bio.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/uio.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/slab.h>
  25. #include <linux/init.h>
  26. #include <linux/kernel.h>
  27. #include <linux/export.h>
  28. #include <linux/mempool.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/cgroup.h>
  31. #include <trace/events/block.h>
  32. #include "blk.h"
  33. /*
  34. * Test patch to inline a certain number of bi_io_vec's inside the bio
  35. * itself, to shrink a bio data allocation from two mempool calls to one
  36. */
  37. #define BIO_INLINE_VECS 4
  38. /*
  39. * if you change this list, also change bvec_alloc or things will
  40. * break badly! cannot be bigger than what you can fit into an
  41. * unsigned short
  42. */
  43. #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
  44. static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
  45. BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
  46. };
  47. #undef BV
  48. /*
  49. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  50. * IO code that does not need private memory pools.
  51. */
  52. struct bio_set fs_bio_set;
  53. EXPORT_SYMBOL(fs_bio_set);
  54. /*
  55. * Our slab pool management
  56. */
  57. struct bio_slab {
  58. struct kmem_cache *slab;
  59. unsigned int slab_ref;
  60. unsigned int slab_size;
  61. char name[8];
  62. };
  63. static DEFINE_MUTEX(bio_slab_lock);
  64. static struct bio_slab *bio_slabs;
  65. static unsigned int bio_slab_nr, bio_slab_max;
  66. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  67. {
  68. unsigned int sz = sizeof(struct bio) + extra_size;
  69. struct kmem_cache *slab = NULL;
  70. struct bio_slab *bslab, *new_bio_slabs;
  71. unsigned int new_bio_slab_max;
  72. unsigned int i, entry = -1;
  73. mutex_lock(&bio_slab_lock);
  74. i = 0;
  75. while (i < bio_slab_nr) {
  76. bslab = &bio_slabs[i];
  77. if (!bslab->slab && entry == -1)
  78. entry = i;
  79. else if (bslab->slab_size == sz) {
  80. slab = bslab->slab;
  81. bslab->slab_ref++;
  82. break;
  83. }
  84. i++;
  85. }
  86. if (slab)
  87. goto out_unlock;
  88. if (bio_slab_nr == bio_slab_max && entry == -1) {
  89. new_bio_slab_max = bio_slab_max << 1;
  90. new_bio_slabs = krealloc(bio_slabs,
  91. new_bio_slab_max * sizeof(struct bio_slab),
  92. GFP_KERNEL);
  93. if (!new_bio_slabs)
  94. goto out_unlock;
  95. bio_slab_max = new_bio_slab_max;
  96. bio_slabs = new_bio_slabs;
  97. }
  98. if (entry == -1)
  99. entry = bio_slab_nr++;
  100. bslab = &bio_slabs[entry];
  101. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  102. slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
  103. SLAB_HWCACHE_ALIGN, NULL);
  104. if (!slab)
  105. goto out_unlock;
  106. bslab->slab = slab;
  107. bslab->slab_ref = 1;
  108. bslab->slab_size = sz;
  109. out_unlock:
  110. mutex_unlock(&bio_slab_lock);
  111. return slab;
  112. }
  113. static void bio_put_slab(struct bio_set *bs)
  114. {
  115. struct bio_slab *bslab = NULL;
  116. unsigned int i;
  117. mutex_lock(&bio_slab_lock);
  118. for (i = 0; i < bio_slab_nr; i++) {
  119. if (bs->bio_slab == bio_slabs[i].slab) {
  120. bslab = &bio_slabs[i];
  121. break;
  122. }
  123. }
  124. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  125. goto out;
  126. WARN_ON(!bslab->slab_ref);
  127. if (--bslab->slab_ref)
  128. goto out;
  129. kmem_cache_destroy(bslab->slab);
  130. bslab->slab = NULL;
  131. out:
  132. mutex_unlock(&bio_slab_lock);
  133. }
  134. unsigned int bvec_nr_vecs(unsigned short idx)
  135. {
  136. return bvec_slabs[idx].nr_vecs;
  137. }
  138. void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
  139. {
  140. if (!idx)
  141. return;
  142. idx--;
  143. BIO_BUG_ON(idx >= BVEC_POOL_NR);
  144. if (idx == BVEC_POOL_MAX) {
  145. mempool_free(bv, pool);
  146. } else {
  147. struct biovec_slab *bvs = bvec_slabs + idx;
  148. kmem_cache_free(bvs->slab, bv);
  149. }
  150. }
  151. struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
  152. mempool_t *pool)
  153. {
  154. struct bio_vec *bvl;
  155. /*
  156. * see comment near bvec_array define!
  157. */
  158. switch (nr) {
  159. case 1:
  160. *idx = 0;
  161. break;
  162. case 2 ... 4:
  163. *idx = 1;
  164. break;
  165. case 5 ... 16:
  166. *idx = 2;
  167. break;
  168. case 17 ... 64:
  169. *idx = 3;
  170. break;
  171. case 65 ... 128:
  172. *idx = 4;
  173. break;
  174. case 129 ... BIO_MAX_PAGES:
  175. *idx = 5;
  176. break;
  177. default:
  178. return NULL;
  179. }
  180. /*
  181. * idx now points to the pool we want to allocate from. only the
  182. * 1-vec entry pool is mempool backed.
  183. */
  184. if (*idx == BVEC_POOL_MAX) {
  185. fallback:
  186. bvl = mempool_alloc(pool, gfp_mask);
  187. } else {
  188. struct biovec_slab *bvs = bvec_slabs + *idx;
  189. gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
  190. /*
  191. * Make this allocation restricted and don't dump info on
  192. * allocation failures, since we'll fallback to the mempool
  193. * in case of failure.
  194. */
  195. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  196. /*
  197. * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
  198. * is set, retry with the 1-entry mempool
  199. */
  200. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  201. if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
  202. *idx = BVEC_POOL_MAX;
  203. goto fallback;
  204. }
  205. }
  206. (*idx)++;
  207. return bvl;
  208. }
  209. void bio_uninit(struct bio *bio)
  210. {
  211. bio_disassociate_task(bio);
  212. }
  213. EXPORT_SYMBOL(bio_uninit);
  214. static void bio_free(struct bio *bio)
  215. {
  216. struct bio_set *bs = bio->bi_pool;
  217. void *p;
  218. bio_uninit(bio);
  219. if (bs) {
  220. bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
  221. /*
  222. * If we have front padding, adjust the bio pointer before freeing
  223. */
  224. p = bio;
  225. p -= bs->front_pad;
  226. mempool_free(p, &bs->bio_pool);
  227. } else {
  228. /* Bio was allocated by bio_kmalloc() */
  229. kfree(bio);
  230. }
  231. }
  232. /*
  233. * Users of this function have their own bio allocation. Subsequently,
  234. * they must remember to pair any call to bio_init() with bio_uninit()
  235. * when IO has completed, or when the bio is released.
  236. */
  237. void bio_init(struct bio *bio, struct bio_vec *table,
  238. unsigned short max_vecs)
  239. {
  240. memset(bio, 0, sizeof(*bio));
  241. atomic_set(&bio->__bi_remaining, 1);
  242. atomic_set(&bio->__bi_cnt, 1);
  243. bio->bi_io_vec = table;
  244. bio->bi_max_vecs = max_vecs;
  245. }
  246. EXPORT_SYMBOL(bio_init);
  247. /**
  248. * bio_reset - reinitialize a bio
  249. * @bio: bio to reset
  250. *
  251. * Description:
  252. * After calling bio_reset(), @bio will be in the same state as a freshly
  253. * allocated bio returned bio bio_alloc_bioset() - the only fields that are
  254. * preserved are the ones that are initialized by bio_alloc_bioset(). See
  255. * comment in struct bio.
