pgtable.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. #ifndef _PPC64_PGTABLE_H
  2. #define _PPC64_PGTABLE_H
  3. /*
  4. * This file contains the functions and defines necessary to modify and use
  5. * the ppc64 hashed page table.
  6. */
  7. #ifndef __ASSEMBLY__
  8. #include <linux/config.h>
  9. #include <linux/stddef.h>
  10. #include <asm/processor.h> /* For TASK_SIZE */
  11. #include <asm/mmu.h>
  12. #include <asm/page.h>
  13. #include <asm/tlbflush.h>
  14. struct mm_struct;
  15. #endif /* __ASSEMBLY__ */
  16. #ifdef CONFIG_PPC_64K_PAGES
  17. #include <asm/pgtable-64k.h>
  18. #else
  19. #include <asm/pgtable-4k.h>
  20. #endif
  21. #define FIRST_USER_ADDRESS 0
  22. /*
  23. * Size of EA range mapped by our pagetables.
  24. */
  25. #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
  26. PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
  27. #define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE)
  28. #if TASK_SIZE_USER64 > PGTABLE_RANGE
  29. #error TASK_SIZE_USER64 exceeds pagetable range
  30. #endif
  31. #if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
  32. #error TASK_SIZE_USER64 exceeds user VSID range
  33. #endif
  34. /*
  35. * Define the address range of the vmalloc VM area.
  36. */
  37. #define VMALLOC_START (0xD000000000000000ul)
  38. #define VMALLOC_SIZE (0x80000000000UL)
  39. #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
  40. /*
  41. * Common bits in a linux-style PTE. These match the bits in the
  42. * (hardware-defined) PowerPC PTE as closely as possible. Additional
  43. * bits may be defined in pgtable-*.h
  44. */
  45. #define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
  46. #define _PAGE_USER 0x0002 /* matches one of the PP bits */
  47. #define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
  48. #define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
  49. #define _PAGE_GUARDED 0x0008
  50. #define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
  51. #define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
  52. #define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
  53. #define _PAGE_DIRTY 0x0080 /* C: page changed */
  54. #define _PAGE_ACCESSED 0x0100 /* R: page referenced */
  55. #define _PAGE_RW 0x0200 /* software: user write access allowed */
  56. #define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */
  57. #define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
  58. #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
  59. #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
  60. /* __pgprot defined in asm-ppc64/page.h */
  61. #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
  62. #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
  63. #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
  64. #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
  65. #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  66. #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
  67. #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
  68. #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
  69. #define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
  70. _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
  71. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
  72. #define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
  73. #define HAVE_PAGE_AGP
  74. /* PTEIDX nibble */
  75. #define _PTEIDX_SECONDARY 0x8
  76. #define _PTEIDX_GROUP_IX 0x7
  77. /*
  78. * POWER4 and newer have per page execute protection, older chips can only
  79. * do this on a segment (256MB) basis.
  80. *
  81. * Also, write permissions imply read permissions.
  82. * This is the closest we can get..
  83. *
  84. * Note due to the way vm flags are laid out, the bits are XWR
  85. */
  86. #define __P000 PAGE_NONE
  87. #define __P001 PAGE_READONLY
  88. #define __P010 PAGE_COPY
  89. #define __P011 PAGE_COPY
  90. #define __P100 PAGE_READONLY_X
  91. #define __P101 PAGE_READONLY_X
  92. #define __P110 PAGE_COPY_X
  93. #define __P111 PAGE_COPY_X
  94. #define __S000 PAGE_NONE
  95. #define __S001 PAGE_READONLY
  96. #define __S010 PAGE_SHARED
  97. #define __S011 PAGE_SHARED
  98. #define __S100 PAGE_READONLY_X
  99. #define __S101 PAGE_READONLY_X
  100. #define __S110 PAGE_SHARED_X
  101. #define __S111 PAGE_SHARED_X
  102. #ifndef __ASSEMBLY__
  103. /*
  104. * ZERO_PAGE is a global shared page that is always zero: used
  105. * for zero-mapped memory areas etc..
