intel_ringbuffer.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  35. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  36. * to give some inclination as to some of the magic values used in the various
  37. * workarounds!
  38. */
  39. #define CACHELINE_BYTES 64
  40. static inline int __ring_space(int head, int tail, int size)
  41. {
  42. int space = head - (tail + I915_RING_FREE_SPACE);
  43. if (space < 0)
  44. space += size;
  45. return space;
  46. }
  47. static inline int ring_space(struct intel_ringbuffer *ringbuf)
  48. {
  49. return __ring_space(ringbuf->head & HEAD_ADDR, ringbuf->tail, ringbuf->size);
  50. }
  51. static bool intel_ring_stopped(struct intel_engine_cs *ring)
  52. {
  53. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  54. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  55. }
  56. void __intel_ring_advance(struct intel_engine_cs *ring)
  57. {
  58. struct intel_ringbuffer *ringbuf = ring->buffer;
  59. ringbuf->tail &= ringbuf->size - 1;
  60. if (intel_ring_stopped(ring))
  61. return;
  62. ring->write_tail(ring, ringbuf->tail);
  63. }
  64. static int
  65. gen2_render_ring_flush(struct intel_engine_cs *ring,
  66. u32 invalidate_domains,
  67. u32 flush_domains)
  68. {
  69. u32 cmd;
  70. int ret;
  71. cmd = MI_FLUSH;
  72. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  73. cmd |= MI_NO_WRITE_FLUSH;
  74. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  75. cmd |= MI_READ_FLUSH;
  76. ret = intel_ring_begin(ring, 2);
  77. if (ret)
  78. return ret;
  79. intel_ring_emit(ring, cmd);
  80. intel_ring_emit(ring, MI_NOOP);
  81. intel_ring_advance(ring);
  82. return 0;
  83. }
  84. static int
  85. gen4_render_ring_flush(struct intel_engine_cs *ring,
  86. u32 invalidate_domains,
  87. u32 flush_domains)
  88. {
  89. struct drm_device *dev = ring->dev;
  90. u32 cmd;
  91. int ret;
  92. /*
  93. * read/write caches:
  94. *
  95. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  96. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  97. * also flushed at 2d versus 3d pipeline switches.
  98. *
  99. * read-only caches:
  100. *
  101. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  102. * MI_READ_FLUSH is set, and is always flushed on 965.
  103. *
  104. * I915_GEM_DOMAIN_COMMAND may not exist?
  105. *
  106. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  107. * invalidated when MI_EXE_FLUSH is set.
  108. *
  109. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  110. * invalidated with every MI_FLUSH.
  111. *
  112. * TLBs:
  113. *
  114. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  115. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  116. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  117. * are flushed at any MI_FLUSH.
  118. */
  119. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  120. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  121. cmd &= ~MI_NO_WRITE_FLUSH;
  122. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  123. cmd |= MI_EXE_FLUSH;
  124. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  125. (IS_G4X(dev) || IS_GEN5(dev)))
  126. cmd |= MI_INVALIDATE_ISP;
  127. ret = intel_ring_begin(ring, 2);
  128. if (ret)
  129. return ret;
  130. intel_ring_emit(ring, cmd);
  131. intel_ring_emit(ring, MI_NOOP);
  132. intel_ring_advance(ring);
  133. return 0;
  134. }
  135. /**
  136. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  137. * implementing two workarounds on gen6. From section 1.4.7.1
  138. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  139. *
  140. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  141. * produced by non-pipelined state commands), software needs to first
  142. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  143. * 0.
  144. *
  145. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  146. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  147. *
  148. * And the workaround for these two requires this workaround first:
  149. *
  150. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  151. * BEFORE the pipe-control with a post-sync op and no write-cache
  152. * flushes.
  153. *
  154. * And this last workaround is tricky because of the requirements on
  155. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  156. * volume 2 part 1:
  157. *
  158. * "1 of the following must also be set:
  159. * - Render Target Cache Flush Enable ([12] of DW1)
  160. * - Depth Cache Flush Enable ([0] of DW1)
  161. * - Stall at Pixel Scoreboard ([1] of DW1)
  162. * - Depth Stall ([13] of DW1)
  163. * - Post-Sync Operation ([13] of DW1)
  164. * - Notify Enable ([8] of DW1)"
  165. *
  166. * The cache flushes require the workaround flush that triggered this
  167. * one, so we can't use it. Depth stall would trigger the same.
  168. * Post-sync nonzero is what triggered this second workaround, so we
  169. * can't use that one either. Notify enable is IRQs, which aren't
  170. * really our business. That leaves only stall at scoreboard.
  171. */
  172. static int
  173. intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
  174. {
  175. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  176. int ret;
  177. ret = intel_ring_begin(ring, 6);
  178. if (ret)
  179. return ret;
  180. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  181. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  182. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  183. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  184. intel_ring_emit(ring, 0); /* low dword */
  185. intel_ring_emit(ring, 0); /* high dword */
  186. intel_ring_emit(ring, MI_NOOP);
  187. intel_ring_advance(ring);
  188. ret = intel_ring_begin(ring, 6);
  189. if (ret)
  190. return ret;
  191. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  192. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  193. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  194. intel_ring_emit(ring, 0);
  195. intel_ring_emit(ring, 0);
  196. intel_ring_emit(ring, MI_NOOP);
  197. intel_ring_advance(ring);
  198. return 0;
  199. }
  200. static int
  201. gen6_render_ring_flush(struct intel_engine_cs *ring,
  202. u32 invalidate_domains, u32 flush_domains)
  203. {
  204. u32 flags = 0;
  205. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  206. int ret;
  207. /* Force SNB workarounds for PIPE_CONTROL flushes */
  208. ret = intel_emit_post_sync_nonzero_flush(ring);
  209. if (ret)
  210. return ret;
  211. /* Just flush everything. Experiments have shown that reducing the
  212. * number of bits based on the write domains has little performance
  213. * impact.
  214. */
  215. if (flush_domains) {
  216. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  217. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  218. /*
  219. * Ensure that any following seqno writes only happen
  220. * when the render cache is indeed flushed.
  221. */
  222. flags |= PIPE_CONTROL_CS_STALL;
  223. }
  224. if (invalidate_domains) {
  225. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  226. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  227. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  228. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  229. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  230. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  231. /*
  232. * TLB invalidate requires a post-sync write.
  233. */
  234. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  235. }
  236. ret = intel_ring_begin(ring, 4);
  237. if (ret)
  238. return ret;
  239. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  240. intel_ring_emit(ring, flags);
  241. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  242. intel_ring_emit(ring, 0);
  243. intel_ring_advance(ring);
  244. return 0;
  245. }
  246. static int
  247. gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
  248. {
  249. int ret;
  250. ret = intel_ring_begin(ring, 4);
  251. if (ret)
  252. return ret;
  253. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  254. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  255. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  256. intel_ring_emit(ring, 0);
  257. intel_ring_emit(ring, 0);
  258. intel_ring_advance(ring);
  259. return 0;
  260. }
  261. static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
  262. {
  263. int ret;
  264. if (!ring->fbc_dirty)
  265. return 0;
  266. ret = intel_ring_begin(ring, 6);
  267. if (ret)
  268. return ret;
  269. /* WaFbcNukeOn3DBlt:ivb/hsw */
  270. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  271. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  272. intel_ring_emit(ring, value);
  273. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
  274. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  275. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  276. intel_ring_advance(ring);
  277. ring->fbc_dirty = false;
  278. return 0;
  279. }
  280. static int
  281. gen7_render_ring_flush(struct intel_engine_cs *ring,
  282. u32 invalidate_domains, u32 flush_domains)
  283. {
  284. u32 flags = 0;
  285. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  286. int ret;
  287. /*
  288. * Ensure that any following seqno writes only happen when the render
  289. * cache is indeed flushed.
  290. *
  291. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  292. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  293. * don't try to be clever and just set it unconditionally.
  294. */
  295. flags |= PIPE_CONTROL_CS_STALL;
  296. /* Just flush everything. Experiments have shown that reducing the
  297. * number of bits based on the write domains has little performance
  298. * impact.
  299. */
  300. if (flush_domains) {
  301. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  302. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  303. }
  304. if (invalidate_domains) {
  305. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  306. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  307. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  308. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  309. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  310. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  311. /*
  312. * TLB invalidate requires a post-sync write.
