core.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390
  1. /*
  2. * Copyright (C) 2015 IT University of Copenhagen. All rights reserved.
  3. * Initial release: Matias Bjorling <m@bjorling.me>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License version
  7. * 2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; see the file COPYING. If not, write to
  16. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
  17. * USA.
  18. *
  19. */
  20. #include <linux/list.h>
  21. #include <linux/types.h>
  22. #include <linux/sem.h>
  23. #include <linux/bitmap.h>
  24. #include <linux/moduleparam.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/lightnvm.h>
  27. #include <linux/sched/sysctl.h>
  28. static LIST_HEAD(nvm_tgt_types);
  29. static DECLARE_RWSEM(nvm_tgtt_lock);
  30. static LIST_HEAD(nvm_devices);
  31. static DECLARE_RWSEM(nvm_lock);
  32. /* Map between virtual and physical channel and lun */
  33. struct nvm_ch_map {
  34. int ch_off;
  35. int nr_luns;
  36. int *lun_offs;
  37. };
  38. struct nvm_dev_map {
  39. struct nvm_ch_map *chnls;
  40. int nr_chnls;
  41. };
  42. struct nvm_area {
  43. struct list_head list;
  44. sector_t begin;
  45. sector_t end; /* end is excluded */
  46. };
  47. enum {
  48. TRANS_TGT_TO_DEV = 0x0,
  49. TRANS_DEV_TO_TGT = 0x1,
  50. };
  51. static struct nvm_target *nvm_find_target(struct nvm_dev *dev, const char *name)
  52. {
  53. struct nvm_target *tgt;
  54. list_for_each_entry(tgt, &dev->targets, list)
  55. if (!strcmp(name, tgt->disk->disk_name))
  56. return tgt;
  57. return NULL;
  58. }
  59. static int nvm_reserve_luns(struct nvm_dev *dev, int lun_begin, int lun_end)
  60. {
  61. int i;
  62. for (i = lun_begin; i <= lun_end; i++) {
  63. if (test_and_set_bit(i, dev->lun_map)) {
  64. pr_err("nvm: lun %d already allocated\n", i);
  65. goto err;
  66. }
  67. }
  68. return 0;
  69. err:
  70. while (--i > lun_begin)
  71. clear_bit(i, dev->lun_map);
  72. return -EBUSY;
  73. }
  74. static void nvm_release_luns_err(struct nvm_dev *dev, int lun_begin,
  75. int lun_end)
  76. {
  77. int i;
  78. for (i = lun_begin; i <= lun_end; i++)
  79. WARN_ON(!test_and_clear_bit(i, dev->lun_map));
  80. }
  81. static void nvm_remove_tgt_dev(struct nvm_tgt_dev *tgt_dev)
  82. {
  83. struct nvm_dev *dev = tgt_dev->parent;
  84. struct nvm_dev_map *dev_map = tgt_dev->map;
  85. int i, j;
  86. for (i = 0; i < dev_map->nr_chnls; i++) {
  87. struct nvm_ch_map *ch_map = &dev_map->chnls[i];
  88. int *lun_offs = ch_map->lun_offs;
  89. int ch = i + ch_map->ch_off;
  90. for (j = 0; j < ch_map->nr_luns; j++) {
  91. int lun = j + lun_offs[j];
  92. int lunid = (ch * dev->geo.luns_per_chnl) + lun;
  93. WARN_ON(!test_and_clear_bit(lunid, dev->lun_map));
  94. }
  95. kfree(ch_map->lun_offs);
  96. }
  97. kfree(dev_map->chnls);
  98. kfree(dev_map);
  99. kfree(tgt_dev->luns);
  100. kfree(tgt_dev);
  101. }
  102. static struct nvm_tgt_dev *nvm_create_tgt_dev(struct nvm_dev *dev,
  103. int lun_begin, int lun_end)
  104. {
  105. struct nvm_tgt_dev *tgt_dev = NULL;
  106. struct nvm_dev_map *dev_rmap = dev->rmap;
  107. struct nvm_dev_map *dev_map;
  108. struct ppa_addr *luns;
  109. int nr_luns = lun_end - lun_begin + 1;
  110. int luns_left = nr_luns;
  111. int nr_chnls = nr_luns / dev->geo.luns_per_chnl;
  112. int nr_chnls_mod = nr_luns % dev->geo.luns_per_chnl;
  113. int bch = lun_begin / dev->geo.luns_per_chnl;
  114. int blun = lun_begin % dev->geo.luns_per_chnl;
  115. int lunid = 0;
  116. int lun_balanced = 1;
  117. int prev_nr_luns;
  118. int i, j;
  119. nr_chnls = nr_luns / dev->geo.luns_per_chnl;
  120. nr_chnls = (nr_chnls_mod == 0) ? nr_chnls : nr_chnls + 1;
  121. dev_map = kmalloc(sizeof(struct nvm_dev_map), GFP_KERNEL);
  122. if (!dev_map)
  123. goto err_dev;
  124. dev_map->chnls = kcalloc(nr_chnls, sizeof(struct nvm_ch_map),
  125. GFP_KERNEL);
  126. if (!dev_map->chnls)
  127. goto err_chnls;
  128. luns = kcalloc(nr_luns, sizeof(struct ppa_addr), GFP_KERNEL);
  129. if (!luns)
  130. goto err_luns;
  131. prev_nr_luns = (luns_left > dev->geo.luns_per_chnl) ?
  132. dev->geo.luns_per_chnl : luns_left;
  133. for (i = 0; i < nr_chnls; i++) {
  134. struct nvm_ch_map *ch_rmap = &dev_rmap->chnls[i + bch];
  135. int *lun_roffs = ch_rmap->lun_offs;
  136. struct nvm_ch_map *ch_map = &dev_map->chnls[i];
  137. int *lun_offs;
  138. int luns_in_chnl = (luns_left > dev->geo.luns_per_chnl) ?