  106. */
  107. extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
  108. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  109. #endif /* __ASSEMBLY__ */
  110. #ifdef CONFIG_HUGETLB_PAGE
  111. #define HAVE_ARCH_UNMAPPED_AREA
  112. #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  113. #endif
  114. #ifndef __ASSEMBLY__
  115. /*
  116. * Conversion functions: convert a page and protection to a page entry,
  117. * and a page entry and page directory to the page they refer to.
  118. *
  119. * mk_pte takes a (struct page *) as input
  120. */
  121. #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
  122. static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
  123. {
  124. pte_t pte;
  125. pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
  126. return pte;
  127. }
  128. #define pte_modify(_pte, newprot) \
  129. (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
  130. #define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
  131. #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
  132. /* pte_clear moved to later in this file */
  133. #define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
  134. #define pte_page(x) pfn_to_page(pte_pfn(x))
  135. #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
  136. #define pmd_none(pmd) (!pmd_val(pmd))
  137. #define pmd_bad(pmd) (pmd_val(pmd) == 0)
  138. #define pmd_present(pmd) (pmd_val(pmd) != 0)
  139. #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
  140. #define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
  141. #define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd))
  142. #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
  143. #define pud_none(pud) (!pud_val(pud))
  144. #define pud_bad(pud) ((pud_val(pud)) == 0)
  145. #define pud_present(pud) (pud_val(pud) != 0)
  146. #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
  147. #define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
  148. #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
  149. /*
  150. * Find an entry in a page-table-directory. We combine the address region
  151. * (the high order N bits) and the pgd portion of the address.
  152. */
  153. /* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
  154. #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
  155. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  156. #define pmd_offset(pudp,addr) \
  157. (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
  158. #define pte_offset_kernel(dir,addr) \
  159. (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
  160. #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
  161. #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
  162. #define pte_unmap(pte) do { } while(0)
  163. #define pte_unmap_nested(pte) do { } while(0)
  164. /* to find an entry in a kernel page-table-directory */
  165. /* This now only contains the vmalloc pages */
  166. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  167. /*
  168. * The following only work if pte_present() is true.
  169. * Undefined behaviour if not..
  170. */
  171. static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;}
  172. static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
  173. static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;}
  174. static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
  175. static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
  176. static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
  177. static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
  178. static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
  179. static inline pte_t pte_rdprotect(pte_t pte) {
  180. pte_val(pte) &= ~_PAGE_USER; return pte; }
  181. static inline pte_t pte_exprotect(pte_t pte) {
  182. pte_val(pte) &= ~_PAGE_EXEC; return pte; }
  183. static inline pte_t pte_wrprotect(pte_t pte) {
  184. pte_val(pte) &= ~(_PAGE_RW); return pte; }
  185. static inline pte_t pte_mkclean(pte_t pte) {
  186. pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
  187. static inline pte_t pte_mkold(pte_t pte) {
  188. pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
  189. static inline pte_t pte_mkread(pte_t pte) {
  190. pte_val(pte) |= _PAGE_USER; return pte; }
  191. static inline pte_t pte_mkexec(pte_t pte) {
  192. pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
  193. static inline pte_t pte_mkwrite(pte_t pte) {
  194. pte_val(pte) |= _PAGE_RW; return pte; }
  195. static inline pte_t pte_mkdirty(pte_t pte) {
  196. pte_val(pte) |= _PAGE_DIRTY; return pte; }
  197. static inline pte_t pte_mkyoung(pte_t pte) {
  198. pte_val(pte) |= _PAGE_ACCESSED; return pte; }
  199. static inline pte_t pte_mkhuge(pte_t pte) {
  200. return pte; }
  201. /* Atomic PTE updates */
  202. static inline unsigned long pte_update(pte_t *p, unsigned long clr)
  203. {
  204. unsigned long old, tmp;
  205. __asm__ __volatile__(
  206. "1: ldarx %0,0,%3 # pte_update\n\
  207. andi. %1,%0,%6\n\
  208. bne- 1b \n\
  209. andc %1,%0,%4 \n\
  210. stdcx. %1,0,%3 \n\
  211. bne- 1b"
  212. : "=&r" (old), "=&r" (tmp), "=m" (*p)
  213. : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY)
  214. : "cc" );
  215. return old;
  216. }
  217. /* PTE updating functions, this function puts the PTE in the
  218. * batch, doesn't actually triggers the hash flush immediately,
  219. * you need to call flush_tlb_pending() to do that.
