task_mmu.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/mm.h>
  3. #include <linux/vmacache.h>
  4. #include <linux/hugetlb.h>
  5. #include <linux/huge_mm.h>
  6. #include <linux/mount.h>
  7. #include <linux/seq_file.h>
  8. #include <linux/highmem.h>
  9. #include <linux/ptrace.h>
  10. #include <linux/slab.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/mempolicy.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/sched/mm.h>
  16. #include <linux/swapops.h>
  17. #include <linux/mmu_notifier.h>
  18. #include <linux/page_idle.h>
  19. #include <linux/shmem_fs.h>
  20. #include <linux/uaccess.h>
  21. #include <asm/elf.h>
  22. #include <asm/tlb.h>
  23. #include <asm/tlbflush.h>
  24. #include "internal.h"
  25. #define SEQ_PUT_DEC(str, val) \
  26. seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  27. void task_mem(struct seq_file *m, struct mm_struct *mm)
  28. {
  29. unsigned long text, lib, swap, anon, file, shmem;
  30. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  31. anon = get_mm_counter(mm, MM_ANONPAGES);
  32. file = get_mm_counter(mm, MM_FILEPAGES);
  33. shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  34. /*
  35. * Note: to minimize their overhead, mm maintains hiwater_vm and
  36. * hiwater_rss only when about to *lower* total_vm or rss. Any
  37. * collector of these hiwater stats must therefore get total_vm
  38. * and rss too, which will usually be the higher. Barriers? not
  39. * worth the effort, such snapshots can always be inconsistent.
  40. */
  41. hiwater_vm = total_vm = mm->total_vm;
  42. if (hiwater_vm < mm->hiwater_vm)
  43. hiwater_vm = mm->hiwater_vm;
  44. hiwater_rss = total_rss = anon + file + shmem;
  45. if (hiwater_rss < mm->hiwater_rss)
  46. hiwater_rss = mm->hiwater_rss;
  47. /* split executable areas between text and lib */
  48. text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  49. text = min(text, mm->exec_vm << PAGE_SHIFT);
  50. lib = (mm->exec_vm << PAGE_SHIFT) - text;
  51. swap = get_mm_counter(mm, MM_SWAPENTS);
  52. SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  53. SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  54. SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  55. SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
  56. SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  57. SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  58. SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  59. SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  60. SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  61. SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  62. SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  63. seq_put_decimal_ull_width(m,
  64. " kB\nVmExe:\t", text >> 10, 8);
  65. seq_put_decimal_ull_width(m,
  66. " kB\nVmLib:\t", lib >> 10, 8);
  67. seq_put_decimal_ull_width(m,
  68. " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  69. SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  70. seq_puts(m, " kB\n");
  71. hugetlb_report_usage(m, mm);
  72. }
  73. #undef SEQ_PUT_DEC
  74. unsigned long task_vsize(struct mm_struct *mm)
  75. {
  76. return PAGE_SIZE * mm->total_vm;
  77. }
  78. unsigned long task_statm(struct mm_struct *mm,
  79. unsigned long *shared, unsigned long *text,
  80. unsigned long *data, unsigned long *resident)
  81. {
  82. *shared = get_mm_counter(mm, MM_FILEPAGES) +
  83. get_mm_counter(mm, MM_SHMEMPAGES);
  84. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  85. >> PAGE_SHIFT;
  86. *data = mm->data_vm + mm->stack_vm;
  87. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  88. return mm->total_vm;
  89. }
  90. #ifdef CONFIG_NUMA
  91. /*
  92. * Save get_task_policy() for show_numa_map().
  93. */
  94. static void hold_task_mempolicy(struct proc_maps_private *priv)
  95. {
  96. struct task_struct *task = priv->task;
  97. task_lock(task);
  98. priv->task_mempolicy = get_task_policy(task);
  99. mpol_get(priv->task_mempolicy);
  100. task_unlock(task);
  101. }
  102. static void release_task_mempolicy(struct proc_maps_private *priv)
  103. {
  104. mpol_put(priv->task_mempolicy);
  105. }
  106. #else
  107. static void hold_task_mempolicy(struct proc_maps_private *priv)
  108. {
  109. }
  110. static void release_task_mempolicy(struct proc_maps_private *priv)
  111. {
  112. }
  113. #endif
  114. static void vma_stop(struct proc_maps_private *priv)
  115. {
  116. struct mm_struct *mm = priv->mm;
  117. release_task_mempolicy(priv);
  118. up_read(&mm->mmap_sem);
  119. mmput(mm);
  120. }
  121. static struct vm_area_struct *
  122. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  123. {
  124. if (vma == priv->tail_vma)
  125. return NULL;
  126. return vma->vm_next ?: priv->tail_vma;
  127. }
  128. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  129. {
  130. if (m->count < m->size) /* vma is copied successfully */
  131. m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
  132. }
  133. static void *m_start(struct seq_file *m, loff_t *ppos)
  134. {
  135. struct proc_maps_private *priv = m->private;
  136. unsigned long last_addr = m->version;
  137. struct mm_struct *mm;
  138. struct vm_area_struct *vma;
  139. unsigned int pos = *ppos;
  140. /* See m_cache_vma(). Zero at the start or after lseek. */
  141. if (last_addr == -1UL)
  142. return NULL;
  143. priv->task = get_proc_task(priv->inode);
  144. if (!priv->task)
  145. return ERR_PTR(-ESRCH);
  146. mm = priv->mm;
  147. if (!mm || !mmget_not_zero(mm))
  148. return NULL;
  149. down_read(&mm->mmap_sem);
  150. hold_task_mempolicy(priv);
  151. priv->tail_vma = get_gate_vma(mm);
  152. if (last_addr) {
  153. vma = find_vma(mm, last_addr - 1);
  154. if (vma && vma->vm_start <= last_addr)
  155. vma = m_next_vma(priv, vma);
  156. if (vma)
  157. return vma;
  158. }
  159. m->version = 0;
  160. if (pos < mm->map_count) {
  161. for (vma = mm->mmap; pos; pos--) {
  162. m->version = vma->vm_start;
  163. vma = vma->vm_next;
  164. }
  165. return vma;
  166. }
  167. /* we do not bother to update m->version in this case */
  168. if (pos == mm->map_count && priv->tail_vma)
  169. return priv->tail_vma;
  170. vma_stop(priv);
  171. return NULL;
  172. }
  173. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  174. {
  175. struct proc_maps_private *priv = m->private;
  176. struct vm_area_struct *next;
  177. (*pos)++;
  178. next = m_next_vma(priv, v);
  179. if (!next)
  180. vma_stop(priv);
  181. return next;
  182. }
  183. static void m_stop(struct seq_file *m, void *v)
  184. {
  185. struct proc_maps_private *priv = m->private;
  186. if (!IS_ERR_OR_NULL(v))
  187. vma_stop(priv);
  188. if (priv->task) {
  189. put_task_struct(priv->task);
  190. priv->task = NULL;
  191. }
  192. }
  193. static int proc_maps_open(struct inode *inode, struct file *file,
  194. const struct seq_operations *ops, int psize)
  195. {
  196. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  197. if (!priv)
  198. return -ENOMEM;
  199. priv->inode = inode;
  200. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  201. if (IS_ERR(priv->mm)) {
  202. int err = PTR_ERR(priv->mm);
  203. seq_release_private(inode, file);
  204. return err;
  205. }
  206. return 0;
  207. }
  208. static int proc_map_release(struct inode *inode, struct file *file)
  209. {
  210. struct seq_file *seq = file->private_data;
  211. struct proc_maps_private *priv = seq->private;
  212. if (priv->mm)
  213. mmdrop(priv->mm);
  214. kfree(priv->rollup);
  215. return seq_release_private(inode, file);
  216. }
  217. static int do_maps_open(struct inode *inode, struct file *file,
  218. const struct seq_operations *ops)
  219. {
  220. return proc_maps_open(inode, file, ops,
  221. sizeof(struct proc_maps_private));
  222. }
  223. /*
  224. * Indicate if the VMA is a stack for the given task; for
  225. * /proc/PID/maps that is the stack of the main task.