  139. dev->geo.luns_per_chnl : luns_left;
  140. if (lun_balanced && prev_nr_luns != luns_in_chnl)
  141. lun_balanced = 0;
  142. ch_map->ch_off = ch_rmap->ch_off = bch;
  143. ch_map->nr_luns = luns_in_chnl;
  144. lun_offs = kcalloc(luns_in_chnl, sizeof(int), GFP_KERNEL);
  145. if (!lun_offs)
  146. goto err_ch;
  147. for (j = 0; j < luns_in_chnl; j++) {
  148. luns[lunid].ppa = 0;
  149. luns[lunid].g.ch = i;
  150. luns[lunid++].g.lun = j;
  151. lun_offs[j] = blun;
  152. lun_roffs[j + blun] = blun;
  153. }
  154. ch_map->lun_offs = lun_offs;
  155. /* when starting a new channel, lun offset is reset */
  156. blun = 0;
  157. luns_left -= luns_in_chnl;
  158. }
  159. dev_map->nr_chnls = nr_chnls;
  160. tgt_dev = kmalloc(sizeof(struct nvm_tgt_dev), GFP_KERNEL);
  161. if (!tgt_dev)
  162. goto err_ch;
  163. memcpy(&tgt_dev->geo, &dev->geo, sizeof(struct nvm_geo));
  164. /* Target device only owns a portion of the physical device */
  165. tgt_dev->geo.nr_chnls = nr_chnls;
  166. tgt_dev->geo.nr_luns = nr_luns;
  167. tgt_dev->geo.luns_per_chnl = (lun_balanced) ? prev_nr_luns : -1;
  168. tgt_dev->total_secs = nr_luns * tgt_dev->geo.sec_per_lun;
  169. tgt_dev->q = dev->q;
  170. tgt_dev->map = dev_map;
  171. tgt_dev->luns = luns;
  172. memcpy(&tgt_dev->identity, &dev->identity, sizeof(struct nvm_id));
  173. tgt_dev->parent = dev;
  174. return tgt_dev;
  175. err_ch:
  176. while (--i > 0)
  177. kfree(dev_map->chnls[i].lun_offs);
  178. kfree(luns);
  179. err_luns:
  180. kfree(dev_map->chnls);
  181. err_chnls:
  182. kfree(dev_map);
  183. err_dev:
  184. return tgt_dev;
  185. }
  186. static const struct block_device_operations nvm_fops = {
  187. .owner = THIS_MODULE,
  188. };
  189. static int nvm_create_tgt(struct nvm_dev *dev, struct nvm_ioctl_create *create)
  190. {
  191. struct nvm_ioctl_create_simple *s = &create->conf.s;
  192. struct request_queue *tqueue;
  193. struct gendisk *tdisk;
  194. struct nvm_tgt_type *tt;
  195. struct nvm_target *t;
  196. struct nvm_tgt_dev *tgt_dev;
  197. void *targetdata;
  198. tt = nvm_find_target_type(create->tgttype, 1);
  199. if (!tt) {
  200. pr_err("nvm: target type %s not found\n", create->tgttype);
  201. return -EINVAL;
  202. }
  203. mutex_lock(&dev->mlock);
  204. t = nvm_find_target(dev, create->tgtname);
  205. if (t) {
  206. pr_err("nvm: target name already exists.\n");
  207. mutex_unlock(&dev->mlock);
  208. return -EINVAL;
  209. }
  210. mutex_unlock(&dev->mlock);
  211. if (nvm_reserve_luns(dev, s->lun_begin, s->lun_end))
  212. return -ENOMEM;
  213. t = kmalloc(sizeof(struct nvm_target), GFP_KERNEL);
  214. if (!t)
  215. goto err_reserve;
  216. tgt_dev = nvm_create_tgt_dev(dev, s->lun_begin, s->lun_end);
  217. if (!tgt_dev) {
  218. pr_err("nvm: could not create target device\n");
  219. goto err_t;
  220. }
  221. tqueue = blk_alloc_queue_node(GFP_KERNEL, dev->q->node);
  222. if (!tqueue)
  223. goto err_dev;
  224. blk_queue_make_request(tqueue, tt->make_rq);
  225. tdisk = alloc_disk(0);
  226. if (!tdisk)
  227. goto err_queue;
  228. sprintf(tdisk->disk_name, "%s", create->tgtname);
  229. tdisk->flags = GENHD_FL_EXT_DEVT;
  230. tdisk->major = 0;
  231. tdisk->first_minor = 0;
  232. tdisk->fops = &nvm_fops;
  233. tdisk->queue = tqueue;
  234. targetdata = tt->init(tgt_dev, tdisk);
  235. if (IS_ERR(targetdata))
  236. goto err_init;
  237. tdisk->private_data = targetdata;
  238. tqueue->queuedata = targetdata;
  239. blk_queue_max_hw_sectors(tqueue, 8 * dev->ops->max_phys_sect);
  240. set_capacity(tdisk, tt->capacity(targetdata));
  241. add_disk(tdisk);
  242. t->type = tt;
  243. t->disk = tdisk;
  244. t->dev = tgt_dev;
  245. mutex_lock(&dev->mlock);
  246. list_add_tail(&t->list, &dev->targets);
  247. mutex_unlock(&dev->mlock);
  248. return 0;
  249. err_init:
  250. put_disk(tdisk);
  251. err_queue:
  252. blk_cleanup_queue(tqueue);
  253. err_dev:
  254. kfree(tgt_dev);
  255. err_t:
  256. kfree(t);
  257. err_reserve:
  258. nvm_release_luns_err(dev, s->lun_begin, s->lun_end);
  259. return -ENOMEM;
  260. }
  261. static void __nvm_remove_target(struct nvm_target *t)
  262. {
  263. struct nvm_tgt_type *tt = t->type;
  264. struct gendisk *tdisk = t->disk;
  265. struct request_queue *q = tdisk->queue;
  266. del_gendisk(tdisk);
  267. blk_cleanup_queue(q);
  268. if (tt->exit)
  269. tt->exit(tdisk->private_data);
  270. nvm_remove_tgt_dev(t->dev);
  271. put_disk(tdisk);
  272. list_del(&t->list);
  273. kfree(t);
  274. }
  275. /**
  276. * nvm_remove_tgt - Removes a target from the media manager
  277. * @dev: device
  278. * @remove: ioctl structure with target name to remove.