  313. */
  314. flags |= PIPE_CONTROL_QW_WRITE;
  315. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  316. /* Workaround: we must issue a pipe_control with CS-stall bit
  317. * set before a pipe_control command that has the state cache
  318. * invalidate bit set. */
  319. gen7_render_ring_cs_stall_wa(ring);
  320. }
  321. ret = intel_ring_begin(ring, 4);
  322. if (ret)
  323. return ret;
  324. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  325. intel_ring_emit(ring, flags);
  326. intel_ring_emit(ring, scratch_addr);
  327. intel_ring_emit(ring, 0);
  328. intel_ring_advance(ring);
  329. if (!invalidate_domains && flush_domains)
  330. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  331. return 0;
  332. }
  333. static int
  334. gen8_emit_pipe_control(struct intel_engine_cs *ring,
  335. u32 flags, u32 scratch_addr)
  336. {
  337. int ret;
  338. ret = intel_ring_begin(ring, 6);
  339. if (ret)
  340. return ret;
  341. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  342. intel_ring_emit(ring, flags);
  343. intel_ring_emit(ring, scratch_addr);
  344. intel_ring_emit(ring, 0);
  345. intel_ring_emit(ring, 0);
  346. intel_ring_emit(ring, 0);
  347. intel_ring_advance(ring);
  348. return 0;
  349. }
  350. static int
  351. gen8_render_ring_flush(struct intel_engine_cs *ring,
  352. u32 invalidate_domains, u32 flush_domains)
  353. {
  354. u32 flags = 0;
  355. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  356. flags |= PIPE_CONTROL_CS_STALL;
  357. if (flush_domains) {
  358. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  359. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  360. }
  361. if (invalidate_domains) {
  362. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  363. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  365. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  366. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  367. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  368. flags |= PIPE_CONTROL_QW_WRITE;
  369. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  370. }
  371. return gen8_emit_pipe_control(ring, flags, scratch_addr);
  372. }
  373. static void ring_write_tail(struct intel_engine_cs *ring,
  374. u32 value)
  375. {
  376. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  377. I915_WRITE_TAIL(ring, value);
  378. }
  379. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  380. {
  381. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  382. u64 acthd;
  383. if (INTEL_INFO(ring->dev)->gen >= 8)
  384. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  385. RING_ACTHD_UDW(ring->mmio_base));
  386. else if (INTEL_INFO(ring->dev)->gen >= 4)
  387. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  388. else
  389. acthd = I915_READ(ACTHD);
  390. return acthd;
  391. }
  392. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  393. {
  394. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  395. u32 addr;
  396. addr = dev_priv->status_page_dmah->busaddr;
  397. if (INTEL_INFO(ring->dev)->gen >= 4)
  398. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  399. I915_WRITE(HWS_PGA, addr);
  400. }
  401. static bool stop_ring(struct intel_engine_cs *ring)
  402. {
  403. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  404. if (!IS_GEN2(ring->dev)) {
  405. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  406. if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  407. DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
  408. return false;
  409. }
  410. }
  411. I915_WRITE_CTL(ring, 0);
  412. I915_WRITE_HEAD(ring, 0);
  413. ring->write_tail(ring, 0);
  414. if (!IS_GEN2(ring->dev)) {
  415. (void)I915_READ_CTL(ring);
  416. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  417. }
  418. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  419. }
  420. static int init_ring_common(struct intel_engine_cs *ring)
  421. {
  422. struct drm_device *dev = ring->dev;
  423. struct drm_i915_private *dev_priv = dev->dev_private;
  424. struct intel_ringbuffer *ringbuf = ring->buffer;
  425. struct drm_i915_gem_object *obj = ringbuf->obj;
  426. int ret = 0;
  427. gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
  428. if (!stop_ring(ring)) {
  429. /* G45 ring initialization often fails to reset head to zero */
  430. DRM_DEBUG_KMS("%s head not reset to zero "
  431. "ctl %08x head %08x tail %08x start %08x\n",
  432. ring->name,
  433. I915_READ_CTL(ring),
  434. I915_READ_HEAD(ring),
  435. I915_READ_TAIL(ring),
  436. I915_READ_START(ring));
  437. if (!stop_ring(ring)) {
  438. DRM_ERROR("failed to set %s head to zero "
  439. "ctl %08x head %08x tail %08x start %08x\n",
  440. ring->name,
  441. I915_READ_CTL(ring),
  442. I915_READ_HEAD(ring),
  443. I915_READ_TAIL(ring),
  444. I915_READ_START(ring));
  445. ret = -EIO;
  446. goto out;
  447. }
  448. }
  449. if (I915_NEED_GFX_HWS(dev))
  450. intel_ring_setup_status_page(ring);
  451. else
  452. ring_setup_phys_status_page(ring);
  453. /* Initialize the ring. This must happen _after_ we've cleared the ring
  454. * registers with the above sequence (the readback of the HEAD registers
  455. * also enforces ordering), otherwise the hw might lose the new ring
  456. * register values. */
  457. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  458. I915_WRITE_CTL(ring,
  459. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  460. | RING_VALID);
  461. /* If the head is still not zero, the ring is dead */
  462. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  463. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  464. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  465. DRM_ERROR("%s initialization failed "
  466. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  467. ring->name,
  468. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  469. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  470. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  471. ret = -EIO;
  472. goto out;
  473. }
  474. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  475. i915_kernel_lost_context(ring->dev);
  476. else {
  477. ringbuf->head = I915_READ_HEAD(ring);
  478. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  479. ringbuf->space = ring_space(ringbuf);
  480. ringbuf->last_retired_head = -1;
  481. }
  482. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  483. out:
  484. gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
  485. return ret;
  486. }
  487. static int
  488. init_pipe_control(struct intel_engine_cs *ring)
  489. {
  490. int ret;
  491. if (ring->scratch.obj)
  492. return 0;
  493. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  494. if (ring->scratch.obj == NULL) {
  495. DRM_ERROR("Failed to allocate seqno page\n");
  496. ret = -ENOMEM;
  497. goto err;
  498. }
  499. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  500. if (ret)
  501. goto err_unref;
  502. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  503. if (ret)
  504. goto err_unref;
  505. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  506. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  507. if (ring->scratch.cpu_page == NULL) {
  508. ret = -ENOMEM;
  509. goto err_unpin;
  510. }
  511. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  512. ring->name, ring->scratch.gtt_offset);
  513. return 0;
  514. err_unpin:
  515. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  516. err_unref:
  517. drm_gem_object_unreference(&ring->scratch.obj->base);
  518. err:
  519. return ret;
  520. }
  521. static int init_render_ring(struct intel_engine_cs *ring)
  522. {
  523. struct drm_device *dev = ring->dev;
  524. struct drm_i915_private *dev_priv = dev->dev_private;
  525. int ret = init_ring_common(ring);
  526. if (ret)
  527. return ret;
  528. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  529. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  530. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  531. /* We need to disable the AsyncFlip performance optimisations in order
  532. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  533. * programmed to '1' on all products.
  534. *
  535. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
  536. */
  537. if (INTEL_INFO(dev)->gen >= 6)
  538. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  539. /* Required for the hardware to program scanline values for waiting */
  540. /* WaEnableFlushTlbInvalidationMode:snb */
  541. if (INTEL_INFO(dev)->gen == 6)
  542. I915_WRITE(GFX_MODE,
  543. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  544. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  545. if (IS_GEN7(dev))
  546. I915_WRITE(GFX_MODE_GEN7,
  547. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  548. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  549. if (INTEL_INFO(dev)->gen >= 5) {
  550. ret = init_pipe_control(ring);
  551. if (ret)
  552. return ret;
  553. }
  554. if (IS_GEN6(dev)) {
  555. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  556. * "If this bit is set, STCunit will have LRA as replacement
  557. * policy. [...] This bit must be reset. LRA replacement
  558. * policy is not supported."
