mm.h 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/percpu-refcount.h>
  17. #include <linux/bit_spinlock.h>
  18. #include <linux/shrinker.h>
  19. #include <linux/resource.h>
  20. #include <linux/page_ext.h>
  21. #include <linux/err.h>
  22. struct mempolicy;
  23. struct anon_vma;
  24. struct anon_vma_chain;
  25. struct file_ra_state;
  26. struct user_struct;
  27. struct writeback_control;
  28. struct bdi_writeback;
  29. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  30. extern unsigned long max_mapnr;
  31. static inline void set_max_mapnr(unsigned long limit)
  32. {
  33. max_mapnr = limit;
  34. }
  35. #else
  36. static inline void set_max_mapnr(unsigned long limit) { }
  37. #endif
  38. extern unsigned long totalram_pages;
  39. extern void * high_memory;
  40. extern int page_cluster;
  41. #ifdef CONFIG_SYSCTL
  42. extern int sysctl_legacy_va_layout;
  43. #else
  44. #define sysctl_legacy_va_layout 0
  45. #endif
  46. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  47. extern const int mmap_rnd_bits_min;
  48. extern const int mmap_rnd_bits_max;
  49. extern int mmap_rnd_bits __read_mostly;
  50. #endif
  51. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  52. extern const int mmap_rnd_compat_bits_min;
  53. extern const int mmap_rnd_compat_bits_max;
  54. extern int mmap_rnd_compat_bits __read_mostly;
  55. #endif
  56. #include <asm/page.h>
  57. #include <asm/pgtable.h>
  58. #include <asm/processor.h>
  59. #ifndef __pa_symbol
  60. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  61. #endif
  62. /*
  63. * To prevent common memory management code establishing
  64. * a zero page mapping on a read fault.
  65. * This macro should be defined within <asm/pgtable.h>.
  66. * s390 does this to prevent multiplexing of hardware bits
  67. * related to the physical page in case of virtualization.
  68. */
  69. #ifndef mm_forbids_zeropage
  70. #define mm_forbids_zeropage(X) (0)
  71. #endif
  72. extern unsigned long sysctl_user_reserve_kbytes;
  73. extern unsigned long sysctl_admin_reserve_kbytes;
  74. extern int sysctl_overcommit_memory;
  75. extern int sysctl_overcommit_ratio;
  76. extern unsigned long sysctl_overcommit_kbytes;
  77. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  78. size_t *, loff_t *);
  79. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  80. size_t *, loff_t *);
  81. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  82. /* to align the pointer to the (next) page boundary */
  83. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  84. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  85. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  86. /*
  87. * Linux kernel virtual memory manager primitives.
  88. * The idea being to have a "virtual" mm in the same way
  89. * we have a virtual fs - giving a cleaner interface to the
  90. * mm details, and allowing different kinds of memory mappings
  91. * (from shared memory to executable loading to arbitrary
  92. * mmap() functions).
  93. */
  94. extern struct kmem_cache *vm_area_cachep;
  95. #ifndef CONFIG_MMU
  96. extern struct rb_root nommu_region_tree;
  97. extern struct rw_semaphore nommu_region_sem;
  98. extern unsigned int kobjsize(const void *objp);
  99. #endif
  100. /*
  101. * vm_flags in vm_area_struct, see mm_types.h.
  102. */
  103. #define VM_NONE 0x00000000
  104. #define VM_READ 0x00000001 /* currently active flags */
  105. #define VM_WRITE 0x00000002
  106. #define VM_EXEC 0x00000004
  107. #define VM_SHARED 0x00000008
  108. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  109. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  110. #define VM_MAYWRITE 0x00000020
  111. #define VM_MAYEXEC 0x00000040
  112. #define VM_MAYSHARE 0x00000080
  113. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  114. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  115. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  116. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  117. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  118. #define VM_LOCKED 0x00002000
  119. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  120. /* Used by sys_madvise() */
  121. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  122. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  123. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  124. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  125. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  126. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  127. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  128. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  129. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  130. #define VM_ARCH_2 0x02000000
  131. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  132. #ifdef CONFIG_MEM_SOFT_DIRTY
  133. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  134. #else
  135. # define VM_SOFTDIRTY 0
  136. #endif
  137. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  138. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  139. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  140. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  141. #if defined(CONFIG_X86)
  142. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  143. #elif defined(CONFIG_PPC)
  144. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  145. #elif defined(CONFIG_PARISC)
  146. # define VM_GROWSUP VM_ARCH_1
  147. #elif defined(CONFIG_METAG)
  148. # define VM_GROWSUP VM_ARCH_1
  149. #elif defined(CONFIG_IA64)
  150. # define VM_GROWSUP VM_ARCH_1
  151. #elif !defined(CONFIG_MMU)
  152. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  153. #endif
  154. #if defined(CONFIG_X86)
  155. /* MPX specific bounds table or bounds directory */
  156. # define VM_MPX VM_ARCH_2
  157. #endif
  158. #ifndef VM_GROWSUP
  159. # define VM_GROWSUP VM_NONE
  160. #endif
  161. /* Bits set in the VMA until the stack is in its final location */
  162. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  163. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  164. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  165. #endif
  166. #ifdef CONFIG_STACK_GROWSUP
  167. #define VM_STACK VM_GROWSUP
  168. #else
  169. #define VM_STACK VM_GROWSDOWN
  170. #endif
  171. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  172. /*
  173. * Special vmas that are non-mergable, non-mlock()able.
  174. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  175. */
  176. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  177. /* This mask defines which mm->def_flags a process can inherit its parent */
  178. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  179. /* This mask is used to clear all the VMA flags used by mlock */
  180. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  181. /*
  182. * mapping from the currently active vm_flags protection bits (the
  183. * low four bits) to a page protection mask..
  184. */
  185. extern pgprot_t protection_map[16];
  186. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  187. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  188. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  189. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  190. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  191. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  192. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  193. /*
  194. * vm_fault is filled by the the pagefault handler and passed to the vma's
  195. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  196. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  197. *
  198. * MM layer fills up gfp_mask for page allocations but fault handler might
  199. * alter it if its implementation requires a different allocation context.
  200. *
  201. * pgoff should be used in favour of virtual_address, if possible.
  202. */
  203. struct vm_fault {
  204. unsigned int flags; /* FAULT_FLAG_xxx flags */
  205. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  206. pgoff_t pgoff; /* Logical page offset based on vma */
  207. void __user *virtual_address; /* Faulting virtual address */
  208. struct page *cow_page; /* Handler may choose to COW */
  209. struct page *page; /* ->fault handlers should return a
  210. * page here, unless VM_FAULT_NOPAGE
  211. * is set (which is also implied by
  212. * VM_FAULT_ERROR).
  213. */
  214. /* for ->map_pages() only */
  215. pgoff_t max_pgoff; /* map pages for offset from pgoff till
  216. * max_pgoff inclusive */
  217. pte_t *pte; /* pte entry associated with ->pgoff */
  218. };
  219. /*
  220. * These are the virtual MM functions - opening of an area, closing and
  221. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  222. * to the functions called when a no-page or a wp-page exception occurs.
  223. */
  224. struct vm_operations_struct {
  225. void (*open)(struct vm_area_struct * area);
  226. void (*close)(struct vm_area_struct * area);
  227. int (*mremap)(struct vm_area_struct * area);
  228. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  229. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  230. pmd_t *, unsigned int flags);
  231. void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
  232. /* notification that a previously read-only page is about to become
  233. * writable, if an error is returned it will cause a SIGBUS */
  234. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  235. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  236. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  237. /* called by access_process_vm when get_user_pages() fails, typically
  238. * for use by special VMAs that can switch between memory and hardware
  239. */
  240. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  241. void *buf, int len, int write);
  242. /* Called by the /proc/PID/maps code to ask the vma whether it
  243. * has a special name. Returning non-NULL will also cause this
  244. * vma to be dumped unconditionally. */
  245. const char *(*name)(struct vm_area_struct *vma);
  246. #ifdef CONFIG_NUMA
  247. /*
  248. * set_policy() op must add a reference to any non-NULL @new mempolicy
  249. * to hold the policy upon return. Caller should pass NULL @new to
  250. * remove a policy and fall back to surrounding context--i.e. do not
  251. * install a MPOL_DEFAULT policy, nor the task or system default
  252. * mempolicy.
  253. */
  254. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  255. /*
  256. * get_policy() op must add reference [mpol_get()] to any policy at
  257. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  258. * in mm/mempolicy.c will do this automatically.