  256. */
  257. void bio_reset(struct bio *bio)
  258. {
  259. unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
  260. bio_uninit(bio);
  261. memset(bio, 0, BIO_RESET_BYTES);
  262. bio->bi_flags = flags;
  263. atomic_set(&bio->__bi_remaining, 1);
  264. }
  265. EXPORT_SYMBOL(bio_reset);
  266. static struct bio *__bio_chain_endio(struct bio *bio)
  267. {
  268. struct bio *parent = bio->bi_private;
  269. if (!parent->bi_status)
  270. parent->bi_status = bio->bi_status;
  271. bio_put(bio);
  272. return parent;
  273. }
  274. static void bio_chain_endio(struct bio *bio)
  275. {
  276. bio_endio(__bio_chain_endio(bio));
  277. }
  278. /**
  279. * bio_chain - chain bio completions
  280. * @bio: the target bio
  281. * @parent: the @bio's parent bio
  282. *
  283. * The caller won't have a bi_end_io called when @bio completes - instead,
  284. * @parent's bi_end_io won't be called until both @parent and @bio have
  285. * completed; the chained bio will also be freed when it completes.
  286. *
  287. * The caller must not set bi_private or bi_end_io in @bio.
  288. */
  289. void bio_chain(struct bio *bio, struct bio *parent)
  290. {
  291. BUG_ON(bio->bi_private || bio->bi_end_io);
  292. bio->bi_private = parent;
  293. bio->bi_end_io = bio_chain_endio;
  294. bio_inc_remaining(parent);
  295. }
  296. EXPORT_SYMBOL(bio_chain);
  297. static void bio_alloc_rescue(struct work_struct *work)
  298. {
  299. struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
  300. struct bio *bio;
  301. while (1) {
  302. spin_lock(&bs->rescue_lock);
  303. bio = bio_list_pop(&bs->rescue_list);
  304. spin_unlock(&bs->rescue_lock);
  305. if (!bio)
  306. break;
  307. generic_make_request(bio);
  308. }
  309. }
  310. static void punt_bios_to_rescuer(struct bio_set *bs)
  311. {
  312. struct bio_list punt, nopunt;
  313. struct bio *bio;
  314. if (WARN_ON_ONCE(!bs->rescue_workqueue))
  315. return;
  316. /*
  317. * In order to guarantee forward progress we must punt only bios that
  318. * were allocated from this bio_set; otherwise, if there was a bio on
  319. * there for a stacking driver higher up in the stack, processing it
  320. * could require allocating bios from this bio_set, and doing that from
  321. * our own rescuer would be bad.
  322. *
  323. * Since bio lists are singly linked, pop them all instead of trying to
  324. * remove from the middle of the list:
  325. */
  326. bio_list_init(&punt);
  327. bio_list_init(&nopunt);
  328. while ((bio = bio_list_pop(&current->bio_list[0])))
  329. bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
  330. current->bio_list[0] = nopunt;
  331. bio_list_init(&nopunt);
  332. while ((bio = bio_list_pop(&current->bio_list[1])))
  333. bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
  334. current->bio_list[1] = nopunt;
  335. spin_lock(&bs->rescue_lock);
  336. bio_list_merge(&bs->rescue_list, &punt);
  337. spin_unlock(&bs->rescue_lock);
  338. queue_work(bs->rescue_workqueue, &bs->rescue_work);
  339. }
  340. /**
  341. * bio_alloc_bioset - allocate a bio for I/O
  342. * @gfp_mask: the GFP_* mask given to the slab allocator
  343. * @nr_iovecs: number of iovecs to pre-allocate
  344. * @bs: the bio_set to allocate from.
  345. *
  346. * Description:
  347. * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
  348. * backed by the @bs's mempool.
  349. *
  350. * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
  351. * always be able to allocate a bio. This is due to the mempool guarantees.
  352. * To make this work, callers must never allocate more than 1 bio at a time
  353. * from this pool. Callers that need to allocate more than 1 bio must always
  354. * submit the previously allocated bio for IO before attempting to allocate
  355. * a new one. Failure to do so can cause deadlocks under memory pressure.
  356. *
  357. * Note that when running under generic_make_request() (i.e. any block
  358. * driver), bios are not submitted until after you return - see the code in
  359. * generic_make_request() that converts recursion into iteration, to prevent
  360. * stack overflows.
  361. *
  362. * This would normally mean allocating multiple bios under
  363. * generic_make_request() would be susceptible to deadlocks, but we have
  364. * deadlock avoidance code that resubmits any blocked bios from a rescuer
  365. * thread.
  366. *
  367. * However, we do not guarantee forward progress for allocations from other
  368. * mempools. Doing multiple allocations from the same mempool under
  369. * generic_make_request() should be avoided - instead, use bio_set's front_pad
  370. * for per bio allocations.
  371. *
  372. * RETURNS:
  373. * Pointer to new bio on success, NULL on failure.
  374. */
  375. struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
  376. struct bio_set *bs)
  377. {
  378. gfp_t saved_gfp = gfp_mask;
  379. unsigned front_pad;
  380. unsigned inline_vecs;
  381. struct bio_vec *bvl = NULL;
  382. struct bio *bio;
  383. void *p;
  384. if (!bs) {
  385. if (nr_iovecs > UIO_MAXIOV)
  386. return NULL;
  387. p = kmalloc(sizeof(struct bio) +
  388. nr_iovecs * sizeof(struct bio_vec),
  389. gfp_mask);
  390. front_pad = 0;
  391. inline_vecs = nr_iovecs;
  392. } else {
  393. /* should not use nobvec bioset for nr_iovecs > 0 */
  394. if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
  395. nr_iovecs > 0))
  396. return NULL;
  397. /*
  398. * generic_make_request() converts recursion to iteration; this
  399. * means if we're running beneath it, any bios we allocate and
  400. * submit will not be submitted (and thus freed) until after we
  401. * return.
  402. *
  403. * This exposes us to a potential deadlock if we allocate
  404. * multiple bios from the same bio_set() while running
  405. * underneath generic_make_request(). If we were to allocate
  406. * multiple bios (say a stacking block driver that was splitting
  407. * bios), we would deadlock if we exhausted the mempool's
  408. * reserve.
  409. *
  410. * We solve this, and guarantee forward progress, with a rescuer
  411. * workqueue per bio_set. If we go to allocate and there are
  412. * bios on current->bio_list, we first try the allocation
  413. * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
  414. * bios we would be blocking to the rescuer workqueue before
  415. * we retry with the original gfp_flags.
  416. */
  417. if (current->bio_list &&
  418. (!bio_list_empty(&current->bio_list[0]) ||
  419. !bio_list_empty(&current->bio_list[1])) &&
  420. bs->rescue_workqueue)
  421. gfp_mask &= ~__GFP_DIRECT_RECLAIM;
  422. p = mempool_alloc(&bs->bio_pool, gfp_mask);
  423. if (!p && gfp_mask != saved_gfp) {
  424. punt_bios_to_rescuer(bs);
  425. gfp_mask = saved_gfp;
  426. p = mempool_alloc(&bs->bio_pool, gfp_mask);
  427. }
  428. front_pad = bs->front_pad;
  429. inline_vecs = BIO_INLINE_VECS;
  430. }
  431. if (unlikely(!p))
  432. return NULL;
  433. bio = p + front_pad;
  434. bio_init(bio, NULL, 0);
  435. if (nr_iovecs > inline_vecs) {
  436. unsigned long idx = 0;
  437. bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
  438. if (!bvl && gfp_mask != saved_gfp) {
  439. punt_bios_to_rescuer(bs);
  440. gfp_mask = saved_gfp;
  441. bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
  442. }
  443. if (unlikely(!bvl))
  444. goto err_free;
  445. bio->bi_flags |= idx << BVEC_POOL_OFFSET;
  446. } else if (nr_iovecs) {
  447. bvl = bio->bi_inline_vecs;
  448. }
  449. bio->bi_pool = bs;
  450. bio->bi_max_vecs = nr_iovecs;
  451. bio->bi_io_vec = bvl;
  452. return bio;
  453. err_free:
  454. mempool_free(p, &bs->bio_pool);
  455. return NULL;
  456. }
  457. EXPORT_SYMBOL(bio_alloc_bioset);
  458. void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
  459. {
  460. unsigned long flags;
  461. struct bio_vec bv;
  462. struct bvec_iter iter;
  463. __bio_for_each_segment(bv, bio, iter, start) {
  464. char *data = bvec_kmap_irq(&bv, &flags);
  465. memset(data, 0, bv.bv_len);
  466. flush_dcache_page(bv.bv_page);
  467. bvec_kunmap_irq(data, &flags);
  468. }
  469. }
  470. EXPORT_SYMBOL(zero_fill_bio_iter);
  471. /**
  472. * bio_put - release a reference to a bio
  473. * @bio: bio to release reference to
  474. *
  475. * Description:
  476. * Put a reference to a &struct bio, either one you have gotten with
  477. * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
  478. **/
  479. void bio_put(struct bio *bio)
  480. {
  481. if (!bio_flagged(bio, BIO_REFFED))
  482. bio_free(bio);
  483. else {
  484. BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
  485. /*
  486. * last put frees it
  487. */
  488. if (atomic_dec_and_test(&bio->__bi_cnt))
  489. bio_free(bio);
  490. }
  491. }
  492. EXPORT_SYMBOL(bio_put);
  493. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  494. {
  495. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  496. blk_recount_segments(q, bio);
  497. return bio->bi_phys_segments;
  498. }
  499. EXPORT_SYMBOL(bio_phys_segments);
  500. /**
  501. * __bio_clone_fast - clone a bio that shares the original bio's biovec
  502. * @bio: destination bio
  503. * @bio_src: bio to clone
  504. *
  505. * Clone a &bio. Caller will own the returned bio, but not
  506. * the actual data it points to. Reference count of returned
  507. * bio will be one.
