core.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /*
  2. * Linux Socket Filter - Kernel level socket filtering
  3. *
  4. * Based on the design of the Berkeley Packet Filter. The new
  5. * internal format has been designed by PLUMgrid:
  6. *
  7. * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
  8. *
  9. * Authors:
  10. *
  11. * Jay Schulist <jschlst@samba.org>
  12. * Alexei Starovoitov <ast@plumgrid.com>
  13. * Daniel Borkmann <dborkman@redhat.com>
  14. *
  15. * This program is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public License
  17. * as published by the Free Software Foundation; either version
  18. * 2 of the License, or (at your option) any later version.
  19. *
  20. * Andi Kleen - Fix a few bad bugs and races.
  21. * Kris Katterjohn - Added many additional checks in bpf_check_classic()
  22. */
  23. #include <linux/filter.h>
  24. #include <linux/skbuff.h>
  25. #include <asm/unaligned.h>
  26. /* Registers */
  27. #define BPF_R0 regs[BPF_REG_0]
  28. #define BPF_R1 regs[BPF_REG_1]
  29. #define BPF_R2 regs[BPF_REG_2]
  30. #define BPF_R3 regs[BPF_REG_3]
  31. #define BPF_R4 regs[BPF_REG_4]
  32. #define BPF_R5 regs[BPF_REG_5]
  33. #define BPF_R6 regs[BPF_REG_6]
  34. #define BPF_R7 regs[BPF_REG_7]
  35. #define BPF_R8 regs[BPF_REG_8]
  36. #define BPF_R9 regs[BPF_REG_9]
  37. #define BPF_R10 regs[BPF_REG_10]
  38. /* Named registers */
  39. #define DST regs[insn->dst_reg]
  40. #define SRC regs[insn->src_reg]
  41. #define FP regs[BPF_REG_FP]
  42. #define ARG1 regs[BPF_REG_ARG1]
  43. #define CTX regs[BPF_REG_CTX]
  44. #define IMM insn->imm
  45. /* No hurry in this branch
  46. *
  47. * Exported for the bpf jit load helper.
  48. */
  49. void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
  50. {
  51. u8 *ptr = NULL;
  52. if (k >= SKF_NET_OFF)
  53. ptr = skb_network_header(skb) + k - SKF_NET_OFF;
  54. else if (k >= SKF_LL_OFF)
  55. ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
  56. if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
  57. return ptr;
  58. return NULL;
  59. }
  60. /* Base function for offset calculation. Needs to go into .text section,
  61. * therefore keeping it non-static as well; will also be used by JITs
  62. * anyway later on, so do not let the compiler omit it.
  63. */
  64. noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
  65. {
  66. return 0;
  67. }
  68. /**
  69. * __sk_run_filter - run a filter on a given context
  70. * @ctx: buffer to run the filter on
  71. * @insn: filter to apply
  72. *
  73. * Decode and apply filter instructions to the skb->data. Return length to
  74. * keep, 0 for none. @ctx is the data we are operating on, @insn is the
  75. * array of filter instructions.