  259. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  260. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  261. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  262. * must return NULL--i.e., do not "fallback" to task or system default
  263. * policy.
  264. */
  265. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  266. unsigned long addr);
  267. #endif
  268. /*
  269. * Called by vm_normal_page() for special PTEs to find the
  270. * page for @addr. This is useful if the default behavior
  271. * (using pte_page()) would not find the correct page.
  272. */
  273. struct page *(*find_special_page)(struct vm_area_struct *vma,
  274. unsigned long addr);
  275. };
  276. struct mmu_gather;
  277. struct inode;
  278. #define page_private(page) ((page)->private)
  279. #define set_page_private(page, v) ((page)->private = (v))
  280. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  281. static inline int pmd_devmap(pmd_t pmd)
  282. {
  283. return 0;
  284. }
  285. #endif
  286. /*
  287. * FIXME: take this include out, include page-flags.h in
  288. * files which need it (119 of them)
  289. */
  290. #include <linux/page-flags.h>
  291. #include <linux/huge_mm.h>
  292. /*
  293. * Methods to modify the page usage count.
  294. *
  295. * What counts for a page usage:
  296. * - cache mapping (page->mapping)
  297. * - private data (page->private)
  298. * - page mapped in a task's page tables, each mapping
  299. * is counted separately
  300. *
  301. * Also, many kernel routines increase the page count before a critical
  302. * routine so they can be sure the page doesn't go away from under them.
  303. */
  304. /*
  305. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  306. */
  307. static inline int put_page_testzero(struct page *page)
  308. {
  309. VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
  310. return atomic_dec_and_test(&page->_count);
  311. }
  312. /*
  313. * Try to grab a ref unless the page has a refcount of zero, return false if
  314. * that is the case.
  315. * This can be called when MMU is off so it must not access
  316. * any of the virtual mappings.
  317. */
  318. static inline int get_page_unless_zero(struct page *page)
  319. {
  320. return atomic_inc_not_zero(&page->_count);
  321. }
  322. extern int page_is_ram(unsigned long pfn);
  323. enum {
  324. REGION_INTERSECTS,
  325. REGION_DISJOINT,
  326. REGION_MIXED,
  327. };
  328. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  329. unsigned long desc);
  330. /* Support for virtually mapped pages */
  331. struct page *vmalloc_to_page(const void *addr);
  332. unsigned long vmalloc_to_pfn(const void *addr);
  333. /*
  334. * Determine if an address is within the vmalloc range
  335. *
  336. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  337. * is no special casing required.
  338. */
  339. static inline int is_vmalloc_addr(const void *x)
  340. {
  341. #ifdef CONFIG_MMU
  342. unsigned long addr = (unsigned long)x;
  343. return addr >= VMALLOC_START && addr < VMALLOC_END;
  344. #else
  345. return 0;
  346. #endif
  347. }
  348. #ifdef CONFIG_MMU
  349. extern int is_vmalloc_or_module_addr(const void *x);
  350. #else
  351. static inline int is_vmalloc_or_module_addr(const void *x)
  352. {
  353. return 0;
  354. }
  355. #endif
  356. extern void kvfree(const void *addr);
  357. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  358. {
  359. return &page[1].compound_mapcount;
  360. }
  361. static inline int compound_mapcount(struct page *page)
  362. {
  363. if (!PageCompound(page))
  364. return 0;
  365. page = compound_head(page);
  366. return atomic_read(compound_mapcount_ptr(page)) + 1;
  367. }
  368. /*
  369. * The atomic page->_mapcount, starts from -1: so that transitions
  370. * both from it and to it can be tracked, using atomic_inc_and_test
  371. * and atomic_add_negative(-1).
  372. */
  373. static inline void page_mapcount_reset(struct page *page)
  374. {
  375. atomic_set(&(page)->_mapcount, -1);
  376. }
  377. int __page_mapcount(struct page *page);
  378. static inline int page_mapcount(struct page *page)
  379. {
  380. VM_BUG_ON_PAGE(PageSlab(page), page);
  381. if (unlikely(PageCompound(page)))
  382. return __page_mapcount(page);
  383. return atomic_read(&page->_mapcount) + 1;
  384. }
  385. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  386. int total_mapcount(struct page *page);
  387. #else
  388. static inline int total_mapcount(struct page *page)
  389. {
  390. return page_mapcount(page);
  391. }
  392. #endif
  393. static inline int page_count(struct page *page)
  394. {
  395. return atomic_read(&compound_head(page)->_count);
  396. }
  397. static inline struct page *virt_to_head_page(const void *x)
  398. {
  399. struct page *page = virt_to_page(x);
  400. return compound_head(page);
  401. }
  402. /*
  403. * Setup the page count before being freed into the page allocator for
  404. * the first time (boot or memory hotplug)
  405. */
  406. static inline void init_page_count(struct page *page)
  407. {
  408. atomic_set(&page->_count, 1);
  409. }
  410. void __put_page(struct page *page);
  411. void put_pages_list(struct list_head *pages);
  412. void split_page(struct page *page, unsigned int order);
  413. int split_free_page(struct page *page);
  414. /*
  415. * Compound pages have a destructor function. Provide a
  416. * prototype for that function and accessor functions.
  417. * These are _only_ valid on the head of a compound page.
  418. */
  419. typedef void compound_page_dtor(struct page *);
  420. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  421. enum compound_dtor_id {
  422. NULL_COMPOUND_DTOR,
  423. COMPOUND_PAGE_DTOR,
  424. #ifdef CONFIG_HUGETLB_PAGE
  425. HUGETLB_PAGE_DTOR,
  426. #endif
  427. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  428. TRANSHUGE_PAGE_DTOR,
  429. #endif
  430. NR_COMPOUND_DTORS,
  431. };
  432. extern compound_page_dtor * const compound_page_dtors[];
  433. static inline void set_compound_page_dtor(struct page *page,
  434. enum compound_dtor_id compound_dtor)
  435. {
  436. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  437. page[1].compound_dtor = compound_dtor;
  438. }
  439. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  440. {
  441. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  442. return compound_page_dtors[page[1].compound_dtor];
  443. }
  444. static inline unsigned int compound_order(struct page *page)
  445. {
  446. if (!PageHead(page))
  447. return 0;
  448. return page[1].compound_order;
  449. }
  450. static inline void set_compound_order(struct page *page, unsigned int order)
  451. {
  452. page[1].compound_order = order;
  453. }
  454. void free_compound_page(struct page *page);
  455. #ifdef CONFIG_MMU
  456. /*
  457. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  458. * servicing faults for write access. In the normal case, do always want
  459. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  460. * that do not have writing enabled, when used by access_process_vm.
  461. */
  462. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  463. {
  464. if (likely(vma->vm_flags & VM_WRITE))
  465. pte = pte_mkwrite(pte);
  466. return pte;
  467. }
  468. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  469. struct page *page, pte_t *pte, bool write, bool anon);
  470. #endif
  471. /*
  472. * Multiple processes may "see" the same page. E.g. for untouched
  473. * mappings of /dev/null, all processes see the same page full of
  474. * zeroes, and text pages of executables and shared libraries have
  475. * only one copy in memory, at most, normally.
  476. *
  477. * For the non-reserved pages, page_count(page) denotes a reference count.
  478. * page_count() == 0 means the page is free. page->lru is then used for
  479. * freelist management in the buddy allocator.
  480. * page_count() > 0 means the page has been allocated.
  481. *
  482. * Pages are allocated by the slab allocator in order to provide memory
  483. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  484. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  485. * unless a particular usage is carefully commented. (the responsibility of
  486. * freeing the kmalloc memory is the caller's, of course).
  487. *
  488. * A page may be used by anyone else who does a __get_free_page().
  489. * In this case, page_count still tracks the references, and should only
  490. * be used through the normal accessor functions. The top bits of page->flags
  491. * and page->virtual store page management information, but all other fields
  492. * are unused and could be used privately, carefully. The management of this
  493. * page is the responsibility of the one who allocated it, and those who have
  494. * subsequently been given references to it.
  495. *
  496. * The other pages (we may call them "pagecache pages") are completely
  497. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  498. * The following discussion applies only to them.
  499. *
  500. * A pagecache page contains an opaque `private' member, which belongs to the
  501. * page's address_space. Usually, this is the address of a circular list of
  502. * the page's disk buffers. PG_private must be set to tell the VM to call
  503. * into the filesystem to release these pages.