  508. *
  509. * Caller must ensure that @bio_src is not freed before @bio.
  510. */
  511. void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
  512. {
  513. BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
  514. /*
  515. * most users will be overriding ->bi_disk with a new target,
  516. * so we don't set nor calculate new physical/hw segment counts here
  517. */
  518. bio->bi_disk = bio_src->bi_disk;
  519. bio->bi_partno = bio_src->bi_partno;
  520. bio_set_flag(bio, BIO_CLONED);
  521. if (bio_flagged(bio_src, BIO_THROTTLED))
  522. bio_set_flag(bio, BIO_THROTTLED);
  523. bio->bi_opf = bio_src->bi_opf;
  524. bio->bi_write_hint = bio_src->bi_write_hint;
  525. bio->bi_iter = bio_src->bi_iter;
  526. bio->bi_io_vec = bio_src->bi_io_vec;
  527. bio_clone_blkcg_association(bio, bio_src);
  528. }
  529. EXPORT_SYMBOL(__bio_clone_fast);
  530. /**
  531. * bio_clone_fast - clone a bio that shares the original bio's biovec
  532. * @bio: bio to clone
  533. * @gfp_mask: allocation priority
  534. * @bs: bio_set to allocate from
  535. *
  536. * Like __bio_clone_fast, only also allocates the returned bio
  537. */
  538. struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
  539. {
  540. struct bio *b;
  541. b = bio_alloc_bioset(gfp_mask, 0, bs);
  542. if (!b)
  543. return NULL;
  544. __bio_clone_fast(b, bio);
  545. if (bio_integrity(bio)) {
  546. int ret;
  547. ret = bio_integrity_clone(b, bio, gfp_mask);
  548. if (ret < 0) {
  549. bio_put(b);
  550. return NULL;
  551. }
  552. }
  553. return b;
  554. }
  555. EXPORT_SYMBOL(bio_clone_fast);
  556. /**
  557. * bio_clone_bioset - clone a bio
  558. * @bio_src: bio to clone
  559. * @gfp_mask: allocation priority
  560. * @bs: bio_set to allocate from
  561. *
  562. * Clone bio. Caller will own the returned bio, but not the actual data it
  563. * points to. Reference count of returned bio will be one.
  564. */
  565. struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
  566. struct bio_set *bs)
  567. {
  568. struct bvec_iter iter;
  569. struct bio_vec bv;
  570. struct bio *bio;
  571. /*
  572. * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
  573. * bio_src->bi_io_vec to bio->bi_io_vec.
  574. *
  575. * We can't do that anymore, because:
  576. *
  577. * - The point of cloning the biovec is to produce a bio with a biovec
  578. * the caller can modify: bi_idx and bi_bvec_done should be 0.
  579. *
  580. * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
  581. * we tried to clone the whole thing bio_alloc_bioset() would fail.
  582. * But the clone should succeed as long as the number of biovecs we
  583. * actually need to allocate is fewer than BIO_MAX_PAGES.
  584. *
  585. * - Lastly, bi_vcnt should not be looked at or relied upon by code
  586. * that does not own the bio - reason being drivers don't use it for
  587. * iterating over the biovec anymore, so expecting it to be kept up
  588. * to date (i.e. for clones that share the parent biovec) is just
  589. * asking for trouble and would force extra work on
  590. * __bio_clone_fast() anyways.
  591. */
  592. bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
  593. if (!bio)
  594. return NULL;
  595. bio->bi_disk = bio_src->bi_disk;
  596. bio->bi_opf = bio_src->bi_opf;
  597. bio->bi_write_hint = bio_src->bi_write_hint;
  598. bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
  599. bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
  600. switch (bio_op(bio)) {
  601. case REQ_OP_DISCARD:
  602. case REQ_OP_SECURE_ERASE:
  603. case REQ_OP_WRITE_ZEROES:
  604. break;
  605. case REQ_OP_WRITE_SAME:
  606. bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
  607. break;
  608. default:
  609. bio_for_each_segment(bv, bio_src, iter)
  610. bio->bi_io_vec[bio->bi_vcnt++] = bv;
  611. break;
  612. }
  613. if (bio_integrity(bio_src)) {
  614. int ret;
  615. ret = bio_integrity_clone(bio, bio_src, gfp_mask);
  616. if (ret < 0) {
  617. bio_put(bio);
  618. return NULL;
  619. }
  620. }
  621. bio_clone_blkcg_association(bio, bio_src);
  622. return bio;
  623. }
  624. EXPORT_SYMBOL(bio_clone_bioset);
  625. /**
  626. * bio_add_pc_page - attempt to add page to bio
  627. * @q: the target queue
  628. * @bio: destination bio
  629. * @page: page to add
  630. * @len: vec entry length
  631. * @offset: vec entry offset
  632. *
  633. * Attempt to add a page to the bio_vec maplist. This can fail for a
  634. * number of reasons, such as the bio being full or target block device
  635. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  636. * so it is always possible to add a single page to an empty bio.
  637. *
  638. * This should only be used by REQ_PC bios.
  639. */
  640. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
  641. *page, unsigned int len, unsigned int offset)
  642. {
  643. int retried_segments = 0;
  644. struct bio_vec *bvec;
  645. /*
  646. * cloned bio must not modify vec list
  647. */
  648. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  649. return 0;
  650. if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
  651. return 0;
  652. /*
  653. * For filesystems with a blocksize smaller than the pagesize
  654. * we will often be called with the same page as last time and
  655. * a consecutive offset. Optimize this special case.
  656. */
  657. if (bio->bi_vcnt > 0) {
  658. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  659. if (page == prev->bv_page &&
  660. offset == prev->bv_offset + prev->bv_len) {
  661. prev->bv_len += len;
  662. bio->bi_iter.bi_size += len;
  663. goto done;
  664. }
  665. /*
  666. * If the queue doesn't support SG gaps and adding this
  667. * offset would create a gap, disallow it.
  668. */
  669. if (bvec_gap_to_prev(q, prev, offset))
  670. return 0;
  671. }
  672. if (bio_full(bio))
  673. return 0;
  674. /*
  675. * setup the new entry, we might clear it again later if we
  676. * cannot add the page
  677. */
  678. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  679. bvec->bv_page = page;
  680. bvec->bv_len = len;
  681. bvec->bv_offset = offset;
  682. bio->bi_vcnt++;
  683. bio->bi_phys_segments++;
  684. bio->bi_iter.bi_size += len;
  685. /*
  686. * Perform a recount if the number of segments is greater
  687. * than queue_max_segments(q).
  688. */
  689. while (bio->bi_phys_segments > queue_max_segments(q)) {
  690. if (retried_segments)
  691. goto failed;
  692. retried_segments = 1;
  693. blk_recount_segments(q, bio);
  694. }
  695. /* If we may be able to merge these biovecs, force a recount */
  696. if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  697. bio_clear_flag(bio, BIO_SEG_VALID);
  698. done:
  699. return len;
  700. failed:
  701. bvec->bv_page = NULL;
  702. bvec->bv_len = 0;
  703. bvec->bv_offset = 0;
  704. bio->bi_vcnt--;
  705. bio->bi_iter.bi_size -= len;
  706. blk_recount_segments(q, bio);
  707. return 0;
  708. }
  709. EXPORT_SYMBOL(bio_add_pc_page);
  710. /**
  711. * __bio_try_merge_page - try appending data to an existing bvec.