  559. */
  560. I915_WRITE(CACHE_MODE_0,
  561. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  562. }
  563. if (INTEL_INFO(dev)->gen >= 6)
  564. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  565. if (HAS_L3_DPF(dev))
  566. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  567. return ret;
  568. }
  569. static void render_ring_cleanup(struct intel_engine_cs *ring)
  570. {
  571. struct drm_device *dev = ring->dev;
  572. struct drm_i915_private *dev_priv = dev->dev_private;
  573. if (dev_priv->semaphore_obj) {
  574. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  575. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  576. dev_priv->semaphore_obj = NULL;
  577. }
  578. if (ring->scratch.obj == NULL)
  579. return;
  580. if (INTEL_INFO(dev)->gen >= 5) {
  581. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  582. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  583. }
  584. drm_gem_object_unreference(&ring->scratch.obj->base);
  585. ring->scratch.obj = NULL;
  586. }
  587. static int gen8_rcs_signal(struct intel_engine_cs *signaller,
  588. unsigned int num_dwords)
  589. {
  590. #define MBOX_UPDATE_DWORDS 8
  591. struct drm_device *dev = signaller->dev;
  592. struct drm_i915_private *dev_priv = dev->dev_private;
  593. struct intel_engine_cs *waiter;
  594. int i, ret, num_rings;
  595. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  596. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  597. #undef MBOX_UPDATE_DWORDS
  598. ret = intel_ring_begin(signaller, num_dwords);
  599. if (ret)
  600. return ret;
  601. for_each_ring(waiter, dev_priv, i) {
  602. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  603. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  604. continue;
  605. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  606. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  607. PIPE_CONTROL_QW_WRITE |
  608. PIPE_CONTROL_FLUSH_ENABLE);
  609. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  610. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  611. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  612. intel_ring_emit(signaller, 0);
  613. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  614. MI_SEMAPHORE_TARGET(waiter->id));
  615. intel_ring_emit(signaller, 0);
  616. }
  617. return 0;
  618. }
  619. static int gen8_xcs_signal(struct intel_engine_cs *signaller,
  620. unsigned int num_dwords)
  621. {
  622. #define MBOX_UPDATE_DWORDS 6
  623. struct drm_device *dev = signaller->dev;
  624. struct drm_i915_private *dev_priv = dev->dev_private;
  625. struct intel_engine_cs *waiter;
  626. int i, ret, num_rings;
  627. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  628. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  629. #undef MBOX_UPDATE_DWORDS
  630. ret = intel_ring_begin(signaller, num_dwords);
  631. if (ret)
  632. return ret;
  633. for_each_ring(waiter, dev_priv, i) {
  634. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  635. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  636. continue;
  637. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  638. MI_FLUSH_DW_OP_STOREDW);
  639. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  640. MI_FLUSH_DW_USE_GTT);
  641. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  642. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  643. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  644. MI_SEMAPHORE_TARGET(waiter->id));
  645. intel_ring_emit(signaller, 0);
  646. }
  647. return 0;
  648. }
  649. static int gen6_signal(struct intel_engine_cs *signaller,
  650. unsigned int num_dwords)
  651. {
  652. struct drm_device *dev = signaller->dev;
  653. struct drm_i915_private *dev_priv = dev->dev_private;
  654. struct intel_engine_cs *useless;
  655. int i, ret, num_rings;
  656. #define MBOX_UPDATE_DWORDS 3
  657. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  658. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  659. #undef MBOX_UPDATE_DWORDS
  660. ret = intel_ring_begin(signaller, num_dwords);
  661. if (ret)
  662. return ret;
  663. for_each_ring(useless, dev_priv, i) {
  664. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  665. if (mbox_reg != GEN6_NOSYNC) {
  666. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  667. intel_ring_emit(signaller, mbox_reg);
  668. intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
  669. }
  670. }
  671. /* If num_dwords was rounded, make sure the tail pointer is correct */
  672. if (num_rings % 2 == 0)
  673. intel_ring_emit(signaller, MI_NOOP);
  674. return 0;
  675. }
  676. /**
  677. * gen6_add_request - Update the semaphore mailbox registers
  678. *
  679. * @ring - ring that is adding a request
  680. * @seqno - return seqno stuck into the ring
  681. *
  682. * Update the mailbox registers in the *other* rings with the current seqno.
  683. * This acts like a signal in the canonical semaphore.
  684. */
  685. static int
  686. gen6_add_request(struct intel_engine_cs *ring)
  687. {
  688. int ret;
  689. if (ring->semaphore.signal)
  690. ret = ring->semaphore.signal(ring, 4);
  691. else
  692. ret = intel_ring_begin(ring, 4);
  693. if (ret)
  694. return ret;
  695. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  696. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  697. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  698. intel_ring_emit(ring, MI_USER_INTERRUPT);
  699. __intel_ring_advance(ring);
  700. return 0;
  701. }
  702. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  703. u32 seqno)
  704. {
  705. struct drm_i915_private *dev_priv = dev->dev_private;
  706. return dev_priv->last_seqno < seqno;
  707. }
  708. /**
  709. * intel_ring_sync - sync the waiter to the signaller on seqno
  710. *
  711. * @waiter - ring that is waiting
  712. * @signaller - ring which has, or will signal
  713. * @seqno - seqno which the waiter will block on
  714. */
  715. static int
  716. gen8_ring_sync(struct intel_engine_cs *waiter,
  717. struct intel_engine_cs *signaller,
  718. u32 seqno)
  719. {
  720. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  721. int ret;
  722. ret = intel_ring_begin(waiter, 4);
  723. if (ret)
  724. return ret;
  725. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  726. MI_SEMAPHORE_GLOBAL_GTT |
  727. MI_SEMAPHORE_POLL |
  728. MI_SEMAPHORE_SAD_GTE_SDD);
  729. intel_ring_emit(waiter, seqno);
  730. intel_ring_emit(waiter,
  731. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  732. intel_ring_emit(waiter,
  733. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  734. intel_ring_advance(waiter);
  735. return 0;
  736. }
  737. static int
  738. gen6_ring_sync(struct intel_engine_cs *waiter,
  739. struct intel_engine_cs *signaller,
  740. u32 seqno)
  741. {
  742. u32 dw1 = MI_SEMAPHORE_MBOX |
  743. MI_SEMAPHORE_COMPARE |
  744. MI_SEMAPHORE_REGISTER;
  745. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  746. int ret;
  747. /* Throughout all of the GEM code, seqno passed implies our current
  748. * seqno is >= the last seqno executed. However for hardware the
  749. * comparison is strictly greater than.
  750. */
  751. seqno -= 1;
  752. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  753. ret = intel_ring_begin(waiter, 4);
  754. if (ret)
  755. return ret;
  756. /* If seqno wrap happened, omit the wait with no-ops */
  757. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  758. intel_ring_emit(waiter, dw1 | wait_mbox);
  759. intel_ring_emit(waiter, seqno);
  760. intel_ring_emit(waiter, 0);
  761. intel_ring_emit(waiter, MI_NOOP);
  762. } else {
  763. intel_ring_emit(waiter, MI_NOOP);
  764. intel_ring_emit(waiter, MI_NOOP);
  765. intel_ring_emit(waiter, MI_NOOP);
  766. intel_ring_emit(waiter, MI_NOOP);
  767. }
  768. intel_ring_advance(waiter);
  769. return 0;
  770. }
  771. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  772. do { \
  773. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  774. PIPE_CONTROL_DEPTH_STALL); \
  775. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  776. intel_ring_emit(ring__, 0); \
  777. intel_ring_emit(ring__, 0); \
  778. } while (0)
  779. static int
  780. pc_render_add_request(struct intel_engine_cs *ring)
  781. {
  782. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  783. int ret;
  784. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  785. * incoherent with writes to memory, i.e. completely fubar,
  786. * so we need to use PIPE_NOTIFY instead.
  787. *
  788. * However, we also need to workaround the qword write
  789. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  790. * memory before requesting an interrupt.
  791. */
  792. ret = intel_ring_begin(ring, 32);
  793. if (ret)
  794. return ret;
  795. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  796. PIPE_CONTROL_WRITE_FLUSH |
  797. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  798. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  799. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  800. intel_ring_emit(ring, 0);
  801. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  802. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  803. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  804. scratch_addr += 2 * CACHELINE_BYTES;
  805. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  806. scratch_addr += 2 * CACHELINE_BYTES;
  807. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  808. scratch_addr += 2 * CACHELINE_BYTES;
  809. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  810. scratch_addr += 2 * CACHELINE_BYTES;
  811. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  812. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  813. PIPE_CONTROL_WRITE_FLUSH |
  814. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  815. PIPE_CONTROL_NOTIFY);
  816. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  817. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  818. intel_ring_emit(ring, 0);
  819. __intel_ring_advance(ring);
  820. return 0;
  821. }
  822. static u32
  823. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  824. {
  825. /* Workaround to force correct ordering between irq and seqno writes on
  826. * ivb (and maybe also on snb) by reading from a CS register (like
  827. * ACTHD) before reading the status page. */
  828. if (!lazy_coherency) {
  829. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  830. POSTING_READ(RING_ACTHD(ring->mmio_base));
  831. }
  832. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  833. }
  834. static u32
  835. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  836. {
  837. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  838. }
  839. static void
  840. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  841. {
  842. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  843. }
  844. static u32
  845. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  846. {
  847. return ring->scratch.cpu_page[0];
  848. }
  849. static void
  850. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  851. {
  852. ring->scratch.cpu_page[0] = seqno;
  853. }
  854. static bool
  855. gen5_ring_get_irq(struct intel_engine_cs *ring)
  856. {
  857. struct drm_device *dev = ring->dev;
  858. struct drm_i915_private *dev_priv = dev->dev_private;
  859. unsigned long flags;
  860. if (!dev->irq_enabled)
  861. return false;
  862. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  863. if (ring->irq_refcount++ == 0)
  864. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  865. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  866. return true;
  867. }
  868. static void
  869. gen5_ring_put_irq(struct intel_engine_cs *ring)
  870. {
  871. struct drm_device *dev = ring->dev;
  872. struct drm_i915_private *dev_priv = dev->dev_private;
  873. unsigned long flags;
  874. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  875. if (--ring->irq_refcount == 0)
  876. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  877. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  878. }
  879. static bool
  880. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  881. {
  882. struct drm_device *dev = ring->dev;
  883. struct drm_i915_private *dev_priv = dev->dev_private;
  884. unsigned long flags;
  885. if (!dev->irq_enabled)
  886. return false;
  887. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  888. if (ring->irq_refcount++ == 0) {
  889. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  890. I915_WRITE(IMR, dev_priv->irq_mask);
  891. POSTING_READ(IMR);
  892. }
  893. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  894. return true;
  895. }
  896. static void
  897. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  898. {
  899. struct drm_device *dev = ring->dev;
  900. struct drm_i915_private *dev_priv = dev->dev_private;
  901. unsigned long flags;
  902. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  903. if (--ring->irq_refcount == 0) {
  904. dev_priv->irq_mask |= ring->irq_enable_mask;
  905. I915_WRITE(IMR, dev_priv->irq_mask);
  906. POSTING_READ(IMR);
  907. }
  908. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  909. }
  910. static bool
  911. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  912. {
  913. struct drm_device *dev = ring->dev;
  914. struct drm_i915_private *dev_priv = dev->dev_private;
  915. unsigned long flags;
  916. if (!dev->irq_enabled)
  917. return false;
  918. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  919. if (ring->irq_refcount++ == 0) {
  920. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  921. I915_WRITE16(IMR, dev_priv->irq_mask);
  922. POSTING_READ16(IMR);
  923. }
  924. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  925. return true;
  926. }
  927. static void
  928. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  929. {
  930. struct drm_device *dev = ring->dev;
  931. struct drm_i915_private *dev_priv = dev->dev_private;
  932. unsigned long flags;
  933. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  934. if (--ring->irq_refcount == 0) {
  935. dev_priv->irq_mask |= ring->irq_enable_mask;
  936. I915_WRITE16(IMR, dev_priv->irq_mask);
  937. POSTING_READ16(IMR);
  938. }
  939. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  940. }
  941. void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  942. {
  943. struct drm_device *dev = ring->dev;
  944. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  945. u32 mmio = 0;
  946. /* The ring status page addresses are no longer next to the rest of
  947. * the ring registers as of gen7.