  76. */
  77. static unsigned int __sk_run_filter(void *ctx, const struct bpf_insn *insn)
  78. {
  79. u64 stack[MAX_BPF_STACK / sizeof(u64)];
  80. u64 regs[MAX_BPF_REG], tmp;
  81. static const void *jumptable[256] = {
  82. [0 ... 255] = &&default_label,
  83. /* Now overwrite non-defaults ... */
  84. /* 32 bit ALU operations */
  85. [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
  86. [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
  87. [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
  88. [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
  89. [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
  90. [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
  91. [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
  92. [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
  93. [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
  94. [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
  95. [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
  96. [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
  97. [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
  98. [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
  99. [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
  100. [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
  101. [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
  102. [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
  103. [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
  104. [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
  105. [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
  106. [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
  107. [BPF_ALU | BPF_NEG] = &&ALU_NEG,
  108. [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
  109. [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
  110. /* 64 bit ALU operations */
  111. [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
  112. [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
  113. [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
  114. [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
  115. [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
  116. [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
  117. [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
  118. [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
  119. [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
  120. [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
  121. [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
  122. [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
  123. [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
  124. [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
  125. [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
  126. [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
  127. [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
  128. [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
  129. [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
  130. [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
  131. [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
  132. [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
  133. [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
  134. [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
  135. [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
  136. /* Call instruction */
  137. [BPF_JMP | BPF_CALL] = &&JMP_CALL,
  138. /* Jumps */
  139. [BPF_JMP | BPF_JA] = &&JMP_JA,
  140. [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
  141. [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
  142. [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
  143. [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
  144. [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
  145. [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
  146. [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
  147. [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
  148. [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
  149. [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
  150. [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
  151. [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
  152. [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
  153. [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
  154. /* Program return */
  155. [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
  156. /* Store instructions */
  157. [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
  158. [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
  159. [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
  160. [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