  712. * @bio: destination bio
  713. * @page: page to add
  714. * @len: length of the data to add
  715. * @off: offset of the data in @page
  716. *
  717. * Try to add the data at @page + @off to the last bvec of @bio. This is a
  718. * a useful optimisation for file systems with a block size smaller than the
  719. * page size.
  720. *
  721. * Return %true on success or %false on failure.
  722. */
  723. bool __bio_try_merge_page(struct bio *bio, struct page *page,
  724. unsigned int len, unsigned int off)
  725. {
  726. if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
  727. return false;
  728. if (bio->bi_vcnt > 0) {
  729. struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
  730. if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
  731. bv->bv_len += len;
  732. bio->bi_iter.bi_size += len;
  733. return true;
  734. }
  735. }
  736. return false;
  737. }
  738. EXPORT_SYMBOL_GPL(__bio_try_merge_page);
  739. /**
  740. * __bio_add_page - add page to a bio in a new segment
  741. * @bio: destination bio
  742. * @page: page to add
  743. * @len: length of the data to add
  744. * @off: offset of the data in @page
  745. *
  746. * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
  747. * that @bio has space for another bvec.
  748. */
  749. void __bio_add_page(struct bio *bio, struct page *page,
  750. unsigned int len, unsigned int off)
  751. {
  752. struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
  753. WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
  754. WARN_ON_ONCE(bio_full(bio));
  755. bv->bv_page = page;
  756. bv->bv_offset = off;
  757. bv->bv_len = len;
  758. bio->bi_iter.bi_size += len;
  759. bio->bi_vcnt++;
  760. }
  761. EXPORT_SYMBOL_GPL(__bio_add_page);
  762. /**
  763. * bio_add_page - attempt to add page to bio
  764. * @bio: destination bio
  765. * @page: page to add
  766. * @len: vec entry length
  767. * @offset: vec entry offset
  768. *
  769. * Attempt to add a page to the bio_vec maplist. This will only fail
  770. * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
  771. */
  772. int bio_add_page(struct bio *bio, struct page *page,
  773. unsigned int len, unsigned int offset)
  774. {
  775. if (!__bio_try_merge_page(bio, page, len, offset)) {
  776. if (bio_full(bio))
  777. return 0;
  778. __bio_add_page(bio, page, len, offset);
  779. }
  780. return len;
  781. }
  782. EXPORT_SYMBOL(bio_add_page);
  783. /**
  784. * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
  785. * @bio: bio to add pages to
  786. * @iter: iov iterator describing the region to be mapped
  787. *
  788. * Pins pages from *iter and appends them to @bio's bvec array. The
  789. * pages will have to be released using put_page() when done.
  790. * For multi-segment *iter, this function only adds pages from the
  791. * the next non-empty segment of the iov iterator.
  792. */
  793. static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
  794. {
  795. unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt, idx;
  796. struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
  797. struct page **pages = (struct page **)bv;
  798. size_t offset;
  799. ssize_t size;
  800. size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
  801. if (unlikely(size <= 0))
  802. return size ? size : -EFAULT;
  803. idx = nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
  804. /*
  805. * Deep magic below: We need to walk the pinned pages backwards
  806. * because we are abusing the space allocated for the bio_vecs
  807. * for the page array. Because the bio_vecs are larger than the
  808. * page pointers by definition this will always work. But it also
  809. * means we can't use bio_add_page, so any changes to it's semantics
  810. * need to be reflected here as well.
  811. */
  812. bio->bi_iter.bi_size += size;
  813. bio->bi_vcnt += nr_pages;
  814. while (idx--) {
  815. bv[idx].bv_page = pages[idx];
  816. bv[idx].bv_len = PAGE_SIZE;
  817. bv[idx].bv_offset = 0;
  818. }
  819. bv[0].bv_offset += offset;
  820. bv[0].bv_len -= offset;
  821. bv[nr_pages - 1].bv_len -= nr_pages * PAGE_SIZE - offset - size;
  822. iov_iter_advance(iter, size);
  823. return 0;
  824. }
  825. /**
  826. * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
  827. * @bio: bio to add pages to
  828. * @iter: iov iterator describing the region to be mapped
  829. *
  830. * Pins pages from *iter and appends them to @bio's bvec array. The
  831. * pages will have to be released using put_page() when done.
  832. * The function tries, but does not guarantee, to pin as many pages as
  833. * fit into the bio, or are requested in *iter, whatever is smaller.
  834. * If MM encounters an error pinning the requested pages, it stops.
  835. * Error is returned only if 0 pages could be pinned.
  836. */
  837. int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
  838. {
  839. unsigned short orig_vcnt = bio->bi_vcnt;
  840. do {
  841. int ret = __bio_iov_iter_get_pages(bio, iter);
  842. if (unlikely(ret))
  843. return bio->bi_vcnt > orig_vcnt ? 0 : ret;
  844. } while (iov_iter_count(iter) && !bio_full(bio));
  845. return 0;
  846. }
  847. EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
  848. static void submit_bio_wait_endio(struct bio *bio)
  849. {
  850. complete(bio->bi_private);
  851. }
  852. /**
  853. * submit_bio_wait - submit a bio, and wait until it completes
  854. * @bio: The &struct bio which describes the I/O
  855. *
  856. * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
  857. * bio_endio() on failure.
  858. *
  859. * WARNING: Unlike to how submit_bio() is usually used, this function does not
  860. * result in bio reference to be consumed. The caller must drop the reference
  861. * on his own.
  862. */
  863. int submit_bio_wait(struct bio *bio)
  864. {
  865. DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
  866. bio->bi_private = &done;
  867. bio->bi_end_io = submit_bio_wait_endio;
  868. bio->bi_opf |= REQ_SYNC;
  869. submit_bio(bio);
  870. wait_for_completion_io(&done);
  871. return blk_status_to_errno(bio->bi_status);
  872. }
  873. EXPORT_SYMBOL(submit_bio_wait);
  874. /**
  875. * bio_advance - increment/complete a bio by some number of bytes
  876. * @bio: bio to advance
  877. * @bytes: number of bytes to complete
  878. *
  879. * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
  880. * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
  881. * be updated on the last bvec as well.
  882. *
  883. * @bio will then represent the remaining, uncompleted portion of the io.
  884. */
  885. void bio_advance(struct bio *bio, unsigned bytes)
  886. {
  887. if (bio_integrity(bio))
  888. bio_integrity_advance(bio, bytes);
  889. bio_advance_iter(bio, &bio->bi_iter, bytes);
  890. }
  891. EXPORT_SYMBOL(bio_advance);
  892. void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
  893. struct bio *src, struct bvec_iter *src_iter)
  894. {
  895. struct bio_vec src_bv, dst_bv;
  896. void *src_p, *dst_p;
  897. unsigned bytes;
  898. while (src_iter->bi_size && dst_iter->bi_size) {
  899. src_bv = bio_iter_iovec(src, *src_iter);
  900. dst_bv = bio_iter_iovec(dst, *dst_iter);
  901. bytes = min(src_bv.bv_len, dst_bv.bv_len);
  902. src_p = kmap_atomic(src_bv.bv_page);
  903. dst_p = kmap_atomic(dst_bv.bv_page);
  904. memcpy(dst_p + dst_bv.bv_offset,
  905. src_p + src_bv.bv_offset,
  906. bytes);
  907. kunmap_atomic(dst_p);
  908. kunmap_atomic(src_p);
  909. flush_dcache_page(dst_bv.bv_page);
  910. bio_advance_iter(src, src_iter, bytes);
  911. bio_advance_iter(dst, dst_iter, bytes);
  912. }
  913. }
  914. EXPORT_SYMBOL(bio_copy_data_iter);
  915. /**
  916. * bio_copy_data - copy contents of data buffers from one bio to another
  917. * @src: source bio
  918. * @dst: destination bio
  919. *
  920. * Stops when it reaches the end of either @src or @dst - that is, copies
  921. * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
  922. */
  923. void bio_copy_data(struct bio *dst, struct bio *src)
  924. {
  925. struct bvec_iter src_iter = src->bi_iter;
  926. struct bvec_iter dst_iter = dst->bi_iter;
  927. bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
  928. }
  929. EXPORT_SYMBOL(bio_copy_data);
  930. /**
  931. * bio_list_copy_data - copy contents of data buffers from one chain of bios to
  932. * another
  933. * @src: source bio list
  934. * @dst: destination bio list
  935. *
  936. * Stops when it reaches the end of either the @src list or @dst list - that is,
  937. * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
  938. * bios).
