375. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  376. update_exception_bitmap(vcpu);
  377. }
  378. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  379. {
  380. if (!vcpu->fpu_active)
  381. return;
  382. vcpu->fpu_active = 0;
  383. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  384. update_exception_bitmap(vcpu);
  385. }
  386. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  387. {
  388. vcpu_clear(vcpu);
  389. }
  390. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  391. {
  392. return vmcs_readl(GUEST_RFLAGS);
  393. }
  394. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  395. {
  396. vmcs_writel(GUEST_RFLAGS, rflags);
  397. }
  398. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  399. {
  400. unsigned long rip;
  401. u32 interruptibility;
  402. rip = vmcs_readl(GUEST_RIP);
  403. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  404. vmcs_writel(GUEST_RIP, rip);
  405. /*
  406. * We emulated an instruction, so temporary interrupt blocking
  407. * should be removed, if set.
  408. */
  409. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  410. if (interruptibility & 3)
  411. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  412. interruptibility & ~3);
  413. vcpu->interrupt_window_open = 1;
  414. }
  415. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  416. {
  417. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  418. vmcs_readl(GUEST_RIP));
  419. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  420. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  421. GP_VECTOR |
  422. INTR_TYPE_EXCEPTION |
  423. INTR_INFO_DELIEVER_CODE_MASK |
  424. INTR_INFO_VALID_MASK);
  425. }
  426. /*
  427. * Swap MSR entry in host/guest MSR entry array.
  428. */
  429. void move_msr_up(struct kvm_vcpu *vcpu, int from, int to)
  430. {
  431. struct vmx_msr_entry tmp;
  432. tmp = vcpu->guest_msrs[to];
  433. vcpu->guest_msrs[to] = vcpu->guest_msrs[from];
  434. vcpu->guest_msrs[from] = tmp;
  435. tmp = vcpu->host_msrs[to];
  436. vcpu->host_msrs[to] = vcpu->host_msrs[from];
  437. vcpu->host_msrs[from] = tmp;
  438. }
  439. /*
  440. * Set up the vmcs to automatically save and restore system
  441. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  442. * mode, as fiddling with msrs is very expensive.
  443. */
  444. static void setup_msrs(struct kvm_vcpu *vcpu)
  445. {
  446. int save_nmsrs;
  447. save_nmsrs = 0;
  448. #ifdef CONFIG_X86_64
  449. if (is_long_mode(vcpu)) {
  450. int index;
  451. index = __find_msr_index(vcpu, MSR_SYSCALL_MASK);
  452. if (index >= 0)
  453. move_msr_up(vcpu, index, save_nmsrs++);
  454. index = __find_msr_index(vcpu, MSR_LSTAR);
  455. if (index >= 0)
  456. move_msr_up(vcpu, index, save_nmsrs++);
  457. index = __find_msr_index(vcpu, MSR_CSTAR);
  458. if (index >= 0)
  459. move_msr_up(vcpu, index, save_nmsrs++);
  460. index = __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  461. if (index >= 0)
  462. move_msr_up(vcpu, index, save_nmsrs++);
  463. /*
  464. * MSR_K6_STAR is only needed on long mode guests, and only
  465. * if efer.sce is enabled.
  466. */
  467. index = __find_msr_index(vcpu, MSR_K6_STAR);
  468. if ((index >= 0) && (vcpu->shadow_efer & EFER_SCE))
  469. move_msr_up(vcpu, index, save_nmsrs++);
  470. }
  471. #endif
  472. vcpu->save_nmsrs = save_nmsrs;
  473. #ifdef CONFIG_X86_64
  474. vcpu->msr_offset_kernel_gs_base =
  475. __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  476. #endif
  477. vcpu->msr_offset_efer = __find_msr_index(vcpu, MSR_EFER);
  478. }
  479. /*
  480. * reads and returns guest's timestamp counter "register"
  481. * guest_tsc = host_tsc + tsc_offset -- 21.3
  482. */
  483. static u64 guest_read_tsc(void)
  484. {
  485. u64 host_tsc, tsc_offset;
  486. rdtscll(host_tsc);
  487. tsc_offset = vmcs_read64(TSC_OFFSET);
  488. return host_tsc + tsc_offset;
  489. }
  490. /*
  491. * writes 'guest_tsc' into guest's timestamp counter "register"
  492. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  493. */
  494. static void guest_write_tsc(u64 guest_tsc)
  495. {
  496. u64 host_tsc;
  497. rdtscll(host_tsc);
  498. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  499. }
  500. /*
  501. * Reads an msr value (of 'msr_index') into 'pdata'.
  502. * Returns 0 on success, non-0 otherwise.
  503. * Assumes vcpu_load() was already called.
  504. */
  505. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  506. {
  507. u64 data;
  508. struct vmx_msr_entry *msr;
  509. if (!pdata) {
  510. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  511. return -EINVAL;
  512. }
  513. switch (msr_index) {
  514. #ifdef CONFIG_X86_64
  515. case MSR_FS_BASE:
  516. data = vmcs_readl(GUEST_FS_BASE);
  517. break;
  518. case MSR_GS_BASE:
  519. data = vmcs_readl(GUEST_GS_BASE);
  520. break;
  521. case MSR_EFER:
  522. return kvm_get_msr_common(vcpu, msr_index, pdata);
  523. #endif
  524. case MSR_IA32_TIME_STAMP_COUNTER:
  525. data = guest_read_tsc();
  526. break;
  527. case MSR_IA32_SYSENTER_CS:
  528. data = vmcs_read32(GUEST_SYSENTER_CS);
  529. break;
  530. case MSR_IA32_SYSENTER_EIP:
  531. data = vmcs_readl(GUEST_SYSENTER_EIP);
  532. break;
  533. case MSR_IA32_SYSENTER_ESP:
  534. data = vmcs_readl(GUEST_SYSENTER_ESP);
  535. break;
  536. default:
  537. msr = find_msr_entry(vcpu, msr_index);
  538. if (msr) {
  539. data = msr->data;
  540. break;
  541. }
  542. return kvm_get_msr_common(vcpu, msr_index, pdata);
  543. }
  544. *pdata = data;
  545. return 0;
  546. }
  547. /*
  548. * Writes msr value into into the appropriate "register".
  549. * Returns 0 on success, non-0 otherwise.
  550. * Assumes vcpu_load() was already called.