  948. */
  949. if (IS_GEN7(dev)) {
  950. switch (ring->id) {
  951. case RCS:
  952. mmio = RENDER_HWS_PGA_GEN7;
  953. break;
  954. case BCS:
  955. mmio = BLT_HWS_PGA_GEN7;
  956. break;
  957. /*
  958. * VCS2 actually doesn't exist on Gen7. Only shut up
  959. * gcc switch check warning
  960. */
  961. case VCS2:
  962. case VCS:
  963. mmio = BSD_HWS_PGA_GEN7;
  964. break;
  965. case VECS:
  966. mmio = VEBOX_HWS_PGA_GEN7;
  967. break;
  968. }
  969. } else if (IS_GEN6(ring->dev)) {
  970. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  971. } else {
  972. /* XXX: gen8 returns to sanity */
  973. mmio = RING_HWS_PGA(ring->mmio_base);
  974. }
  975. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  976. POSTING_READ(mmio);
  977. /*
  978. * Flush the TLB for this page
  979. *
  980. * FIXME: These two bits have disappeared on gen8, so a question
  981. * arises: do we still need this and if so how should we go about
  982. * invalidating the TLB?
  983. */
  984. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  985. u32 reg = RING_INSTPM(ring->mmio_base);
  986. /* ring should be idle before issuing a sync flush*/
  987. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  988. I915_WRITE(reg,
  989. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  990. INSTPM_SYNC_FLUSH));
  991. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  992. 1000))
  993. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  994. ring->name);
  995. }
  996. }
  997. static int
  998. bsd_ring_flush(struct intel_engine_cs *ring,
  999. u32 invalidate_domains,
  1000. u32 flush_domains)
  1001. {
  1002. int ret;
  1003. ret = intel_ring_begin(ring, 2);
  1004. if (ret)
  1005. return ret;
  1006. intel_ring_emit(ring, MI_FLUSH);
  1007. intel_ring_emit(ring, MI_NOOP);
  1008. intel_ring_advance(ring);
  1009. return 0;
  1010. }
  1011. static int
  1012. i9xx_add_request(struct intel_engine_cs *ring)
  1013. {
  1014. int ret;
  1015. ret = intel_ring_begin(ring, 4);
  1016. if (ret)
  1017. return ret;
  1018. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1019. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1020. intel_ring_emit(ring, ring->outstanding_lazy_seqno);
  1021. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1022. __intel_ring_advance(ring);
  1023. return 0;
  1024. }
  1025. static bool
  1026. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1027. {
  1028. struct drm_device *dev = ring->dev;
  1029. struct drm_i915_private *dev_priv = dev->dev_private;
  1030. unsigned long flags;
  1031. if (!dev->irq_enabled)
  1032. return false;
  1033. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1034. if (ring->irq_refcount++ == 0) {
  1035. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1036. I915_WRITE_IMR(ring,
  1037. ~(ring->irq_enable_mask |
  1038. GT_PARITY_ERROR(dev)));
  1039. else
  1040. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1041. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1042. }
  1043. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1044. return true;
  1045. }
  1046. static void
  1047. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1048. {
  1049. struct drm_device *dev = ring->dev;
  1050. struct drm_i915_private *dev_priv = dev->dev_private;
  1051. unsigned long flags;
  1052. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1053. if (--ring->irq_refcount == 0) {
  1054. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1055. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1056. else
  1057. I915_WRITE_IMR(ring, ~0);
  1058. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1059. }
  1060. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1061. }
  1062. static bool
  1063. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1064. {
  1065. struct drm_device *dev = ring->dev;
  1066. struct drm_i915_private *dev_priv = dev->dev_private;
  1067. unsigned long flags;
  1068. if (!dev->irq_enabled)
  1069. return false;
  1070. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1071. if (ring->irq_refcount++ == 0) {
  1072. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1073. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1074. }
  1075. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1076. return true;
  1077. }
  1078. static void
  1079. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1080. {
  1081. struct drm_device *dev = ring->dev;
  1082. struct drm_i915_private *dev_priv = dev->dev_private;
  1083. unsigned long flags;
  1084. if (!dev->irq_enabled)
  1085. return;
  1086. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1087. if (--ring->irq_refcount == 0) {
  1088. I915_WRITE_IMR(ring, ~0);
  1089. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1090. }
  1091. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1092. }
  1093. static bool
  1094. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1095. {
  1096. struct drm_device *dev = ring->dev;
  1097. struct drm_i915_private *dev_priv = dev->dev_private;
  1098. unsigned long flags;
  1099. if (!dev->irq_enabled)
  1100. return false;
  1101. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1102. if (ring->irq_refcount++ == 0) {
  1103. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1104. I915_WRITE_IMR(ring,
  1105. ~(ring->irq_enable_mask |
  1106. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1107. } else {
  1108. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1109. }
  1110. POSTING_READ(RING_IMR(ring->mmio_base));
  1111. }
  1112. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1113. return true;
  1114. }
  1115. static void
  1116. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1117. {
  1118. struct drm_device *dev = ring->dev;
  1119. struct drm_i915_private *dev_priv = dev->dev_private;
  1120. unsigned long flags;
  1121. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1122. if (--ring->irq_refcount == 0) {
  1123. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1124. I915_WRITE_IMR(ring,
  1125. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1126. } else {
  1127. I915_WRITE_IMR(ring, ~0);
  1128. }
  1129. POSTING_READ(RING_IMR(ring->mmio_base));
  1130. }
  1131. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1132. }
  1133. static int
  1134. i965_dispatch_execbuffer(struct intel_engine_cs *ring,
  1135. u64 offset, u32 length,
  1136. unsigned flags)
  1137. {
  1138. int ret;
  1139. ret = intel_ring_begin(ring, 2);
  1140. if (ret)
  1141. return ret;
  1142. intel_ring_emit(ring,
  1143. MI_BATCH_BUFFER_START |
  1144. MI_BATCH_GTT |
  1145. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1146. intel_ring_emit(ring, offset);
  1147. intel_ring_advance(ring);
  1148. return 0;
  1149. }
  1150. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1151. #define I830_BATCH_LIMIT (256*1024)
  1152. static int
  1153. i830_dispatch_execbuffer(struct intel_engine_cs *ring,
  1154. u64 offset, u32 len,
  1155. unsigned flags)
  1156. {
  1157. int ret;
  1158. if (flags & I915_DISPATCH_PINNED) {
  1159. ret = intel_ring_begin(ring, 4);
  1160. if (ret)
  1161. return ret;
  1162. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1163. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1164. intel_ring_emit(ring, offset + len - 8);
  1165. intel_ring_emit(ring, MI_NOOP);
  1166. intel_ring_advance(ring);
  1167. } else {
  1168. u32 cs_offset = ring->scratch.gtt_offset;
  1169. if (len > I830_BATCH_LIMIT)
  1170. return -ENOSPC;
  1171. ret = intel_ring_begin(ring, 9+3);
  1172. if (ret)
  1173. return ret;
  1174. /* Blit the batch (which has now all relocs applied) to the stable batch
  1175. * scratch bo area (so that the CS never stumbles over its tlb
  1176. * invalidation bug) ... */
  1177. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  1178. XY_SRC_COPY_BLT_WRITE_ALPHA |
  1179. XY_SRC_COPY_BLT_WRITE_RGB);
  1180. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  1181. intel_ring_emit(ring, 0);
  1182. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  1183. intel_ring_emit(ring, cs_offset);
  1184. intel_ring_emit(ring, 0);
  1185. intel_ring_emit(ring, 4096);
  1186. intel_ring_emit(ring, offset);
  1187. intel_ring_emit(ring, MI_FLUSH);
  1188. /* ... and execute it. */
  1189. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1190. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1191. intel_ring_emit(ring, cs_offset + len - 8);
  1192. intel_ring_advance(ring);
  1193. }
  1194. return 0;
  1195. }
  1196. static int
  1197. i915_dispatch_execbuffer(struct intel_engine_cs *ring,
  1198. u64 offset, u32 len,
  1199. unsigned flags)
  1200. {
  1201. int ret;
  1202. ret = intel_ring_begin(ring, 2);
  1203. if (ret)
  1204. return ret;
  1205. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1206. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  1207. intel_ring_advance(ring);
  1208. return 0;
  1209. }
  1210. static void cleanup_status_page(struct intel_engine_cs *ring)
  1211. {
  1212. struct drm_i915_gem_object *obj;
  1213. obj = ring->status_page.obj;
  1214. if (obj == NULL)
  1215. return;
  1216. kunmap(sg_page(obj->pages->sgl));
  1217. i915_gem_object_ggtt_unpin(obj);
  1218. drm_gem_object_unreference(&obj->base);
  1219. ring->status_page.obj = NULL;
  1220. }
  1221. static int init_status_page(struct intel_engine_cs *ring)
  1222. {
  1223. struct drm_i915_gem_object *obj;
  1224. if ((obj = ring->status_page.obj) == NULL) {
  1225. unsigned flags;
  1226. int ret;
  1227. obj = i915_gem_alloc_object(ring->dev, 4096);
  1228. if (obj == NULL) {
  1229. DRM_ERROR("Failed to allocate status page\n");
  1230. return -ENOMEM;
  1231. }
  1232. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1233. if (ret)
  1234. goto err_unref;
  1235. flags = 0;
  1236. if (!HAS_LLC(ring->dev))
  1237. /* On g33, we cannot place HWS above 256MiB, so
  1238. * restrict its pinning to the low mappable arena.