  226. */
  227. static int is_stack(struct vm_area_struct *vma)
  228. {
  229. /*
  230. * We make no effort to guess what a given thread considers to be
  231. * its "stack". It's not even well-defined for programs written
  232. * languages like Go.
  233. */
  234. return vma->vm_start <= vma->vm_mm->start_stack &&
  235. vma->vm_end >= vma->vm_mm->start_stack;
  236. }
  237. static void show_vma_header_prefix(struct seq_file *m,
  238. unsigned long start, unsigned long end,
  239. vm_flags_t flags, unsigned long long pgoff,
  240. dev_t dev, unsigned long ino)
  241. {
  242. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  243. seq_put_hex_ll(m, NULL, start, 8);
  244. seq_put_hex_ll(m, "-", end, 8);
  245. seq_putc(m, ' ');
  246. seq_putc(m, flags & VM_READ ? 'r' : '-');
  247. seq_putc(m, flags & VM_WRITE ? 'w' : '-');
  248. seq_putc(m, flags & VM_EXEC ? 'x' : '-');
  249. seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
  250. seq_put_hex_ll(m, " ", pgoff, 8);
  251. seq_put_hex_ll(m, " ", MAJOR(dev), 2);
  252. seq_put_hex_ll(m, ":", MINOR(dev), 2);
  253. seq_put_decimal_ull(m, " ", ino);
  254. seq_putc(m, ' ');
  255. }
  256. static void
  257. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  258. {
  259. struct mm_struct *mm = vma->vm_mm;
  260. struct file *file = vma->vm_file;
  261. vm_flags_t flags = vma->vm_flags;
  262. unsigned long ino = 0;
  263. unsigned long long pgoff = 0;
  264. unsigned long start, end;
  265. dev_t dev = 0;
  266. const char *name = NULL;
  267. if (file) {
  268. struct inode *inode = file_inode(vma->vm_file);
  269. dev = inode->i_sb->s_dev;
  270. ino = inode->i_ino;
  271. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  272. }
  273. start = vma->vm_start;
  274. end = vma->vm_end;
  275. show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
  276. /*
  277. * Print the dentry name for named mappings, and a
  278. * special [heap] marker for the heap:
  279. */
  280. if (file) {
  281. seq_pad(m, ' ');
  282. seq_file_path(m, file, "\n");
  283. goto done;
  284. }
  285. if (vma->vm_ops && vma->vm_ops->name) {
  286. name = vma->vm_ops->name(vma);
  287. if (name)
  288. goto done;
  289. }
  290. name = arch_vma_name(vma);
  291. if (!name) {
  292. if (!mm) {
  293. name = "[vdso]";
  294. goto done;
  295. }
  296. if (vma->vm_start <= mm->brk &&
  297. vma->vm_end >= mm->start_brk) {
  298. name = "[heap]";
  299. goto done;
  300. }
  301. if (is_stack(vma))
  302. name = "[stack]";
  303. }
  304. done:
  305. if (name) {
  306. seq_pad(m, ' ');
  307. seq_puts(m, name);
  308. }
  309. seq_putc(m, '\n');
  310. }
  311. static int show_map(struct seq_file *m, void *v, int is_pid)
  312. {
  313. show_map_vma(m, v, is_pid);
  314. m_cache_vma(m, v);
  315. return 0;
  316. }
  317. static int show_pid_map(struct seq_file *m, void *v)
  318. {
  319. return show_map(m, v, 1);
  320. }
  321. static int show_tid_map(struct seq_file *m, void *v)
  322. {
  323. return show_map(m, v, 0);
  324. }
  325. static const struct seq_operations proc_pid_maps_op = {
  326. .start = m_start,
  327. .next = m_next,
  328. .stop = m_stop,
  329. .show = show_pid_map
  330. };
  331. static const struct seq_operations proc_tid_maps_op = {
  332. .start = m_start,
  333. .next = m_next,
  334. .stop = m_stop,
  335. .show = show_tid_map
  336. };
  337. static int pid_maps_open(struct inode *inode, struct file *file)
  338. {
  339. return do_maps_open(inode, file, &proc_pid_maps_op);
  340. }
  341. static int tid_maps_open(struct inode *inode, struct file *file)
  342. {
  343. return do_maps_open(inode, file, &proc_tid_maps_op);
  344. }
  345. const struct file_operations proc_pid_maps_operations = {
  346. .open = pid_maps_open,
  347. .read = seq_read,
  348. .llseek = seq_lseek,
  349. .release = proc_map_release,
  350. };
  351. const struct file_operations proc_tid_maps_operations = {
  352. .open = tid_maps_open,
  353. .read = seq_read,
  354. .llseek = seq_lseek,
  355. .release = proc_map_release,
  356. };
  357. /*
  358. * Proportional Set Size(PSS): my share of RSS.
  359. *
  360. * PSS of a process is the count of pages it has in memory, where each
  361. * page is divided by the number of processes sharing it. So if a
  362. * process has 1000 pages all to itself, and 1000 shared with one other
  363. * process, its PSS will be 1500.
  364. *
  365. * To keep (accumulated) division errors low, we adopt a 64bit
  366. * fixed-point pss counter to minimize division errors. So (pss >>
  367. * PSS_SHIFT) would be the real byte count.
  368. *
  369. * A shift of 12 before division means (assuming 4K page size):
  370. * - 1M 3-user-pages add up to 8KB errors;
  371. * - supports mapcount up to 2^24, or 16M;
  372. * - supports PSS up to 2^52 bytes, or 4PB.
  373. */
  374. #define PSS_SHIFT 12
  375. #ifdef CONFIG_PROC_PAGE_MONITOR
  376. struct mem_size_stats {
  377. bool first;
  378. unsigned long resident;
  379. unsigned long shared_clean;
  380. unsigned long shared_dirty;
  381. unsigned long private_clean;
  382. unsigned long private_dirty;
  383. unsigned long referenced;
  384. unsigned long anonymous;
  385. unsigned long lazyfree;
  386. unsigned long anonymous_thp;
  387. unsigned long shmem_thp;
  388. unsigned long swap;
  389. unsigned long shared_hugetlb;
  390. unsigned long private_hugetlb;
  391. unsigned long first_vma_start;
  392. u64 pss;
  393. u64 pss_locked;
  394. u64 swap_pss;
  395. bool check_shmem_swap;
  396. };
  397. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  398. bool compound, bool young, bool dirty)
  399. {
  400. int i, nr = compound ? 1 << compound_order(page) : 1;
  401. unsigned long size = nr * PAGE_SIZE;
  402. if (PageAnon(page)) {
  403. mss->anonymous += size;
  404. if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
  405. mss->lazyfree += size;
  406. }
  407. mss->resident += size;
  408. /* Accumulate the size in pages that have been accessed. */
  409. if (young || page_is_young(page) || PageReferenced(page))
  410. mss->referenced += size;
  411. /*
  412. * page_count(page) == 1 guarantees the page is mapped exactly once.