  939. */
  940. void bio_list_copy_data(struct bio *dst, struct bio *src)
  941. {
  942. struct bvec_iter src_iter = src->bi_iter;
  943. struct bvec_iter dst_iter = dst->bi_iter;
  944. while (1) {
  945. if (!src_iter.bi_size) {
  946. src = src->bi_next;
  947. if (!src)
  948. break;
  949. src_iter = src->bi_iter;
  950. }
  951. if (!dst_iter.bi_size) {
  952. dst = dst->bi_next;
  953. if (!dst)
  954. break;
  955. dst_iter = dst->bi_iter;
  956. }
  957. bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
  958. }
  959. }
  960. EXPORT_SYMBOL(bio_list_copy_data);
  961. struct bio_map_data {
  962. int is_our_pages;
  963. struct iov_iter iter;
  964. struct iovec iov[];
  965. };
  966. static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
  967. gfp_t gfp_mask)
  968. {
  969. struct bio_map_data *bmd;
  970. if (data->nr_segs > UIO_MAXIOV)
  971. return NULL;
  972. bmd = kmalloc(sizeof(struct bio_map_data) +
  973. sizeof(struct iovec) * data->nr_segs, gfp_mask);
  974. if (!bmd)
  975. return NULL;
  976. memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
  977. bmd->iter = *data;
  978. bmd->iter.iov = bmd->iov;
  979. return bmd;
  980. }
  981. /**
  982. * bio_copy_from_iter - copy all pages from iov_iter to bio
  983. * @bio: The &struct bio which describes the I/O as destination
  984. * @iter: iov_iter as source
  985. *
  986. * Copy all pages from iov_iter to bio.
  987. * Returns 0 on success, or error on failure.
  988. */
  989. static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
  990. {
  991. int i;
  992. struct bio_vec *bvec;
  993. bio_for_each_segment_all(bvec, bio, i) {
  994. ssize_t ret;
  995. ret = copy_page_from_iter(bvec->bv_page,
  996. bvec->bv_offset,
  997. bvec->bv_len,
  998. iter);
  999. if (!iov_iter_count(iter))
  1000. break;
  1001. if (ret < bvec->bv_len)
  1002. return -EFAULT;
  1003. }
  1004. return 0;
  1005. }
  1006. /**
  1007. * bio_copy_to_iter - copy all pages from bio to iov_iter
  1008. * @bio: The &struct bio which describes the I/O as source
  1009. * @iter: iov_iter as destination
  1010. *
  1011. * Copy all pages from bio to iov_iter.
  1012. * Returns 0 on success, or error on failure.
  1013. */
  1014. static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
  1015. {
  1016. int i;
  1017. struct bio_vec *bvec;
  1018. bio_for_each_segment_all(bvec, bio, i) {
  1019. ssize_t ret;
  1020. ret = copy_page_to_iter(bvec->bv_page,
  1021. bvec->bv_offset,
  1022. bvec->bv_len,
  1023. &iter);
  1024. if (!iov_iter_count(&iter))
  1025. break;
  1026. if (ret < bvec->bv_len)
  1027. return -EFAULT;
  1028. }
  1029. return 0;
  1030. }
  1031. void bio_free_pages(struct bio *bio)
  1032. {
  1033. struct bio_vec *bvec;
  1034. int i;
  1035. bio_for_each_segment_all(bvec, bio, i)
  1036. __free_page(bvec->bv_page);
  1037. }
  1038. EXPORT_SYMBOL(bio_free_pages);
  1039. /**
  1040. * bio_uncopy_user - finish previously mapped bio
  1041. * @bio: bio being terminated
  1042. *
  1043. * Free pages allocated from bio_copy_user_iov() and write back data
  1044. * to user space in case of a read.
  1045. */
  1046. int bio_uncopy_user(struct bio *bio)
  1047. {
  1048. struct bio_map_data *bmd = bio->bi_private;
  1049. int ret = 0;
  1050. if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
  1051. /*
  1052. * if we're in a workqueue, the request is orphaned, so
  1053. * don't copy into a random user address space, just free
  1054. * and return -EINTR so user space doesn't expect any data.
  1055. */
  1056. if (!current->mm)
  1057. ret = -EINTR;
  1058. else if (bio_data_dir(bio) == READ)
  1059. ret = bio_copy_to_iter(bio, bmd->iter);
  1060. if (bmd->is_our_pages)
  1061. bio_free_pages(bio);
  1062. }
  1063. kfree(bmd);
  1064. bio_put(bio);
  1065. return ret;
  1066. }
  1067. /**
  1068. * bio_copy_user_iov - copy user data to bio
  1069. * @q: destination block queue
  1070. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  1071. * @iter: iovec iterator
  1072. * @gfp_mask: memory allocation flags
  1073. *
  1074. * Prepares and returns a bio for indirect user io, bouncing data
  1075. * to/from kernel pages as necessary. Must be paired with
  1076. * call bio_uncopy_user() on io completion.
  1077. */
  1078. struct bio *bio_copy_user_iov(struct request_queue *q,
  1079. struct rq_map_data *map_data,
  1080. struct iov_iter *iter,
  1081. gfp_t gfp_mask)
  1082. {
  1083. struct bio_map_data *bmd;
  1084. struct page *page;
  1085. struct bio *bio;
  1086. int i = 0, ret;
  1087. int nr_pages;
  1088. unsigned int len = iter->count;
  1089. unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
  1090. bmd = bio_alloc_map_data(iter, gfp_mask);
  1091. if (!bmd)
  1092. return ERR_PTR(-ENOMEM);
  1093. /*
  1094. * We need to do a deep copy of the iov_iter including the iovecs.
  1095. * The caller provided iov might point to an on-stack or otherwise
  1096. * shortlived one.
  1097. */
  1098. bmd->is_our_pages = map_data ? 0 : 1;
  1099. nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
  1100. if (nr_pages > BIO_MAX_PAGES)
  1101. nr_pages = BIO_MAX_PAGES;
  1102. ret = -ENOMEM;
  1103. bio = bio_kmalloc(gfp_mask, nr_pages);
  1104. if (!bio)
  1105. goto out_bmd;
  1106. ret = 0;
  1107. if (map_data) {
  1108. nr_pages = 1 << map_data->page_order;
  1109. i = map_data->offset / PAGE_SIZE;
  1110. }
  1111. while (len) {
  1112. unsigned int bytes = PAGE_SIZE;
  1113. bytes -= offset;
  1114. if (bytes > len)
  1115. bytes = len;
  1116. if (map_data) {
  1117. if (i == map_data->nr_entries * nr_pages) {
  1118. ret = -ENOMEM;
  1119. break;
  1120. }
  1121. page = map_data->pages[i / nr_pages];
  1122. page += (i % nr_pages);
  1123. i++;
  1124. } else {
  1125. page = alloc_page(q->bounce_gfp | gfp_mask);
  1126. if (!page) {
  1127. ret = -ENOMEM;
  1128. break;
  1129. }
  1130. }
  1131. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  1132. break;
  1133. len -= bytes;
  1134. offset = 0;
  1135. }
  1136. if (ret)
  1137. goto cleanup;
  1138. if (map_data)
  1139. map_data->offset += bio->bi_iter.bi_size;
  1140. /*
  1141. * success
  1142. */
  1143. if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
  1144. (map_data && map_data->from_user)) {
  1145. ret = bio_copy_from_iter(bio, iter);
  1146. if (ret)
  1147. goto cleanup;
  1148. } else {
  1149. iov_iter_advance(iter, bio->bi_iter.bi_size);
  1150. }
  1151. bio->bi_private = bmd;
  1152. if (map_data && map_data->null_mapped)
  1153. bio_set_flag(bio, BIO_NULL_MAPPED);
  1154. return bio;
  1155. cleanup:
  1156. if (!map_data)
  1157. bio_free_pages(bio);
  1158. bio_put(bio);
  1159. out_bmd:
  1160. kfree(bmd);
  1161. return ERR_PTR(ret);
  1162. }
  1163. /**
  1164. * bio_map_user_iov - map user iovec into bio
  1165. * @q: the struct request_queue for the bio
  1166. * @iter: iovec iterator
  1167. * @gfp_mask: memory allocation flags
  1168. *
  1169. * Map the user space address into a bio suitable for io to a block
  1170. * device. Returns an error pointer in case of error.