  1239. * Though this restriction is not documented for
  1240. * gen4, gen5, or byt, they also behave similarly
  1241. * and hang if the HWS is placed at the top of the
  1242. * GTT. To generalise, it appears that all !llc
  1243. * platforms have issues with us placing the HWS
  1244. * above the mappable region (even though we never
  1245. * actualy map it).
  1246. */
  1247. flags |= PIN_MAPPABLE;
  1248. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1249. if (ret) {
  1250. err_unref:
  1251. drm_gem_object_unreference(&obj->base);
  1252. return ret;
  1253. }
  1254. ring->status_page.obj = obj;
  1255. }
  1256. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1257. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1258. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1259. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1260. ring->name, ring->status_page.gfx_addr);
  1261. return 0;
  1262. }
  1263. static int init_phys_status_page(struct intel_engine_cs *ring)
  1264. {
  1265. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1266. if (!dev_priv->status_page_dmah) {
  1267. dev_priv->status_page_dmah =
  1268. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1269. if (!dev_priv->status_page_dmah)
  1270. return -ENOMEM;
  1271. }
  1272. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1273. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1274. return 0;
  1275. }
  1276. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1277. {
  1278. if (!ringbuf->obj)
  1279. return;
  1280. iounmap(ringbuf->virtual_start);
  1281. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1282. drm_gem_object_unreference(&ringbuf->obj->base);
  1283. ringbuf->obj = NULL;
  1284. }
  1285. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1286. struct intel_ringbuffer *ringbuf)
  1287. {
  1288. struct drm_i915_private *dev_priv = to_i915(dev);
  1289. struct drm_i915_gem_object *obj;
  1290. int ret;
  1291. if (ringbuf->obj)
  1292. return 0;
  1293. obj = NULL;
  1294. if (!HAS_LLC(dev))
  1295. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1296. if (obj == NULL)
  1297. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1298. if (obj == NULL)
  1299. return -ENOMEM;
  1300. /* mark ring buffers as read-only from GPU side by default */
  1301. obj->gt_ro = 1;
  1302. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1303. if (ret)
  1304. goto err_unref;
  1305. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1306. if (ret)
  1307. goto err_unpin;
  1308. ringbuf->virtual_start =
  1309. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1310. ringbuf->size);
  1311. if (ringbuf->virtual_start == NULL) {
  1312. ret = -EINVAL;
  1313. goto err_unpin;
  1314. }
  1315. ringbuf->obj = obj;
  1316. return 0;
  1317. err_unpin:
  1318. i915_gem_object_ggtt_unpin(obj);
  1319. err_unref:
  1320. drm_gem_object_unreference(&obj->base);
  1321. return ret;
  1322. }
  1323. static int intel_init_ring_buffer(struct drm_device *dev,
  1324. struct intel_engine_cs *ring)
  1325. {
  1326. struct intel_ringbuffer *ringbuf = ring->buffer;
  1327. int ret;
  1328. if (ringbuf == NULL) {
  1329. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1330. if (!ringbuf)
  1331. return -ENOMEM;
  1332. ring->buffer = ringbuf;
  1333. }
  1334. ring->dev = dev;
  1335. INIT_LIST_HEAD(&ring->active_list);
  1336. INIT_LIST_HEAD(&ring->request_list);
  1337. ringbuf->size = 32 * PAGE_SIZE;
  1338. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1339. init_waitqueue_head(&ring->irq_queue);
  1340. if (I915_NEED_GFX_HWS(dev)) {
  1341. ret = init_status_page(ring);
  1342. if (ret)
  1343. goto error;
  1344. } else {
  1345. BUG_ON(ring->id != RCS);
  1346. ret = init_phys_status_page(ring);
  1347. if (ret)
  1348. goto error;
  1349. }
  1350. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1351. if (ret) {
  1352. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
  1353. goto error;
  1354. }
  1355. /* Workaround an erratum on the i830 which causes a hang if
  1356. * the TAIL pointer points to within the last 2 cachelines
  1357. * of the buffer.
  1358. */
  1359. ringbuf->effective_size = ringbuf->size;
  1360. if (IS_I830(dev) || IS_845G(dev))
  1361. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1362. ret = i915_cmd_parser_init_ring(ring);
  1363. if (ret)
  1364. goto error;
  1365. ret = ring->init(ring);
  1366. if (ret)
  1367. goto error;
  1368. return 0;
  1369. error:
  1370. kfree(ringbuf);
  1371. ring->buffer = NULL;
  1372. return ret;
  1373. }
  1374. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1375. {
  1376. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  1377. struct intel_ringbuffer *ringbuf = ring->buffer;
  1378. if (!intel_ring_initialized(ring))
  1379. return;
  1380. intel_stop_ring_buffer(ring);
  1381. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1382. intel_destroy_ringbuffer_obj(ringbuf);
  1383. ring->preallocated_lazy_request = NULL;
  1384. ring->outstanding_lazy_seqno = 0;
  1385. if (ring->cleanup)
  1386. ring->cleanup(ring);
  1387. cleanup_status_page(ring);
  1388. i915_cmd_parser_fini_ring(ring);
  1389. kfree(ringbuf);
  1390. ring->buffer = NULL;
  1391. }
  1392. static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
  1393. {
  1394. struct intel_ringbuffer *ringbuf = ring->buffer;
  1395. struct drm_i915_gem_request *request;
  1396. u32 seqno = 0;
  1397. int ret;
  1398. if (ringbuf->last_retired_head != -1) {
  1399. ringbuf->head = ringbuf->last_retired_head;
  1400. ringbuf->last_retired_head = -1;
  1401. ringbuf->space = ring_space(ringbuf);
  1402. if (ringbuf->space >= n)
  1403. return 0;
  1404. }
  1405. list_for_each_entry(request, &ring->request_list, list) {
  1406. if (__ring_space(request->tail, ringbuf->tail, ringbuf->size) >= n) {
  1407. seqno = request->seqno;
  1408. break;
  1409. }
  1410. }
  1411. if (seqno == 0)
  1412. return -ENOSPC;
  1413. ret = i915_wait_seqno(ring, seqno);
  1414. if (ret)
  1415. return ret;
  1416. i915_gem_retire_requests_ring(ring);
  1417. ringbuf->head = ringbuf->last_retired_head;
  1418. ringbuf->last_retired_head = -1;
  1419. ringbuf->space = ring_space(ringbuf);
  1420. return 0;
  1421. }
  1422. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1423. {
  1424. struct drm_device *dev = ring->dev;
  1425. struct drm_i915_private *dev_priv = dev->dev_private;
  1426. struct intel_ringbuffer *ringbuf = ring->buffer;
  1427. unsigned long end;
  1428. int ret;
  1429. ret = intel_ring_wait_request(ring, n);
  1430. if (ret != -ENOSPC)
  1431. return ret;
  1432. /* force the tail write in case we have been skipping them */
  1433. __intel_ring_advance(ring);
  1434. /* With GEM the hangcheck timer should kick us out of the loop,
  1435. * leaving it early runs the risk of corrupting GEM state (due
  1436. * to running on almost untested codepaths). But on resume
  1437. * timers don't work yet, so prevent a complete hang in that
  1438. * case by choosing an insanely large timeout. */
  1439. end = jiffies + 60 * HZ;
  1440. trace_i915_ring_wait_begin(ring);
  1441. do {
  1442. ringbuf->head = I915_READ_HEAD(ring);
  1443. ringbuf->space = ring_space(ringbuf);
  1444. if (ringbuf->space >= n) {
  1445. ret = 0;
  1446. break;
  1447. }
  1448. if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
  1449. dev->primary->master) {
  1450. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1451. if (master_priv->sarea_priv)
  1452. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1453. }
  1454. msleep(1);
  1455. if (dev_priv->mm.interruptible && signal_pending(current)) {
  1456. ret = -ERESTARTSYS;
  1457. break;
  1458. }
  1459. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1460. dev_priv->mm.interruptible);
  1461. if (ret)
  1462. break;
  1463. if (time_after(jiffies, end)) {
  1464. ret = -EBUSY;
  1465. break;
  1466. }
  1467. } while (1);
  1468. trace_i915_ring_wait_end(ring);
  1469. return ret;
  1470. }
  1471. static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
  1472. {
  1473. uint32_t __iomem *virt;
  1474. struct intel_ringbuffer *ringbuf = ring->buffer;
  1475. int rem = ringbuf->size - ringbuf->tail;
  1476. if (ringbuf->space < rem) {
  1477. int ret = ring_wait_for_space(ring, rem);
  1478. if (ret)
  1479. return ret;
  1480. }