  413. * If any subpage of the compound page mapped with PTE it would elevate
  414. * page_count().
  415. */
  416. if (page_count(page) == 1) {
  417. if (dirty || PageDirty(page))
  418. mss->private_dirty += size;
  419. else
  420. mss->private_clean += size;
  421. mss->pss += (u64)size << PSS_SHIFT;
  422. return;
  423. }
  424. for (i = 0; i < nr; i++, page++) {
  425. int mapcount = page_mapcount(page);
  426. if (mapcount >= 2) {
  427. if (dirty || PageDirty(page))
  428. mss->shared_dirty += PAGE_SIZE;
  429. else
  430. mss->shared_clean += PAGE_SIZE;
  431. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  432. } else {
  433. if (dirty || PageDirty(page))
  434. mss->private_dirty += PAGE_SIZE;
  435. else
  436. mss->private_clean += PAGE_SIZE;
  437. mss->pss += PAGE_SIZE << PSS_SHIFT;
  438. }
  439. }
  440. }
  441. #ifdef CONFIG_SHMEM
  442. static int smaps_pte_hole(unsigned long addr, unsigned long end,
  443. struct mm_walk *walk)
  444. {
  445. struct mem_size_stats *mss = walk->private;
  446. mss->swap += shmem_partial_swap_usage(
  447. walk->vma->vm_file->f_mapping, addr, end);
  448. return 0;
  449. }
  450. #endif
  451. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  452. struct mm_walk *walk)
  453. {
  454. struct mem_size_stats *mss = walk->private;
  455. struct vm_area_struct *vma = walk->vma;
  456. struct page *page = NULL;
  457. if (pte_present(*pte)) {
  458. page = vm_normal_page(vma, addr, *pte);
  459. } else if (is_swap_pte(*pte)) {
  460. swp_entry_t swpent = pte_to_swp_entry(*pte);
  461. if (!non_swap_entry(swpent)) {
  462. int mapcount;
  463. mss->swap += PAGE_SIZE;
  464. mapcount = swp_swapcount(swpent);
  465. if (mapcount >= 2) {
  466. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  467. do_div(pss_delta, mapcount);
  468. mss->swap_pss += pss_delta;
  469. } else {
  470. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  471. }
  472. } else if (is_migration_entry(swpent))
  473. page = migration_entry_to_page(swpent);
  474. else if (is_device_private_entry(swpent))
  475. page = device_private_entry_to_page(swpent);
  476. } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
  477. && pte_none(*pte))) {
  478. page = find_get_entry(vma->vm_file->f_mapping,
  479. linear_page_index(vma, addr));
  480. if (!page)
  481. return;
  482. if (radix_tree_exceptional_entry(page))
  483. mss->swap += PAGE_SIZE;
  484. else
  485. put_page(page);
  486. return;
  487. }
  488. if (!page)
  489. return;
  490. smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
  491. }
  492. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  493. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  494. struct mm_walk *walk)
  495. {
  496. struct mem_size_stats *mss = walk->private;
  497. struct vm_area_struct *vma = walk->vma;
  498. struct page *page;
  499. /* FOLL_DUMP will return -EFAULT on huge zero page */
  500. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  501. if (IS_ERR_OR_NULL(page))
  502. return;
  503. if (PageAnon(page))
  504. mss->anonymous_thp += HPAGE_PMD_SIZE;
  505. else if (PageSwapBacked(page))
  506. mss->shmem_thp += HPAGE_PMD_SIZE;
  507. else if (is_zone_device_page(page))
  508. /* pass */;
  509. else
  510. VM_BUG_ON_PAGE(1, page);
  511. smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
  512. }
  513. #else
  514. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  515. struct mm_walk *walk)
  516. {
  517. }
  518. #endif
  519. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  520. struct mm_walk *walk)
  521. {
  522. struct vm_area_struct *vma = walk->vma;
  523. pte_t *pte;
  524. spinlock_t *ptl;
  525. ptl = pmd_trans_huge_lock(pmd, vma);
  526. if (ptl) {
  527. if (pmd_present(*pmd))
  528. smaps_pmd_entry(pmd, addr, walk);
  529. spin_unlock(ptl);
  530. goto out;
  531. }
  532. if (pmd_trans_unstable(pmd))
  533. goto out;
  534. /*
  535. * The mmap_sem held all the way back in m_start() is what
  536. * keeps khugepaged out of here and from collapsing things
  537. * in here.
  538. */
  539. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  540. for (; addr != end; pte++, addr += PAGE_SIZE)
  541. smaps_pte_entry(pte, addr, walk);
  542. pte_unmap_unlock(pte - 1, ptl);
  543. out:
  544. cond_resched();
  545. return 0;
  546. }
  547. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  548. {
  549. /*
  550. * Don't forget to update Documentation/ on changes.
  551. */
  552. static const char mnemonics[BITS_PER_LONG][2] = {
  553. /*
  554. * In case if we meet a flag we don't know about.
  555. */
  556. [0 ... (BITS_PER_LONG-1)] = "??",
  557. [ilog2(VM_READ)] = "rd",
  558. [ilog2(VM_WRITE)] = "wr",
  559. [ilog2(VM_EXEC)] = "ex",
  560. [ilog2(VM_SHARED)] = "sh",
  561. [ilog2(VM_MAYREAD)] = "mr",
  562. [ilog2(VM_MAYWRITE)] = "mw",
  563. [ilog2(VM_MAYEXEC)] = "me",
  564. [ilog2(VM_MAYSHARE)] = "ms",
  565. [ilog2(VM_GROWSDOWN)] = "gd",
  566. [ilog2(VM_PFNMAP)] = "pf",
  567. [ilog2(VM_DENYWRITE)] = "dw",
  568. #ifdef CONFIG_X86_INTEL_MPX
  569. [ilog2(VM_MPX)] = "mp",
  570. #endif
  571. [ilog2(VM_LOCKED)] = "lo",
  572. [ilog2(VM_IO)] = "io",
  573. [ilog2(VM_SEQ_READ)] = "sr",
  574. [ilog2(VM_RAND_READ)] = "rr",
  575. [ilog2(VM_DONTCOPY)] = "dc",
  576. [ilog2(VM_DONTEXPAND)] = "de",
  577. [ilog2(VM_ACCOUNT)] = "ac",
  578. [ilog2(VM_NORESERVE)] = "nr",
  579. [ilog2(VM_HUGETLB)] = "ht",
  580. [ilog2(VM_SYNC)] = "sf",
  581. [ilog2(VM_ARCH_1)] = "ar",
  582. [ilog2(VM_WIPEONFORK)] = "wf",
  583. [ilog2(VM_DONTDUMP)] = "dd",
  584. #ifdef CONFIG_MEM_SOFT_DIRTY
  585. [ilog2(VM_SOFTDIRTY)] = "sd",
  586. #endif
  587. [ilog2(VM_MIXEDMAP)] = "mm",
  588. [ilog2(VM_HUGEPAGE)] = "hg",
  589. [ilog2(VM_NOHUGEPAGE)] = "nh",
  590. [ilog2(VM_MERGEABLE)] = "mg",
  591. [ilog2(VM_UFFD_MISSING)]= "um",
  592. [ilog2(VM_UFFD_WP)] = "uw",
  593. #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
  594. /* These come out via ProtectionKey: */
  595. [ilog2(VM_PKEY_BIT0)] = "",
  596. [ilog2(VM_PKEY_BIT1)] = "",
  597. [ilog2(VM_PKEY_BIT2)] = "",
  598. [ilog2(VM_PKEY_BIT3)] = "",
  599. #endif
  600. };
  601. size_t i;
  602. seq_puts(m, "VmFlags: ");
  603. for (i = 0; i < BITS_PER_LONG; i++) {
  604. if (!mnemonics[i][0])
  605. continue;
  606. if (vma->vm_flags & (1UL << i)) {
  607. seq_putc(m, mnemonics[i][0]);
  608. seq_putc(m, mnemonics[i][1]);
  609. seq_putc(m, ' ');
  610. }
  611. }
  612. seq_putc(m, '\n');
  613. }
  614. #ifdef CONFIG_HUGETLB_PAGE
  615. static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
  616. unsigned long addr, unsigned long end,
  617. struct mm_walk *walk)
  618. {
  619. struct mem_size_stats *mss = walk->private;
  620. struct vm_area_struct *vma = walk->vma;
  621. struct page *page = NULL;
  622. if (pte_present(*pte)) {
  623. page = vm_normal_page(vma, addr, *pte);
  624. } else if (is_swap_pte(*pte)) {
  625. swp_entry_t swpent = pte_to_swp_entry(*pte);
  626. if (is_migration_entry(swpent))
  627. page = migration_entry_to_page(swpent);