  1171. */
  1172. struct bio *bio_map_user_iov(struct request_queue *q,
  1173. struct iov_iter *iter,
  1174. gfp_t gfp_mask)
  1175. {
  1176. int j;
  1177. struct bio *bio;
  1178. int ret;
  1179. struct bio_vec *bvec;
  1180. if (!iov_iter_count(iter))
  1181. return ERR_PTR(-EINVAL);
  1182. bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
  1183. if (!bio)
  1184. return ERR_PTR(-ENOMEM);
  1185. while (iov_iter_count(iter)) {
  1186. struct page **pages;
  1187. ssize_t bytes;
  1188. size_t offs, added = 0;
  1189. int npages;
  1190. bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
  1191. if (unlikely(bytes <= 0)) {
  1192. ret = bytes ? bytes : -EFAULT;
  1193. goto out_unmap;
  1194. }
  1195. npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
  1196. if (unlikely(offs & queue_dma_alignment(q))) {
  1197. ret = -EINVAL;
  1198. j = 0;
  1199. } else {
  1200. for (j = 0; j < npages; j++) {
  1201. struct page *page = pages[j];
  1202. unsigned int n = PAGE_SIZE - offs;
  1203. unsigned short prev_bi_vcnt = bio->bi_vcnt;
  1204. if (n > bytes)
  1205. n = bytes;
  1206. if (!bio_add_pc_page(q, bio, page, n, offs))
  1207. break;
  1208. /*
  1209. * check if vector was merged with previous
  1210. * drop page reference if needed
  1211. */
  1212. if (bio->bi_vcnt == prev_bi_vcnt)
  1213. put_page(page);
  1214. added += n;
  1215. bytes -= n;
  1216. offs = 0;
  1217. }
  1218. iov_iter_advance(iter, added);
  1219. }
  1220. /*
  1221. * release the pages we didn't map into the bio, if any
  1222. */
  1223. while (j < npages)
  1224. put_page(pages[j++]);
  1225. kvfree(pages);
  1226. /* couldn't stuff something into bio? */
  1227. if (bytes)
  1228. break;
  1229. }
  1230. bio_set_flag(bio, BIO_USER_MAPPED);
  1231. /*
  1232. * subtle -- if bio_map_user_iov() ended up bouncing a bio,
  1233. * it would normally disappear when its bi_end_io is run.
  1234. * however, we need it for the unmap, so grab an extra
  1235. * reference to it
  1236. */
  1237. bio_get(bio);
  1238. return bio;
  1239. out_unmap:
  1240. bio_for_each_segment_all(bvec, bio, j) {
  1241. put_page(bvec->bv_page);
  1242. }
  1243. bio_put(bio);
  1244. return ERR_PTR(ret);
  1245. }
  1246. static void __bio_unmap_user(struct bio *bio)
  1247. {
  1248. struct bio_vec *bvec;
  1249. int i;
  1250. /*
  1251. * make sure we dirty pages we wrote to
  1252. */
  1253. bio_for_each_segment_all(bvec, bio, i) {
  1254. if (bio_data_dir(bio) == READ)
  1255. set_page_dirty_lock(bvec->bv_page);
  1256. put_page(bvec->bv_page);
  1257. }
  1258. bio_put(bio);
  1259. }
  1260. /**
  1261. * bio_unmap_user - unmap a bio
  1262. * @bio: the bio being unmapped
  1263. *
  1264. * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
  1265. * process context.
  1266. *
  1267. * bio_unmap_user() may sleep.
  1268. */
  1269. void bio_unmap_user(struct bio *bio)
  1270. {
  1271. __bio_unmap_user(bio);
  1272. bio_put(bio);
  1273. }
  1274. static void bio_map_kern_endio(struct bio *bio)
  1275. {
  1276. bio_put(bio);
  1277. }
  1278. /**
  1279. * bio_map_kern - map kernel address into bio
  1280. * @q: the struct request_queue for the bio
  1281. * @data: pointer to buffer to map
  1282. * @len: length in bytes
  1283. * @gfp_mask: allocation flags for bio allocation
  1284. *
  1285. * Map the kernel address into a bio suitable for io to a block
  1286. * device. Returns an error pointer in case of error.
  1287. */
  1288. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  1289. gfp_t gfp_mask)
  1290. {
  1291. unsigned long kaddr = (unsigned long)data;
  1292. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1293. unsigned long start = kaddr >> PAGE_SHIFT;
  1294. const int nr_pages = end - start;
  1295. int offset, i;
  1296. struct bio *bio;
  1297. bio = bio_kmalloc(gfp_mask, nr_pages);
  1298. if (!bio)
  1299. return ERR_PTR(-ENOMEM);
  1300. offset = offset_in_page(kaddr);
  1301. for (i = 0; i < nr_pages; i++) {
  1302. unsigned int bytes = PAGE_SIZE - offset;
  1303. if (len <= 0)
  1304. break;
  1305. if (bytes > len)
  1306. bytes = len;
  1307. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  1308. offset) < bytes) {
  1309. /* we don't support partial mappings */
  1310. bio_put(bio);
  1311. return ERR_PTR(-EINVAL);
  1312. }
  1313. data += bytes;
  1314. len -= bytes;
  1315. offset = 0;
  1316. }
  1317. bio->bi_end_io = bio_map_kern_endio;
  1318. return bio;
  1319. }
  1320. EXPORT_SYMBOL(bio_map_kern);
  1321. static void bio_copy_kern_endio(struct bio *bio)
  1322. {
  1323. bio_free_pages(bio);
  1324. bio_put(bio);
  1325. }
  1326. static void bio_copy_kern_endio_read(struct bio *bio)
  1327. {
  1328. char *p = bio->bi_private;
  1329. struct bio_vec *bvec;
  1330. int i;
  1331. bio_for_each_segment_all(bvec, bio, i) {
  1332. memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
  1333. p += bvec->bv_len;
  1334. }
  1335. bio_copy_kern_endio(bio);
  1336. }
  1337. /**
  1338. * bio_copy_kern - copy kernel address into bio
  1339. * @q: the struct request_queue for the bio
  1340. * @data: pointer to buffer to copy
  1341. * @len: length in bytes
  1342. * @gfp_mask: allocation flags for bio and page allocation
  1343. * @reading: data direction is READ
  1344. *
  1345. * copy the kernel address into a bio suitable for io to a block
  1346. * device. Returns an error pointer in case of error.
  1347. */
  1348. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1349. gfp_t gfp_mask, int reading)
  1350. {
  1351. unsigned long kaddr = (unsigned long)data;
  1352. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1353. unsigned long start = kaddr >> PAGE_SHIFT;
  1354. struct bio *bio;
  1355. void *p = data;
  1356. int nr_pages = 0;
  1357. /*
  1358. * Overflow, abort
  1359. */
  1360. if (end < start)
  1361. return ERR_PTR(-EINVAL);
  1362. nr_pages = end - start;
  1363. bio = bio_kmalloc(gfp_mask, nr_pages);
  1364. if (!bio)
  1365. return ERR_PTR(-ENOMEM);
  1366. while (len) {
  1367. struct page *page;
  1368. unsigned int bytes = PAGE_SIZE;
  1369. if (bytes > len)
  1370. bytes = len;
  1371. page = alloc_page(q->bounce_gfp | gfp_mask);
  1372. if (!page)
  1373. goto cleanup;
  1374. if (!reading)
  1375. memcpy(page_address(page), p, bytes);
  1376. if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
  1377. break;
  1378. len -= bytes;
  1379. p += bytes;
  1380. }
  1381. if (reading) {
  1382. bio->bi_end_io = bio_copy_kern_endio_read;
  1383. bio->bi_private = data;
  1384. } else {
  1385. bio->bi_end_io = bio_copy_kern_endio;
  1386. }
  1387. return bio;
  1388. cleanup:
  1389. bio_free_pages(bio);
  1390. bio_put(bio);
  1391. return ERR_PTR(-ENOMEM);
  1392. }
  1393. /*
  1394. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1395. * for performing direct-IO in BIOs.