  1481. virt = ringbuf->virtual_start + ringbuf->tail;
  1482. rem /= 4;
  1483. while (rem--)
  1484. iowrite32(MI_NOOP, virt++);
  1485. ringbuf->tail = 0;
  1486. ringbuf->space = ring_space(ringbuf);
  1487. return 0;
  1488. }
  1489. int intel_ring_idle(struct intel_engine_cs *ring)
  1490. {
  1491. u32 seqno;
  1492. int ret;
  1493. /* We need to add any requests required to flush the objects and ring */
  1494. if (ring->outstanding_lazy_seqno) {
  1495. ret = i915_add_request(ring, NULL);
  1496. if (ret)
  1497. return ret;
  1498. }
  1499. /* Wait upon the last request to be completed */
  1500. if (list_empty(&ring->request_list))
  1501. return 0;
  1502. seqno = list_entry(ring->request_list.prev,
  1503. struct drm_i915_gem_request,
  1504. list)->seqno;
  1505. return i915_wait_seqno(ring, seqno);
  1506. }
  1507. static int
  1508. intel_ring_alloc_seqno(struct intel_engine_cs *ring)
  1509. {
  1510. if (ring->outstanding_lazy_seqno)
  1511. return 0;
  1512. if (ring->preallocated_lazy_request == NULL) {
  1513. struct drm_i915_gem_request *request;
  1514. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1515. if (request == NULL)
  1516. return -ENOMEM;
  1517. ring->preallocated_lazy_request = request;
  1518. }
  1519. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
  1520. }
  1521. static int __intel_ring_prepare(struct intel_engine_cs *ring,
  1522. int bytes)
  1523. {
  1524. struct intel_ringbuffer *ringbuf = ring->buffer;
  1525. int ret;
  1526. if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
  1527. ret = intel_wrap_ring_buffer(ring);
  1528. if (unlikely(ret))
  1529. return ret;
  1530. }
  1531. if (unlikely(ringbuf->space < bytes)) {
  1532. ret = ring_wait_for_space(ring, bytes);
  1533. if (unlikely(ret))
  1534. return ret;
  1535. }
  1536. return 0;
  1537. }
  1538. int intel_ring_begin(struct intel_engine_cs *ring,
  1539. int num_dwords)
  1540. {
  1541. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1542. int ret;
  1543. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1544. dev_priv->mm.interruptible);
  1545. if (ret)
  1546. return ret;
  1547. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1548. if (ret)
  1549. return ret;
  1550. /* Preallocate the olr before touching the ring */
  1551. ret = intel_ring_alloc_seqno(ring);
  1552. if (ret)
  1553. return ret;
  1554. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1555. return 0;
  1556. }
  1557. /* Align the ring tail to a cacheline boundary */
  1558. int intel_ring_cacheline_align(struct intel_engine_cs *ring)
  1559. {
  1560. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1561. int ret;
  1562. if (num_dwords == 0)
  1563. return 0;
  1564. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1565. ret = intel_ring_begin(ring, num_dwords);
  1566. if (ret)
  1567. return ret;
  1568. while (num_dwords--)
  1569. intel_ring_emit(ring, MI_NOOP);
  1570. intel_ring_advance(ring);
  1571. return 0;
  1572. }
  1573. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1574. {
  1575. struct drm_device *dev = ring->dev;
  1576. struct drm_i915_private *dev_priv = dev->dev_private;
  1577. BUG_ON(ring->outstanding_lazy_seqno);
  1578. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1579. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1580. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1581. if (HAS_VEBOX(dev))
  1582. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1583. }
  1584. ring->set_seqno(ring, seqno);
  1585. ring->hangcheck.seqno = seqno;
  1586. }
  1587. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1588. u32 value)
  1589. {
  1590. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1591. /* Every tail move must follow the sequence below */
  1592. /* Disable notification that the ring is IDLE. The GT
  1593. * will then assume that it is busy and bring it out of rc6.
  1594. */
  1595. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1596. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1597. /* Clear the context id. Here be magic! */
  1598. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1599. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1600. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1601. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1602. 50))
  1603. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1604. /* Now that the ring is fully powered up, update the tail */
  1605. I915_WRITE_TAIL(ring, value);
  1606. POSTING_READ(RING_TAIL(ring->mmio_base));
  1607. /* Let the ring send IDLE messages to the GT again,
  1608. * and so let it sleep to conserve power when idle.
  1609. */
  1610. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1611. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1612. }
  1613. static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
  1614. u32 invalidate, u32 flush)
  1615. {
  1616. uint32_t cmd;
  1617. int ret;
  1618. ret = intel_ring_begin(ring, 4);
  1619. if (ret)
  1620. return ret;
  1621. cmd = MI_FLUSH_DW;
  1622. if (INTEL_INFO(ring->dev)->gen >= 8)
  1623. cmd += 1;
  1624. /*
  1625. * Bspec vol 1c.5 - video engine command streamer:
  1626. * "If ENABLED, all TLBs will be invalidated once the flush
  1627. * operation is complete. This bit is only valid when the
  1628. * Post-Sync Operation field is a value of 1h or 3h."
  1629. */
  1630. if (invalidate & I915_GEM_GPU_DOMAINS)
  1631. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1632. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1633. intel_ring_emit(ring, cmd);
  1634. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1635. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1636. intel_ring_emit(ring, 0); /* upper addr */
  1637. intel_ring_emit(ring, 0); /* value */
  1638. } else {
  1639. intel_ring_emit(ring, 0);
  1640. intel_ring_emit(ring, MI_NOOP);
  1641. }
  1642. intel_ring_advance(ring);
  1643. return 0;
  1644. }
  1645. static int
  1646. gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1647. u64 offset, u32 len,
  1648. unsigned flags)
  1649. {
  1650. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1651. bool ppgtt = dev_priv->mm.aliasing_ppgtt != NULL &&
  1652. !(flags & I915_DISPATCH_SECURE);
  1653. int ret;
  1654. ret = intel_ring_begin(ring, 4);
  1655. if (ret)
  1656. return ret;
  1657. /* FIXME(BDW): Address space and security selectors. */
  1658. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
  1659. intel_ring_emit(ring, lower_32_bits(offset));
  1660. intel_ring_emit(ring, upper_32_bits(offset));
  1661. intel_ring_emit(ring, MI_NOOP);
  1662. intel_ring_advance(ring);
  1663. return 0;
  1664. }
  1665. static int
  1666. hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1667. u64 offset, u32 len,
  1668. unsigned flags)
  1669. {
  1670. int ret;
  1671. ret = intel_ring_begin(ring, 2);
  1672. if (ret)
  1673. return ret;
  1674. intel_ring_emit(ring,
  1675. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1676. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1677. /* bit0-7 is the length on GEN6+ */
  1678. intel_ring_emit(ring, offset);
  1679. intel_ring_advance(ring);
  1680. return 0;
  1681. }
  1682. static int
  1683. gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
  1684. u64 offset, u32 len,
  1685. unsigned flags)
  1686. {
  1687. int ret;
  1688. ret = intel_ring_begin(ring, 2);
  1689. if (ret)
  1690. return ret;
  1691. intel_ring_emit(ring,
  1692. MI_BATCH_BUFFER_START |
  1693. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1694. /* bit0-7 is the length on GEN6+ */
  1695. intel_ring_emit(ring, offset);
  1696. intel_ring_advance(ring);
  1697. return 0;
  1698. }
  1699. /* Blitter support (SandyBridge+) */
  1700. static int gen6_ring_flush(struct intel_engine_cs *ring,
  1701. u32 invalidate, u32 flush)
  1702. {
  1703. struct drm_device *dev = ring->dev;
  1704. uint32_t cmd;
  1705. int ret;
  1706. ret = intel_ring_begin(ring, 4);
  1707. if (ret)
  1708. return ret;
  1709. cmd = MI_FLUSH_DW;
  1710. if (INTEL_INFO(ring->dev)->gen >= 8)
  1711. cmd += 1;
  1712. /*
  1713. * Bspec vol 1c.3 - blitter engine command streamer:
  1714. * "If ENABLED, all TLBs will be invalidated once the flush
  1715. * operation is complete. This bit is only valid when the
  1716. * Post-Sync Operation field is a value of 1h or 3h."