  551. */
  552. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  553. {
  554. struct vmx_msr_entry *msr;
  555. int ret = 0;
  556. switch (msr_index) {
  557. #ifdef CONFIG_X86_64
  558. case MSR_EFER:
  559. ret = kvm_set_msr_common(vcpu, msr_index, data);
  560. if (vcpu->vmx_host_state.loaded)
  561. load_transition_efer(vcpu);
  562. break;
  563. case MSR_FS_BASE:
  564. vmcs_writel(GUEST_FS_BASE, data);
  565. break;
  566. case MSR_GS_BASE:
  567. vmcs_writel(GUEST_GS_BASE, data);
  568. break;
  569. #endif
  570. case MSR_IA32_SYSENTER_CS:
  571. vmcs_write32(GUEST_SYSENTER_CS, data);
  572. break;
  573. case MSR_IA32_SYSENTER_EIP:
  574. vmcs_writel(GUEST_SYSENTER_EIP, data);
  575. break;
  576. case MSR_IA32_SYSENTER_ESP:
  577. vmcs_writel(GUEST_SYSENTER_ESP, data);
  578. break;
  579. case MSR_IA32_TIME_STAMP_COUNTER:
  580. guest_write_tsc(data);
  581. break;
  582. default:
  583. msr = find_msr_entry(vcpu, msr_index);
  584. if (msr) {
  585. msr->data = data;
  586. if (vcpu->vmx_host_state.loaded)
  587. load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  588. break;
  589. }
  590. ret = kvm_set_msr_common(vcpu, msr_index, data);
  591. }
  592. return ret;
  593. }
  594. /*
  595. * Sync the rsp and rip registers into the vcpu structure. This allows
  596. * registers to be accessed by indexing vcpu->regs.
  597. */
  598. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  599. {
  600. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  601. vcpu->rip = vmcs_readl(GUEST_RIP);
  602. }
  603. /*
  604. * Syncs rsp and rip back into the vmcs. Should be called after possible
  605. * modification.
  606. */
  607. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  608. {
  609. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  610. vmcs_writel(GUEST_RIP, vcpu->rip);
  611. }
  612. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  613. {
  614. unsigned long dr7 = 0x400;
  615. int old_singlestep;
  616. old_singlestep = vcpu->guest_debug.singlestep;
  617. vcpu->guest_debug.enabled = dbg->enabled;
  618. if (vcpu->guest_debug.enabled) {
  619. int i;
  620. dr7 |= 0x200; /* exact */
  621. for (i = 0; i < 4; ++i) {
  622. if (!dbg->breakpoints[i].enabled)
  623. continue;
  624. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  625. dr7 |= 2 << (i*2); /* global enable */
  626. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  627. }
  628. vcpu->guest_debug.singlestep = dbg->singlestep;
  629. } else
  630. vcpu->guest_debug.singlestep = 0;
  631. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  632. unsigned long flags;
  633. flags = vmcs_readl(GUEST_RFLAGS);
  634. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  635. vmcs_writel(GUEST_RFLAGS, flags);
  636. }
  637. update_exception_bitmap(vcpu);
  638. vmcs_writel(GUEST_DR7, dr7);
  639. return 0;
  640. }
  641. static __init int cpu_has_kvm_support(void)
  642. {
  643. unsigned long ecx = cpuid_ecx(1);
  644. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  645. }
  646. static __init int vmx_disabled_by_bios(void)
  647. {
  648. u64 msr;
  649. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  650. return (msr & 5) == 1; /* locked but not enabled */
  651. }
  652. static void hardware_enable(void *garbage)
  653. {
  654. int cpu = raw_smp_processor_id();
  655. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  656. u64 old;
  657. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  658. if ((old & 5) != 5)
  659. /* enable and lock */
  660. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  661. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  662. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  663. : "memory", "cc");
  664. }
  665. static void hardware_disable(void *garbage)
  666. {
  667. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  668. }
  669. static __init void setup_vmcs_descriptor(void)
  670. {
  671. u32 vmx_msr_low, vmx_msr_high;
  672. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  673. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  674. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  675. vmcs_descriptor.revision_id = vmx_msr_low;
  676. }
  677. static struct vmcs *alloc_vmcs_cpu(int cpu)
  678. {
  679. int node = cpu_to_node(cpu);
  680. struct page *pages;
  681. struct vmcs *vmcs;
  682. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  683. if (!pages)
  684. return NULL;
  685. vmcs = page_address(pages);
  686. memset(vmcs, 0, vmcs_descriptor.size);
  687. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  688. return vmcs;
  689. }
  690. static struct vmcs *alloc_vmcs(void)
  691. {
  692. return alloc_vmcs_cpu(raw_smp_processor_id());
  693. }
  694. static void free_vmcs(struct vmcs *vmcs)
  695. {
  696. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  697. }
  698. static void free_kvm_area(void)
  699. {
  700. int cpu;
  701. for_each_online_cpu(cpu)
  702. free_vmcs(per_cpu(vmxarea, cpu));
  703. }
  704. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  705. static __init int alloc_kvm_area(void)
  706. {
  707. int cpu;
  708. for_each_online_cpu(cpu) {
  709. struct vmcs *vmcs;
  710. vmcs = alloc_vmcs_cpu(cpu);
  711. if (!vmcs) {
  712. free_kvm_area();
  713. return -ENOMEM;
  714. }
  715. per_cpu(vmxarea, cpu) = vmcs;
  716. }
  717. return 0;
  718. }
  719. static __init int hardware_setup(void)
  720. {
  721. setup_vmcs_descriptor();
  722. return alloc_kvm_area();
  723. }
  724. static __exit void hardware_unsetup(void)
  725. {
  726. free_kvm_area();
  727. }
  728. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  729. {
  730. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  731. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  732. vmcs_write16(sf->selector, save->selector);
  733. vmcs_writel(sf->base, save->base);
  734. vmcs_write32(sf->limit, save->limit);
  735. vmcs_write32(sf->ar_bytes, save->ar);
  736. } else {
  737. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  738. << AR_DPL_SHIFT;
  739. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  740. }
  741. }
  742. static void enter_pmode(struct kvm_vcpu *vcpu)
  743. {
  744. unsigned long flags;
  745. vcpu->rmode.active = 0;
  746. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  747. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  748. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  749. flags = vmcs_readl(GUEST_RFLAGS);
  750. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  751. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  752. vmcs_writel(GUEST_RFLAGS, flags);
  753. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  754. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  755. update_exception_bitmap(vcpu);
  756. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  757. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  758. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  759. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  760. vmcs_write16(GUEST_SS_SELECTOR, 0);
  761. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  762. vmcs_write16(GUEST_CS_SELECTOR,