  279. *
  280. * Returns:
  281. * 0: on success
  282. * 1: on not found
  283. * <0: on error
  284. */
  285. static int nvm_remove_tgt(struct nvm_dev *dev, struct nvm_ioctl_remove *remove)
  286. {
  287. struct nvm_target *t;
  288. mutex_lock(&dev->mlock);
  289. t = nvm_find_target(dev, remove->tgtname);
  290. if (!t) {
  291. mutex_unlock(&dev->mlock);
  292. return 1;
  293. }
  294. __nvm_remove_target(t);
  295. mutex_unlock(&dev->mlock);
  296. return 0;
  297. }
  298. static int nvm_register_map(struct nvm_dev *dev)
  299. {
  300. struct nvm_dev_map *rmap;
  301. int i, j;
  302. rmap = kmalloc(sizeof(struct nvm_dev_map), GFP_KERNEL);
  303. if (!rmap)
  304. goto err_rmap;
  305. rmap->chnls = kcalloc(dev->geo.nr_chnls, sizeof(struct nvm_ch_map),
  306. GFP_KERNEL);
  307. if (!rmap->chnls)
  308. goto err_chnls;
  309. for (i = 0; i < dev->geo.nr_chnls; i++) {
  310. struct nvm_ch_map *ch_rmap;
  311. int *lun_roffs;
  312. int luns_in_chnl = dev->geo.luns_per_chnl;
  313. ch_rmap = &rmap->chnls[i];
  314. ch_rmap->ch_off = -1;
  315. ch_rmap->nr_luns = luns_in_chnl;
  316. lun_roffs = kcalloc(luns_in_chnl, sizeof(int), GFP_KERNEL);
  317. if (!lun_roffs)
  318. goto err_ch;
  319. for (j = 0; j < luns_in_chnl; j++)
  320. lun_roffs[j] = -1;
  321. ch_rmap->lun_offs = lun_roffs;
  322. }
  323. dev->rmap = rmap;
  324. return 0;
  325. err_ch:
  326. while (--i >= 0)
  327. kfree(rmap->chnls[i].lun_offs);
  328. err_chnls:
  329. kfree(rmap);
  330. err_rmap:
  331. return -ENOMEM;
  332. }
  333. static int nvm_map_to_dev(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *p)
  334. {
  335. struct nvm_dev_map *dev_map = tgt_dev->map;
  336. struct nvm_ch_map *ch_map = &dev_map->chnls[p->g.ch];
  337. int lun_off = ch_map->lun_offs[p->g.lun];
  338. struct nvm_dev *dev = tgt_dev->parent;
  339. struct nvm_dev_map *dev_rmap = dev->rmap;
  340. struct nvm_ch_map *ch_rmap;
  341. int lun_roff;
  342. p->g.ch += ch_map->ch_off;
  343. p->g.lun += lun_off;
  344. ch_rmap = &dev_rmap->chnls[p->g.ch];
  345. lun_roff = ch_rmap->lun_offs[p->g.lun];
  346. if (unlikely(ch_rmap->ch_off < 0 || lun_roff < 0)) {
  347. pr_err("nvm: corrupted device partition table\n");
  348. return -EINVAL;
  349. }
  350. return 0;
  351. }
  352. static int nvm_map_to_tgt(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *p)
  353. {
  354. struct nvm_dev *dev = tgt_dev->parent;
  355. struct nvm_dev_map *dev_rmap = dev->rmap;
  356. struct nvm_ch_map *ch_rmap = &dev_rmap->chnls[p->g.ch];
  357. int lun_roff = ch_rmap->lun_offs[p->g.lun];
  358. p->g.ch -= ch_rmap->ch_off;
  359. p->g.lun -= lun_roff;
  360. return 0;
  361. }
  362. static int nvm_trans_rq(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd,
  363. int flag)
  364. {
  365. int i;
  366. int ret;
  367. if (rqd->nr_ppas == 1) {
  368. if (flag == TRANS_TGT_TO_DEV)
  369. return nvm_map_to_dev(tgt_dev, &rqd->ppa_addr);
  370. else
  371. return nvm_map_to_tgt(tgt_dev, &rqd->ppa_addr);
  372. }
  373. for (i = 0; i < rqd->nr_ppas; i++) {
  374. if (flag == TRANS_TGT_TO_DEV)
  375. ret = nvm_map_to_dev(tgt_dev, &rqd->ppa_list[i]);
  376. else
  377. ret = nvm_map_to_tgt(tgt_dev, &rqd->ppa_list[i]);
  378. if (ret)
  379. break;
  380. }
  381. return ret;
  382. }
  383. static struct ppa_addr nvm_trans_ppa(struct nvm_tgt_dev *tgt_dev,
  384. struct ppa_addr p, int dir)
  385. {
  386. struct ppa_addr ppa = p;
  387. if (dir == TRANS_TGT_TO_DEV)
  388. nvm_map_to_dev(tgt_dev, &ppa);
  389. else
  390. nvm_map_to_tgt(tgt_dev, &ppa);
  391. return ppa;
  392. }
  393. void nvm_part_to_tgt(struct nvm_dev *dev, sector_t *entries,
  394. int len)
  395. {
  396. struct nvm_geo *geo = &dev->geo;
  397. struct nvm_dev_map *dev_rmap = dev->rmap;
  398. u64 i;
  399. for (i = 0; i < len; i++) {
  400. struct nvm_ch_map *ch_rmap;
  401. int *lun_roffs;
  402. struct ppa_addr gaddr;
  403. u64 pba = le64_to_cpu(entries[i]);
  404. int off;
  405. u64 diff;
  406. if (!pba)
  407. continue;
  408. gaddr = linear_to_generic_addr(geo, pba);
  409. ch_rmap = &dev_rmap->chnls[gaddr.g.ch];
  410. lun_roffs = ch_rmap->lun_offs;
  411. off = gaddr.g.ch * geo->luns_per_chnl + gaddr.g.lun;
  412. diff = ((ch_rmap->ch_off * geo->luns_per_chnl) +
  413. (lun_roffs[gaddr.g.lun])) * geo->sec_per_lun;
  414. entries[i] -= cpu_to_le64(diff);
  415. }
  416. }
  417. EXPORT_SYMBOL(nvm_part_to_tgt);
  418. struct nvm_tgt_type *nvm_find_target_type(const char *name, int lock)
  419. {
  420. struct nvm_tgt_type *tmp, *tt = NULL;