  1717. */
  1718. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1719. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1720. MI_FLUSH_DW_OP_STOREDW;
  1721. intel_ring_emit(ring, cmd);
  1722. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1723. if (INTEL_INFO(ring->dev)->gen >= 8) {
  1724. intel_ring_emit(ring, 0); /* upper addr */
  1725. intel_ring_emit(ring, 0); /* value */
  1726. } else {
  1727. intel_ring_emit(ring, 0);
  1728. intel_ring_emit(ring, MI_NOOP);
  1729. }
  1730. intel_ring_advance(ring);
  1731. if (IS_GEN7(dev) && !invalidate && flush)
  1732. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1733. return 0;
  1734. }
  1735. int intel_init_render_ring_buffer(struct drm_device *dev)
  1736. {
  1737. struct drm_i915_private *dev_priv = dev->dev_private;
  1738. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1739. struct drm_i915_gem_object *obj;
  1740. int ret;
  1741. ring->name = "render ring";
  1742. ring->id = RCS;
  1743. ring->mmio_base = RENDER_RING_BASE;
  1744. if (INTEL_INFO(dev)->gen >= 8) {
  1745. if (i915_semaphore_is_enabled(dev)) {
  1746. obj = i915_gem_alloc_object(dev, 4096);
  1747. if (obj == NULL) {
  1748. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  1749. i915.semaphores = 0;
  1750. } else {
  1751. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1752. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  1753. if (ret != 0) {
  1754. drm_gem_object_unreference(&obj->base);
  1755. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  1756. i915.semaphores = 0;
  1757. } else
  1758. dev_priv->semaphore_obj = obj;
  1759. }
  1760. }
  1761. ring->add_request = gen6_add_request;
  1762. ring->flush = gen8_render_ring_flush;
  1763. ring->irq_get = gen8_ring_get_irq;
  1764. ring->irq_put = gen8_ring_put_irq;
  1765. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1766. ring->get_seqno = gen6_ring_get_seqno;
  1767. ring->set_seqno = ring_set_seqno;
  1768. if (i915_semaphore_is_enabled(dev)) {
  1769. WARN_ON(!dev_priv->semaphore_obj);
  1770. ring->semaphore.sync_to = gen8_ring_sync;
  1771. ring->semaphore.signal = gen8_rcs_signal;
  1772. GEN8_RING_SEMAPHORE_INIT;
  1773. }
  1774. } else if (INTEL_INFO(dev)->gen >= 6) {
  1775. ring->add_request = gen6_add_request;
  1776. ring->flush = gen7_render_ring_flush;
  1777. if (INTEL_INFO(dev)->gen == 6)
  1778. ring->flush = gen6_render_ring_flush;
  1779. ring->irq_get = gen6_ring_get_irq;
  1780. ring->irq_put = gen6_ring_put_irq;
  1781. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1782. ring->get_seqno = gen6_ring_get_seqno;
  1783. ring->set_seqno = ring_set_seqno;
  1784. if (i915_semaphore_is_enabled(dev)) {
  1785. ring->semaphore.sync_to = gen6_ring_sync;
  1786. ring->semaphore.signal = gen6_signal;
  1787. /*
  1788. * The current semaphore is only applied on pre-gen8
  1789. * platform. And there is no VCS2 ring on the pre-gen8
  1790. * platform. So the semaphore between RCS and VCS2 is
  1791. * initialized as INVALID. Gen8 will initialize the
  1792. * sema between VCS2 and RCS later.
  1793. */
  1794. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1795. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  1796. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  1797. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1798. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1799. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  1800. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  1801. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  1802. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  1803. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1804. }
  1805. } else if (IS_GEN5(dev)) {
  1806. ring->add_request = pc_render_add_request;
  1807. ring->flush = gen4_render_ring_flush;
  1808. ring->get_seqno = pc_render_get_seqno;
  1809. ring->set_seqno = pc_render_set_seqno;
  1810. ring->irq_get = gen5_ring_get_irq;
  1811. ring->irq_put = gen5_ring_put_irq;
  1812. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1813. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1814. } else {
  1815. ring->add_request = i9xx_add_request;
  1816. if (INTEL_INFO(dev)->gen < 4)
  1817. ring->flush = gen2_render_ring_flush;
  1818. else
  1819. ring->flush = gen4_render_ring_flush;
  1820. ring->get_seqno = ring_get_seqno;
  1821. ring->set_seqno = ring_set_seqno;
  1822. if (IS_GEN2(dev)) {
  1823. ring->irq_get = i8xx_ring_get_irq;
  1824. ring->irq_put = i8xx_ring_put_irq;
  1825. } else {
  1826. ring->irq_get = i9xx_ring_get_irq;
  1827. ring->irq_put = i9xx_ring_put_irq;
  1828. }
  1829. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1830. }
  1831. ring->write_tail = ring_write_tail;
  1832. if (IS_HASWELL(dev))
  1833. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1834. else if (IS_GEN8(dev))
  1835. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  1836. else if (INTEL_INFO(dev)->gen >= 6)
  1837. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1838. else if (INTEL_INFO(dev)->gen >= 4)
  1839. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1840. else if (IS_I830(dev) || IS_845G(dev))
  1841. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1842. else
  1843. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1844. ring->init = init_render_ring;
  1845. ring->cleanup = render_ring_cleanup;
  1846. /* Workaround batchbuffer to combat CS tlb bug. */
  1847. if (HAS_BROKEN_CS_TLB(dev)) {
  1848. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1849. if (obj == NULL) {
  1850. DRM_ERROR("Failed to allocate batch bo\n");
  1851. return -ENOMEM;
  1852. }
  1853. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  1854. if (ret != 0) {
  1855. drm_gem_object_unreference(&obj->base);
  1856. DRM_ERROR("Failed to ping batch bo\n");
  1857. return ret;
  1858. }
  1859. ring->scratch.obj = obj;
  1860. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1861. }
  1862. return intel_init_ring_buffer(dev, ring);
  1863. }
  1864. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1865. {
  1866. struct drm_i915_private *dev_priv = dev->dev_private;
  1867. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  1868. struct intel_ringbuffer *ringbuf = ring->buffer;
  1869. int ret;
  1870. if (ringbuf == NULL) {
  1871. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1872. if (!ringbuf)
  1873. return -ENOMEM;
  1874. ring->buffer = ringbuf;
  1875. }
  1876. ring->name = "render ring";
  1877. ring->id = RCS;
  1878. ring->mmio_base = RENDER_RING_BASE;
  1879. if (INTEL_INFO(dev)->gen >= 6) {
  1880. /* non-kms not supported on gen6+ */
  1881. ret = -ENODEV;
  1882. goto err_ringbuf;
  1883. }
  1884. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1885. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1886. * the special gen5 functions. */
  1887. ring->add_request = i9xx_add_request;
  1888. if (INTEL_INFO(dev)->gen < 4)
  1889. ring->flush = gen2_render_ring_flush;
  1890. else
  1891. ring->flush = gen4_render_ring_flush;
  1892. ring->get_seqno = ring_get_seqno;
  1893. ring->set_seqno = ring_set_seqno;
  1894. if (IS_GEN2(dev)) {
  1895. ring->irq_get = i8xx_ring_get_irq;
  1896. ring->irq_put = i8xx_ring_put_irq;
  1897. } else {
  1898. ring->irq_get = i9xx_ring_get_irq;
  1899. ring->irq_put = i9xx_ring_put_irq;
  1900. }
  1901. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1902. ring->write_tail = ring_write_tail;
  1903. if (INTEL_INFO(dev)->gen >= 4)
  1904. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1905. else if (IS_I830(dev) || IS_845G(dev))
  1906. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1907. else
  1908. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1909. ring->init = init_render_ring;
  1910. ring->cleanup = render_ring_cleanup;
  1911. ring->dev = dev;
  1912. INIT_LIST_HEAD(&ring->active_list);
  1913. INIT_LIST_HEAD(&ring->request_list);
  1914. ringbuf->size = size;
  1915. ringbuf->effective_size = ringbuf->size;
  1916. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1917. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1918. ringbuf->virtual_start = ioremap_wc(start, size);
  1919. if (ringbuf->virtual_start == NULL) {
  1920. DRM_ERROR("can not ioremap virtual address for"
  1921. " ring buffer\n");
  1922. ret = -ENOMEM;
  1923. goto err_ringbuf;
  1924. }
  1925. if (!I915_NEED_GFX_HWS(dev)) {
  1926. ret = init_phys_status_page(ring);
  1927. if (ret)
  1928. goto err_vstart;
  1929. }
  1930. return 0;
  1931. err_vstart:
  1932. iounmap(ringbuf->virtual_start);
  1933. err_ringbuf:
  1934. kfree(ringbuf);
  1935. ring->buffer = NULL;
  1936. return ret;
  1937. }
  1938. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1939. {
  1940. struct drm_i915_private *dev_priv = dev->dev_private;
  1941. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  1942. ring->name = "bsd ring";
  1943. ring->id = VCS;
  1944. ring->write_tail = ring_write_tail;
  1945. if (INTEL_INFO(dev)->gen >= 6) {
  1946. ring->mmio_base = GEN6_BSD_RING_BASE;
  1947. /* gen6 bsd needs a special wa for tail updates */
  1948. if (IS_GEN6(dev))
  1949. ring->write_tail = gen6_bsd_ring_write_tail;
  1950. ring->flush = gen6_bsd_ring_flush;