  504. *
  505. * A page may belong to an inode's memory mapping. In this case, page->mapping
  506. * is the pointer to the inode, and page->index is the file offset of the page,
  507. * in units of PAGE_CACHE_SIZE.
  508. *
  509. * If pagecache pages are not associated with an inode, they are said to be
  510. * anonymous pages. These may become associated with the swapcache, and in that
  511. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  512. *
  513. * In either case (swapcache or inode backed), the pagecache itself holds one
  514. * reference to the page. Setting PG_private should also increment the
  515. * refcount. The each user mapping also has a reference to the page.
  516. *
  517. * The pagecache pages are stored in a per-mapping radix tree, which is
  518. * rooted at mapping->page_tree, and indexed by offset.
  519. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  520. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  521. *
  522. * All pagecache pages may be subject to I/O:
  523. * - inode pages may need to be read from disk,
  524. * - inode pages which have been modified and are MAP_SHARED may need
  525. * to be written back to the inode on disk,
  526. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  527. * modified may need to be swapped out to swap space and (later) to be read
  528. * back into memory.
  529. */
  530. /*
  531. * The zone field is never updated after free_area_init_core()
  532. * sets it, so none of the operations on it need to be atomic.
  533. */
  534. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  535. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  536. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  537. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  538. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  539. /*
  540. * Define the bit shifts to access each section. For non-existent
  541. * sections we define the shift as 0; that plus a 0 mask ensures
  542. * the compiler will optimise away reference to them.
  543. */
  544. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  545. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  546. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  547. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  548. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  549. #ifdef NODE_NOT_IN_PAGE_FLAGS
  550. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  551. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  552. SECTIONS_PGOFF : ZONES_PGOFF)
  553. #else
  554. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  555. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  556. NODES_PGOFF : ZONES_PGOFF)
  557. #endif
  558. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  559. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  560. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  561. #endif
  562. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  563. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  564. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  565. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  566. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  567. static inline enum zone_type page_zonenum(const struct page *page)
  568. {
  569. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  570. }
  571. #ifdef CONFIG_ZONE_DEVICE
  572. void get_zone_device_page(struct page *page);
  573. void put_zone_device_page(struct page *page);
  574. static inline bool is_zone_device_page(const struct page *page)
  575. {
  576. return page_zonenum(page) == ZONE_DEVICE;
  577. }
  578. #else
  579. static inline void get_zone_device_page(struct page *page)
  580. {
  581. }
  582. static inline void put_zone_device_page(struct page *page)
  583. {
  584. }
  585. static inline bool is_zone_device_page(const struct page *page)
  586. {
  587. return false;
  588. }
  589. #endif
  590. static inline void get_page(struct page *page)
  591. {
  592. page = compound_head(page);
  593. /*
  594. * Getting a normal page or the head of a compound page
  595. * requires to already have an elevated page->_count.
  596. */
  597. VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
  598. atomic_inc(&page->_count);
  599. if (unlikely(is_zone_device_page(page)))
  600. get_zone_device_page(page);
  601. }
  602. static inline void put_page(struct page *page)
  603. {
  604. page = compound_head(page);
  605. if (put_page_testzero(page))
  606. __put_page(page);
  607. if (unlikely(is_zone_device_page(page)))
  608. put_zone_device_page(page);
  609. }
  610. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  611. #define SECTION_IN_PAGE_FLAGS
  612. #endif
  613. /*
  614. * The identification function is mainly used by the buddy allocator for
  615. * determining if two pages could be buddies. We are not really identifying
  616. * the zone since we could be using the section number id if we do not have
  617. * node id available in page flags.
  618. * We only guarantee that it will return the same value for two combinable
  619. * pages in a zone.
  620. */
  621. static inline int page_zone_id(struct page *page)
  622. {
  623. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  624. }
  625. static inline int zone_to_nid(struct zone *zone)
  626. {
  627. #ifdef CONFIG_NUMA
  628. return zone->node;
  629. #else
  630. return 0;
  631. #endif
  632. }
  633. #ifdef NODE_NOT_IN_PAGE_FLAGS
  634. extern int page_to_nid(const struct page *page);
  635. #else
  636. static inline int page_to_nid(const struct page *page)
  637. {
  638. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  639. }
  640. #endif
  641. #ifdef CONFIG_NUMA_BALANCING
  642. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  643. {
  644. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  645. }
  646. static inline int cpupid_to_pid(int cpupid)
  647. {
  648. return cpupid & LAST__PID_MASK;
  649. }
  650. static inline int cpupid_to_cpu(int cpupid)
  651. {
  652. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  653. }
  654. static inline int cpupid_to_nid(int cpupid)
  655. {
  656. return cpu_to_node(cpupid_to_cpu(cpupid));
  657. }
  658. static inline bool cpupid_pid_unset(int cpupid)
  659. {
  660. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  661. }
  662. static inline bool cpupid_cpu_unset(int cpupid)
  663. {
  664. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  665. }
  666. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  667. {
  668. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  669. }
  670. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  671. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  672. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  673. {
  674. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  675. }
  676. static inline int page_cpupid_last(struct page *page)
  677. {
  678. return page->_last_cpupid;
  679. }
  680. static inline void page_cpupid_reset_last(struct page *page)
  681. {
  682. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  683. }
  684. #else
  685. static inline int page_cpupid_last(struct page *page)
  686. {
  687. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  688. }
  689. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  690. static inline void page_cpupid_reset_last(struct page *page)
  691. {
  692. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  693. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  694. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  695. }
  696. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  697. #else /* !CONFIG_NUMA_BALANCING */
  698. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  699. {
  700. return page_to_nid(page); /* XXX */
  701. }
  702. static inline int page_cpupid_last(struct page *page)
  703. {
  704. return page_to_nid(page); /* XXX */
  705. }
  706. static inline int cpupid_to_nid(int cpupid)
  707. {
  708. return -1;
  709. }
  710. static inline int cpupid_to_pid(int cpupid)
  711. {
  712. return -1;
  713. }
  714. static inline int cpupid_to_cpu(int cpupid)
  715. {
  716. return -1;
  717. }
  718. static inline int cpu_pid_to_cpupid(int nid, int pid)
  719. {
  720. return -1;
  721. }
  722. static inline bool cpupid_pid_unset(int cpupid)
  723. {
  724. return 1;
  725. }
  726. static inline void page_cpupid_reset_last(struct page *page)
  727. {
  728. }
  729. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  730. {
  731. return false;
  732. }
  733. #endif /* CONFIG_NUMA_BALANCING */
  734. static inline struct zone *page_zone(const struct page *page)
  735. {
  736. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  737. }
  738. #ifdef SECTION_IN_PAGE_FLAGS
  739. static inline void set_page_section(struct page *page, unsigned long section)
  740. {
  741. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  742. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  743. }
  744. static inline unsigned long page_to_section(const struct page *page)
  745. {
  746. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  747. }
  748. #endif
  749. static inline void set_page_zone(struct page *page, enum zone_type zone)
  750. {
  751. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  752. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  753. }
  754. static inline void set_page_node(struct page *page, unsigned long node)
  755. {
  756. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  757. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  758. }
  759. static inline void set_page_links(struct page *page, enum zone_type zone,
  760. unsigned long node, unsigned long pfn)
  761. {
  762. set_page_zone(page, zone);
  763. set_page_node(page, node);
  764. #ifdef SECTION_IN_PAGE_FLAGS
  765. set_page_section(page, pfn_to_section_nr(pfn));
  766. #endif
  767. }
  768. #ifdef CONFIG_MEMCG
  769. static inline struct mem_cgroup *page_memcg(struct page *page)
  770. {
  771. return page->mem_cgroup;
  772. }
  773. static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
  774. {
  775. page->mem_cgroup = memcg;
  776. }
  777. #else
  778. static inline struct mem_cgroup *page_memcg(struct page *page)
  779. {
  780. return NULL;
  781. }
  782. static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
  783. {
  784. }
  785. #endif
  786. /*
  787. * Some inline functions in vmstat.h depend on page_zone()
  788. */
  789. #include <linux/vmstat.h>
  790. static __always_inline void *lowmem_page_address(const struct page *page)
  791. {
  792. return __va(PFN_PHYS(page_to_pfn(page)));
  793. }
  794. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  795. #define HASHED_PAGE_VIRTUAL
  796. #endif
  797. #if defined(WANT_PAGE_VIRTUAL)
  798. static inline void *page_address(const struct page *page)
  799. {
  800. return page->virtual;
  801. }
  802. static inline void set_page_address(struct page *page, void *address)
  803. {
  804. page->virtual = address;
  805. }
  806. #define page_address_init() do { } while(0)
  807. #endif
  808. #if defined(HASHED_PAGE_VIRTUAL)
  809. void *page_address(const struct page *page);
  810. void set_page_address(struct page *page, void *virtual);
  811. void page_address_init(void);
  812. #endif
  813. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  814. #define page_address(page) lowmem_page_address(page)
  815. #define set_page_address(page, address) do { } while(0)
  816. #define page_address_init() do { } while(0)
  817. #endif
  818. extern void *page_rmapping(struct page *page);
  819. extern struct anon_vma *page_anon_vma(struct page *page);
  820. extern struct address_space *page_mapping(struct page *page);
  821. extern struct address_space *__page_file_mapping(struct page *);
  822. static inline
  823. struct address_space *page_file_mapping(struct page *page)
  824. {
  825. if (unlikely(PageSwapCache(page)))
  826. return __page_file_mapping(page);
  827. return page->mapping;
  828. }
  829. /*
  830. * Return the pagecache index of the passed page. Regular pagecache pages
  831. * use ->index whereas swapcache pages use ->private
  832. */
  833. static inline pgoff_t page_index(struct page *page)
  834. {
  835. if (unlikely(PageSwapCache(page)))
  836. return page_private(page);
  837. return page->index;
  838. }
  839. extern pgoff_t __page_file_index(struct page *page);
  840. /*
  841. * Return the file index of the page. Regular pagecache pages use ->index
  842. * whereas swapcache pages use swp_offset(->private)
  843. */
  844. static inline pgoff_t page_file_index(struct page *page)
  845. {
  846. if (unlikely(PageSwapCache(page)))
  847. return __page_file_index(page);
  848. return page->index;
  849. }
  850. /*
  851. * Return true if this page is mapped into pagetables.