  763. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  764. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  765. }
  766. static int rmode_tss_base(struct kvm* kvm)
  767. {
  768. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  769. return base_gfn << PAGE_SHIFT;
  770. }
  771. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  772. {
  773. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  774. save->selector = vmcs_read16(sf->selector);
  775. save->base = vmcs_readl(sf->base);
  776. save->limit = vmcs_read32(sf->limit);
  777. save->ar = vmcs_read32(sf->ar_bytes);
  778. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  779. vmcs_write32(sf->limit, 0xffff);
  780. vmcs_write32(sf->ar_bytes, 0xf3);
  781. }
  782. static void enter_rmode(struct kvm_vcpu *vcpu)
  783. {
  784. unsigned long flags;
  785. vcpu->rmode.active = 1;
  786. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  787. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  788. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  789. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  790. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  791. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  792. flags = vmcs_readl(GUEST_RFLAGS);
  793. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  794. flags |= IOPL_MASK | X86_EFLAGS_VM;
  795. vmcs_writel(GUEST_RFLAGS, flags);
  796. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  797. update_exception_bitmap(vcpu);
  798. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  799. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  800. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  801. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  802. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  803. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  804. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  805. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  806. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  807. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  808. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  809. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  810. init_rmode_tss(vcpu->kvm);
  811. }
  812. #ifdef CONFIG_X86_64
  813. static void enter_lmode(struct kvm_vcpu *vcpu)
  814. {
  815. u32 guest_tr_ar;
  816. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  817. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  818. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  819. __FUNCTION__);
  820. vmcs_write32(GUEST_TR_AR_BYTES,
  821. (guest_tr_ar & ~AR_TYPE_MASK)
  822. | AR_TYPE_BUSY_64_TSS);
  823. }
  824. vcpu->shadow_efer |= EFER_LMA;
  825. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  826. vmcs_write32(VM_ENTRY_CONTROLS,
  827. vmcs_read32(VM_ENTRY_CONTROLS)
  828. | VM_ENTRY_CONTROLS_IA32E_MASK);
  829. }
  830. static void exit_lmode(struct kvm_vcpu *vcpu)
  831. {
  832. vcpu->shadow_efer &= ~EFER_LMA;
  833. vmcs_write32(VM_ENTRY_CONTROLS,
  834. vmcs_read32(VM_ENTRY_CONTROLS)
  835. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  836. }
  837. #endif
  838. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  839. {
  840. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  841. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  842. }
  843. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  844. {
  845. vmx_fpu_deactivate(vcpu);
  846. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  847. enter_pmode(vcpu);
  848. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  849. enter_rmode(vcpu);
  850. #ifdef CONFIG_X86_64
  851. if (vcpu->shadow_efer & EFER_LME) {
  852. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  853. enter_lmode(vcpu);
  854. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  855. exit_lmode(vcpu);
  856. }
  857. #endif
  858. vmcs_writel(CR0_READ_SHADOW, cr0);
  859. vmcs_writel(GUEST_CR0,
  860. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  861. vcpu->cr0 = cr0;
  862. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  863. vmx_fpu_activate(vcpu);
  864. }
  865. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  866. {
  867. vmcs_writel(GUEST_CR3, cr3);
  868. if (vcpu->cr0 & X86_CR0_PE)
  869. vmx_fpu_deactivate(vcpu);
  870. }
  871. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  872. {
  873. vmcs_writel(CR4_READ_SHADOW, cr4);
  874. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  875. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  876. vcpu->cr4 = cr4;
  877. }
  878. #ifdef CONFIG_X86_64
  879. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  880. {
  881. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  882. vcpu->shadow_efer = efer;
  883. if (efer & EFER_LMA) {
  884. vmcs_write32(VM_ENTRY_CONTROLS,
  885. vmcs_read32(VM_ENTRY_CONTROLS) |
  886. VM_ENTRY_CONTROLS_IA32E_MASK);
  887. msr->data = efer;
  888. } else {
  889. vmcs_write32(VM_ENTRY_CONTROLS,
  890. vmcs_read32(VM_ENTRY_CONTROLS) &
  891. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  892. msr->data = efer & ~EFER_LME;
  893. }
  894. setup_msrs(vcpu);
  895. }
  896. #endif
  897. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  898. {
  899. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  900. return vmcs_readl(sf->base);
  901. }
  902. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  903. struct kvm_segment *var, int seg)
  904. {
  905. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  906. u32 ar;
  907. var->base = vmcs_readl(sf->base);
  908. var->limit = vmcs_read32(sf->limit);
  909. var->selector = vmcs_read16(sf->selector);
  910. ar = vmcs_read32(sf->ar_bytes);
  911. if (ar & AR_UNUSABLE_MASK)
  912. ar = 0;
  913. var->type = ar & 15;
  914. var->s = (ar >> 4) & 1;
  915. var->dpl = (ar >> 5) & 3;
  916. var->present = (ar >> 7) & 1;
  917. var->avl = (ar >> 12) & 1;
  918. var->l = (ar >> 13) & 1;
  919. var->db = (ar >> 14) & 1;
  920. var->g = (ar >> 15) & 1;
  921. var->unusable = (ar >> 16) & 1;
  922. }
  923. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  924. {
  925. u32 ar;
  926. if (var->unusable)
  927. ar = 1 << 16;
  928. else {
  929. ar = var->type & 15;
  930. ar |= (var->s & 1) << 4;
  931. ar |= (var->dpl & 3) << 5;
  932. ar |= (var->present & 1) << 7;
  933. ar |= (var->avl & 1) << 12;
  934. ar |= (var->l & 1) << 13;
  935. ar |= (var->db & 1) << 14;
  936. ar |= (var->g & 1) << 15;
  937. }
  938. if (ar == 0) /* a 0 value means unusable */
  939. ar = AR_UNUSABLE_MASK;
  940. return ar;
  941. }
  942. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  943. struct kvm_segment *var, int seg)
  944. {
  945. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  946. u32 ar;
  947. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  948. vcpu->rmode.tr.selector = var->selector;
  949. vcpu->rmode.tr.base = var->base;
  950. vcpu->rmode.tr.limit = var->limit;
  951. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  952. return;
  953. }
  954. vmcs_writel(sf->base, var->base);
  955. vmcs_write32(sf->limit, var->limit);
  956. vmcs_write16(sf->selector, var->selector);
  957. if (vcpu->rmode.active && var->s) {
  958. /*
  959. * Hack real-mode segments into vm86 compatibility.