  1951. ring->add_request = gen6_add_request;
  1952. ring->get_seqno = gen6_ring_get_seqno;
  1953. ring->set_seqno = ring_set_seqno;
  1954. if (INTEL_INFO(dev)->gen >= 8) {
  1955. ring->irq_enable_mask =
  1956. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  1957. ring->irq_get = gen8_ring_get_irq;
  1958. ring->irq_put = gen8_ring_put_irq;
  1959. ring->dispatch_execbuffer =
  1960. gen8_ring_dispatch_execbuffer;
  1961. if (i915_semaphore_is_enabled(dev)) {
  1962. ring->semaphore.sync_to = gen8_ring_sync;
  1963. ring->semaphore.signal = gen8_xcs_signal;
  1964. GEN8_RING_SEMAPHORE_INIT;
  1965. }
  1966. } else {
  1967. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1968. ring->irq_get = gen6_ring_get_irq;
  1969. ring->irq_put = gen6_ring_put_irq;
  1970. ring->dispatch_execbuffer =
  1971. gen6_ring_dispatch_execbuffer;
  1972. if (i915_semaphore_is_enabled(dev)) {
  1973. ring->semaphore.sync_to = gen6_ring_sync;
  1974. ring->semaphore.signal = gen6_signal;
  1975. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  1976. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1977. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  1978. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1979. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  1980. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  1981. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  1982. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  1983. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  1984. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  1985. }
  1986. }
  1987. } else {
  1988. ring->mmio_base = BSD_RING_BASE;
  1989. ring->flush = bsd_ring_flush;
  1990. ring->add_request = i9xx_add_request;
  1991. ring->get_seqno = ring_get_seqno;
  1992. ring->set_seqno = ring_set_seqno;
  1993. if (IS_GEN5(dev)) {
  1994. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1995. ring->irq_get = gen5_ring_get_irq;
  1996. ring->irq_put = gen5_ring_put_irq;
  1997. } else {
  1998. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1999. ring->irq_get = i9xx_ring_get_irq;
  2000. ring->irq_put = i9xx_ring_put_irq;
  2001. }
  2002. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2003. }
  2004. ring->init = init_ring_common;
  2005. return intel_init_ring_buffer(dev, ring);
  2006. }
  2007. /**
  2008. * Initialize the second BSD ring for Broadwell GT3.
  2009. * It is noted that this only exists on Broadwell GT3.
  2010. */
  2011. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2012. {
  2013. struct drm_i915_private *dev_priv = dev->dev_private;
  2014. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2015. if ((INTEL_INFO(dev)->gen != 8)) {
  2016. DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
  2017. return -EINVAL;
  2018. }
  2019. ring->name = "bsd2 ring";
  2020. ring->id = VCS2;
  2021. ring->write_tail = ring_write_tail;
  2022. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2023. ring->flush = gen6_bsd_ring_flush;
  2024. ring->add_request = gen6_add_request;
  2025. ring->get_seqno = gen6_ring_get_seqno;
  2026. ring->set_seqno = ring_set_seqno;
  2027. ring->irq_enable_mask =
  2028. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2029. ring->irq_get = gen8_ring_get_irq;
  2030. ring->irq_put = gen8_ring_put_irq;
  2031. ring->dispatch_execbuffer =
  2032. gen8_ring_dispatch_execbuffer;
  2033. if (i915_semaphore_is_enabled(dev)) {
  2034. ring->semaphore.sync_to = gen8_ring_sync;
  2035. ring->semaphore.signal = gen8_xcs_signal;
  2036. GEN8_RING_SEMAPHORE_INIT;
  2037. }
  2038. ring->init = init_ring_common;
  2039. return intel_init_ring_buffer(dev, ring);
  2040. }
  2041. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2042. {
  2043. struct drm_i915_private *dev_priv = dev->dev_private;
  2044. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2045. ring->name = "blitter ring";
  2046. ring->id = BCS;
  2047. ring->mmio_base = BLT_RING_BASE;
  2048. ring->write_tail = ring_write_tail;
  2049. ring->flush = gen6_ring_flush;
  2050. ring->add_request = gen6_add_request;
  2051. ring->get_seqno = gen6_ring_get_seqno;
  2052. ring->set_seqno = ring_set_seqno;
  2053. if (INTEL_INFO(dev)->gen >= 8) {
  2054. ring->irq_enable_mask =
  2055. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2056. ring->irq_get = gen8_ring_get_irq;
  2057. ring->irq_put = gen8_ring_put_irq;
  2058. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2059. if (i915_semaphore_is_enabled(dev)) {
  2060. ring->semaphore.sync_to = gen8_ring_sync;
  2061. ring->semaphore.signal = gen8_xcs_signal;
  2062. GEN8_RING_SEMAPHORE_INIT;
  2063. }
  2064. } else {
  2065. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2066. ring->irq_get = gen6_ring_get_irq;
  2067. ring->irq_put = gen6_ring_put_irq;
  2068. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2069. if (i915_semaphore_is_enabled(dev)) {
  2070. ring->semaphore.signal = gen6_signal;
  2071. ring->semaphore.sync_to = gen6_ring_sync;
  2072. /*
  2073. * The current semaphore is only applied on pre-gen8
  2074. * platform. And there is no VCS2 ring on the pre-gen8
  2075. * platform. So the semaphore between BCS and VCS2 is
  2076. * initialized as INVALID. Gen8 will initialize the
  2077. * sema between BCS and VCS2 later.
  2078. */
  2079. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2080. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2081. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2082. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2083. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2084. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2085. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2086. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2087. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2088. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2089. }
  2090. }
  2091. ring->init = init_ring_common;
  2092. return intel_init_ring_buffer(dev, ring);
  2093. }
  2094. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2095. {
  2096. struct drm_i915_private *dev_priv = dev->dev_private;
  2097. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2098. ring->name = "video enhancement ring";
  2099. ring->id = VECS;
  2100. ring->mmio_base = VEBOX_RING_BASE;
  2101. ring->write_tail = ring_write_tail;
  2102. ring->flush = gen6_ring_flush;
  2103. ring->add_request = gen6_add_request;
  2104. ring->get_seqno = gen6_ring_get_seqno;
  2105. ring->set_seqno = ring_set_seqno;
  2106. if (INTEL_INFO(dev)->gen >= 8) {
  2107. ring->irq_enable_mask =
  2108. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2109. ring->irq_get = gen8_ring_get_irq;
  2110. ring->irq_put = gen8_ring_put_irq;
  2111. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2112. if (i915_semaphore_is_enabled(dev)) {
  2113. ring->semaphore.sync_to = gen8_ring_sync;
  2114. ring->semaphore.signal = gen8_xcs_signal;
  2115. GEN8_RING_SEMAPHORE_INIT;
  2116. }
  2117. } else {
  2118. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2119. ring->irq_get = hsw_vebox_get_irq;
  2120. ring->irq_put = hsw_vebox_put_irq;
  2121. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2122. if (i915_semaphore_is_enabled(dev)) {
  2123. ring->semaphore.sync_to = gen6_ring_sync;
  2124. ring->semaphore.signal = gen6_signal;
  2125. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2126. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2127. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2128. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2129. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2130. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2131. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2132. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2133. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2134. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2135. }
  2136. }
  2137. ring->init = init_ring_common;
  2138. return intel_init_ring_buffer(dev, ring);
  2139. }
  2140. int
  2141. intel_ring_flush_all_caches(struct intel_engine_cs *ring)
  2142. {
  2143. int ret;
  2144. if (!ring->gpu_caches_dirty)
  2145. return 0;
  2146. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2147. if (ret)
  2148. return ret;
  2149. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  2150. ring->gpu_caches_dirty = false;
  2151. return 0;
  2152. }
  2153. int
  2154. intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
  2155. {
  2156. uint32_t flush_domains;
  2157. int ret;
  2158. flush_domains = 0;
  2159. if (ring->gpu_caches_dirty)
  2160. flush_domains = I915_GEM_GPU_DOMAINS;
  2161. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2162. if (ret)
  2163. return ret;
  2164. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  2165. ring->gpu_caches_dirty = false;
  2166. return 0;
  2167. }
  2168. void
  2169. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2170. {
  2171. int ret;
  2172. if (!intel_ring_initialized(ring))
  2173. return;
  2174. ret = intel_ring_idle(ring);
  2175. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2176. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2177. ring->name, ret);
  2178. stop_ring(ring);
  2179. }