  852. * For compound page it returns true if any subpage of compound page is mapped.
  853. */
  854. static inline bool page_mapped(struct page *page)
  855. {
  856. int i;
  857. if (likely(!PageCompound(page)))
  858. return atomic_read(&page->_mapcount) >= 0;
  859. page = compound_head(page);
  860. if (atomic_read(compound_mapcount_ptr(page)) >= 0)
  861. return true;
  862. for (i = 0; i < hpage_nr_pages(page); i++) {
  863. if (atomic_read(&page[i]._mapcount) >= 0)
  864. return true;
  865. }
  866. return false;
  867. }
  868. /*
  869. * Return true only if the page has been allocated with
  870. * ALLOC_NO_WATERMARKS and the low watermark was not
  871. * met implying that the system is under some pressure.
  872. */
  873. static inline bool page_is_pfmemalloc(struct page *page)
  874. {
  875. /*
  876. * Page index cannot be this large so this must be
  877. * a pfmemalloc page.
  878. */
  879. return page->index == -1UL;
  880. }
  881. /*
  882. * Only to be called by the page allocator on a freshly allocated
  883. * page.
  884. */
  885. static inline void set_page_pfmemalloc(struct page *page)
  886. {
  887. page->index = -1UL;
  888. }
  889. static inline void clear_page_pfmemalloc(struct page *page)
  890. {
  891. page->index = 0;
  892. }
  893. /*
  894. * Different kinds of faults, as returned by handle_mm_fault().
  895. * Used to decide whether a process gets delivered SIGBUS or
  896. * just gets major/minor fault counters bumped up.
  897. */
  898. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  899. #define VM_FAULT_OOM 0x0001
  900. #define VM_FAULT_SIGBUS 0x0002
  901. #define VM_FAULT_MAJOR 0x0004
  902. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  903. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  904. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  905. #define VM_FAULT_SIGSEGV 0x0040
  906. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  907. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  908. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  909. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  910. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  911. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  912. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  913. VM_FAULT_FALLBACK)
  914. /* Encode hstate index for a hwpoisoned large page */
  915. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  916. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  917. /*
  918. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  919. */
  920. extern void pagefault_out_of_memory(void);
  921. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  922. /*
  923. * Flags passed to show_mem() and show_free_areas() to suppress output in
  924. * various contexts.
  925. */
  926. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  927. extern void show_free_areas(unsigned int flags);
  928. extern bool skip_free_areas_node(unsigned int flags, int nid);
  929. int shmem_zero_setup(struct vm_area_struct *);
  930. #ifdef CONFIG_SHMEM
  931. bool shmem_mapping(struct address_space *mapping);
  932. #else
  933. static inline bool shmem_mapping(struct address_space *mapping)
  934. {
  935. return false;
  936. }
  937. #endif
  938. extern bool can_do_mlock(void);
  939. extern int user_shm_lock(size_t, struct user_struct *);
  940. extern void user_shm_unlock(size_t, struct user_struct *);
  941. /*
  942. * Parameter block passed down to zap_pte_range in exceptional cases.
  943. */
  944. struct zap_details {
  945. struct address_space *check_mapping; /* Check page->mapping if set */
  946. pgoff_t first_index; /* Lowest page->index to unmap */
  947. pgoff_t last_index; /* Highest page->index to unmap */
  948. };
  949. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  950. pte_t pte);
  951. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  952. unsigned long size);
  953. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  954. unsigned long size, struct zap_details *);
  955. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  956. unsigned long start, unsigned long end);
  957. /**
  958. * mm_walk - callbacks for walk_page_range
  959. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  960. * this handler is required to be able to handle
  961. * pmd_trans_huge() pmds. They may simply choose to
  962. * split_huge_page() instead of handling it explicitly.
  963. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  964. * @pte_hole: if set, called for each hole at all levels
  965. * @hugetlb_entry: if set, called for each hugetlb entry
  966. * @test_walk: caller specific callback function to determine whether
  967. * we walk over the current vma or not. A positive returned
  968. * value means "do page table walk over the current vma,"
  969. * and a negative one means "abort current page table walk
  970. * right now." 0 means "skip the current vma."