  960. */
  961. if (var->base == 0xffff0000 && var->selector == 0xf000)
  962. vmcs_writel(sf->base, 0xf0000);
  963. ar = 0xf3;
  964. } else
  965. ar = vmx_segment_access_rights(var);
  966. vmcs_write32(sf->ar_bytes, ar);
  967. }
  968. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  969. {
  970. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  971. *db = (ar >> 14) & 1;
  972. *l = (ar >> 13) & 1;
  973. }
  974. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  975. {
  976. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  977. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  978. }
  979. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  980. {
  981. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  982. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  983. }
  984. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  985. {
  986. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  987. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  988. }
  989. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  990. {
  991. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  992. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  993. }
  994. static int init_rmode_tss(struct kvm* kvm)
  995. {
  996. struct page *p1, *p2, *p3;
  997. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  998. char *page;
  999. p1 = gfn_to_page(kvm, fn++);
  1000. p2 = gfn_to_page(kvm, fn++);
  1001. p3 = gfn_to_page(kvm, fn);
  1002. if (!p1 || !p2 || !p3) {
  1003. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  1004. return 0;
  1005. }
  1006. page = kmap_atomic(p1, KM_USER0);
  1007. clear_page(page);
  1008. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1009. kunmap_atomic(page, KM_USER0);
  1010. page = kmap_atomic(p2, KM_USER0);
  1011. clear_page(page);
  1012. kunmap_atomic(page, KM_USER0);
  1013. page = kmap_atomic(p3, KM_USER0);
  1014. clear_page(page);
  1015. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1016. kunmap_atomic(page, KM_USER0);
  1017. return 1;
  1018. }
  1019. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  1020. {
  1021. u32 msr_high, msr_low;
  1022. rdmsr(msr, msr_low, msr_high);
  1023. val &= msr_high;
  1024. val |= msr_low;
  1025. vmcs_write32(vmcs_field, val);
  1026. }
  1027. static void seg_setup(int seg)
  1028. {
  1029. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1030. vmcs_write16(sf->selector, 0);
  1031. vmcs_writel(sf->base, 0);
  1032. vmcs_write32(sf->limit, 0xffff);
  1033. vmcs_write32(sf->ar_bytes, 0x93);
  1034. }
  1035. /*
  1036. * Sets up the vmcs for emulated real mode.
  1037. */
  1038. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  1039. {
  1040. u32 host_sysenter_cs;
  1041. u32 junk;
  1042. unsigned long a;
  1043. struct descriptor_table dt;
  1044. int i;
  1045. int ret = 0;
  1046. unsigned long kvm_vmx_return;
  1047. if (!init_rmode_tss(vcpu->kvm)) {
  1048. ret = -ENOMEM;
  1049. goto out;
  1050. }
  1051. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  1052. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1053. vcpu->cr8 = 0;
  1054. vcpu->apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1055. if (vcpu->vcpu_id == 0)
  1056. vcpu->apic_base |= MSR_IA32_APICBASE_BSP;
  1057. fx_init(vcpu);
  1058. /*
  1059. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1060. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1061. */
  1062. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1063. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1064. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1065. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1066. seg_setup(VCPU_SREG_DS);
  1067. seg_setup(VCPU_SREG_ES);
  1068. seg_setup(VCPU_SREG_FS);
  1069. seg_setup(VCPU_SREG_GS);
  1070. seg_setup(VCPU_SREG_SS);
  1071. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1072. vmcs_writel(GUEST_TR_BASE, 0);
  1073. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1074. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1075. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1076. vmcs_writel(GUEST_LDTR_BASE, 0);
  1077. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1078. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1079. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1080. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1081. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1082. vmcs_writel(GUEST_RFLAGS, 0x02);
  1083. vmcs_writel(GUEST_RIP, 0xfff0);
  1084. vmcs_writel(GUEST_RSP, 0);
  1085. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1086. vmcs_writel(GUEST_DR7, 0x400);
  1087. vmcs_writel(GUEST_GDTR_BASE, 0);
  1088. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1089. vmcs_writel(GUEST_IDTR_BASE, 0);
  1090. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1091. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1092. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1093. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1094. /* I/O */
  1095. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1096. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1097. guest_write_tsc(0);
  1098. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1099. /* Special registers */
  1100. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1101. /* Control */
  1102. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  1103. PIN_BASED_VM_EXEC_CONTROL,
  1104. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  1105. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  1106. );
  1107. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  1108. CPU_BASED_VM_EXEC_CONTROL,
  1109. CPU_BASED_HLT_EXITING /* 20.6.2 */
  1110. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  1111. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  1112. | CPU_BASED_ACTIVATE_IO_BITMAP /* 20.6.2 */
  1113. | CPU_BASED_MOV_DR_EXITING
  1114. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  1115. );
  1116. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1117. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1118. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1119. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1120. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1121. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1122. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1123. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1124. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1125. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1126. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1127. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1128. #ifdef CONFIG_X86_64
  1129. rdmsrl(MSR_FS_BASE, a);
  1130. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1131. rdmsrl(MSR_GS_BASE, a);
  1132. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1133. #else
  1134. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1135. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1136. #endif
  1137. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1138. get_idt(&dt);
  1139. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1140. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1141. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1142. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1143. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1144. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1145. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1146. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1147. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1148. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1149. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1150. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1151. for (i = 0; i < NR_VMX_MSR; ++i) {
  1152. u32 index = vmx_msr_index[i];
  1153. u32 data_low, data_high;
  1154. u64 data;
  1155. int j = vcpu->nmsrs;
  1156. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1157. continue;
  1158. if (wrmsr_safe(index, data_low, data_high) < 0)
  1159. continue;
  1160. data = data_low | ((u64)data_high << 32);
  1161. vcpu->host_msrs[j].index = index;
  1162. vcpu->host_msrs[j].reserved = 0;
  1163. vcpu->host_msrs[j].data = data;
  1164. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1165. ++vcpu->nmsrs;
  1166. }
  1167. setup_msrs(vcpu);
  1168. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1169. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1170. /* 22.2.1, 20.8.1 */
  1171. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1172. VM_ENTRY_CONTROLS, 0);
  1173. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1174. #ifdef CONFIG_X86_64
  1175. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1176. vmcs_writel(TPR_THRESHOLD, 0);
  1177. #endif
  1178. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1179. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1180. vcpu->cr0 = 0x60000010;
  1181. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1182. vmx_set_cr4(vcpu, 0);
  1183. #ifdef CONFIG_X86_64
  1184. vmx_set_efer(vcpu, 0);
  1185. #endif
  1186. vmx_fpu_activate(vcpu);
  1187. update_exception_bitmap(vcpu);
  1188. return 0;
  1189. out:
  1190. return ret;
  1191. }
  1192. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1193. {
  1194. u16 ent[2];
  1195. u16 cs;
  1196. u16 ip;
  1197. unsigned long flags;
  1198. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1199. u16 sp = vmcs_readl(GUEST_RSP);
  1200. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1201. if (sp > ss_limit || sp < 6 ) {
  1202. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1203. __FUNCTION__,
  1204. vmcs_readl(GUEST_RSP),
  1205. vmcs_readl(GUEST_SS_BASE),
  1206. vmcs_read32(GUEST_SS_LIMIT));
  1207. return;
  1208. }
  1209. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1210. sizeof(ent)) {
  1211. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1212. return;
  1213. }
  1214. flags = vmcs_readl(GUEST_RFLAGS);
  1215. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1216. ip = vmcs_readl(GUEST_RIP);
  1217. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1218. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1219. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1220. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1221. return;
  1222. }
  1223. vmcs_writel(GUEST_RFLAGS, flags &
  1224. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1225. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1226. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1227. vmcs_writel(GUEST_RIP, ent[0]);
  1228. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1229. }
  1230. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1231. {
  1232. int word_index = __ffs(vcpu->irq_summary);
  1233. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1234. int irq = word_index * BITS_PER_LONG + bit_index;
  1235. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1236. if (!vcpu->irq_pending[word_index])
  1237. clear_bit(word_index, &vcpu->irq_summary);
  1238. if (vcpu->rmode.active) {
  1239. inject_rmode_irq(vcpu, irq);
  1240. return;
  1241. }
  1242. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1243. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1244. }
  1245. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1246. struct kvm_run *kvm_run)
  1247. {
  1248. u32 cpu_based_vm_exec_control;
  1249. vcpu->interrupt_window_open =
  1250. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1251. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1252. if (vcpu->interrupt_window_open &&
  1253. vcpu->irq_summary &&
  1254. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1255. /*
  1256. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1257. */
  1258. kvm_do_inject_irq(vcpu);
  1259. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1260. if (!vcpu->interrupt_window_open &&
  1261. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1262. /*
  1263. * Interrupts blocked. Wait for unblock.