  220. * Pass -1 for "normal" size (4K or 64K)
  221. */
  222. extern void hpte_update(struct mm_struct *mm, unsigned long addr,
  223. pte_t *ptep, unsigned long pte, int huge);
  224. static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
  225. unsigned long addr, pte_t *ptep)
  226. {
  227. unsigned long old;
  228. if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
  229. return 0;
  230. old = pte_update(ptep, _PAGE_ACCESSED);
  231. if (old & _PAGE_HASHPTE) {
  232. hpte_update(mm, addr, ptep, old, 0);
  233. flush_tlb_pending();
  234. }
  235. return (old & _PAGE_ACCESSED) != 0;
  236. }
  237. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  238. #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
  239. ({ \
  240. int __r; \
  241. __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
  242. __r; \
  243. })
  244. /*
  245. * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the
  246. * moment we always flush but we need to fix hpte_update and test if the
  247. * optimisation is worth it.
  248. */
  249. static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm,
  250. unsigned long addr, pte_t *ptep)
  251. {
  252. unsigned long old;
  253. if ((pte_val(*ptep) & _PAGE_DIRTY) == 0)
  254. return 0;
  255. old = pte_update(ptep, _PAGE_DIRTY);
  256. if (old & _PAGE_HASHPTE)
  257. hpte_update(mm, addr, ptep, old, 0);
  258. return (old & _PAGE_DIRTY) != 0;
  259. }
  260. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
  261. #define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \
  262. ({ \
  263. int __r; \
  264. __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \
  265. __r; \
  266. })
  267. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  268. static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
  269. pte_t *ptep)
  270. {
  271. unsigned long old;
  272. if ((pte_val(*ptep) & _PAGE_RW) == 0)
  273. return;
  274. old = pte_update(ptep, _PAGE_RW);
  275. if (old & _PAGE_HASHPTE)
  276. hpte_update(mm, addr, ptep, old, 0);
  277. }
  278. /*
  279. * We currently remove entries from the hashtable regardless of whether
  280. * the entry was young or dirty. The generic routines only flush if the
  281. * entry was young or dirty which is not good enough.
  282. *
  283. * We should be more intelligent about this but for the moment we override
  284. * these functions and force a tlb flush unconditionally
  285. */
  286. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  287. #define ptep_clear_flush_young(__vma, __address, __ptep) \
  288. ({ \
  289. int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
  290. __ptep); \
  291. __young; \
  292. })
  293. #define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH
  294. #define ptep_clear_flush_dirty(__vma, __address, __ptep) \
  295. ({ \
  296. int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \
  297. __ptep); \
  298. flush_tlb_page(__vma, __address); \
  299. __dirty; \
  300. })
  301. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  302. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  303. unsigned long addr, pte_t *ptep)
  304. {
  305. unsigned long old = pte_update(ptep, ~0UL);
  306. if (old & _PAGE_HASHPTE)
  307. hpte_update(mm, addr, ptep, old, 0);
  308. return __pte(old);
  309. }
  310. static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
  311. pte_t * ptep)
  312. {
  313. unsigned long old = pte_update(ptep, ~0UL);
  314. if (old & _PAGE_HASHPTE)
  315. hpte_update(mm, addr, ptep, old, 0);
  316. }
  317. /*
  318. * set_pte stores a linux PTE into the linux page table.