  1396. *
  1397. * The problem is that we cannot run set_page_dirty() from interrupt context
  1398. * because the required locks are not interrupt-safe. So what we can do is to
  1399. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1400. * check that the pages are still dirty. If so, fine. If not, redirty them
  1401. * in process context.
  1402. *
  1403. * We special-case compound pages here: normally this means reads into hugetlb
  1404. * pages. The logic in here doesn't really work right for compound pages
  1405. * because the VM does not uniformly chase down the head page in all cases.
  1406. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1407. * handle them at all. So we skip compound pages here at an early stage.
  1408. *
  1409. * Note that this code is very hard to test under normal circumstances because
  1410. * direct-io pins the pages with get_user_pages(). This makes
  1411. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1412. * But other code (eg, flusher threads) could clean the pages if they are mapped
  1413. * pagecache.
  1414. *
  1415. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1416. * deferred bio dirtying paths.
  1417. */
  1418. /*
  1419. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1420. */
  1421. void bio_set_pages_dirty(struct bio *bio)
  1422. {
  1423. struct bio_vec *bvec;
  1424. int i;
  1425. bio_for_each_segment_all(bvec, bio, i) {
  1426. struct page *page = bvec->bv_page;
  1427. if (page && !PageCompound(page))
  1428. set_page_dirty_lock(page);
  1429. }
  1430. }
  1431. EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
  1432. static void bio_release_pages(struct bio *bio)
  1433. {
  1434. struct bio_vec *bvec;
  1435. int i;
  1436. bio_for_each_segment_all(bvec, bio, i) {
  1437. struct page *page = bvec->bv_page;
  1438. if (page)
  1439. put_page(page);
  1440. }
  1441. }
  1442. /*
  1443. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1444. * If they are, then fine. If, however, some pages are clean then they must
  1445. * have been written out during the direct-IO read. So we take another ref on
  1446. * the BIO and the offending pages and re-dirty the pages in process context.
  1447. *
  1448. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1449. * here on. It will run one put_page() against each page and will run one
  1450. * bio_put() against the BIO.
  1451. */
  1452. static void bio_dirty_fn(struct work_struct *work);
  1453. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1454. static DEFINE_SPINLOCK(bio_dirty_lock);
  1455. static struct bio *bio_dirty_list;
  1456. /*
  1457. * This runs in process context
  1458. */
  1459. static void bio_dirty_fn(struct work_struct *work)
  1460. {
  1461. unsigned long flags;
  1462. struct bio *bio;
  1463. spin_lock_irqsave(&bio_dirty_lock, flags);
  1464. bio = bio_dirty_list;
  1465. bio_dirty_list = NULL;
  1466. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1467. while (bio) {
  1468. struct bio *next = bio->bi_private;
  1469. bio_set_pages_dirty(bio);
  1470. bio_release_pages(bio);
  1471. bio_put(bio);
  1472. bio = next;
  1473. }
  1474. }
  1475. void bio_check_pages_dirty(struct bio *bio)
  1476. {
  1477. struct bio_vec *bvec;
  1478. int nr_clean_pages = 0;
  1479. int i;
  1480. bio_for_each_segment_all(bvec, bio, i) {
  1481. struct page *page = bvec->bv_page;
  1482. if (PageDirty(page) || PageCompound(page)) {
  1483. put_page(page);
  1484. bvec->bv_page = NULL;
  1485. } else {
  1486. nr_clean_pages++;
  1487. }
  1488. }
  1489. if (nr_clean_pages) {
  1490. unsigned long flags;
  1491. spin_lock_irqsave(&bio_dirty_lock, flags);
  1492. bio->bi_private = bio_dirty_list;
  1493. bio_dirty_list = bio;
  1494. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1495. schedule_work(&bio_dirty_work);
  1496. } else {
  1497. bio_put(bio);
  1498. }
  1499. }
  1500. EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
  1501. void generic_start_io_acct(struct request_queue *q, int rw,
  1502. unsigned long sectors, struct hd_struct *part)
  1503. {
  1504. int cpu = part_stat_lock();
  1505. part_round_stats(q, cpu, part);
  1506. part_stat_inc(cpu, part, ios[rw]);
  1507. part_stat_add(cpu, part, sectors[rw], sectors);
  1508. part_inc_in_flight(q, part, rw);
  1509. part_stat_unlock();
  1510. }
  1511. EXPORT_SYMBOL(generic_start_io_acct);
  1512. void generic_end_io_acct(struct request_queue *q, int rw,
  1513. struct hd_struct *part, unsigned long start_time)
  1514. {
  1515. unsigned long duration = jiffies - start_time;
  1516. int cpu = part_stat_lock();
  1517. part_stat_add(cpu, part, ticks[rw], duration);
  1518. part_round_stats(q, cpu, part);
  1519. part_dec_in_flight(q, part, rw);
  1520. part_stat_unlock();
  1521. }
  1522. EXPORT_SYMBOL(generic_end_io_acct);
  1523. #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
  1524. void bio_flush_dcache_pages(struct bio *bi)
  1525. {
  1526. struct bio_vec bvec;
  1527. struct bvec_iter iter;
  1528. bio_for_each_segment(bvec, bi, iter)
  1529. flush_dcache_page(bvec.bv_page);
  1530. }
  1531. EXPORT_SYMBOL(bio_flush_dcache_pages);
  1532. #endif
  1533. static inline bool bio_remaining_done(struct bio *bio)
  1534. {
  1535. /*
  1536. * If we're not chaining, then ->__bi_remaining is always 1 and
  1537. * we always end io on the first invocation.
  1538. */
  1539. if (!bio_flagged(bio, BIO_CHAIN))
  1540. return true;
  1541. BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
  1542. if (atomic_dec_and_test(&bio->__bi_remaining)) {
  1543. bio_clear_flag(bio, BIO_CHAIN);
  1544. return true;
  1545. }
  1546. return false;
  1547. }
  1548. /**
  1549. * bio_endio - end I/O on a bio
  1550. * @bio: bio
  1551. *
  1552. * Description:
  1553. * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
  1554. * way to end I/O on a bio. No one should call bi_end_io() directly on a
  1555. * bio unless they own it and thus know that it has an end_io function.
  1556. *
  1557. * bio_endio() can be called several times on a bio that has been chained
  1558. * using bio_chain(). The ->bi_end_io() function will only be called the
  1559. * last time. At this point the BLK_TA_COMPLETE tracing event will be
  1560. * generated if BIO_TRACE_COMPLETION is set.
  1561. **/
  1562. void bio_endio(struct bio *bio)
  1563. {
  1564. again:
  1565. if (!bio_remaining_done(bio))
  1566. return;
  1567. if (!bio_integrity_endio(bio))
  1568. return;
  1569. /*
  1570. * Need to have a real endio function for chained bios, otherwise
  1571. * various corner cases will break (like stacking block devices that
  1572. * save/restore bi_end_io) - however, we want to avoid unbounded
  1573. * recursion and blowing the stack. Tail call optimization would
  1574. * handle this, but compiling with frame pointers also disables
  1575. * gcc's sibling call optimization.
  1576. */
  1577. if (bio->bi_end_io == bio_chain_endio) {
  1578. bio = __bio_chain_endio(bio);
  1579. goto again;
  1580. }
  1581. if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
  1582. trace_block_bio_complete(bio->bi_disk->queue, bio,
  1583. blk_status_to_errno(bio->bi_status));
  1584. bio_clear_flag(bio, BIO_TRACE_COMPLETION);
  1585. }
  1586. blk_throtl_bio_endio(bio);
  1587. /* release cgroup info */
  1588. bio_uninit(bio);
  1589. if (bio->bi_end_io)
  1590. bio->bi_end_io(bio);
  1591. }
  1592. EXPORT_SYMBOL(bio_endio);
  1593. /**
  1594. * bio_split - split a bio
  1595. * @bio: bio to split
  1596. * @sectors: number of sectors to split from the front of @bio
  1597. * @gfp: gfp mask
  1598. * @bs: bio set to allocate from
  1599. *
  1600. * Allocates and returns a new bio which represents @sectors from the start of
  1601. * @bio, and updates @bio to represent the remaining sectors.