  1264. */
  1265. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1266. else
  1267. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1268. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1269. }
  1270. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1271. {
  1272. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1273. set_debugreg(dbg->bp[0], 0);
  1274. set_debugreg(dbg->bp[1], 1);
  1275. set_debugreg(dbg->bp[2], 2);
  1276. set_debugreg(dbg->bp[3], 3);
  1277. if (dbg->singlestep) {
  1278. unsigned long flags;
  1279. flags = vmcs_readl(GUEST_RFLAGS);
  1280. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1281. vmcs_writel(GUEST_RFLAGS, flags);
  1282. }
  1283. }
  1284. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1285. int vec, u32 err_code)
  1286. {
  1287. if (!vcpu->rmode.active)
  1288. return 0;
  1289. /*
  1290. * Instruction with address size override prefix opcode 0x67
  1291. * Cause the #SS fault with 0 error code in VM86 mode.
  1292. */
  1293. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1294. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1295. return 1;
  1296. return 0;
  1297. }
  1298. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1299. {
  1300. u32 intr_info, error_code;
  1301. unsigned long cr2, rip;
  1302. u32 vect_info;
  1303. enum emulation_result er;
  1304. int r;
  1305. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1306. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1307. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1308. !is_page_fault(intr_info)) {
  1309. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1310. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1311. }
  1312. if (is_external_interrupt(vect_info)) {
  1313. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1314. set_bit(irq, vcpu->irq_pending);
  1315. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1316. }
  1317. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1318. asm ("int $2");
  1319. return 1;
  1320. }
  1321. if (is_no_device(intr_info)) {
  1322. vmx_fpu_activate(vcpu);
  1323. return 1;
  1324. }
  1325. error_code = 0;
  1326. rip = vmcs_readl(GUEST_RIP);
  1327. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1328. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1329. if (is_page_fault(intr_info)) {
  1330. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1331. spin_lock(&vcpu->kvm->lock);
  1332. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1333. if (r < 0) {
  1334. spin_unlock(&vcpu->kvm->lock);
  1335. return r;
  1336. }
  1337. if (!r) {
  1338. spin_unlock(&vcpu->kvm->lock);
  1339. return 1;
  1340. }
  1341. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1342. spin_unlock(&vcpu->kvm->lock);
  1343. switch (er) {
  1344. case EMULATE_DONE:
  1345. return 1;
  1346. case EMULATE_DO_MMIO:
  1347. ++vcpu->stat.mmio_exits;
  1348. return 0;
  1349. case EMULATE_FAIL:
  1350. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1351. break;
  1352. default:
  1353. BUG();
  1354. }
  1355. }
  1356. if (vcpu->rmode.active &&
  1357. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1358. error_code)) {
  1359. if (vcpu->halt_request) {
  1360. vcpu->halt_request = 0;
  1361. return kvm_emulate_halt(vcpu);
  1362. }
  1363. return 1;
  1364. }
  1365. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1366. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1367. return 0;
  1368. }
  1369. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1370. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1371. kvm_run->ex.error_code = error_code;
  1372. return 0;
  1373. }
  1374. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1375. struct kvm_run *kvm_run)
  1376. {
  1377. ++vcpu->stat.irq_exits;
  1378. return 1;
  1379. }
  1380. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1381. {
  1382. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1383. return 0;
  1384. }
  1385. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1386. {
  1387. u64 inst;
  1388. gva_t rip;
  1389. int countr_size;
  1390. int i, n;
  1391. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1392. countr_size = 2;
  1393. } else {
  1394. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1395. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1396. (cs_ar & AR_DB_MASK) ? 4: 2;
  1397. }
  1398. rip = vmcs_readl(GUEST_RIP);
  1399. if (countr_size != 8)
  1400. rip += vmcs_readl(GUEST_CS_BASE);
  1401. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1402. for (i = 0; i < n; i++) {
  1403. switch (((u8*)&inst)[i]) {
  1404. case 0xf0:
  1405. case 0xf2:
  1406. case 0xf3:
  1407. case 0x2e:
  1408. case 0x36:
  1409. case 0x3e:
  1410. case 0x26:
  1411. case 0x64:
  1412. case 0x65:
  1413. case 0x66:
  1414. break;
  1415. case 0x67:
  1416. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1417. default:
  1418. goto done;
  1419. }
  1420. }
  1421. return 0;
  1422. done:
  1423. countr_size *= 8;
  1424. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1425. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1426. return 1;
  1427. }
  1428. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1429. {
  1430. u64 exit_qualification;
  1431. int size, down, in, string, rep;
  1432. unsigned port;
  1433. unsigned long count;
  1434. gva_t address;
  1435. ++vcpu->stat.io_exits;
  1436. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1437. in = (exit_qualification & 8) != 0;
  1438. size = (exit_qualification & 7) + 1;
  1439. string = (exit_qualification & 16) != 0;
  1440. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1441. count = 1;
  1442. rep = (exit_qualification & 32) != 0;
  1443. port = exit_qualification >> 16;
  1444. address = 0;
  1445. if (string) {
  1446. if (rep && !get_io_count(vcpu, &count))
  1447. return 1;
  1448. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1449. }
  1450. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1451. address, rep, port);
  1452. }
  1453. static void
  1454. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1455. {
  1456. /*
  1457. * Patch in the VMCALL instruction:
  1458. */
  1459. hypercall[0] = 0x0f;
  1460. hypercall[1] = 0x01;
  1461. hypercall[2] = 0xc1;
  1462. hypercall[3] = 0xc3;
  1463. }
  1464. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1465. {
  1466. u64 exit_qualification;
  1467. int cr;
  1468. int reg;
  1469. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1470. cr = exit_qualification & 15;
  1471. reg = (exit_qualification >> 8) & 15;
  1472. switch ((exit_qualification >> 4) & 3) {
  1473. case 0: /* mov to cr */
  1474. switch (cr) {
  1475. case 0:
  1476. vcpu_load_rsp_rip(vcpu);
  1477. set_cr0(vcpu, vcpu->regs[reg]);