  319. */
  320. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  321. pte_t *ptep, pte_t pte)
  322. {
  323. if (pte_present(*ptep)) {
  324. pte_clear(mm, addr, ptep);
  325. flush_tlb_pending();
  326. }
  327. pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
  328. #ifdef CONFIG_PPC_64K_PAGES
  329. if (mmu_virtual_psize != MMU_PAGE_64K)
  330. pte = __pte(pte_val(pte) | _PAGE_COMBO);
  331. #endif /* CONFIG_PPC_64K_PAGES */
  332. *ptep = pte;
  333. }
  334. /* Set the dirty and/or accessed bits atomically in a linux PTE, this
  335. * function doesn't need to flush the hash entry
  336. */
  337. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  338. static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty)
  339. {
  340. unsigned long bits = pte_val(entry) &
  341. (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
  342. unsigned long old, tmp;
  343. __asm__ __volatile__(
  344. "1: ldarx %0,0,%4\n\
  345. andi. %1,%0,%6\n\
  346. bne- 1b \n\
  347. or %0,%3,%0\n\
  348. stdcx. %0,0,%4\n\
  349. bne- 1b"
  350. :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
  351. :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
  352. :"cc");
  353. }
  354. #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
  355. do { \
  356. __ptep_set_access_flags(__ptep, __entry, __dirty); \
  357. flush_tlb_page_nohash(__vma, __address); \
  358. } while(0)
  359. /*
  360. * Macro to mark a page protection value as "uncacheable".
  361. */
  362. #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED))
  363. struct file;
  364. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  365. unsigned long size, pgprot_t vma_prot);
  366. #define __HAVE_PHYS_MEM_ACCESS_PROT
  367. #define __HAVE_ARCH_PTE_SAME
  368. #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
  369. #define pte_ERROR(e) \
  370. printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
  371. #define pmd_ERROR(e) \
  372. printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
  373. #define pgd_ERROR(e) \
  374. printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
  375. extern pgd_t swapper_pg_dir[];
  376. extern void paging_init(void);
  377. #ifdef CONFIG_HUGETLB_PAGE
  378. #define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \
  379. free_pgd_range(tlb, addr, end, floor, ceiling)
  380. #endif
  381. /*
  382. * This gets called at the end of handling a page fault, when
  383. * the kernel has put a new PTE into the page table for the process.
  384. * We use it to put a corresponding HPTE into the hash table
  385. * ahead of time, instead of waiting for the inevitable extra
  386. * hash-table miss exception.
  387. */
  388. struct vm_area_struct;
  389. extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
  390. /* Encode and de-code a swap entry */
  391. #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
  392. #define __swp_offset(entry) ((entry).val >> 8)
  393. #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
  394. #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
  395. #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
  396. #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
  397. #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
  398. #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
  399. /*
  400. * kern_addr_valid is intended to indicate whether an address is a valid
  401. * kernel address. Most 32-bit archs define it as always true (like this)
  402. * but most 64-bit archs actually perform a test. What should we do here?
  403. * The only use is in fs/ncpfs/dir.c
  404. */
  405. #define kern_addr_valid(addr) (1)
  406. #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
  407. remap_pfn_range(vma, vaddr, pfn, size, prot)
  408. void pgtable_cache_init(void);
  409. /*
  410. * find_linux_pte returns the address of a linux pte for a given
  411. * effective address and directory. If not found, it returns zero.
  412. */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
  413. {
  414. pgd_t *pg;
  415. pud_t *pu;
  416. pmd_t *pm;
  417. pte_t *pt = NULL;
  418. pg = pgdir + pgd_index(ea);
  419. if (!pgd_none(*pg)) {
  420. pu = pud_offset(pg, ea);
  421. if (!pud_none(*pu)) {
  422. pm = pmd_offset(pu, ea);
  423. if (pmd_present(*pm))
  424. pt = pte_offset_kernel(pm, ea);
  425. }
  426. }
  427. return pt;
  428. }
  429. #include <asm-generic/pgtable.h>
  430. #endif /* __ASSEMBLY__ */
  431. #endif /* _PPC64_PGTABLE_H */