  421. if (lock)
  422. down_write(&nvm_tgtt_lock);
  423. list_for_each_entry(tmp, &nvm_tgt_types, list)
  424. if (!strcmp(name, tmp->name)) {
  425. tt = tmp;
  426. break;
  427. }
  428. if (lock)
  429. up_write(&nvm_tgtt_lock);
  430. return tt;
  431. }
  432. EXPORT_SYMBOL(nvm_find_target_type);
  433. int nvm_register_tgt_type(struct nvm_tgt_type *tt)
  434. {
  435. int ret = 0;
  436. down_write(&nvm_tgtt_lock);
  437. if (nvm_find_target_type(tt->name, 0))
  438. ret = -EEXIST;
  439. else
  440. list_add(&tt->list, &nvm_tgt_types);
  441. up_write(&nvm_tgtt_lock);
  442. return ret;
  443. }
  444. EXPORT_SYMBOL(nvm_register_tgt_type);
  445. void nvm_unregister_tgt_type(struct nvm_tgt_type *tt)
  446. {
  447. if (!tt)
  448. return;
  449. down_write(&nvm_lock);
  450. list_del(&tt->list);
  451. up_write(&nvm_lock);
  452. }
  453. EXPORT_SYMBOL(nvm_unregister_tgt_type);
  454. void *nvm_dev_dma_alloc(struct nvm_dev *dev, gfp_t mem_flags,
  455. dma_addr_t *dma_handler)
  456. {
  457. return dev->ops->dev_dma_alloc(dev, dev->dma_pool, mem_flags,
  458. dma_handler);
  459. }
  460. EXPORT_SYMBOL(nvm_dev_dma_alloc);
  461. void nvm_dev_dma_free(struct nvm_dev *dev, void *addr, dma_addr_t dma_handler)
  462. {
  463. dev->ops->dev_dma_free(dev->dma_pool, addr, dma_handler);
  464. }
  465. EXPORT_SYMBOL(nvm_dev_dma_free);
  466. static struct nvm_dev *nvm_find_nvm_dev(const char *name)
  467. {
  468. struct nvm_dev *dev;
  469. list_for_each_entry(dev, &nvm_devices, devices)
  470. if (!strcmp(name, dev->name))
  471. return dev;
  472. return NULL;
  473. }
  474. static void nvm_tgt_generic_to_addr_mode(struct nvm_tgt_dev *tgt_dev,
  475. struct nvm_rq *rqd)
  476. {
  477. struct nvm_dev *dev = tgt_dev->parent;
  478. int i;
  479. if (rqd->nr_ppas > 1) {
  480. for (i = 0; i < rqd->nr_ppas; i++) {
  481. rqd->ppa_list[i] = nvm_trans_ppa(tgt_dev,
  482. rqd->ppa_list[i], TRANS_TGT_TO_DEV);
  483. rqd->ppa_list[i] = generic_to_dev_addr(dev,
  484. rqd->ppa_list[i]);
  485. }
  486. } else {
  487. rqd->ppa_addr = nvm_trans_ppa(tgt_dev, rqd->ppa_addr,
  488. TRANS_TGT_TO_DEV);
  489. rqd->ppa_addr = generic_to_dev_addr(dev, rqd->ppa_addr);
  490. }
  491. }
  492. int nvm_set_tgt_bb_tbl(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *ppas,
  493. int nr_ppas, int type)
  494. {
  495. struct nvm_dev *dev = tgt_dev->parent;
  496. struct nvm_rq rqd;
  497. int ret;
  498. if (nr_ppas > dev->ops->max_phys_sect) {
  499. pr_err("nvm: unable to update all blocks atomically\n");
  500. return -EINVAL;
  501. }
  502. memset(&rqd, 0, sizeof(struct nvm_rq));
  503. nvm_set_rqd_ppalist(dev, &rqd, ppas, nr_ppas, 1);
  504. nvm_tgt_generic_to_addr_mode(tgt_dev, &rqd);
  505. ret = dev->ops->set_bb_tbl(dev, &rqd.ppa_addr, rqd.nr_ppas, type);
  506. nvm_free_rqd_ppalist(dev, &rqd);
  507. if (ret) {
  508. pr_err("nvm: failed bb mark\n");
  509. return -EINVAL;
  510. }
  511. return 0;
  512. }
  513. EXPORT_SYMBOL(nvm_set_tgt_bb_tbl);
  514. int nvm_max_phys_sects(struct nvm_tgt_dev *tgt_dev)
  515. {
  516. struct nvm_dev *dev = tgt_dev->parent;
  517. return dev->ops->max_phys_sect;
  518. }
  519. EXPORT_SYMBOL(nvm_max_phys_sects);
  520. int nvm_submit_io(struct nvm_tgt_dev *tgt_dev, struct nvm_rq *rqd)
  521. {
  522. struct nvm_dev *dev = tgt_dev->parent;
  523. if (!dev->ops->submit_io)
  524. return -ENODEV;
  525. /* Convert address space */
  526. nvm_generic_to_addr_mode(dev, rqd);
  527. rqd->dev = tgt_dev;
  528. return dev->ops->submit_io(dev, rqd);
  529. }
  530. EXPORT_SYMBOL(nvm_submit_io);
  531. int nvm_erase_blk(struct nvm_tgt_dev *tgt_dev, struct ppa_addr *ppas, int flags)
  532. {
  533. struct nvm_dev *dev = tgt_dev->parent;
  534. struct nvm_rq rqd;
  535. int ret;
  536. if (!dev->ops->erase_block)
  537. return 0;
  538. ret = nvm_map_to_dev(tgt_dev, ppas);
  539. if (ret)
  540. return ret;
  541. memset(&rqd, 0, sizeof(struct nvm_rq));
  542. ret = nvm_set_rqd_ppalist(dev, &rqd, ppas, 1, 1);
  543. if (ret)
  544. return ret;
  545. nvm_generic_to_addr_mode(dev, &rqd);
  546. rqd.flags = flags;
  547. ret = dev->ops->erase_block(dev, &rqd);
  548. nvm_free_rqd_ppalist(dev, &rqd);
  549. return ret;
  550. }
  551. EXPORT_SYMBOL(nvm_erase_blk);
  552. int nvm_get_l2p_tbl(struct nvm_tgt_dev *tgt_dev, u64 slba, u32 nlb,
  553. nvm_l2p_update_fn *update_l2p, void *priv)
  554. {
  555. struct nvm_dev *dev = tgt_dev->parent;
  556. if (!dev->ops->get_l2p_tbl)
  557. return 0;
  558. return dev->ops->get_l2p_tbl(dev, slba, nlb, update_l2p, priv);