  161. [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
  162. [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
  163. [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
  164. [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
  165. [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
  166. [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
  167. /* Load instructions */
  168. [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
  169. [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
  170. [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
  171. [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
  172. [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
  173. [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
  174. [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
  175. [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
  176. [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
  177. [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
  178. };
  179. void *ptr;
  180. int off;
  181. #define CONT ({ insn++; goto select_insn; })
  182. #define CONT_JMP ({ insn++; goto select_insn; })
  183. FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
  184. ARG1 = (u64) (unsigned long) ctx;
  185. /* Registers used in classic BPF programs need to be reset first. */
  186. regs[BPF_REG_A] = 0;
  187. regs[BPF_REG_X] = 0;
  188. select_insn:
  189. goto *jumptable[insn->code];
  190. /* ALU */
  191. #define ALU(OPCODE, OP) \
  192. ALU64_##OPCODE##_X: \
  193. DST = DST OP SRC; \
  194. CONT; \
  195. ALU_##OPCODE##_X: \
  196. DST = (u32) DST OP (u32) SRC; \
  197. CONT; \
  198. ALU64_##OPCODE##_K: \
  199. DST = DST OP IMM; \
  200. CONT; \
  201. ALU_##OPCODE##_K: \
  202. DST = (u32) DST OP (u32) IMM; \
  203. CONT;
  204. ALU(ADD, +)
  205. ALU(SUB, -)
  206. ALU(AND, &)
  207. ALU(OR, |)
  208. ALU(LSH, <<)
  209. ALU(RSH, >>)
  210. ALU(XOR, ^)
  211. ALU(MUL, *)
  212. #undef ALU
  213. ALU_NEG:
  214. DST = (u32) -DST;
  215. CONT;
  216. ALU64_NEG:
  217. DST = -DST;
  218. CONT;
  219. ALU_MOV_X:
  220. DST = (u32) SRC;
  221. CONT;
  222. ALU_MOV_K:
  223. DST = (u32) IMM;
  224. CONT;
  225. ALU64_MOV_X:
  226. DST = SRC;
  227. CONT;
  228. ALU64_MOV_K:
  229. DST = IMM;
  230. CONT;
  231. ALU64_ARSH_X:
  232. (*(s64 *) &DST) >>= SRC;
  233. CONT;
  234. ALU64_ARSH_K:
  235. (*(s64 *) &DST) >>= IMM;
  236. CONT;
  237. ALU64_MOD_X:
  238. if (unlikely(SRC == 0))
  239. return 0;
  240. tmp = DST;
  241. DST = do_div(tmp, SRC);
  242. CONT;
  243. ALU_MOD_X:
  244. if (unlikely(SRC == 0))
  245. return 0;
  246. tmp = (u32) DST;
  247. DST = do_div(tmp, (u32) SRC);
  248. CONT;
  249. ALU64_MOD_K:
  250. tmp = DST;
  251. DST = do_div(tmp, IMM);
  252. CONT;
  253. ALU_MOD_K:
  254. tmp = (u32) DST;
  255. DST = do_div(tmp, (u32) IMM);
  256. CONT;
  257. ALU64_DIV_X:
  258. if (unlikely(SRC == 0))
  259. return 0;
  260. do_div(DST, SRC);
  261. CONT;
  262. ALU_DIV_X:
  263. if (unlikely(SRC == 0))
  264. return 0;
  265. tmp = (u32) DST;
  266. do_div(tmp, (u32) SRC);
  267. DST = (u32) tmp;
  268. CONT;
  269. ALU64_DIV_K:
  270. do_div(DST, IMM);
  271. CONT;
  272. ALU_DIV_K:
  273. tmp = (u32) DST;
  274. do_div(tmp, (u32) IMM);
  275. DST = (u32) tmp;
  276. CONT;
  277. ALU_END_TO_BE:
  278. switch (IMM) {
  279. case 16:
  280. DST = (__force u16) cpu_to_be16(DST);
  281. break;
  282. case 32:
  283. DST = (__force u32) cpu_to_be32(DST);
  284. break;
  285. case 64:
  286. DST = (__force u64) cpu_to_be64(DST);
  287. break;
  288. }
  289. CONT;
  290. ALU_END_TO_LE:
  291. switch (IMM) {
  292. case 16:
  293. DST = (__force u16) cpu_to_le16(DST);
  294. break;
  295. case 32:
  296. DST = (__force u32) cpu_to_le32(DST);
  297. break;
  298. case 64:
  299. DST = (__force u64) cpu_to_le64(DST);
  300. break;
  301. }
  302. CONT;
  303. /* CALL */
  304. JMP_CALL:
  305. /* Function call scratches BPF_R1-BPF_R5 registers,
  306. * preserves BPF_R6-BPF_R9, and stores return value
  307. * into BPF_R0.
  308. */
  309. BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
  310. BPF_R4, BPF_R5);
  311. CONT;
  312. /* JMP */
  313. JMP_JA:
  314. insn += insn->off;
  315. CONT;
  316. JMP_JEQ_X:
  317. if (DST == SRC) {
  318. insn += insn->off;
  319. CONT_JMP;
  320. }
  321. CONT;
  322. JMP_JEQ_K:
  323. if (DST == IMM) {
  324. insn += insn->off;
  325. CONT_JMP;
  326. }
  327. CONT;
  328. JMP_JNE_X:
  329. if (DST != SRC) {
  330. insn += insn->off;
  331. CONT_JMP;
  332. }
  333. CONT;
  334. JMP_JNE_K:
  335. if (DST != IMM) {
  336. insn += insn->off;
  337. CONT_JMP;
  338. }
  339. CONT;
  340. JMP_JGT_X:
  341. if (DST > SRC) {
  342. insn += insn->off;
  343. CONT_JMP;