  1602. *
  1603. * Unless this is a discard request the newly allocated bio will point
  1604. * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
  1605. * @bio is not freed before the split.
  1606. */
  1607. struct bio *bio_split(struct bio *bio, int sectors,
  1608. gfp_t gfp, struct bio_set *bs)
  1609. {
  1610. struct bio *split;
  1611. BUG_ON(sectors <= 0);
  1612. BUG_ON(sectors >= bio_sectors(bio));
  1613. split = bio_clone_fast(bio, gfp, bs);
  1614. if (!split)
  1615. return NULL;
  1616. split->bi_iter.bi_size = sectors << 9;
  1617. if (bio_integrity(split))
  1618. bio_integrity_trim(split);
  1619. bio_advance(bio, split->bi_iter.bi_size);
  1620. bio->bi_iter.bi_done = 0;
  1621. if (bio_flagged(bio, BIO_TRACE_COMPLETION))
  1622. bio_set_flag(split, BIO_TRACE_COMPLETION);
  1623. return split;
  1624. }
  1625. EXPORT_SYMBOL(bio_split);
  1626. /**
  1627. * bio_trim - trim a bio
  1628. * @bio: bio to trim
  1629. * @offset: number of sectors to trim from the front of @bio
  1630. * @size: size we want to trim @bio to, in sectors
  1631. */
  1632. void bio_trim(struct bio *bio, int offset, int size)
  1633. {
  1634. /* 'bio' is a cloned bio which we need to trim to match
  1635. * the given offset and size.
  1636. */
  1637. size <<= 9;
  1638. if (offset == 0 && size == bio->bi_iter.bi_size)
  1639. return;
  1640. bio_clear_flag(bio, BIO_SEG_VALID);
  1641. bio_advance(bio, offset << 9);
  1642. bio->bi_iter.bi_size = size;
  1643. if (bio_integrity(bio))
  1644. bio_integrity_trim(bio);
  1645. }
  1646. EXPORT_SYMBOL_GPL(bio_trim);
  1647. /*
  1648. * create memory pools for biovec's in a bio_set.
  1649. * use the global biovec slabs created for general use.
  1650. */
  1651. int biovec_init_pool(mempool_t *pool, int pool_entries)
  1652. {
  1653. struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
  1654. return mempool_init_slab_pool(pool, pool_entries, bp->slab);
  1655. }
  1656. /*
  1657. * bioset_exit - exit a bioset initialized with bioset_init()
  1658. *
  1659. * May be called on a zeroed but uninitialized bioset (i.e. allocated with
  1660. * kzalloc()).
  1661. */
  1662. void bioset_exit(struct bio_set *bs)
  1663. {
  1664. if (bs->rescue_workqueue)
  1665. destroy_workqueue(bs->rescue_workqueue);
  1666. bs->rescue_workqueue = NULL;
  1667. mempool_exit(&bs->bio_pool);
  1668. mempool_exit(&bs->bvec_pool);
  1669. bioset_integrity_free(bs);
  1670. if (bs->bio_slab)
  1671. bio_put_slab(bs);
  1672. bs->bio_slab = NULL;
  1673. }
  1674. EXPORT_SYMBOL(bioset_exit);
  1675. /**
  1676. * bioset_init - Initialize a bio_set
  1677. * @bs: pool to initialize
  1678. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1679. * @front_pad: Number of bytes to allocate in front of the returned bio
  1680. * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
  1681. * and %BIOSET_NEED_RESCUER
  1682. *
  1683. * Description:
  1684. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1685. * to ask for a number of bytes to be allocated in front of the bio.
  1686. * Front pad allocation is useful for embedding the bio inside
  1687. * another structure, to avoid allocating extra data to go with the bio.
  1688. * Note that the bio must be embedded at the END of that structure always,
  1689. * or things will break badly.
  1690. * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
  1691. * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
  1692. * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
  1693. * dispatch queued requests when the mempool runs out of space.
  1694. *
  1695. */
  1696. int bioset_init(struct bio_set *bs,
  1697. unsigned int pool_size,
  1698. unsigned int front_pad,
  1699. int flags)
  1700. {
  1701. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1702. bs->front_pad = front_pad;
  1703. spin_lock_init(&bs->rescue_lock);
  1704. bio_list_init(&bs->rescue_list);
  1705. INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
  1706. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1707. if (!bs->bio_slab)
  1708. return -ENOMEM;
  1709. if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
  1710. goto bad;
  1711. if ((flags & BIOSET_NEED_BVECS) &&
  1712. biovec_init_pool(&bs->bvec_pool, pool_size))
  1713. goto bad;
  1714. if (!(flags & BIOSET_NEED_RESCUER))
  1715. return 0;
  1716. bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
  1717. if (!bs->rescue_workqueue)
  1718. goto bad;
  1719. return 0;
  1720. bad:
  1721. bioset_exit(bs);
  1722. return -ENOMEM;
  1723. }
  1724. EXPORT_SYMBOL(bioset_init);
  1725. /*
  1726. * Initialize and setup a new bio_set, based on the settings from
  1727. * another bio_set.
  1728. */
  1729. int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
  1730. {
  1731. int flags;
  1732. flags = 0;
  1733. if (src->bvec_pool.min_nr)
  1734. flags |= BIOSET_NEED_BVECS;
  1735. if (src->rescue_workqueue)
  1736. flags |= BIOSET_NEED_RESCUER;
  1737. return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
  1738. }
  1739. EXPORT_SYMBOL(bioset_init_from_src);
  1740. #ifdef CONFIG_BLK_CGROUP
  1741. /**
  1742. * bio_associate_blkcg - associate a bio with the specified blkcg
  1743. * @bio: target bio
  1744. * @blkcg_css: css of the blkcg to associate
  1745. *
  1746. * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
  1747. * treat @bio as if it were issued by a task which belongs to the blkcg.
  1748. *
  1749. * This function takes an extra reference of @blkcg_css which will be put
  1750. * when @bio is released. The caller must own @bio and is responsible for
  1751. * synchronizing calls to this function.
  1752. */
  1753. int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
  1754. {
  1755. if (unlikely(bio->bi_css))
  1756. return -EBUSY;
  1757. css_get(blkcg_css);
  1758. bio->bi_css = blkcg_css;
  1759. return 0;
  1760. }
  1761. EXPORT_SYMBOL_GPL(bio_associate_blkcg);
  1762. /**
  1763. * bio_disassociate_task - undo bio_associate_current()
  1764. * @bio: target bio
  1765. */
  1766. void bio_disassociate_task(struct bio *bio)
  1767. {
  1768. if (bio->bi_ioc) {
  1769. put_io_context(bio->bi_ioc);
  1770. bio->bi_ioc = NULL;
  1771. }
  1772. if (bio->bi_css) {
  1773. css_put(bio->bi_css);
  1774. bio->bi_css = NULL;
  1775. }
  1776. }
  1777. /**
  1778. * bio_clone_blkcg_association - clone blkcg association from src to dst bio
  1779. * @dst: destination bio
  1780. * @src: source bio
  1781. */
  1782. void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
  1783. {
  1784. if (src->bi_css)
  1785. WARN_ON(bio_associate_blkcg(dst, src->bi_css));
  1786. }
  1787. EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
  1788. #endif /* CONFIG_BLK_CGROUP */
  1789. static void __init biovec_init_slabs(void)
  1790. {
  1791. int i;
  1792. for (i = 0; i < BVEC_POOL_NR; i++) {
  1793. int size;
  1794. struct biovec_slab *bvs = bvec_slabs + i;
  1795. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1796. bvs->slab = NULL;
  1797. continue;
  1798. }
  1799. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1800. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1801. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1802. }
  1803. }
  1804. static int __init init_bio(void)
  1805. {
  1806. bio_slab_max = 2;
  1807. bio_slab_nr = 0;
  1808. bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
  1809. GFP_KERNEL);
  1810. if (!bio_slabs)
  1811. panic("bio: can't allocate bios\n");
  1812. bio_integrity_init();
  1813. biovec_init_slabs();
  1814. if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
  1815. panic("bio: can't allocate bios\n");
  1816. if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
  1817. panic("bio: can't create integrity pool\n");
  1818. return 0;
  1819. }
  1820. subsys_initcall(init_bio);