  559. }
  560. EXPORT_SYMBOL(nvm_get_l2p_tbl);
  561. int nvm_get_area(struct nvm_tgt_dev *tgt_dev, sector_t *lba, sector_t len)
  562. {
  563. struct nvm_dev *dev = tgt_dev->parent;
  564. struct nvm_geo *geo = &dev->geo;
  565. struct nvm_area *area, *prev, *next;
  566. sector_t begin = 0;
  567. sector_t max_sectors = (geo->sec_size * dev->total_secs) >> 9;
  568. if (len > max_sectors)
  569. return -EINVAL;
  570. area = kmalloc(sizeof(struct nvm_area), GFP_KERNEL);
  571. if (!area)
  572. return -ENOMEM;
  573. prev = NULL;
  574. spin_lock(&dev->lock);
  575. list_for_each_entry(next, &dev->area_list, list) {
  576. if (begin + len > next->begin) {
  577. begin = next->end;
  578. prev = next;
  579. continue;
  580. }
  581. break;
  582. }
  583. if ((begin + len) > max_sectors) {
  584. spin_unlock(&dev->lock);
  585. kfree(area);
  586. return -EINVAL;
  587. }
  588. area->begin = *lba = begin;
  589. area->end = begin + len;
  590. if (prev) /* insert into sorted order */
  591. list_add(&area->list, &prev->list);
  592. else
  593. list_add(&area->list, &dev->area_list);
  594. spin_unlock(&dev->lock);
  595. return 0;
  596. }
  597. EXPORT_SYMBOL(nvm_get_area);
  598. void nvm_put_area(struct nvm_tgt_dev *tgt_dev, sector_t begin)
  599. {
  600. struct nvm_dev *dev = tgt_dev->parent;
  601. struct nvm_area *area;
  602. spin_lock(&dev->lock);
  603. list_for_each_entry(area, &dev->area_list, list) {
  604. if (area->begin != begin)
  605. continue;
  606. list_del(&area->list);
  607. spin_unlock(&dev->lock);
  608. kfree(area);
  609. return;
  610. }
  611. spin_unlock(&dev->lock);
  612. }
  613. EXPORT_SYMBOL(nvm_put_area);
  614. void nvm_addr_to_generic_mode(struct nvm_dev *dev, struct nvm_rq *rqd)
  615. {
  616. int i;
  617. if (rqd->nr_ppas > 1) {
  618. for (i = 0; i < rqd->nr_ppas; i++)
  619. rqd->ppa_list[i] = dev_to_generic_addr(dev,
  620. rqd->ppa_list[i]);
  621. } else {
  622. rqd->ppa_addr = dev_to_generic_addr(dev, rqd->ppa_addr);
  623. }
  624. }
  625. EXPORT_SYMBOL(nvm_addr_to_generic_mode);
  626. void nvm_generic_to_addr_mode(struct nvm_dev *dev, struct nvm_rq *rqd)
  627. {
  628. int i;
  629. if (rqd->nr_ppas > 1) {
  630. for (i = 0; i < rqd->nr_ppas; i++)
  631. rqd->ppa_list[i] = generic_to_dev_addr(dev,
  632. rqd->ppa_list[i]);
  633. } else {
  634. rqd->ppa_addr = generic_to_dev_addr(dev, rqd->ppa_addr);
  635. }
  636. }
  637. EXPORT_SYMBOL(nvm_generic_to_addr_mode);
  638. int nvm_set_rqd_ppalist(struct nvm_dev *dev, struct nvm_rq *rqd,
  639. const struct ppa_addr *ppas, int nr_ppas, int vblk)
  640. {
  641. struct nvm_geo *geo = &dev->geo;
  642. int i, plane_cnt, pl_idx;
  643. struct ppa_addr ppa;
  644. if ((!vblk || geo->plane_mode == NVM_PLANE_SINGLE) && nr_ppas == 1) {
  645. rqd->nr_ppas = nr_ppas;
  646. rqd->ppa_addr = ppas[0];
  647. return 0;
  648. }
  649. rqd->nr_ppas = nr_ppas;
  650. rqd->ppa_list = nvm_dev_dma_alloc(dev, GFP_KERNEL, &rqd->dma_ppa_list);
  651. if (!rqd->ppa_list) {
  652. pr_err("nvm: failed to allocate dma memory\n");
  653. return -ENOMEM;
  654. }
  655. if (!vblk) {
  656. for (i = 0; i < nr_ppas; i++)
  657. rqd->ppa_list[i] = ppas[i];
  658. } else {
  659. plane_cnt = geo->plane_mode;
  660. rqd->nr_ppas *= plane_cnt;
  661. for (i = 0; i < nr_ppas; i++) {
  662. for (pl_idx = 0; pl_idx < plane_cnt; pl_idx++) {
  663. ppa = ppas[i];
  664. ppa.g.pl = pl_idx;
  665. rqd->ppa_list[(pl_idx * nr_ppas) + i] = ppa;
  666. }
  667. }
  668. }
  669. return 0;
  670. }
  671. EXPORT_SYMBOL(nvm_set_rqd_ppalist);
  672. void nvm_free_rqd_ppalist(struct nvm_dev *dev, struct nvm_rq *rqd)
  673. {
  674. if (!rqd->ppa_list)
  675. return;
  676. nvm_dev_dma_free(dev, rqd->ppa_list, rqd->dma_ppa_list);
  677. }
  678. EXPORT_SYMBOL(nvm_free_rqd_ppalist);
  679. void nvm_end_io(struct nvm_rq *rqd, int error)
  680. {
  681. struct nvm_tgt_dev *tgt_dev = rqd->dev;
  682. struct nvm_tgt_instance *ins = rqd->ins;
  683. /* Convert address space */
  684. if (tgt_dev)
  685. nvm_trans_rq(tgt_dev, rqd, TRANS_DEV_TO_TGT);
  686. rqd->error = error;
  687. ins->tt->end_io(rqd);
  688. }
  689. EXPORT_SYMBOL(nvm_end_io);
  690. /*
  691. * folds a bad block list from its plane representation to its virtual
  692. * block representation. The fold is done in place and reduced size is
  693. * returned.
  694. *
  695. * If any of the planes status are bad or grown bad block, the virtual block
  696. * is marked bad. If not bad, the first plane state acts as the block state.