  1478. skip_emulated_instruction(vcpu);
  1479. return 1;
  1480. case 3:
  1481. vcpu_load_rsp_rip(vcpu);
  1482. set_cr3(vcpu, vcpu->regs[reg]);
  1483. skip_emulated_instruction(vcpu);
  1484. return 1;
  1485. case 4:
  1486. vcpu_load_rsp_rip(vcpu);
  1487. set_cr4(vcpu, vcpu->regs[reg]);
  1488. skip_emulated_instruction(vcpu);
  1489. return 1;
  1490. case 8:
  1491. vcpu_load_rsp_rip(vcpu);
  1492. set_cr8(vcpu, vcpu->regs[reg]);
  1493. skip_emulated_instruction(vcpu);
  1494. return 1;
  1495. };
  1496. break;
  1497. case 2: /* clts */
  1498. vcpu_load_rsp_rip(vcpu);
  1499. vmx_fpu_deactivate(vcpu);
  1500. vcpu->cr0 &= ~X86_CR0_TS;
  1501. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1502. vmx_fpu_activate(vcpu);
  1503. skip_emulated_instruction(vcpu);
  1504. return 1;
  1505. case 1: /*mov from cr*/
  1506. switch (cr) {
  1507. case 3:
  1508. vcpu_load_rsp_rip(vcpu);
  1509. vcpu->regs[reg] = vcpu->cr3;
  1510. vcpu_put_rsp_rip(vcpu);
  1511. skip_emulated_instruction(vcpu);
  1512. return 1;
  1513. case 8:
  1514. vcpu_load_rsp_rip(vcpu);
  1515. vcpu->regs[reg] = vcpu->cr8;
  1516. vcpu_put_rsp_rip(vcpu);
  1517. skip_emulated_instruction(vcpu);
  1518. return 1;
  1519. }
  1520. break;
  1521. case 3: /* lmsw */
  1522. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1523. skip_emulated_instruction(vcpu);
  1524. return 1;
  1525. default:
  1526. break;
  1527. }
  1528. kvm_run->exit_reason = 0;
  1529. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1530. (int)(exit_qualification >> 4) & 3, cr);
  1531. return 0;
  1532. }
  1533. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1534. {
  1535. u64 exit_qualification;
  1536. unsigned long val;
  1537. int dr, reg;
  1538. /*
  1539. * FIXME: this code assumes the host is debugging the guest.
  1540. * need to deal with guest debugging itself too.
  1541. */
  1542. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1543. dr = exit_qualification & 7;
  1544. reg = (exit_qualification >> 8) & 15;
  1545. vcpu_load_rsp_rip(vcpu);
  1546. if (exit_qualification & 16) {
  1547. /* mov from dr */
  1548. switch (dr) {
  1549. case 6:
  1550. val = 0xffff0ff0;
  1551. break;
  1552. case 7:
  1553. val = 0x400;
  1554. break;
  1555. default:
  1556. val = 0;
  1557. }
  1558. vcpu->regs[reg] = val;
  1559. } else {
  1560. /* mov to dr */
  1561. }
  1562. vcpu_put_rsp_rip(vcpu);
  1563. skip_emulated_instruction(vcpu);
  1564. return 1;
  1565. }
  1566. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1567. {
  1568. kvm_emulate_cpuid(vcpu);
  1569. return 1;
  1570. }
  1571. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1572. {
  1573. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1574. u64 data;
  1575. if (vmx_get_msr(vcpu, ecx, &data)) {
  1576. vmx_inject_gp(vcpu, 0);
  1577. return 1;
  1578. }
  1579. /* FIXME: handling of bits 32:63 of rax, rdx */
  1580. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1581. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1582. skip_emulated_instruction(vcpu);
  1583. return 1;
  1584. }
  1585. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1586. {
  1587. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1588. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1589. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1590. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1591. vmx_inject_gp(vcpu, 0);
  1592. return 1;
  1593. }
  1594. skip_emulated_instruction(vcpu);
  1595. return 1;
  1596. }
  1597. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1598. struct kvm_run *kvm_run)
  1599. {
  1600. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1601. kvm_run->cr8 = vcpu->cr8;
  1602. kvm_run->apic_base = vcpu->apic_base;
  1603. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1604. vcpu->irq_summary == 0);
  1605. }
  1606. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1607. struct kvm_run *kvm_run)
  1608. {
  1609. /*
  1610. * If the user space waits to inject interrupts, exit as soon as
  1611. * possible
  1612. */
  1613. if (kvm_run->request_interrupt_window &&
  1614. !vcpu->irq_summary) {
  1615. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1616. ++vcpu->stat.irq_window_exits;
  1617. return 0;
  1618. }
  1619. return 1;
  1620. }
  1621. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1622. {
  1623. skip_emulated_instruction(vcpu);
  1624. return kvm_emulate_halt(vcpu);
  1625. }
  1626. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1627. {
  1628. skip_emulated_instruction(vcpu);
  1629. return kvm_hypercall(vcpu, kvm_run);
  1630. }
  1631. /*
  1632. * The exit handlers return 1 if the exit was handled fully and guest execution
  1633. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1634. * to be done to userspace and return 0.
  1635. */
  1636. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1637. struct kvm_run *kvm_run) = {
  1638. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1639. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1640. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1641. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1642. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1643. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1644. [EXIT_REASON_CPUID] = handle_cpuid,
  1645. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1646. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1647. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1648. [EXIT_REASON_HLT] = handle_halt,
  1649. [EXIT_REASON_VMCALL] = handle_vmcall,
  1650. };
  1651. static const int kvm_vmx_max_exit_handlers =
  1652. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1653. /*
  1654. * The guest has exited. See if we can fix it or if we need userspace
  1655. * assistance.
  1656. */
  1657. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1658. {
  1659. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1660. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1661. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1662. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1663. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1664. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1665. if (exit_reason < kvm_vmx_max_exit_handlers
  1666. && kvm_vmx_exit_handlers[exit_reason])
  1667. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1668. else {
  1669. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1670. kvm_run->hw.hardware_exit_reason = exit_reason;
  1671. }
  1672. return 0;
  1673. }
  1674. /*
  1675. * Check if userspace requested an interrupt window, and that the
  1676. * interrupt window is open.
  1677. *
  1678. * No need to exit to userspace if we already have an interrupt queued.