  628. else if (is_device_private_entry(swpent))
  629. page = device_private_entry_to_page(swpent);
  630. }
  631. if (page) {
  632. int mapcount = page_mapcount(page);
  633. if (mapcount >= 2)
  634. mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
  635. else
  636. mss->private_hugetlb += huge_page_size(hstate_vma(vma));
  637. }
  638. return 0;
  639. }
  640. #endif /* HUGETLB_PAGE */
  641. void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
  642. {
  643. }
  644. #define SEQ_PUT_DEC(str, val) \
  645. seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
  646. static int show_smap(struct seq_file *m, void *v, int is_pid)
  647. {
  648. struct proc_maps_private *priv = m->private;
  649. struct vm_area_struct *vma = v;
  650. struct mem_size_stats mss_stack;
  651. struct mem_size_stats *mss;
  652. struct mm_walk smaps_walk = {
  653. .pmd_entry = smaps_pte_range,
  654. #ifdef CONFIG_HUGETLB_PAGE
  655. .hugetlb_entry = smaps_hugetlb_range,
  656. #endif
  657. .mm = vma->vm_mm,
  658. };
  659. int ret = 0;
  660. bool rollup_mode;
  661. bool last_vma;
  662. if (priv->rollup) {
  663. rollup_mode = true;
  664. mss = priv->rollup;
  665. if (mss->first) {
  666. mss->first_vma_start = vma->vm_start;
  667. mss->first = false;
  668. }
  669. last_vma = !m_next_vma(priv, vma);
  670. } else {
  671. rollup_mode = false;
  672. memset(&mss_stack, 0, sizeof(mss_stack));
  673. mss = &mss_stack;
  674. }
  675. smaps_walk.private = mss;
  676. #ifdef CONFIG_SHMEM
  677. if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
  678. /*
  679. * For shared or readonly shmem mappings we know that all
  680. * swapped out pages belong to the shmem object, and we can
  681. * obtain the swap value much more efficiently. For private
  682. * writable mappings, we might have COW pages that are
  683. * not affected by the parent swapped out pages of the shmem
  684. * object, so we have to distinguish them during the page walk.
  685. * Unless we know that the shmem object (or the part mapped by
  686. * our VMA) has no swapped out pages at all.
  687. */
  688. unsigned long shmem_swapped = shmem_swap_usage(vma);
  689. if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
  690. !(vma->vm_flags & VM_WRITE)) {
  691. mss->swap = shmem_swapped;
  692. } else {
  693. mss->check_shmem_swap = true;
  694. smaps_walk.pte_hole = smaps_pte_hole;
  695. }
  696. }
  697. #endif
  698. /* mmap_sem is held in m_start */
  699. walk_page_vma(vma, &smaps_walk);
  700. if (vma->vm_flags & VM_LOCKED)
  701. mss->pss_locked += mss->pss;
  702. if (!rollup_mode) {
  703. show_map_vma(m, vma, is_pid);
  704. } else if (last_vma) {
  705. show_vma_header_prefix(
  706. m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
  707. seq_pad(m, ' ');
  708. seq_puts(m, "[rollup]\n");
  709. } else {
  710. ret = SEQ_SKIP;
  711. }
  712. if (!rollup_mode) {
  713. SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
  714. SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
  715. SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
  716. seq_puts(m, " kB\n");
  717. }
  718. if (!rollup_mode || last_vma) {
  719. SEQ_PUT_DEC("Rss: ", mss->resident);
  720. SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
  721. SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
  722. SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
  723. SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
  724. SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
  725. SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
  726. SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
  727. SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
  728. SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
  729. SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
  730. SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
  731. seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
  732. mss->private_hugetlb >> 10, 7);
  733. SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
  734. SEQ_PUT_DEC(" kB\nSwapPss: ",
  735. mss->swap_pss >> PSS_SHIFT);
  736. SEQ_PUT_DEC(" kB\nLocked: ", mss->pss >> PSS_SHIFT);
  737. seq_puts(m, " kB\n");
  738. }
  739. if (!rollup_mode) {
  740. arch_show_smap(m, vma);
  741. show_smap_vma_flags(m, vma);
  742. }
  743. m_cache_vma(m, vma);
  744. return ret;
  745. }
  746. #undef SEQ_PUT_DEC
  747. static int show_pid_smap(struct seq_file *m, void *v)
  748. {
  749. return show_smap(m, v, 1);
  750. }
  751. static int show_tid_smap(struct seq_file *m, void *v)
  752. {
  753. return show_smap(m, v, 0);
  754. }
  755. static const struct seq_operations proc_pid_smaps_op = {
  756. .start = m_start,
  757. .next = m_next,
  758. .stop = m_stop,
  759. .show = show_pid_smap
  760. };
  761. static const struct seq_operations proc_tid_smaps_op = {
  762. .start = m_start,
  763. .next = m_next,
  764. .stop = m_stop,
  765. .show = show_tid_smap
  766. };
  767. static int pid_smaps_open(struct inode *inode, struct file *file)
  768. {
  769. return do_maps_open(inode, file, &proc_pid_smaps_op);
  770. }
  771. static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
  772. {
  773. struct seq_file *seq;
  774. struct proc_maps_private *priv;
  775. int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
  776. if (ret < 0)
  777. return ret;
  778. seq = file->private_data;
  779. priv = seq->private;
  780. priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
  781. if (!priv->rollup) {
  782. proc_map_release(inode, file);
  783. return -ENOMEM;
  784. }
  785. priv->rollup->first = true;
  786. return 0;
  787. }
  788. static int tid_smaps_open(struct inode *inode, struct file *file)
  789. {
  790. return do_maps_open(inode, file, &proc_tid_smaps_op);
  791. }
  792. const struct file_operations proc_pid_smaps_operations = {
  793. .open = pid_smaps_open,
  794. .read = seq_read,
  795. .llseek = seq_lseek,
  796. .release = proc_map_release,
  797. };
  798. const struct file_operations proc_pid_smaps_rollup_operations = {
  799. .open = pid_smaps_rollup_open,
  800. .read = seq_read,
  801. .llseek = seq_lseek,
  802. .release = proc_map_release,
  803. };
  804. const struct file_operations proc_tid_smaps_operations = {
  805. .open = tid_smaps_open,
  806. .read = seq_read,
  807. .llseek = seq_lseek,
  808. .release = proc_map_release,
  809. };
  810. enum clear_refs_types {
  811. CLEAR_REFS_ALL = 1,
  812. CLEAR_REFS_ANON,
  813. CLEAR_REFS_MAPPED,
  814. CLEAR_REFS_SOFT_DIRTY,
  815. CLEAR_REFS_MM_HIWATER_RSS,
  816. CLEAR_REFS_LAST,
  817. };
  818. struct clear_refs_private {
  819. enum clear_refs_types type;
  820. };
  821. #ifdef CONFIG_MEM_SOFT_DIRTY
  822. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  823. unsigned long addr, pte_t *pte)
  824. {
  825. /*
  826. * The soft-dirty tracker uses #PF-s to catch writes
  827. * to pages, so write-protect the pte as well. See the
  828. * Documentation/vm/soft-dirty.txt for full description
  829. * of how soft-dirty works.