  697. */
  698. int nvm_bb_tbl_fold(struct nvm_dev *dev, u8 *blks, int nr_blks)
  699. {
  700. struct nvm_geo *geo = &dev->geo;
  701. int blk, offset, pl, blktype;
  702. if (nr_blks != geo->blks_per_lun * geo->plane_mode)
  703. return -EINVAL;
  704. for (blk = 0; blk < geo->blks_per_lun; blk++) {
  705. offset = blk * geo->plane_mode;
  706. blktype = blks[offset];
  707. /* Bad blocks on any planes take precedence over other types */
  708. for (pl = 0; pl < geo->plane_mode; pl++) {
  709. if (blks[offset + pl] &
  710. (NVM_BLK_T_BAD|NVM_BLK_T_GRWN_BAD)) {
  711. blktype = blks[offset + pl];
  712. break;
  713. }
  714. }
  715. blks[blk] = blktype;
  716. }
  717. return geo->blks_per_lun;
  718. }
  719. EXPORT_SYMBOL(nvm_bb_tbl_fold);
  720. int nvm_get_tgt_bb_tbl(struct nvm_tgt_dev *tgt_dev, struct ppa_addr ppa,
  721. u8 *blks)
  722. {
  723. struct nvm_dev *dev = tgt_dev->parent;
  724. ppa = nvm_trans_ppa(tgt_dev, ppa, TRANS_TGT_TO_DEV);
  725. ppa = generic_to_dev_addr(dev, ppa);
  726. return dev->ops->get_bb_tbl(dev, ppa, blks);
  727. }
  728. EXPORT_SYMBOL(nvm_get_tgt_bb_tbl);
  729. static int nvm_init_slc_tbl(struct nvm_dev *dev, struct nvm_id_group *grp)
  730. {
  731. struct nvm_geo *geo = &dev->geo;
  732. int i;
  733. dev->lps_per_blk = geo->pgs_per_blk;
  734. dev->lptbl = kcalloc(dev->lps_per_blk, sizeof(int), GFP_KERNEL);
  735. if (!dev->lptbl)
  736. return -ENOMEM;
  737. /* Just a linear array */
  738. for (i = 0; i < dev->lps_per_blk; i++)
  739. dev->lptbl[i] = i;
  740. return 0;
  741. }
  742. static int nvm_init_mlc_tbl(struct nvm_dev *dev, struct nvm_id_group *grp)
  743. {
  744. int i, p;
  745. struct nvm_id_lp_mlc *mlc = &grp->lptbl.mlc;
  746. if (!mlc->num_pairs)
  747. return 0;
  748. dev->lps_per_blk = mlc->num_pairs;
  749. dev->lptbl = kcalloc(dev->lps_per_blk, sizeof(int), GFP_KERNEL);
  750. if (!dev->lptbl)
  751. return -ENOMEM;
  752. /* The lower page table encoding consists of a list of bytes, where each
  753. * has a lower and an upper half. The first half byte maintains the
  754. * increment value and every value after is an offset added to the
  755. * previous incrementation value
  756. */
  757. dev->lptbl[0] = mlc->pairs[0] & 0xF;
  758. for (i = 1; i < dev->lps_per_blk; i++) {
  759. p = mlc->pairs[i >> 1];
  760. if (i & 0x1) /* upper */
  761. dev->lptbl[i] = dev->lptbl[i - 1] + ((p & 0xF0) >> 4);
  762. else /* lower */
  763. dev->lptbl[i] = dev->lptbl[i - 1] + (p & 0xF);
  764. }
  765. return 0;
  766. }
  767. static int nvm_core_init(struct nvm_dev *dev)
  768. {
  769. struct nvm_id *id = &dev->identity;
  770. struct nvm_id_group *grp = &id->groups[0];
  771. struct nvm_geo *geo = &dev->geo;
  772. int ret;
  773. /* Whole device values */
  774. geo->nr_chnls = grp->num_ch;
  775. geo->luns_per_chnl = grp->num_lun;
  776. /* Generic device values */
  777. geo->pgs_per_blk = grp->num_pg;
  778. geo->blks_per_lun = grp->num_blk;
  779. geo->nr_planes = grp->num_pln;
  780. geo->fpg_size = grp->fpg_sz;
  781. geo->pfpg_size = grp->fpg_sz * grp->num_pln;
  782. geo->sec_size = grp->csecs;
  783. geo->oob_size = grp->sos;
  784. geo->sec_per_pg = grp->fpg_sz / grp->csecs;
  785. geo->mccap = grp->mccap;
  786. memcpy(&geo->ppaf, &id->ppaf, sizeof(struct nvm_addr_format));
  787. geo->plane_mode = NVM_PLANE_SINGLE;
  788. geo->max_rq_size = dev->ops->max_phys_sect * geo->sec_size;
  789. if (grp->mpos & 0x020202)
  790. geo->plane_mode = NVM_PLANE_DOUBLE;
  791. if (grp->mpos & 0x040404)
  792. geo->plane_mode = NVM_PLANE_QUAD;
  793. if (grp->mtype != 0) {
  794. pr_err("nvm: memory type not supported\n");
  795. return -EINVAL;
  796. }
  797. /* calculated values */
  798. geo->sec_per_pl = geo->sec_per_pg * geo->nr_planes;
  799. geo->sec_per_blk = geo->sec_per_pl * geo->pgs_per_blk;
  800. geo->sec_per_lun = geo->sec_per_blk * geo->blks_per_lun;
  801. geo->nr_luns = geo->luns_per_chnl * geo->nr_chnls;
  802. dev->total_secs = geo->nr_luns * geo->sec_per_lun;
  803. dev->lun_map = kcalloc(BITS_TO_LONGS(geo->nr_luns),
  804. sizeof(unsigned long), GFP_KERNEL);
  805. if (!dev->lun_map)
  806. return -ENOMEM;
  807. switch (grp->fmtype) {
  808. case NVM_ID_FMTYPE_SLC:
  809. if (nvm_init_slc_tbl(dev, grp)) {
  810. ret = -ENOMEM;
  811. goto err_fmtype;
  812. }
  813. break;
  814. case NVM_ID_FMTYPE_MLC:
  815. if (nvm_init_mlc_tbl(dev, grp)) {
  816. ret = -ENOMEM;
  817. goto err_fmtype;
  818. }
  819. break;
  820. default:
  821. pr_err("nvm: flash type not supported\n");
  822. ret = -EINVAL;
  823. goto err_fmtype;
  824. }
  825. INIT_LIST_HEAD(&dev->area_list);
  826. INIT_LIST_HEAD(&dev->targets);
  827. mutex_init(&dev->mlock);