  1679. */
  1680. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1681. struct kvm_run *kvm_run)
  1682. {
  1683. return (!vcpu->irq_summary &&
  1684. kvm_run->request_interrupt_window &&
  1685. vcpu->interrupt_window_open &&
  1686. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1687. }
  1688. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1689. {
  1690. }
  1691. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1692. {
  1693. u8 fail;
  1694. int r;
  1695. preempted:
  1696. if (vcpu->guest_debug.enabled)
  1697. kvm_guest_debug_pre(vcpu);
  1698. again:
  1699. if (!vcpu->mmio_read_completed)
  1700. do_interrupt_requests(vcpu, kvm_run);
  1701. vmx_save_host_state(vcpu);
  1702. kvm_load_guest_fpu(vcpu);
  1703. r = kvm_mmu_reload(vcpu);
  1704. if (unlikely(r))
  1705. goto out;
  1706. /*
  1707. * Loading guest fpu may have cleared host cr0.ts
  1708. */
  1709. vmcs_writel(HOST_CR0, read_cr0());
  1710. local_irq_disable();
  1711. vcpu->guest_mode = 1;
  1712. if (vcpu->requests)
  1713. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1714. vmx_flush_tlb(vcpu);
  1715. asm (
  1716. /* Store host registers */
  1717. #ifdef CONFIG_X86_64
  1718. "push %%rax; push %%rbx; push %%rdx;"
  1719. "push %%rsi; push %%rdi; push %%rbp;"
  1720. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1721. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1722. "push %%rcx \n\t"
  1723. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1724. #else
  1725. "pusha; push %%ecx \n\t"
  1726. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1727. #endif
  1728. /* Check if vmlaunch of vmresume is needed */
  1729. "cmp $0, %1 \n\t"
  1730. /* Load guest registers. Don't clobber flags. */
  1731. #ifdef CONFIG_X86_64
  1732. "mov %c[cr2](%3), %%rax \n\t"
  1733. "mov %%rax, %%cr2 \n\t"
  1734. "mov %c[rax](%3), %%rax \n\t"
  1735. "mov %c[rbx](%3), %%rbx \n\t"
  1736. "mov %c[rdx](%3), %%rdx \n\t"
  1737. "mov %c[rsi](%3), %%rsi \n\t"
  1738. "mov %c[rdi](%3), %%rdi \n\t"
  1739. "mov %c[rbp](%3), %%rbp \n\t"
  1740. "mov %c[r8](%3), %%r8 \n\t"
  1741. "mov %c[r9](%3), %%r9 \n\t"
  1742. "mov %c[r10](%3), %%r10 \n\t"
  1743. "mov %c[r11](%3), %%r11 \n\t"
  1744. "mov %c[r12](%3), %%r12 \n\t"
  1745. "mov %c[r13](%3), %%r13 \n\t"
  1746. "mov %c[r14](%3), %%r14 \n\t"
  1747. "mov %c[r15](%3), %%r15 \n\t"
  1748. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1749. #else
  1750. "mov %c[cr2](%3), %%eax \n\t"
  1751. "mov %%eax, %%cr2 \n\t"
  1752. "mov %c[rax](%3), %%eax \n\t"
  1753. "mov %c[rbx](%3), %%ebx \n\t"
  1754. "mov %c[rdx](%3), %%edx \n\t"
  1755. "mov %c[rsi](%3), %%esi \n\t"
  1756. "mov %c[rdi](%3), %%edi \n\t"
  1757. "mov %c[rbp](%3), %%ebp \n\t"
  1758. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1759. #endif
  1760. /* Enter guest mode */
  1761. "jne .Llaunched \n\t"
  1762. ASM_VMX_VMLAUNCH "\n\t"
  1763. "jmp .Lkvm_vmx_return \n\t"
  1764. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1765. ".Lkvm_vmx_return: "
  1766. /* Save guest registers, load host registers, keep flags */
  1767. #ifdef CONFIG_X86_64
  1768. "xchg %3, (%%rsp) \n\t"
  1769. "mov %%rax, %c[rax](%3) \n\t"
  1770. "mov %%rbx, %c[rbx](%3) \n\t"
  1771. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1772. "mov %%rdx, %c[rdx](%3) \n\t"
  1773. "mov %%rsi, %c[rsi](%3) \n\t"
  1774. "mov %%rdi, %c[rdi](%3) \n\t"
  1775. "mov %%rbp, %c[rbp](%3) \n\t"
  1776. "mov %%r8, %c[r8](%3) \n\t"
  1777. "mov %%r9, %c[r9](%3) \n\t"
  1778. "mov %%r10, %c[r10](%3) \n\t"
  1779. "mov %%r11, %c[r11](%3) \n\t"
  1780. "mov %%r12, %c[r12](%3) \n\t"
  1781. "mov %%r13, %c[r13](%3) \n\t"
  1782. "mov %%r14, %c[r14](%3) \n\t"
  1783. "mov %%r15, %c[r15](%3) \n\t"
  1784. "mov %%cr2, %%rax \n\t"
  1785. "mov %%rax, %c[cr2](%3) \n\t"
  1786. "mov (%%rsp), %3 \n\t"
  1787. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1788. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1789. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1790. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1791. #else
  1792. "xchg %3, (%%esp) \n\t"
  1793. "mov %%eax, %c[rax](%3) \n\t"
  1794. "mov %%ebx, %c[rbx](%3) \n\t"
  1795. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1796. "mov %%edx, %c[rdx](%3) \n\t"
  1797. "mov %%esi, %c[rsi](%3) \n\t"
  1798. "mov %%edi, %c[rdi](%3) \n\t"
  1799. "mov %%ebp, %c[rbp](%3) \n\t"
  1800. "mov %%cr2, %%eax \n\t"
  1801. "mov %%eax, %c[cr2](%3) \n\t"
  1802. "mov (%%esp), %3 \n\t"
  1803. "pop %%ecx; popa \n\t"
  1804. #endif
  1805. "setbe %0 \n\t"
  1806. : "=q" (fail)
  1807. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1808. "c"(vcpu),
  1809. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1810. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1811. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1812. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1813. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1814. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1815. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1816. #ifdef CONFIG_X86_64
  1817. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1818. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1819. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1820. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1821. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1822. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1823. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1824. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1825. #endif
  1826. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1827. : "cc", "memory" );
  1828. vcpu->guest_mode = 0;
  1829. local_irq_enable();
  1830. ++vcpu->stat.exits;
  1831. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1832. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1833. if (unlikely(fail)) {