  971. * @mm: mm_struct representing the target process of page table walk
  972. * @vma: vma currently walked (NULL if walking outside vmas)
  973. * @private: private data for callbacks' usage
  974. *
  975. * (see the comment on walk_page_range() for more details)
  976. */
  977. struct mm_walk {
  978. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  979. unsigned long next, struct mm_walk *walk);
  980. int (*pte_entry)(pte_t *pte, unsigned long addr,
  981. unsigned long next, struct mm_walk *walk);
  982. int (*pte_hole)(unsigned long addr, unsigned long next,
  983. struct mm_walk *walk);
  984. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  985. unsigned long addr, unsigned long next,
  986. struct mm_walk *walk);
  987. int (*test_walk)(unsigned long addr, unsigned long next,
  988. struct mm_walk *walk);
  989. struct mm_struct *mm;
  990. struct vm_area_struct *vma;
  991. void *private;
  992. };
  993. int walk_page_range(unsigned long addr, unsigned long end,
  994. struct mm_walk *walk);
  995. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  996. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  997. unsigned long end, unsigned long floor, unsigned long ceiling);
  998. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  999. struct vm_area_struct *vma);
  1000. void unmap_mapping_range(struct address_space *mapping,
  1001. loff_t const holebegin, loff_t const holelen, int even_cows);
  1002. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1003. unsigned long *pfn);
  1004. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1005. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1006. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1007. void *buf, int len, int write);
  1008. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1009. loff_t const holebegin, loff_t const holelen)
  1010. {
  1011. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1012. }
  1013. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1014. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1015. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1016. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1017. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1018. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1019. int invalidate_inode_page(struct page *page);
  1020. #ifdef CONFIG_MMU
  1021. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1022. unsigned long address, unsigned int flags);
  1023. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1024. unsigned long address, unsigned int fault_flags,
  1025. bool *unlocked);
  1026. #else
  1027. static inline int handle_mm_fault(struct mm_struct *mm,
  1028. struct vm_area_struct *vma, unsigned long address,
  1029. unsigned int flags)
  1030. {
  1031. /* should never happen if there's no MMU */
  1032. BUG();
  1033. return VM_FAULT_SIGBUS;
  1034. }
  1035. static inline int fixup_user_fault(struct task_struct *tsk,
  1036. struct mm_struct *mm, unsigned long address,
  1037. unsigned int fault_flags, bool *unlocked)
  1038. {
  1039. /* should never happen if there's no MMU */
  1040. BUG();
  1041. return -EFAULT;
  1042. }
  1043. #endif
  1044. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  1045. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1046. void *buf, int len, int write);
  1047. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1048. unsigned long start, unsigned long nr_pages,
  1049. unsigned int foll_flags, struct page **pages,
  1050. struct vm_area_struct **vmas, int *nonblocking);
  1051. long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1052. unsigned long start, unsigned long nr_pages,
  1053. int write, int force, struct page **pages,
  1054. struct vm_area_struct **vmas);
  1055. long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
  1056. unsigned long start, unsigned long nr_pages,
  1057. int write, int force, struct page **pages,
  1058. int *locked);
  1059. long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1060. unsigned long start, unsigned long nr_pages,
  1061. int write, int force, struct page **pages,
  1062. unsigned int gup_flags);
  1063. long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1064. unsigned long start, unsigned long nr_pages,
  1065. int write, int force, struct page **pages);
  1066. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1067. struct page **pages);
  1068. /* Container for pinned pfns / pages */
  1069. struct frame_vector {
  1070. unsigned int nr_allocated; /* Number of frames we have space for */
  1071. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1072. bool got_ref; /* Did we pin pages by getting page ref? */
  1073. bool is_pfns; /* Does array contain pages or pfns? */
  1074. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1075. * pfns_vector_pages() or pfns_vector_pfns()
  1076. * for access */
  1077. };
  1078. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1079. void frame_vector_destroy(struct frame_vector *vec);
  1080. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1081. bool write, bool force, struct frame_vector *vec);
  1082. void put_vaddr_frames(struct frame_vector *vec);
  1083. int frame_vector_to_pages(struct frame_vector *vec);
  1084. void frame_vector_to_pfns(struct frame_vector *vec);
  1085. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1086. {
  1087. return vec->nr_frames;
  1088. }
  1089. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1090. {
  1091. if (vec->is_pfns) {
  1092. int err = frame_vector_to_pages(vec);
  1093. if (err)
  1094. return ERR_PTR(err);
  1095. }
  1096. return (struct page **)(vec->ptrs);
  1097. }
  1098. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1099. {
  1100. if (!vec->is_pfns)
  1101. frame_vector_to_pfns(vec);
  1102. return (unsigned long *)(vec->ptrs);
  1103. }
  1104. struct kvec;
  1105. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1106. struct page **pages);
  1107. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1108. struct page *get_dump_page(unsigned long addr);
  1109. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1110. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1111. unsigned int length);
  1112. int __set_page_dirty_nobuffers(struct page *page);
  1113. int __set_page_dirty_no_writeback(struct page *page);
  1114. int redirty_page_for_writepage(struct writeback_control *wbc,
  1115. struct page *page);
  1116. void account_page_dirtied(struct page *page, struct address_space *mapping,
  1117. struct mem_cgroup *memcg);
  1118. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1119. struct mem_cgroup *memcg, struct bdi_writeback *wb);
  1120. int set_page_dirty(struct page *page);
  1121. int set_page_dirty_lock(struct page *page);
  1122. void cancel_dirty_page(struct page *page);
  1123. int clear_page_dirty_for_io(struct page *page);
  1124. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1125. /* Is the vma a continuation of the stack vma above it? */
  1126. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1127. {
  1128. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1129. }
  1130. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1131. {
  1132. return !vma->vm_ops;
  1133. }
  1134. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1135. unsigned long addr)
  1136. {
  1137. return (vma->vm_flags & VM_GROWSDOWN) &&
  1138. (vma->vm_start == addr) &&
  1139. !vma_growsdown(vma->vm_prev, addr);
  1140. }
  1141. /* Is the vma a continuation of the stack vma below it? */
  1142. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1143. {
  1144. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1145. }
  1146. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1147. unsigned long addr)
  1148. {
  1149. return (vma->vm_flags & VM_GROWSUP) &&
  1150. (vma->vm_end == addr) &&
  1151. !vma_growsup(vma->vm_next, addr);
  1152. }
  1153. int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
  1154. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1155. unsigned long old_addr, struct vm_area_struct *new_vma,
  1156. unsigned long new_addr, unsigned long len,
  1157. bool need_rmap_locks);
  1158. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1159. unsigned long end, pgprot_t newprot,
  1160. int dirty_accountable, int prot_numa);
  1161. extern int mprotect_fixup(struct vm_area_struct *vma,
  1162. struct vm_area_struct **pprev, unsigned long start,
  1163. unsigned long end, unsigned long newflags);
  1164. /*
  1165. * doesn't attempt to fault and will return short.
  1166. */
  1167. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1168. struct page **pages);
  1169. /*
  1170. * per-process(per-mm_struct) statistics.
  1171. */
  1172. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1173. {
  1174. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1175. #ifdef SPLIT_RSS_COUNTING
  1176. /*
  1177. * counter is updated in asynchronous manner and may go to minus.
  1178. * But it's never be expected number for users.
  1179. */
  1180. if (val < 0)
  1181. val = 0;
  1182. #endif
  1183. return (unsigned long)val;
  1184. }
  1185. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1186. {
  1187. atomic_long_add(value, &mm->rss_stat.count[member]);
  1188. }
  1189. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1190. {
  1191. atomic_long_inc(&mm->rss_stat.count[member]);
  1192. }
  1193. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1194. {
  1195. atomic_long_dec(&mm->rss_stat.count[member]);
  1196. }
  1197. /* Optimized variant when page is already known not to be PageAnon */
  1198. static inline int mm_counter_file(struct page *page)
  1199. {
  1200. if (PageSwapBacked(page))
  1201. return MM_SHMEMPAGES;
  1202. return MM_FILEPAGES;
  1203. }
  1204. static inline int mm_counter(struct page *page)
  1205. {
  1206. if (PageAnon(page))
  1207. return MM_ANONPAGES;
  1208. return mm_counter_file(page);
  1209. }
  1210. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1211. {
  1212. return get_mm_counter(mm, MM_FILEPAGES) +
  1213. get_mm_counter(mm, MM_ANONPAGES) +
  1214. get_mm_counter(mm, MM_SHMEMPAGES);
  1215. }
  1216. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1217. {
  1218. return max(mm->hiwater_rss, get_mm_rss(mm));
  1219. }
  1220. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1221. {
  1222. return max(mm->hiwater_vm, mm->total_vm);
  1223. }
  1224. static inline void update_hiwater_rss(struct mm_struct *mm)
  1225. {
  1226. unsigned long _rss = get_mm_rss(mm);
  1227. if ((mm)->hiwater_rss < _rss)
  1228. (mm)->hiwater_rss = _rss;
  1229. }
  1230. static inline void update_hiwater_vm(struct mm_struct *mm)
  1231. {
  1232. if (mm->hiwater_vm < mm->total_vm)
  1233. mm->hiwater_vm = mm->total_vm;
  1234. }
  1235. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1236. {
  1237. mm->hiwater_rss = get_mm_rss(mm);
  1238. }
  1239. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1240. struct mm_struct *mm)
  1241. {
  1242. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1243. if (*maxrss < hiwater_rss)
  1244. *maxrss = hiwater_rss;
  1245. }
  1246. #if defined(SPLIT_RSS_COUNTING)
  1247. void sync_mm_rss(struct mm_struct *mm);
  1248. #else
  1249. static inline void sync_mm_rss(struct mm_struct *mm)
  1250. {
  1251. }
  1252. #endif
  1253. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1254. static inline int pte_devmap(pte_t pte)
  1255. {
  1256. return 0;
  1257. }
  1258. #endif
  1259. int vma_wants_writenotify(struct vm_area_struct *vma);
  1260. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1261. spinlock_t **ptl);
  1262. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1263. spinlock_t **ptl)
  1264. {
  1265. pte_t *ptep;
  1266. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1267. return ptep;
  1268. }
  1269. #ifdef __PAGETABLE_PUD_FOLDED
  1270. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1271. unsigned long address)
  1272. {
  1273. return 0;
  1274. }
  1275. #else
  1276. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1277. #endif
  1278. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1279. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1280. unsigned long address)
  1281. {
  1282. return 0;
  1283. }
  1284. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1285. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1286. {
  1287. return 0;
  1288. }
  1289. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1290. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1291. #else
  1292. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1293. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1294. {
  1295. atomic_long_set(&mm->nr_pmds, 0);
  1296. }
  1297. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1298. {
  1299. return atomic_long_read(&mm->nr_pmds);
  1300. }
  1301. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1302. {
  1303. atomic_long_inc(&mm->nr_pmds);
  1304. }
  1305. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1306. {
  1307. atomic_long_dec(&mm->nr_pmds);
  1308. }
  1309. #endif
  1310. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1311. pmd_t *pmd, unsigned long address);
  1312. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1313. /*
  1314. * The following ifdef needed to get the 4level-fixup.h header to work.