  828. spin_lock_init(&dev->lock);
  829. ret = nvm_register_map(dev);
  830. if (ret)
  831. goto err_fmtype;
  832. blk_queue_logical_block_size(dev->q, geo->sec_size);
  833. return 0;
  834. err_fmtype:
  835. kfree(dev->lun_map);
  836. return ret;
  837. }
  838. void nvm_free(struct nvm_dev *dev)
  839. {
  840. if (!dev)
  841. return;
  842. if (dev->dma_pool)
  843. dev->ops->destroy_dma_pool(dev->dma_pool);
  844. kfree(dev->rmap);
  845. kfree(dev->lptbl);
  846. kfree(dev->lun_map);
  847. kfree(dev);
  848. }
  849. static int nvm_init(struct nvm_dev *dev)
  850. {
  851. struct nvm_geo *geo = &dev->geo;
  852. int ret = -EINVAL;
  853. if (dev->ops->identity(dev, &dev->identity)) {
  854. pr_err("nvm: device could not be identified\n");
  855. goto err;
  856. }
  857. pr_debug("nvm: ver:%x nvm_vendor:%x groups:%u\n",
  858. dev->identity.ver_id, dev->identity.vmnt,
  859. dev->identity.cgrps);
  860. if (dev->identity.ver_id != 1) {
  861. pr_err("nvm: device not supported by kernel.");
  862. goto err;
  863. }
  864. if (dev->identity.cgrps != 1) {
  865. pr_err("nvm: only one group configuration supported.");
  866. goto err;
  867. }
  868. ret = nvm_core_init(dev);
  869. if (ret) {
  870. pr_err("nvm: could not initialize core structures.\n");
  871. goto err;
  872. }
  873. pr_info("nvm: registered %s [%u/%u/%u/%u/%u/%u]\n",
  874. dev->name, geo->sec_per_pg, geo->nr_planes,
  875. geo->pgs_per_blk, geo->blks_per_lun,
  876. geo->nr_luns, geo->nr_chnls);
  877. return 0;
  878. err:
  879. pr_err("nvm: failed to initialize nvm\n");
  880. return ret;
  881. }
  882. struct nvm_dev *nvm_alloc_dev(int node)
  883. {
  884. return kzalloc_node(sizeof(struct nvm_dev), GFP_KERNEL, node);
  885. }
  886. EXPORT_SYMBOL(nvm_alloc_dev);
  887. int nvm_register(struct nvm_dev *dev)
  888. {
  889. int ret;
  890. if (!dev->q || !dev->ops)
  891. return -EINVAL;
  892. if (dev->ops->max_phys_sect > 256) {
  893. pr_info("nvm: max sectors supported is 256.\n");
  894. return -EINVAL;
  895. }
  896. if (dev->ops->max_phys_sect > 1) {
  897. dev->dma_pool = dev->ops->create_dma_pool(dev, "ppalist");
  898. if (!dev->dma_pool) {
  899. pr_err("nvm: could not create dma pool\n");
  900. return -ENOMEM;
  901. }
  902. }
  903. ret = nvm_init(dev);
  904. if (ret)
  905. goto err_init;
  906. /* register device with a supported media manager */
  907. down_write(&nvm_lock);
  908. list_add(&dev->devices, &nvm_devices);
  909. up_write(&nvm_lock);
  910. return 0;
  911. err_init:
  912. dev->ops->destroy_dma_pool(dev->dma_pool);
  913. return ret;
  914. }
  915. EXPORT_SYMBOL(nvm_register);
  916. void nvm_unregister(struct nvm_dev *dev)
  917. {
  918. struct nvm_target *t, *tmp;
  919. mutex_lock(&dev->mlock);
  920. list_for_each_entry_safe(t, tmp, &dev->targets, list) {
  921. if (t->dev->parent != dev)
  922. continue;
  923. __nvm_remove_target(t);
  924. }
  925. mutex_unlock(&dev->mlock);
  926. down_write(&nvm_lock);
  927. list_del(&dev->devices);
  928. up_write(&nvm_lock);
  929. nvm_free(dev);
  930. }
  931. EXPORT_SYMBOL(nvm_unregister);
  932. static int __nvm_configure_create(struct nvm_ioctl_create *create)
  933. {
  934. struct nvm_dev *dev;
  935. struct nvm_ioctl_create_simple *s;
  936. down_write(&nvm_lock);
  937. dev = nvm_find_nvm_dev(create->dev);
  938. up_write(&nvm_lock);
  939. if (!dev) {
  940. pr_err("nvm: device not found\n");
  941. return -EINVAL;
  942. }
  943. if (create->conf.type != NVM_CONFIG_TYPE_SIMPLE) {
  944. pr_err("nvm: config type not valid\n");
  945. return -EINVAL;
  946. }
  947. s = &create->conf.s;
  948. if (s->lun_begin > s->lun_end || s->lun_end > dev->geo.nr_luns) {
  949. pr_err("nvm: lun out of bound (%u:%u > %u)\n",
  950. s->lun_begin, s->lun_end, dev->geo.nr_luns);
  951. return -EINVAL;
  952. }
  953. return nvm_create_tgt(dev, create);
  954. }
  955. static long nvm_ioctl_info(struct file *file, void __user *arg)
  956. {
  957. struct nvm_ioctl_info *info;
  958. struct nvm_tgt_type *tt;
  959. int tgt_iter = 0;
  960. if (!capable(CAP_SYS_ADMIN))
  961. return -EPERM;
  962. info = memdup_user(arg, sizeof(struct nvm_ioctl_info));
  963. if (IS_ERR(info))
  964. return -EFAULT;
  965. info->version[0] = NVM_VERSION_MAJOR;
  966. info->version[1] = NVM_VERSION_MINOR;
  967. info->version[2] = NVM_VERSION_PATCH;
  968. down_write(&nvm_lock);
  969. list_for_each_entry(tt, &nvm_tgt_types, list) {
  970. struct nvm_ioctl_info_tgt *tgt = &info->tgts[tgt_iter];
  971. tgt->version[0] = tt->version[0];
  972. tgt->version[1] = tt->version[1];
  973. tgt->version[2] = tt->version[2];
  974. strncpy(tgt->tgtname, tt->name, NVM_TTYPE_NAME_MAX);