  1834. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1835. kvm_run->fail_entry.hardware_entry_failure_reason
  1836. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1837. r = 0;
  1838. goto out;
  1839. }
  1840. /*
  1841. * Profile KVM exit RIPs:
  1842. */
  1843. if (unlikely(prof_on == KVM_PROFILING))
  1844. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1845. vcpu->launched = 1;
  1846. r = kvm_handle_exit(kvm_run, vcpu);
  1847. if (r > 0) {
  1848. /* Give scheduler a change to reschedule. */
  1849. if (signal_pending(current)) {
  1850. r = -EINTR;
  1851. kvm_run->exit_reason = KVM_EXIT_INTR;
  1852. ++vcpu->stat.signal_exits;
  1853. goto out;
  1854. }
  1855. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1856. r = -EINTR;
  1857. kvm_run->exit_reason = KVM_EXIT_INTR;
  1858. ++vcpu->stat.request_irq_exits;
  1859. goto out;
  1860. }
  1861. if (!need_resched()) {
  1862. ++vcpu->stat.light_exits;
  1863. goto again;
  1864. }
  1865. }
  1866. out:
  1867. if (r > 0) {
  1868. kvm_resched(vcpu);
  1869. goto preempted;
  1870. }
  1871. post_kvm_run_save(vcpu, kvm_run);
  1872. return r;
  1873. }
  1874. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1875. unsigned long addr,
  1876. u32 err_code)
  1877. {
  1878. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1879. ++vcpu->stat.pf_guest;
  1880. if (is_page_fault(vect_info)) {
  1881. printk(KERN_DEBUG "inject_page_fault: "
  1882. "double fault 0x%lx @ 0x%lx\n",
  1883. addr, vmcs_readl(GUEST_RIP));
  1884. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1885. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1886. DF_VECTOR |
  1887. INTR_TYPE_EXCEPTION |
  1888. INTR_INFO_DELIEVER_CODE_MASK |
  1889. INTR_INFO_VALID_MASK);
  1890. return;
  1891. }
  1892. vcpu->cr2 = addr;
  1893. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1894. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1895. PF_VECTOR |
  1896. INTR_TYPE_EXCEPTION |
  1897. INTR_INFO_DELIEVER_CODE_MASK |
  1898. INTR_INFO_VALID_MASK);
  1899. }
  1900. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1901. {
  1902. if (vcpu->vmcs) {
  1903. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1904. free_vmcs(vcpu->vmcs);
  1905. vcpu->vmcs = NULL;
  1906. }
  1907. }
  1908. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1909. {
  1910. vmx_free_vmcs(vcpu);
  1911. }
  1912. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1913. {
  1914. struct vmcs *vmcs;
  1915. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1916. if (!vcpu->guest_msrs)
  1917. return -ENOMEM;
  1918. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1919. if (!vcpu->host_msrs)
  1920. goto out_free_guest_msrs;
  1921. vmcs = alloc_vmcs();
  1922. if (!vmcs)
  1923. goto out_free_msrs;
  1924. vmcs_clear(vmcs);
  1925. vcpu->vmcs = vmcs;
  1926. vcpu->launched = 0;
  1927. return 0;
  1928. out_free_msrs:
  1929. kfree(vcpu->host_msrs);
  1930. vcpu->host_msrs = NULL;
  1931. out_free_guest_msrs:
  1932. kfree(vcpu->guest_msrs);
  1933. vcpu->guest_msrs = NULL;
  1934. return -ENOMEM;
  1935. }
  1936. static struct kvm_arch_ops vmx_arch_ops = {
  1937. .cpu_has_kvm_support = cpu_has_kvm_support,
  1938. .disabled_by_bios = vmx_disabled_by_bios,
  1939. .hardware_setup = hardware_setup,
  1940. .hardware_unsetup = hardware_unsetup,
  1941. .hardware_enable = hardware_enable,
  1942. .hardware_disable = hardware_disable,
  1943. .vcpu_create = vmx_create_vcpu,
  1944. .vcpu_free = vmx_free_vcpu,
  1945. .vcpu_load = vmx_vcpu_load,
  1946. .vcpu_put = vmx_vcpu_put,
  1947. .vcpu_decache = vmx_vcpu_decache,
  1948. .set_guest_debug = set_guest_debug,
  1949. .get_msr = vmx_get_msr,
  1950. .set_msr = vmx_set_msr,
  1951. .get_segment_base = vmx_get_segment_base,
  1952. .get_segment = vmx_get_segment,
  1953. .set_segment = vmx_set_segment,
  1954. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1955. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1956. .set_cr0 = vmx_set_cr0,
  1957. .set_cr3 = vmx_set_cr3,
  1958. .set_cr4 = vmx_set_cr4,
  1959. #ifdef CONFIG_X86_64
  1960. .set_efer = vmx_set_efer,
  1961. #endif
  1962. .get_idt = vmx_get_idt,
  1963. .set_idt = vmx_set_idt,
  1964. .get_gdt = vmx_get_gdt,
  1965. .set_gdt = vmx_set_gdt,
  1966. .cache_regs = vcpu_load_rsp_rip,
  1967. .decache_regs = vcpu_put_rsp_rip,
  1968. .get_rflags = vmx_get_rflags,
  1969. .set_rflags = vmx_set_rflags,
  1970. .tlb_flush = vmx_flush_tlb,
  1971. .inject_page_fault = vmx_inject_page_fault,
  1972. .inject_gp = vmx_inject_gp,
  1973. .run = vmx_vcpu_run,
  1974. .skip_emulated_instruction = skip_emulated_instruction,
  1975. .vcpu_setup = vmx_vcpu_setup,
  1976. .patch_hypercall = vmx_patch_hypercall,
  1977. };
  1978. static int __init vmx_init(void)
  1979. {
  1980. void *iova;
  1981. int r;
  1982. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1983. if (!vmx_io_bitmap_a)
  1984. return -ENOMEM;
  1985. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1986. if (!vmx_io_bitmap_b) {
  1987. r = -ENOMEM;
  1988. goto out;
  1989. }
  1990. /*
  1991. * Allow direct access to the PC debug port (it is often used for I/O
  1992. * delays, but the vmexits simply slow things down).
  1993. */
  1994. iova = kmap(vmx_io_bitmap_a);
  1995. memset(iova, 0xff, PAGE_SIZE);
  1996. clear_bit(0x80, iova);
  1997. kunmap(vmx_io_bitmap_a);
  1998. iova = kmap(vmx_io_bitmap_b);
  1999. memset(iova, 0xff, PAGE_SIZE);
  2000. kunmap(vmx_io_bitmap_b);
  2001. r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  2002. if (r)
  2003. goto out1;
  2004. return 0;
  2005. out1:
  2006. __free_page(vmx_io_bitmap_b);
  2007. out:
  2008. __free_page(vmx_io_bitmap_a);
  2009. return r;
  2010. }
  2011. static void __exit vmx_exit(void)
  2012. {
  2013. __free_page(vmx_io_bitmap_b);
  2014. __free_page(vmx_io_bitmap_a);
  2015. kvm_exit_arch();
  2016. }
  2017. module_init(vmx_init)
  2018. module_exit(vmx_exit)