  830. */
  831. pte_t ptent = *pte;
  832. if (pte_present(ptent)) {
  833. ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
  834. ptent = pte_wrprotect(ptent);
  835. ptent = pte_clear_soft_dirty(ptent);
  836. ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
  837. } else if (is_swap_pte(ptent)) {
  838. ptent = pte_swp_clear_soft_dirty(ptent);
  839. set_pte_at(vma->vm_mm, addr, pte, ptent);
  840. }
  841. }
  842. #else
  843. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  844. unsigned long addr, pte_t *pte)
  845. {
  846. }
  847. #endif
  848. #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
  849. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  850. unsigned long addr, pmd_t *pmdp)
  851. {
  852. pmd_t old, pmd = *pmdp;
  853. if (pmd_present(pmd)) {
  854. /* See comment in change_huge_pmd() */
  855. old = pmdp_invalidate(vma, addr, pmdp);
  856. if (pmd_dirty(old))
  857. pmd = pmd_mkdirty(pmd);
  858. if (pmd_young(old))
  859. pmd = pmd_mkyoung(pmd);
  860. pmd = pmd_wrprotect(pmd);
  861. pmd = pmd_clear_soft_dirty(pmd);
  862. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  863. } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
  864. pmd = pmd_swp_clear_soft_dirty(pmd);
  865. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  866. }
  867. }
  868. #else
  869. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  870. unsigned long addr, pmd_t *pmdp)
  871. {
  872. }
  873. #endif
  874. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  875. unsigned long end, struct mm_walk *walk)
  876. {
  877. struct clear_refs_private *cp = walk->private;
  878. struct vm_area_struct *vma = walk->vma;
  879. pte_t *pte, ptent;
  880. spinlock_t *ptl;
  881. struct page *page;
  882. ptl = pmd_trans_huge_lock(pmd, vma);
  883. if (ptl) {
  884. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  885. clear_soft_dirty_pmd(vma, addr, pmd);
  886. goto out;
  887. }
  888. if (!pmd_present(*pmd))
  889. goto out;
  890. page = pmd_page(*pmd);
  891. /* Clear accessed and referenced bits. */
  892. pmdp_test_and_clear_young(vma, addr, pmd);
  893. test_and_clear_page_young(page);
  894. ClearPageReferenced(page);
  895. out:
  896. spin_unlock(ptl);
  897. return 0;
  898. }
  899. if (pmd_trans_unstable(pmd))
  900. return 0;
  901. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  902. for (; addr != end; pte++, addr += PAGE_SIZE) {
  903. ptent = *pte;
  904. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  905. clear_soft_dirty(vma, addr, pte);
  906. continue;
  907. }
  908. if (!pte_present(ptent))
  909. continue;
  910. page = vm_normal_page(vma, addr, ptent);
  911. if (!page)
  912. continue;
  913. /* Clear accessed and referenced bits. */
  914. ptep_test_and_clear_young(vma, addr, pte);
  915. test_and_clear_page_young(page);
  916. ClearPageReferenced(page);
  917. }
  918. pte_unmap_unlock(pte - 1, ptl);
  919. cond_resched();
  920. return 0;
  921. }
  922. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  923. struct mm_walk *walk)
  924. {
  925. struct clear_refs_private *cp = walk->private;
  926. struct vm_area_struct *vma = walk->vma;
  927. if (vma->vm_flags & VM_PFNMAP)
  928. return 1;
  929. /*
  930. * Writing 1 to /proc/pid/clear_refs affects all pages.
  931. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  932. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  933. * Writing 4 to /proc/pid/clear_refs affects all pages.
  934. */
  935. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  936. return 1;
  937. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  938. return 1;
  939. return 0;
  940. }
  941. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  942. size_t count, loff_t *ppos)
  943. {
  944. struct task_struct *task;
  945. char buffer[PROC_NUMBUF];
  946. struct mm_struct *mm;
  947. struct vm_area_struct *vma;
  948. enum clear_refs_types type;
  949. struct mmu_gather tlb;
  950. int itype;
  951. int rv;
  952. memset(buffer, 0, sizeof(buffer));
  953. if (count > sizeof(buffer) - 1)
  954. count = sizeof(buffer) - 1;
  955. if (copy_from_user(buffer, buf, count))
  956. return -EFAULT;
  957. rv = kstrtoint(strstrip(buffer), 10, &itype);
  958. if (rv < 0)
  959. return rv;
  960. type = (enum clear_refs_types)itype;
  961. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  962. return -EINVAL;
  963. task = get_proc_task(file_inode(file));
  964. if (!task)
  965. return -ESRCH;
  966. mm = get_task_mm(task);
  967. if (mm) {
  968. struct clear_refs_private cp = {
  969. .type = type,
  970. };
  971. struct mm_walk clear_refs_walk = {
  972. .pmd_entry = clear_refs_pte_range,
  973. .test_walk = clear_refs_test_walk,
  974. .mm = mm,
  975. .private = &cp,
  976. };
  977. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  978. if (down_write_killable(&mm->mmap_sem)) {
  979. count = -EINTR;
  980. goto out_mm;
  981. }
  982. /*
  983. * Writing 5 to /proc/pid/clear_refs resets the peak
  984. * resident set size to this mm's current rss value.