  1315. * Remove it when 4level-fixup.h has been removed.
  1316. */
  1317. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1318. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1319. {
  1320. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1321. NULL: pud_offset(pgd, address);
  1322. }
  1323. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1324. {
  1325. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1326. NULL: pmd_offset(pud, address);
  1327. }
  1328. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1329. #if USE_SPLIT_PTE_PTLOCKS
  1330. #if ALLOC_SPLIT_PTLOCKS
  1331. void __init ptlock_cache_init(void);
  1332. extern bool ptlock_alloc(struct page *page);
  1333. extern void ptlock_free(struct page *page);
  1334. static inline spinlock_t *ptlock_ptr(struct page *page)
  1335. {
  1336. return page->ptl;
  1337. }
  1338. #else /* ALLOC_SPLIT_PTLOCKS */
  1339. static inline void ptlock_cache_init(void)
  1340. {
  1341. }
  1342. static inline bool ptlock_alloc(struct page *page)
  1343. {
  1344. return true;
  1345. }
  1346. static inline void ptlock_free(struct page *page)
  1347. {
  1348. }
  1349. static inline spinlock_t *ptlock_ptr(struct page *page)
  1350. {
  1351. return &page->ptl;
  1352. }
  1353. #endif /* ALLOC_SPLIT_PTLOCKS */
  1354. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1355. {
  1356. return ptlock_ptr(pmd_page(*pmd));
  1357. }
  1358. static inline bool ptlock_init(struct page *page)
  1359. {
  1360. /*
  1361. * prep_new_page() initialize page->private (and therefore page->ptl)
  1362. * with 0. Make sure nobody took it in use in between.
  1363. *
  1364. * It can happen if arch try to use slab for page table allocation:
  1365. * slab code uses page->slab_cache, which share storage with page->ptl.
  1366. */
  1367. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1368. if (!ptlock_alloc(page))
  1369. return false;
  1370. spin_lock_init(ptlock_ptr(page));
  1371. return true;
  1372. }
  1373. /* Reset page->mapping so free_pages_check won't complain. */
  1374. static inline void pte_lock_deinit(struct page *page)
  1375. {
  1376. page->mapping = NULL;
  1377. ptlock_free(page);
  1378. }
  1379. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1380. /*
  1381. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1382. */
  1383. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1384. {
  1385. return &mm->page_table_lock;
  1386. }
  1387. static inline void ptlock_cache_init(void) {}
  1388. static inline bool ptlock_init(struct page *page) { return true; }
  1389. static inline void pte_lock_deinit(struct page *page) {}
  1390. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1391. static inline void pgtable_init(void)
  1392. {
  1393. ptlock_cache_init();
  1394. pgtable_cache_init();
  1395. }
  1396. static inline bool pgtable_page_ctor(struct page *page)
  1397. {
  1398. if (!ptlock_init(page))
  1399. return false;
  1400. inc_zone_page_state(page, NR_PAGETABLE);
  1401. return true;
  1402. }
  1403. static inline void pgtable_page_dtor(struct page *page)
  1404. {
  1405. pte_lock_deinit(page);
  1406. dec_zone_page_state(page, NR_PAGETABLE);
  1407. }
  1408. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1409. ({ \
  1410. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1411. pte_t *__pte = pte_offset_map(pmd, address); \
  1412. *(ptlp) = __ptl; \
  1413. spin_lock(__ptl); \
  1414. __pte; \
  1415. })
  1416. #define pte_unmap_unlock(pte, ptl) do { \
  1417. spin_unlock(ptl); \
  1418. pte_unmap(pte); \
  1419. } while (0)
  1420. #define pte_alloc_map(mm, vma, pmd, address) \
  1421. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1422. pmd, address))? \
  1423. NULL: pte_offset_map(pmd, address))
  1424. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1425. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1426. pmd, address))? \
  1427. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1428. #define pte_alloc_kernel(pmd, address) \
  1429. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1430. NULL: pte_offset_kernel(pmd, address))
  1431. #if USE_SPLIT_PMD_PTLOCKS
  1432. static struct page *pmd_to_page(pmd_t *pmd)
  1433. {
  1434. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1435. return virt_to_page((void *)((unsigned long) pmd & mask));
  1436. }
  1437. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1438. {
  1439. return ptlock_ptr(pmd_to_page(pmd));
  1440. }
  1441. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1442. {
  1443. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1444. page->pmd_huge_pte = NULL;
  1445. #endif
  1446. return ptlock_init(page);
  1447. }
  1448. static inline void pgtable_pmd_page_dtor(struct page *page)
  1449. {
  1450. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1451. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1452. #endif
  1453. ptlock_free(page);
  1454. }
  1455. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1456. #else
  1457. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1458. {
  1459. return &mm->page_table_lock;
  1460. }
  1461. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1462. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1463. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1464. #endif
  1465. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1466. {
  1467. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1468. spin_lock(ptl);
  1469. return ptl;
  1470. }
  1471. extern void free_area_init(unsigned long * zones_size);
  1472. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1473. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1474. extern void free_initmem(void);
  1475. /*
  1476. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1477. * into the buddy system. The freed pages will be poisoned with pattern
  1478. * "poison" if it's within range [0, UCHAR_MAX].
  1479. * Return pages freed into the buddy system.
  1480. */
  1481. extern unsigned long free_reserved_area(void *start, void *end,
  1482. int poison, char *s);
  1483. #ifdef CONFIG_HIGHMEM
  1484. /*
  1485. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1486. * and totalram_pages.
  1487. */
  1488. extern void free_highmem_page(struct page *page);
  1489. #endif
  1490. extern void adjust_managed_page_count(struct page *page, long count);
  1491. extern void mem_init_print_info(const char *str);
  1492. extern void reserve_bootmem_region(unsigned long start, unsigned long end);
  1493. /* Free the reserved page into the buddy system, so it gets managed. */
  1494. static inline void __free_reserved_page(struct page *page)
  1495. {
  1496. ClearPageReserved(page);
  1497. init_page_count(page);
  1498. __free_page(page);
  1499. }
  1500. static inline void free_reserved_page(struct page *page)
  1501. {
  1502. __free_reserved_page(page);
  1503. adjust_managed_page_count(page, 1);
  1504. }
  1505. static inline void mark_page_reserved(struct page *page)
  1506. {
  1507. SetPageReserved(page);
  1508. adjust_managed_page_count(page, -1);
  1509. }
  1510. /*
  1511. * Default method to free all the __init memory into the buddy system.
  1512. * The freed pages will be poisoned with pattern "poison" if it's within
  1513. * range [0, UCHAR_MAX].
  1514. * Return pages freed into the buddy system.
  1515. */
  1516. static inline unsigned long free_initmem_default(int poison)
  1517. {
  1518. extern char __init_begin[], __init_end[];
  1519. return free_reserved_area(&__init_begin, &__init_end,
  1520. poison, "unused kernel");
  1521. }
  1522. static inline unsigned long get_num_physpages(void)
  1523. {
  1524. int nid;
  1525. unsigned long phys_pages = 0;
  1526. for_each_online_node(nid)
  1527. phys_pages += node_present_pages(nid);
  1528. return phys_pages;
  1529. }
  1530. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1531. /*
  1532. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1533. * zones, allocate the backing mem_map and account for memory holes in a more
  1534. * architecture independent manner. This is a substitute for creating the
  1535. * zone_sizes[] and zholes_size[] arrays and passing them to
  1536. * free_area_init_node()
  1537. *
  1538. * An architecture is expected to register range of page frames backed by
  1539. * physical memory with memblock_add[_node]() before calling
  1540. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1541. * usage, an architecture is expected to do something like
  1542. *
  1543. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1544. * max_highmem_pfn};
  1545. * for_each_valid_physical_page_range()
  1546. * memblock_add_node(base, size, nid)
  1547. * free_area_init_nodes(max_zone_pfns);
  1548. *
  1549. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1550. * registered physical page range. Similarly
  1551. * sparse_memory_present_with_active_regions() calls memory_present() for
  1552. * each range when SPARSEMEM is enabled.