  975. tgt_iter++;
  976. }
  977. info->tgtsize = tgt_iter;
  978. up_write(&nvm_lock);
  979. if (copy_to_user(arg, info, sizeof(struct nvm_ioctl_info))) {
  980. kfree(info);
  981. return -EFAULT;
  982. }
  983. kfree(info);
  984. return 0;
  985. }
  986. static long nvm_ioctl_get_devices(struct file *file, void __user *arg)
  987. {
  988. struct nvm_ioctl_get_devices *devices;
  989. struct nvm_dev *dev;
  990. int i = 0;
  991. if (!capable(CAP_SYS_ADMIN))
  992. return -EPERM;
  993. devices = kzalloc(sizeof(struct nvm_ioctl_get_devices), GFP_KERNEL);
  994. if (!devices)
  995. return -ENOMEM;
  996. down_write(&nvm_lock);
  997. list_for_each_entry(dev, &nvm_devices, devices) {
  998. struct nvm_ioctl_device_info *info = &devices->info[i];
  999. sprintf(info->devname, "%s", dev->name);
  1000. /* kept for compatibility */
  1001. info->bmversion[0] = 1;
  1002. info->bmversion[1] = 0;
  1003. info->bmversion[2] = 0;
  1004. sprintf(info->bmname, "%s", "gennvm");
  1005. i++;
  1006. if (i > 31) {
  1007. pr_err("nvm: max 31 devices can be reported.\n");
  1008. break;
  1009. }
  1010. }
  1011. up_write(&nvm_lock);
  1012. devices->nr_devices = i;
  1013. if (copy_to_user(arg, devices,
  1014. sizeof(struct nvm_ioctl_get_devices))) {
  1015. kfree(devices);
  1016. return -EFAULT;
  1017. }
  1018. kfree(devices);
  1019. return 0;
  1020. }
  1021. static long nvm_ioctl_dev_create(struct file *file, void __user *arg)
  1022. {
  1023. struct nvm_ioctl_create create;
  1024. if (!capable(CAP_SYS_ADMIN))
  1025. return -EPERM;
  1026. if (copy_from_user(&create, arg, sizeof(struct nvm_ioctl_create)))
  1027. return -EFAULT;
  1028. create.dev[DISK_NAME_LEN - 1] = '\0';
  1029. create.tgttype[NVM_TTYPE_NAME_MAX - 1] = '\0';
  1030. create.tgtname[DISK_NAME_LEN - 1] = '\0';
  1031. if (create.flags != 0) {
  1032. pr_err("nvm: no flags supported\n");
  1033. return -EINVAL;
  1034. }
  1035. return __nvm_configure_create(&create);
  1036. }
  1037. static long nvm_ioctl_dev_remove(struct file *file, void __user *arg)
  1038. {
  1039. struct nvm_ioctl_remove remove;
  1040. struct nvm_dev *dev;
  1041. int ret = 0;
  1042. if (!capable(CAP_SYS_ADMIN))
  1043. return -EPERM;
  1044. if (copy_from_user(&remove, arg, sizeof(struct nvm_ioctl_remove)))
  1045. return -EFAULT;
  1046. remove.tgtname[DISK_NAME_LEN - 1] = '\0';
  1047. if (remove.flags != 0) {
  1048. pr_err("nvm: no flags supported\n");
  1049. return -EINVAL;
  1050. }
  1051. list_for_each_entry(dev, &nvm_devices, devices) {
  1052. ret = nvm_remove_tgt(dev, &remove);
  1053. if (!ret)
  1054. break;
  1055. }
  1056. return ret;
  1057. }
  1058. /* kept for compatibility reasons */
  1059. static long nvm_ioctl_dev_init(struct file *file, void __user *arg)
  1060. {
  1061. struct nvm_ioctl_dev_init init;
  1062. if (!capable(CAP_SYS_ADMIN))
  1063. return -EPERM;
  1064. if (copy_from_user(&init, arg, sizeof(struct nvm_ioctl_dev_init)))
  1065. return -EFAULT;
  1066. if (init.flags != 0) {
  1067. pr_err("nvm: no flags supported\n");
  1068. return -EINVAL;
  1069. }
  1070. return 0;
  1071. }
  1072. /* Kept for compatibility reasons */
  1073. static long nvm_ioctl_dev_factory(struct file *file, void __user *arg)
  1074. {
  1075. struct nvm_ioctl_dev_factory fact;
  1076. if (!capable(CAP_SYS_ADMIN))
  1077. return -EPERM;
  1078. if (copy_from_user(&fact, arg, sizeof(struct nvm_ioctl_dev_factory)))
  1079. return -EFAULT;
  1080. fact.dev[DISK_NAME_LEN - 1] = '\0';
  1081. if (fact.flags & ~(NVM_FACTORY_NR_BITS - 1))
  1082. return -EINVAL;
  1083. return 0;
  1084. }
  1085. static long nvm_ctl_ioctl(struct file *file, uint cmd, unsigned long arg)
  1086. {
  1087. void __user *argp = (void __user *)arg;
  1088. switch (cmd) {
  1089. case NVM_INFO:
  1090. return nvm_ioctl_info(file, argp);
  1091. case NVM_GET_DEVICES:
  1092. return nvm_ioctl_get_devices(file, argp);
  1093. case NVM_DEV_CREATE:
  1094. return nvm_ioctl_dev_create(file, argp);
  1095. case NVM_DEV_REMOVE:
  1096. return nvm_ioctl_dev_remove(file, argp);
  1097. case NVM_DEV_INIT:
  1098. return nvm_ioctl_dev_init(file, argp);
  1099. case NVM_DEV_FACTORY:
  1100. return nvm_ioctl_dev_factory(file, argp);
  1101. }
  1102. return 0;
  1103. }
  1104. static const struct file_operations _ctl_fops = {
  1105. .open = nonseekable_open,
  1106. .unlocked_ioctl = nvm_ctl_ioctl,
  1107. .owner = THIS_MODULE,
  1108. .llseek = noop_llseek,
  1109. };
  1110. static struct miscdevice _nvm_misc = {
  1111. .minor = MISC_DYNAMIC_MINOR,
  1112. .name = "lightnvm",
  1113. .nodename = "lightnvm/control",
  1114. .fops = &_ctl_fops,
  1115. };
  1116. builtin_misc_device(_nvm_misc);