  985. */
  986. reset_mm_hiwater_rss(mm);
  987. up_write(&mm->mmap_sem);
  988. goto out_mm;
  989. }
  990. down_read(&mm->mmap_sem);
  991. tlb_gather_mmu(&tlb, mm, 0, -1);
  992. if (type == CLEAR_REFS_SOFT_DIRTY) {
  993. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  994. if (!(vma->vm_flags & VM_SOFTDIRTY))
  995. continue;
  996. up_read(&mm->mmap_sem);
  997. if (down_write_killable(&mm->mmap_sem)) {
  998. count = -EINTR;
  999. goto out_mm;
  1000. }
  1001. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  1002. vma->vm_flags &= ~VM_SOFTDIRTY;
  1003. vma_set_page_prot(vma);
  1004. }
  1005. downgrade_write(&mm->mmap_sem);
  1006. break;
  1007. }
  1008. mmu_notifier_invalidate_range_start(mm, 0, -1);
  1009. }
  1010. walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
  1011. if (type == CLEAR_REFS_SOFT_DIRTY)
  1012. mmu_notifier_invalidate_range_end(mm, 0, -1);
  1013. tlb_finish_mmu(&tlb, 0, -1);
  1014. up_read(&mm->mmap_sem);
  1015. out_mm:
  1016. mmput(mm);
  1017. }
  1018. put_task_struct(task);
  1019. return count;
  1020. }
  1021. const struct file_operations proc_clear_refs_operations = {
  1022. .write = clear_refs_write,
  1023. .llseek = noop_llseek,
  1024. };
  1025. typedef struct {
  1026. u64 pme;
  1027. } pagemap_entry_t;
  1028. struct pagemapread {
  1029. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  1030. pagemap_entry_t *buffer;
  1031. bool show_pfn;
  1032. };
  1033. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  1034. #define PAGEMAP_WALK_MASK (PMD_MASK)
  1035. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  1036. #define PM_PFRAME_BITS 55
  1037. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  1038. #define PM_SOFT_DIRTY BIT_ULL(55)
  1039. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  1040. #define PM_FILE BIT_ULL(61)
  1041. #define PM_SWAP BIT_ULL(62)
  1042. #define PM_PRESENT BIT_ULL(63)
  1043. #define PM_END_OF_BUFFER 1
  1044. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  1045. {
  1046. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  1047. }
  1048. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  1049. struct pagemapread *pm)
  1050. {
  1051. pm->buffer[pm->pos++] = *pme;
  1052. if (pm->pos >= pm->len)
  1053. return PM_END_OF_BUFFER;
  1054. return 0;
  1055. }
  1056. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  1057. struct mm_walk *walk)
  1058. {
  1059. struct pagemapread *pm = walk->private;
  1060. unsigned long addr = start;
  1061. int err = 0;
  1062. while (addr < end) {
  1063. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  1064. pagemap_entry_t pme = make_pme(0, 0);
  1065. /* End of address space hole, which we mark as non-present. */
  1066. unsigned long hole_end;
  1067. if (vma)
  1068. hole_end = min(end, vma->vm_start);
  1069. else
  1070. hole_end = end;
  1071. for (; addr < hole_end; addr += PAGE_SIZE) {
  1072. err = add_to_pagemap(addr, &pme, pm);
  1073. if (err)
  1074. goto out;
  1075. }
  1076. if (!vma)
  1077. break;
  1078. /* Addresses in the VMA. */
  1079. if (vma->vm_flags & VM_SOFTDIRTY)
  1080. pme = make_pme(0, PM_SOFT_DIRTY);
  1081. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  1082. err = add_to_pagemap(addr, &pme, pm);
  1083. if (err)
  1084. goto out;
  1085. }
  1086. }
  1087. out:
  1088. return err;
  1089. }
  1090. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  1091. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  1092. {
  1093. u64 frame = 0, flags = 0;
  1094. struct page *page = NULL;
  1095. if (pte_present(pte)) {
  1096. if (pm->show_pfn)
  1097. frame = pte_pfn(pte);
  1098. flags |= PM_PRESENT;
  1099. page = _vm_normal_page(vma, addr, pte, true);
  1100. if (pte_soft_dirty(pte))
  1101. flags |= PM_SOFT_DIRTY;
  1102. } else if (is_swap_pte(pte)) {
  1103. swp_entry_t entry;
  1104. if (pte_swp_soft_dirty(pte))
  1105. flags |= PM_SOFT_DIRTY;
  1106. entry = pte_to_swp_entry(pte);
  1107. frame = swp_type(entry) |
  1108. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  1109. flags |= PM_SWAP;
  1110. if (is_migration_entry(entry))
  1111. page = migration_entry_to_page(entry);
  1112. if (is_device_private_entry(entry))
  1113. page = device_private_entry_to_page(entry);
  1114. }
  1115. if (page && !PageAnon(page))
  1116. flags |= PM_FILE;
  1117. if (page && page_mapcount(page) == 1)
  1118. flags |= PM_MMAP_EXCLUSIVE;
  1119. if (vma->vm_flags & VM_SOFTDIRTY)
  1120. flags |= PM_SOFT_DIRTY;
  1121. return make_pme(frame, flags);
  1122. }
  1123. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  1124. struct mm_walk *walk)
  1125. {
  1126. struct vm_area_struct *vma = walk->vma;
  1127. struct pagemapread *pm = walk->private;
  1128. spinlock_t *ptl;
  1129. pte_t *pte, *orig_pte;
  1130. int err = 0;
  1131. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1132. ptl = pmd_trans_huge_lock(pmdp, vma);
  1133. if (ptl) {
  1134. u64 flags = 0, frame = 0;
  1135. pmd_t pmd = *pmdp;
  1136. struct page *page = NULL;
  1137. if (vma->vm_flags & VM_SOFTDIRTY)
  1138. flags |= PM_SOFT_DIRTY;
  1139. if (pmd_present(pmd)) {
  1140. page = pmd_page(pmd);
  1141. flags |= PM_PRESENT;
  1142. if (pmd_soft_dirty(pmd))
  1143. flags |= PM_SOFT_DIRTY;
  1144. if (pm->show_pfn)
  1145. frame = pmd_pfn(pmd) +
  1146. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  1147. }
  1148. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  1149. else if (is_swap_pmd(pmd)) {
  1150. swp_entry_t entry = pmd_to_swp_entry(pmd);
  1151. unsigned long offset = swp_offset(entry);
  1152. offset += (addr & ~PMD_MASK) >> PAGE_SHIFT;
  1153. frame = swp_type(entry) |
  1154. (offset << MAX_SWAPFILES_SHIFT);
  1155. flags |= PM_SWAP;
  1156. if (pmd_swp_soft_dirty(pmd))
  1157. flags |= PM_SOFT_DIRTY;
  1158. VM_BUG_ON(!is_pmd_migration_entry(pmd));
  1159. page = migration_entry_to_page(entry);
  1160. }
  1161. #endif
  1162. if (page && page_mapcount(page) == 1)
  1163. flags |= PM_MMAP_EXCLUSIVE;
  1164. for (; addr != end; addr += PAGE_SIZE) {
  1165. pagemap_entry_t pme = make_pme(frame, flags);
  1166. err = add_to_pagemap(addr, &pme, pm);
  1167. if (err)
  1168. break;
  1169. if (pm->show_pfn && (flags & PM_PRESENT))
  1170. frame++;
  1171. else if (flags & PM_SWAP)
  1172. frame += (1 << MAX_SWAPFILES_SHIFT);
  1173. }
  1174. spin_unlock(ptl);
  1175. return err;
  1176. }
  1177. if (pmd_trans_unstable(pmdp))
  1178. return 0;
  1179. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  1180. /*
  1181. * We can assume that @vma always points to a valid one and @end never
  1182. * goes beyond vma->vm_end.