  1553. *
  1554. * See mm/page_alloc.c for more information on each function exposed by
  1555. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1556. */
  1557. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1558. unsigned long node_map_pfn_alignment(void);
  1559. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1560. unsigned long end_pfn);
  1561. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1562. unsigned long end_pfn);
  1563. extern void get_pfn_range_for_nid(unsigned int nid,
  1564. unsigned long *start_pfn, unsigned long *end_pfn);
  1565. extern unsigned long find_min_pfn_with_active_regions(void);
  1566. extern void free_bootmem_with_active_regions(int nid,
  1567. unsigned long max_low_pfn);
  1568. extern void sparse_memory_present_with_active_regions(int nid);
  1569. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1570. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1571. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1572. static inline int __early_pfn_to_nid(unsigned long pfn,
  1573. struct mminit_pfnnid_cache *state)
  1574. {
  1575. return 0;
  1576. }
  1577. #else
  1578. /* please see mm/page_alloc.c */
  1579. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1580. /* there is a per-arch backend function. */
  1581. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1582. struct mminit_pfnnid_cache *state);
  1583. #endif
  1584. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1585. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1586. unsigned long, enum memmap_context);
  1587. extern void setup_per_zone_wmarks(void);
  1588. extern int __meminit init_per_zone_wmark_min(void);
  1589. extern void mem_init(void);
  1590. extern void __init mmap_init(void);
  1591. extern void show_mem(unsigned int flags);
  1592. extern void si_meminfo(struct sysinfo * val);
  1593. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1594. extern __printf(3, 4)
  1595. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
  1596. const char *fmt, ...);
  1597. extern void setup_per_cpu_pageset(void);
  1598. extern void zone_pcp_update(struct zone *zone);
  1599. extern void zone_pcp_reset(struct zone *zone);
  1600. /* page_alloc.c */
  1601. extern int min_free_kbytes;
  1602. /* nommu.c */
  1603. extern atomic_long_t mmap_pages_allocated;
  1604. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1605. /* interval_tree.c */
  1606. void vma_interval_tree_insert(struct vm_area_struct *node,
  1607. struct rb_root *root);
  1608. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1609. struct vm_area_struct *prev,
  1610. struct rb_root *root);
  1611. void vma_interval_tree_remove(struct vm_area_struct *node,
  1612. struct rb_root *root);
  1613. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1614. unsigned long start, unsigned long last);
  1615. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1616. unsigned long start, unsigned long last);
  1617. #define vma_interval_tree_foreach(vma, root, start, last) \
  1618. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1619. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1620. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1621. struct rb_root *root);
  1622. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1623. struct rb_root *root);
  1624. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1625. struct rb_root *root, unsigned long start, unsigned long last);
  1626. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1627. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1628. #ifdef CONFIG_DEBUG_VM_RB
  1629. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1630. #endif
  1631. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1632. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1633. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1634. /* mmap.c */
  1635. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1636. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1637. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1638. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1639. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1640. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1641. struct mempolicy *, struct vm_userfaultfd_ctx);
  1642. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1643. extern int split_vma(struct mm_struct *,
  1644. struct vm_area_struct *, unsigned long addr, int new_below);
  1645. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1646. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1647. struct rb_node **, struct rb_node *);
  1648. extern void unlink_file_vma(struct vm_area_struct *);
  1649. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1650. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1651. bool *need_rmap_locks);
  1652. extern void exit_mmap(struct mm_struct *);
  1653. static inline int check_data_rlimit(unsigned long rlim,
  1654. unsigned long new,
  1655. unsigned long start,
  1656. unsigned long end_data,
  1657. unsigned long start_data)
  1658. {
  1659. if (rlim < RLIM_INFINITY) {
  1660. if (((new - start) + (end_data - start_data)) > rlim)
  1661. return -ENOSPC;
  1662. }
  1663. return 0;
  1664. }
  1665. extern int mm_take_all_locks(struct mm_struct *mm);
  1666. extern void mm_drop_all_locks(struct mm_struct *mm);
  1667. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1668. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1669. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1670. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1671. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1672. unsigned long addr, unsigned long len,
  1673. unsigned long flags,
  1674. const struct vm_special_mapping *spec);
  1675. /* This is an obsolete alternative to _install_special_mapping. */
  1676. extern int install_special_mapping(struct mm_struct *mm,
  1677. unsigned long addr, unsigned long len,
  1678. unsigned long flags, struct page **pages);
  1679. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1680. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1681. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1682. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1683. unsigned long len, unsigned long prot, unsigned long flags,
  1684. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
  1685. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1686. static inline unsigned long
  1687. do_mmap_pgoff(struct file *file, unsigned long addr,
  1688. unsigned long len, unsigned long prot, unsigned long flags,
  1689. unsigned long pgoff, unsigned long *populate)
  1690. {
  1691. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
  1692. }
  1693. #ifdef CONFIG_MMU
  1694. extern int __mm_populate(unsigned long addr, unsigned long len,
  1695. int ignore_errors);
  1696. static inline void mm_populate(unsigned long addr, unsigned long len)
  1697. {
  1698. /* Ignore errors */
  1699. (void) __mm_populate(addr, len, 1);
  1700. }
  1701. #else
  1702. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1703. #endif
  1704. /* These take the mm semaphore themselves */
  1705. extern unsigned long vm_brk(unsigned long, unsigned long);
  1706. extern int vm_munmap(unsigned long, size_t);
  1707. extern unsigned long vm_mmap(struct file *, unsigned long,
  1708. unsigned long, unsigned long,
  1709. unsigned long, unsigned long);
  1710. struct vm_unmapped_area_info {
  1711. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1712. unsigned long flags;
  1713. unsigned long length;
  1714. unsigned long low_limit;
  1715. unsigned long high_limit;
  1716. unsigned long align_mask;
  1717. unsigned long align_offset;
  1718. };
  1719. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1720. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1721. /*
  1722. * Search for an unmapped address range.
  1723. *
  1724. * We are looking for a range that:
  1725. * - does not intersect with any VMA;
  1726. * - is contained within the [low_limit, high_limit) interval;
  1727. * - is at least the desired size.