  344. }
  345. CONT;
  346. JMP_JGT_K:
  347. if (DST > IMM) {
  348. insn += insn->off;
  349. CONT_JMP;
  350. }
  351. CONT;
  352. JMP_JGE_X:
  353. if (DST >= SRC) {
  354. insn += insn->off;
  355. CONT_JMP;
  356. }
  357. CONT;
  358. JMP_JGE_K:
  359. if (DST >= IMM) {
  360. insn += insn->off;
  361. CONT_JMP;
  362. }
  363. CONT;
  364. JMP_JSGT_X:
  365. if (((s64) DST) > ((s64) SRC)) {
  366. insn += insn->off;
  367. CONT_JMP;
  368. }
  369. CONT;
  370. JMP_JSGT_K:
  371. if (((s64) DST) > ((s64) IMM)) {
  372. insn += insn->off;
  373. CONT_JMP;
  374. }
  375. CONT;
  376. JMP_JSGE_X:
  377. if (((s64) DST) >= ((s64) SRC)) {
  378. insn += insn->off;
  379. CONT_JMP;
  380. }
  381. CONT;
  382. JMP_JSGE_K:
  383. if (((s64) DST) >= ((s64) IMM)) {
  384. insn += insn->off;
  385. CONT_JMP;
  386. }
  387. CONT;
  388. JMP_JSET_X:
  389. if (DST & SRC) {
  390. insn += insn->off;
  391. CONT_JMP;
  392. }
  393. CONT;
  394. JMP_JSET_K:
  395. if (DST & IMM) {
  396. insn += insn->off;
  397. CONT_JMP;
  398. }
  399. CONT;
  400. JMP_EXIT:
  401. return BPF_R0;
  402. /* STX and ST and LDX*/
  403. #define LDST(SIZEOP, SIZE) \
  404. STX_MEM_##SIZEOP: \
  405. *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
  406. CONT; \
  407. ST_MEM_##SIZEOP: \
  408. *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
  409. CONT; \
  410. LDX_MEM_##SIZEOP: \
  411. DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
  412. CONT;
  413. LDST(B, u8)
  414. LDST(H, u16)
  415. LDST(W, u32)
  416. LDST(DW, u64)
  417. #undef LDST
  418. STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
  419. atomic_add((u32) SRC, (atomic_t *)(unsigned long)
  420. (DST + insn->off));
  421. CONT;
  422. STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
  423. atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
  424. (DST + insn->off));
  425. CONT;
  426. LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
  427. off = IMM;
  428. load_word:
  429. /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are
  430. * only appearing in the programs where ctx ==
  431. * skb. All programs keep 'ctx' in regs[BPF_REG_CTX]
  432. * == BPF_R6, bpf_convert_filter() saves it in BPF_R6,
  433. * internal BPF verifier will check that BPF_R6 ==
  434. * ctx.
  435. *
  436. * BPF_ABS and BPF_IND are wrappers of function calls,
  437. * so they scratch BPF_R1-BPF_R5 registers, preserve
  438. * BPF_R6-BPF_R9, and store return value into BPF_R0.
  439. *
  440. * Implicit input:
  441. * ctx == skb == BPF_R6 == CTX
  442. *
  443. * Explicit input:
  444. * SRC == any register
  445. * IMM == 32-bit immediate
  446. *
  447. * Output:
  448. * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
  449. */
  450. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
  451. if (likely(ptr != NULL)) {
  452. BPF_R0 = get_unaligned_be32(ptr);
  453. CONT;
  454. }
  455. return 0;
  456. LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
  457. off = IMM;
  458. load_half:
  459. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
  460. if (likely(ptr != NULL)) {
  461. BPF_R0 = get_unaligned_be16(ptr);
  462. CONT;
  463. }
  464. return 0;
  465. LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
  466. off = IMM;
  467. load_byte:
  468. ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
  469. if (likely(ptr != NULL)) {
  470. BPF_R0 = *(u8 *)ptr;
  471. CONT;
  472. }
  473. return 0;
  474. LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
  475. off = IMM + SRC;
  476. goto load_word;
  477. LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
  478. off = IMM + SRC;
  479. goto load_half;
  480. LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
  481. off = IMM + SRC;
  482. goto load_byte;
  483. default_label:
  484. /* If we ever reach this, we have a bug somewhere. */
  485. WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
  486. return 0;
  487. }
  488. void __weak bpf_int_jit_compile(struct sk_filter *prog)
  489. {
  490. }
  491. /**
  492. * sk_filter_select_runtime - select execution runtime for BPF program
  493. * @fp: sk_filter populated with internal BPF program
  494. *
  495. * try to JIT internal BPF program, if JIT is not available select interpreter
  496. * BPF program will be executed via SK_RUN_FILTER() macro
  497. */
  498. void sk_filter_select_runtime(struct sk_filter *fp)
  499. {
  500. fp->bpf_func = (void *) __sk_run_filter;
  501. /* Probe if internal BPF can be JITed */
  502. bpf_int_jit_compile(fp);
  503. }
  504. EXPORT_SYMBOL_GPL(sk_filter_select_runtime);
  505. /* free internal BPF program */
  506. void sk_filter_free(struct sk_filter *fp)
  507. {
  508. bpf_jit_free(fp);
  509. }
  510. EXPORT_SYMBOL_GPL(sk_filter_free);