  1183. */
  1184. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  1185. for (; addr < end; pte++, addr += PAGE_SIZE) {
  1186. pagemap_entry_t pme;
  1187. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  1188. err = add_to_pagemap(addr, &pme, pm);
  1189. if (err)
  1190. break;
  1191. }
  1192. pte_unmap_unlock(orig_pte, ptl);
  1193. cond_resched();
  1194. return err;
  1195. }
  1196. #ifdef CONFIG_HUGETLB_PAGE
  1197. /* This function walks within one hugetlb entry in the single call */
  1198. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  1199. unsigned long addr, unsigned long end,
  1200. struct mm_walk *walk)
  1201. {
  1202. struct pagemapread *pm = walk->private;
  1203. struct vm_area_struct *vma = walk->vma;
  1204. u64 flags = 0, frame = 0;
  1205. int err = 0;
  1206. pte_t pte;
  1207. if (vma->vm_flags & VM_SOFTDIRTY)
  1208. flags |= PM_SOFT_DIRTY;
  1209. pte = huge_ptep_get(ptep);
  1210. if (pte_present(pte)) {
  1211. struct page *page = pte_page(pte);
  1212. if (!PageAnon(page))
  1213. flags |= PM_FILE;
  1214. if (page_mapcount(page) == 1)
  1215. flags |= PM_MMAP_EXCLUSIVE;
  1216. flags |= PM_PRESENT;
  1217. if (pm->show_pfn)
  1218. frame = pte_pfn(pte) +
  1219. ((addr & ~hmask) >> PAGE_SHIFT);
  1220. }
  1221. for (; addr != end; addr += PAGE_SIZE) {
  1222. pagemap_entry_t pme = make_pme(frame, flags);
  1223. err = add_to_pagemap(addr, &pme, pm);
  1224. if (err)
  1225. return err;
  1226. if (pm->show_pfn && (flags & PM_PRESENT))
  1227. frame++;
  1228. }
  1229. cond_resched();
  1230. return err;
  1231. }
  1232. #endif /* HUGETLB_PAGE */
  1233. /*
  1234. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1235. *
  1236. * For each page in the address space, this file contains one 64-bit entry
  1237. * consisting of the following:
  1238. *
  1239. * Bits 0-54 page frame number (PFN) if present
  1240. * Bits 0-4 swap type if swapped
  1241. * Bits 5-54 swap offset if swapped
  1242. * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
  1243. * Bit 56 page exclusively mapped
  1244. * Bits 57-60 zero
  1245. * Bit 61 page is file-page or shared-anon
  1246. * Bit 62 page swapped
  1247. * Bit 63 page present
  1248. *
  1249. * If the page is not present but in swap, then the PFN contains an
  1250. * encoding of the swap file number and the page's offset into the
  1251. * swap. Unmapped pages return a null PFN. This allows determining
  1252. * precisely which pages are mapped (or in swap) and comparing mapped
  1253. * pages between processes.
  1254. *
  1255. * Efficient users of this interface will use /proc/pid/maps to
  1256. * determine which areas of memory are actually mapped and llseek to
  1257. * skip over unmapped regions.
  1258. */
  1259. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1260. size_t count, loff_t *ppos)
  1261. {
  1262. struct mm_struct *mm = file->private_data;
  1263. struct pagemapread pm;
  1264. struct mm_walk pagemap_walk = {};
  1265. unsigned long src;
  1266. unsigned long svpfn;
  1267. unsigned long start_vaddr;
  1268. unsigned long end_vaddr;
  1269. int ret = 0, copied = 0;
  1270. if (!mm || !mmget_not_zero(mm))
  1271. goto out;
  1272. ret = -EINVAL;
  1273. /* file position must be aligned */
  1274. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1275. goto out_mm;
  1276. ret = 0;
  1277. if (!count)
  1278. goto out_mm;
  1279. /* do not disclose physical addresses: attack vector */
  1280. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1281. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1282. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL);
  1283. ret = -ENOMEM;
  1284. if (!pm.buffer)
  1285. goto out_mm;
  1286. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1287. pagemap_walk.pte_hole = pagemap_pte_hole;
  1288. #ifdef CONFIG_HUGETLB_PAGE
  1289. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1290. #endif
  1291. pagemap_walk.mm = mm;
  1292. pagemap_walk.private = &pm;
  1293. src = *ppos;
  1294. svpfn = src / PM_ENTRY_BYTES;
  1295. start_vaddr = svpfn << PAGE_SHIFT;
  1296. end_vaddr = mm->task_size;
  1297. /* watch out for wraparound */
  1298. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1299. start_vaddr = end_vaddr;
  1300. /*
  1301. * The odds are that this will stop walking way
  1302. * before end_vaddr, because the length of the
  1303. * user buffer is tracked in "pm", and the walk
  1304. * will stop when we hit the end of the buffer.
  1305. */
  1306. ret = 0;
  1307. while (count && (start_vaddr < end_vaddr)) {
  1308. int len;
  1309. unsigned long end;
  1310. pm.pos = 0;
  1311. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1312. /* overflow ? */
  1313. if (end < start_vaddr || end > end_vaddr)
  1314. end = end_vaddr;
  1315. down_read(&mm->mmap_sem);
  1316. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1317. up_read(&mm->mmap_sem);
  1318. start_vaddr = end;
  1319. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1320. if (copy_to_user(buf, pm.buffer, len)) {
  1321. ret = -EFAULT;
  1322. goto out_free;
  1323. }
  1324. copied += len;
  1325. buf += len;
  1326. count -= len;
  1327. }
  1328. *ppos += copied;
  1329. if (!ret || ret == PM_END_OF_BUFFER)
  1330. ret = copied;
  1331. out_free:
  1332. kfree(pm.buffer);
  1333. out_mm:
  1334. mmput(mm);
  1335. out:
  1336. return ret;
  1337. }
  1338. static int pagemap_open(struct inode *inode, struct file *file)
  1339. {
  1340. struct mm_struct *mm;
  1341. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1342. if (IS_ERR(mm))
  1343. return PTR_ERR(mm);
  1344. file->private_data = mm;
  1345. return 0;
  1346. }
  1347. static int pagemap_release(struct inode *inode, struct file *file)
  1348. {
  1349. struct mm_struct *mm = file->private_data;
  1350. if (mm)
  1351. mmdrop(mm);
  1352. return 0;
  1353. }
  1354. const struct file_operations proc_pagemap_operations = {
  1355. .llseek = mem_lseek, /* borrow this */
  1356. .read = pagemap_read,
  1357. .open = pagemap_open,
  1358. .release = pagemap_release,
  1359. };
  1360. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1361. #ifdef CONFIG_NUMA
  1362. struct numa_maps {
  1363. unsigned long pages;
  1364. unsigned long anon;
  1365. unsigned long active;
  1366. unsigned long writeback;
  1367. unsigned long mapcount_max;
  1368. unsigned long dirty;
  1369. unsigned long swapcache;
  1370. unsigned long node[MAX_NUMNODES];
  1371. };
  1372. struct numa_maps_private {
  1373. struct proc_maps_private proc_maps;
  1374. struct numa_maps md;
  1375. };
  1376. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1377. unsigned long nr_pages)
  1378. {
  1379. int count = page_mapcount(page);
  1380. md->pages += nr_pages;
  1381. if (pte_dirty || PageDirty(page))
  1382. md->dirty += nr_pages;
  1383. if (PageSwapCache(page))
  1384. md->swapcache += nr_pages;
  1385. if (PageActive(page) || PageUnevictable(page))
  1386. md->active += nr_pages;
  1387. if (PageWriteback(page))
  1388. md->writeback += nr_pages;