  1728. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1729. */
  1730. static inline unsigned long
  1731. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1732. {
  1733. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1734. return unmapped_area_topdown(info);
  1735. else
  1736. return unmapped_area(info);
  1737. }
  1738. /* truncate.c */
  1739. extern void truncate_inode_pages(struct address_space *, loff_t);
  1740. extern void truncate_inode_pages_range(struct address_space *,
  1741. loff_t lstart, loff_t lend);
  1742. extern void truncate_inode_pages_final(struct address_space *);
  1743. /* generic vm_area_ops exported for stackable file systems */
  1744. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1745. extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
  1746. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1747. /* mm/page-writeback.c */
  1748. int write_one_page(struct page *page, int wait);
  1749. void task_dirty_inc(struct task_struct *tsk);
  1750. /* readahead.c */
  1751. #define VM_MAX_READAHEAD 128 /* kbytes */
  1752. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1753. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1754. pgoff_t offset, unsigned long nr_to_read);
  1755. void page_cache_sync_readahead(struct address_space *mapping,
  1756. struct file_ra_state *ra,
  1757. struct file *filp,
  1758. pgoff_t offset,
  1759. unsigned long size);
  1760. void page_cache_async_readahead(struct address_space *mapping,
  1761. struct file_ra_state *ra,
  1762. struct file *filp,
  1763. struct page *pg,
  1764. pgoff_t offset,
  1765. unsigned long size);
  1766. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1767. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1768. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1769. extern int expand_downwards(struct vm_area_struct *vma,
  1770. unsigned long address);
  1771. #if VM_GROWSUP
  1772. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1773. #else
  1774. #define expand_upwards(vma, address) (0)
  1775. #endif
  1776. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1777. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1778. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1779. struct vm_area_struct **pprev);
  1780. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1781. NULL if none. Assume start_addr < end_addr. */
  1782. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1783. {
  1784. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1785. if (vma && end_addr <= vma->vm_start)
  1786. vma = NULL;
  1787. return vma;
  1788. }
  1789. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1790. {
  1791. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1792. }
  1793. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1794. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1795. unsigned long vm_start, unsigned long vm_end)
  1796. {
  1797. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1798. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1799. vma = NULL;
  1800. return vma;
  1801. }
  1802. #ifdef CONFIG_MMU
  1803. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1804. void vma_set_page_prot(struct vm_area_struct *vma);
  1805. #else
  1806. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1807. {
  1808. return __pgprot(0);
  1809. }
  1810. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1811. {
  1812. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1813. }
  1814. #endif
  1815. #ifdef CONFIG_NUMA_BALANCING
  1816. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1817. unsigned long start, unsigned long end);
  1818. #endif
  1819. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1820. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1821. unsigned long pfn, unsigned long size, pgprot_t);
  1822. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1823. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1824. unsigned long pfn);
  1825. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1826. pfn_t pfn);
  1827. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1828. struct page *follow_page_mask(struct vm_area_struct *vma,
  1829. unsigned long address, unsigned int foll_flags,
  1830. unsigned int *page_mask);
  1831. static inline struct page *follow_page(struct vm_area_struct *vma,
  1832. unsigned long address, unsigned int foll_flags)
  1833. {
  1834. unsigned int unused_page_mask;
  1835. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1836. }
  1837. #define FOLL_WRITE 0x01 /* check pte is writable */
  1838. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1839. #define FOLL_GET 0x04 /* do get_page on page */
  1840. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1841. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1842. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1843. * and return without waiting upon it */
  1844. #define FOLL_POPULATE 0x40 /* fault in page */
  1845. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1846. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1847. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1848. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1849. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1850. #define FOLL_MLOCK 0x1000 /* lock present pages */
  1851. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1852. void *data);
  1853. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1854. unsigned long size, pte_fn_t fn, void *data);
  1855. #ifdef CONFIG_PAGE_POISONING
  1856. extern bool page_poisoning_enabled(void);
  1857. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  1858. #else
  1859. static inline bool page_poisoning_enabled(void) { return false; }
  1860. static inline void kernel_poison_pages(struct page *page, int numpages,
  1861. int enable) { }
  1862. #endif
  1863. #ifdef CONFIG_DEBUG_PAGEALLOC
  1864. extern bool _debug_pagealloc_enabled;
  1865. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1866. static inline bool debug_pagealloc_enabled(void)
  1867. {
  1868. return _debug_pagealloc_enabled;
  1869. }
  1870. static inline void
  1871. kernel_map_pages(struct page *page, int numpages, int enable)
  1872. {
  1873. if (!debug_pagealloc_enabled())
  1874. return;
  1875. __kernel_map_pages(page, numpages, enable);
  1876. }
  1877. #ifdef CONFIG_HIBERNATION
  1878. extern bool kernel_page_present(struct page *page);
  1879. #endif /* CONFIG_HIBERNATION */
  1880. #else /* CONFIG_DEBUG_PAGEALLOC */
  1881. static inline void
  1882. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1883. #ifdef CONFIG_HIBERNATION
  1884. static inline bool kernel_page_present(struct page *page) { return true; }
  1885. #endif /* CONFIG_HIBERNATION */
  1886. static inline bool debug_pagealloc_enabled(void)
  1887. {
  1888. return false;
  1889. }
  1890. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1891. #ifdef __HAVE_ARCH_GATE_AREA
  1892. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1893. extern int in_gate_area_no_mm(unsigned long addr);
  1894. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1895. #else
  1896. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1897. {
  1898. return NULL;
  1899. }
  1900. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1901. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1902. {
  1903. return 0;
  1904. }
  1905. #endif /* __HAVE_ARCH_GATE_AREA */
  1906. #ifdef CONFIG_SYSCTL
  1907. extern int sysctl_drop_caches;
  1908. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1909. void __user *, size_t *, loff_t *);
  1910. #endif
  1911. void drop_slab(void);
  1912. void drop_slab_node(int nid);
  1913. #ifndef CONFIG_MMU
  1914. #define randomize_va_space 0
  1915. #else
  1916. extern int randomize_va_space;
  1917. #endif
  1918. const char * arch_vma_name(struct vm_area_struct *vma);
  1919. void print_vma_addr(char *prefix, unsigned long rip);
  1920. void sparse_mem_maps_populate_node(struct page **map_map,
  1921. unsigned long pnum_begin,
  1922. unsigned long pnum_end,
  1923. unsigned long map_count,
  1924. int nodeid);
  1925. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1926. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1927. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1928. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1929. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1930. void *vmemmap_alloc_block(unsigned long size, int node);
  1931. struct vmem_altmap;
  1932. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  1933. struct vmem_altmap *altmap);
  1934. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  1935. {
  1936. return __vmemmap_alloc_block_buf(size, node, NULL);
  1937. }
  1938. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1939. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  1940. int node);
  1941. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  1942. void vmemmap_populate_print_last(void);
  1943. #ifdef CONFIG_MEMORY_HOTPLUG
  1944. void vmemmap_free(unsigned long start, unsigned long end);
  1945. #endif
  1946. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  1947. unsigned long size);
  1948. enum mf_flags {
  1949. MF_COUNT_INCREASED = 1 << 0,
  1950. MF_ACTION_REQUIRED = 1 << 1,
  1951. MF_MUST_KILL = 1 << 2,
  1952. MF_SOFT_OFFLINE = 1 << 3,
  1953. };
  1954. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  1955. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  1956. extern int unpoison_memory(unsigned long pfn);
  1957. extern int get_hwpoison_page(struct page *page);
  1958. #define put_hwpoison_page(page) put_page(page)
  1959. extern int sysctl_memory_failure_early_kill;
  1960. extern int sysctl_memory_failure_recovery;
  1961. extern void shake_page(struct page *p, int access);
  1962. extern atomic_long_t num_poisoned_pages;
  1963. extern int soft_offline_page(struct page *page, int flags);
  1964. /*
  1965. * Error handlers for various types of pages.
  1966. */
  1967. enum mf_result {
  1968. MF_IGNORED, /* Error: cannot be handled */
  1969. MF_FAILED, /* Error: handling failed */
  1970. MF_DELAYED, /* Will be handled later */
  1971. MF_RECOVERED, /* Successfully recovered */
  1972. };
  1973. enum mf_action_page_type {
  1974. MF_MSG_KERNEL,
  1975. MF_MSG_KERNEL_HIGH_ORDER,
  1976. MF_MSG_SLAB,
  1977. MF_MSG_DIFFERENT_COMPOUND,
  1978. MF_MSG_POISONED_HUGE,
  1979. MF_MSG_HUGE,
  1980. MF_MSG_FREE_HUGE,
  1981. MF_MSG_UNMAP_FAILED,
  1982. MF_MSG_DIRTY_SWAPCACHE,
  1983. MF_MSG_CLEAN_SWAPCACHE,
  1984. MF_MSG_DIRTY_MLOCKED_LRU,
  1985. MF_MSG_CLEAN_MLOCKED_LRU,
  1986. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  1987. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  1988. MF_MSG_DIRTY_LRU,
  1989. MF_MSG_CLEAN_LRU,
  1990. MF_MSG_TRUNCATED_LRU,
  1991. MF_MSG_BUDDY,
  1992. MF_MSG_BUDDY_2ND,
  1993. MF_MSG_UNKNOWN,
  1994. };
  1995. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1996. extern void clear_huge_page(struct page *page,
  1997. unsigned long addr,
  1998. unsigned int pages_per_huge_page);
  1999. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2000. unsigned long addr, struct vm_area_struct *vma,
  2001. unsigned int pages_per_huge_page);
  2002. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2003. extern struct page_ext_operations debug_guardpage_ops;
  2004. extern struct page_ext_operations page_poisoning_ops;
  2005. #ifdef CONFIG_DEBUG_PAGEALLOC
  2006. extern unsigned int _debug_guardpage_minorder;
  2007. extern bool _debug_guardpage_enabled;
  2008. static inline unsigned int debug_guardpage_minorder(void)
  2009. {
  2010. return _debug_guardpage_minorder;
  2011. }
  2012. static inline bool debug_guardpage_enabled(void)
  2013. {
  2014. return _debug_guardpage_enabled;
  2015. }
  2016. static inline bool page_is_guard(struct page *page)
  2017. {
  2018. struct page_ext *page_ext;
  2019. if (!debug_guardpage_enabled())
  2020. return false;
  2021. page_ext = lookup_page_ext(page);
  2022. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2023. }
  2024. #else
  2025. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2026. static inline bool debug_guardpage_enabled(void) { return false; }
  2027. static inline bool page_is_guard(struct page *page) { return false; }
  2028. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2029. #if MAX_NUMNODES > 1
  2030. void __init setup_nr_node_ids(void);
  2031. #else
  2032. static inline void setup_nr_node_ids(void) {}
  2033. #endif
  2034. #endif /* __KERNEL__ */
  2035. #endif /* _LINUX_MM_H */