  1389. if (PageAnon(page))
  1390. md->anon += nr_pages;
  1391. if (count > md->mapcount_max)
  1392. md->mapcount_max = count;
  1393. md->node[page_to_nid(page)] += nr_pages;
  1394. }
  1395. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1396. unsigned long addr)
  1397. {
  1398. struct page *page;
  1399. int nid;
  1400. if (!pte_present(pte))
  1401. return NULL;
  1402. page = vm_normal_page(vma, addr, pte);
  1403. if (!page)
  1404. return NULL;
  1405. if (PageReserved(page))
  1406. return NULL;
  1407. nid = page_to_nid(page);
  1408. if (!node_isset(nid, node_states[N_MEMORY]))
  1409. return NULL;
  1410. return page;
  1411. }
  1412. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1413. static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
  1414. struct vm_area_struct *vma,
  1415. unsigned long addr)
  1416. {
  1417. struct page *page;
  1418. int nid;
  1419. if (!pmd_present(pmd))
  1420. return NULL;
  1421. page = vm_normal_page_pmd(vma, addr, pmd);
  1422. if (!page)
  1423. return NULL;
  1424. if (PageReserved(page))
  1425. return NULL;
  1426. nid = page_to_nid(page);
  1427. if (!node_isset(nid, node_states[N_MEMORY]))
  1428. return NULL;
  1429. return page;
  1430. }
  1431. #endif
  1432. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1433. unsigned long end, struct mm_walk *walk)
  1434. {
  1435. struct numa_maps *md = walk->private;
  1436. struct vm_area_struct *vma = walk->vma;
  1437. spinlock_t *ptl;
  1438. pte_t *orig_pte;
  1439. pte_t *pte;
  1440. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1441. ptl = pmd_trans_huge_lock(pmd, vma);
  1442. if (ptl) {
  1443. struct page *page;
  1444. page = can_gather_numa_stats_pmd(*pmd, vma, addr);
  1445. if (page)
  1446. gather_stats(page, md, pmd_dirty(*pmd),
  1447. HPAGE_PMD_SIZE/PAGE_SIZE);
  1448. spin_unlock(ptl);
  1449. return 0;
  1450. }
  1451. if (pmd_trans_unstable(pmd))
  1452. return 0;
  1453. #endif
  1454. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1455. do {
  1456. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1457. if (!page)
  1458. continue;
  1459. gather_stats(page, md, pte_dirty(*pte), 1);
  1460. } while (pte++, addr += PAGE_SIZE, addr != end);
  1461. pte_unmap_unlock(orig_pte, ptl);
  1462. cond_resched();
  1463. return 0;
  1464. }
  1465. #ifdef CONFIG_HUGETLB_PAGE
  1466. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1467. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1468. {
  1469. pte_t huge_pte = huge_ptep_get(pte);
  1470. struct numa_maps *md;
  1471. struct page *page;
  1472. if (!pte_present(huge_pte))
  1473. return 0;
  1474. page = pte_page(huge_pte);
  1475. if (!page)
  1476. return 0;
  1477. md = walk->private;
  1478. gather_stats(page, md, pte_dirty(huge_pte), 1);
  1479. return 0;
  1480. }
  1481. #else
  1482. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1483. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1484. {
  1485. return 0;
  1486. }
  1487. #endif
  1488. /*
  1489. * Display pages allocated per node and memory policy via /proc.
  1490. */
  1491. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1492. {
  1493. struct numa_maps_private *numa_priv = m->private;
  1494. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1495. struct vm_area_struct *vma = v;
  1496. struct numa_maps *md = &numa_priv->md;
  1497. struct file *file = vma->vm_file;
  1498. struct mm_struct *mm = vma->vm_mm;
  1499. struct mm_walk walk = {
  1500. .hugetlb_entry = gather_hugetlb_stats,
  1501. .pmd_entry = gather_pte_stats,
  1502. .private = md,
  1503. .mm = mm,
  1504. };
  1505. struct mempolicy *pol;
  1506. char buffer[64];
  1507. int nid;
  1508. if (!mm)
  1509. return 0;
  1510. /* Ensure we start with an empty set of numa_maps statistics. */
  1511. memset(md, 0, sizeof(*md));
  1512. pol = __get_vma_policy(vma, vma->vm_start);
  1513. if (pol) {
  1514. mpol_to_str(buffer, sizeof(buffer), pol);
  1515. mpol_cond_put(pol);
  1516. } else {
  1517. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1518. }
  1519. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1520. if (file) {
  1521. seq_puts(m, " file=");
  1522. seq_file_path(m, file, "\n\t= ");
  1523. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1524. seq_puts(m, " heap");
  1525. } else if (is_stack(vma)) {
  1526. seq_puts(m, " stack");
  1527. }
  1528. if (is_vm_hugetlb_page(vma))
  1529. seq_puts(m, " huge");
  1530. /* mmap_sem is held by m_start */
  1531. walk_page_vma(vma, &walk);
  1532. if (!md->pages)
  1533. goto out;
  1534. if (md->anon)
  1535. seq_printf(m, " anon=%lu", md->anon);
  1536. if (md->dirty)
  1537. seq_printf(m, " dirty=%lu", md->dirty);
  1538. if (md->pages != md->anon && md->pages != md->dirty)
  1539. seq_printf(m, " mapped=%lu", md->pages);
  1540. if (md->mapcount_max > 1)
  1541. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1542. if (md->swapcache)
  1543. seq_printf(m, " swapcache=%lu", md->swapcache);
  1544. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1545. seq_printf(m, " active=%lu", md->active);
  1546. if (md->writeback)
  1547. seq_printf(m, " writeback=%lu", md->writeback);
  1548. for_each_node_state(nid, N_MEMORY)
  1549. if (md->node[nid])
  1550. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1551. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1552. out:
  1553. seq_putc(m, '\n');
  1554. m_cache_vma(m, vma);
  1555. return 0;
  1556. }
  1557. static int show_pid_numa_map(struct seq_file *m, void *v)
  1558. {
  1559. return show_numa_map(m, v, 1);
  1560. }
  1561. static int show_tid_numa_map(struct seq_file *m, void *v)
  1562. {
  1563. return show_numa_map(m, v, 0);
  1564. }
  1565. static const struct seq_operations proc_pid_numa_maps_op = {
  1566. .start = m_start,
  1567. .next = m_next,
  1568. .stop = m_stop,
  1569. .show = show_pid_numa_map,
  1570. };
  1571. static const struct seq_operations proc_tid_numa_maps_op = {
  1572. .start = m_start,
  1573. .next = m_next,
  1574. .stop = m_stop,
  1575. .show = show_tid_numa_map,
  1576. };
  1577. static int numa_maps_open(struct inode *inode, struct file *file,
  1578. const struct seq_operations *ops)
  1579. {
  1580. return proc_maps_open(inode, file, ops,
  1581. sizeof(struct numa_maps_private));
  1582. }
  1583. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1584. {
  1585. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1586. }
  1587. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1588. {
  1589. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1590. }
  1591. const struct file_operations proc_pid_numa_maps_operations = {
  1592. .open = pid_numa_maps_open,
  1593. .read = seq_read,
  1594. .llseek = seq_lseek,
  1595. .release = proc_map_release,
  1596. };
  1597. const struct file_operations proc_tid_numa_maps_operations = {
  1598. .open = tid_numa_maps_open,
  1599. .read = seq_read,
  1600. .llseek = seq_lseek,
  1601. .release = proc_map_release,
  1602. };
  1603. #endif /* CONFIG_NUMA */