super.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240
  1. /*
  2. * fs/f2fs/super.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/fs.h>
  14. #include <linux/statfs.h>
  15. #include <linux/buffer_head.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/kthread.h>
  18. #include <linux/parser.h>
  19. #include <linux/mount.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/proc_fs.h>
  22. #include <linux/random.h>
  23. #include <linux/exportfs.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/f2fs_fs.h>
  26. #include <linux/sysfs.h>
  27. #include "f2fs.h"
  28. #include "node.h"
  29. #include "segment.h"
  30. #include "xattr.h"
  31. #include "gc.h"
  32. #define CREATE_TRACE_POINTS
  33. #include <trace/events/f2fs.h>
  34. static struct proc_dir_entry *f2fs_proc_root;
  35. static struct kmem_cache *f2fs_inode_cachep;
  36. static struct kset *f2fs_kset;
  37. enum {
  38. Opt_gc_background,
  39. Opt_disable_roll_forward,
  40. Opt_discard,
  41. Opt_noheap,
  42. Opt_user_xattr,
  43. Opt_nouser_xattr,
  44. Opt_acl,
  45. Opt_noacl,
  46. Opt_active_logs,
  47. Opt_disable_ext_identify,
  48. Opt_inline_xattr,
  49. Opt_inline_data,
  50. Opt_flush_merge,
  51. Opt_err,
  52. };
  53. static match_table_t f2fs_tokens = {
  54. {Opt_gc_background, "background_gc=%s"},
  55. {Opt_disable_roll_forward, "disable_roll_forward"},
  56. {Opt_discard, "discard"},
  57. {Opt_noheap, "no_heap"},
  58. {Opt_user_xattr, "user_xattr"},
  59. {Opt_nouser_xattr, "nouser_xattr"},
  60. {Opt_acl, "acl"},
  61. {Opt_noacl, "noacl"},
  62. {Opt_active_logs, "active_logs=%u"},
  63. {Opt_disable_ext_identify, "disable_ext_identify"},
  64. {Opt_inline_xattr, "inline_xattr"},
  65. {Opt_inline_data, "inline_data"},
  66. {Opt_flush_merge, "flush_merge"},
  67. {Opt_err, NULL},
  68. };
  69. /* Sysfs support for f2fs */
  70. enum {
  71. GC_THREAD, /* struct f2fs_gc_thread */
  72. SM_INFO, /* struct f2fs_sm_info */
  73. NM_INFO, /* struct f2fs_nm_info */
  74. F2FS_SBI, /* struct f2fs_sb_info */
  75. };
  76. struct f2fs_attr {
  77. struct attribute attr;
  78. ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
  79. ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
  80. const char *, size_t);
  81. int struct_type;
  82. int offset;
  83. };
  84. static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
  85. {
  86. if (struct_type == GC_THREAD)
  87. return (unsigned char *)sbi->gc_thread;
  88. else if (struct_type == SM_INFO)
  89. return (unsigned char *)SM_I(sbi);
  90. else if (struct_type == NM_INFO)
  91. return (unsigned char *)NM_I(sbi);
  92. else if (struct_type == F2FS_SBI)
  93. return (unsigned char *)sbi;
  94. return NULL;
  95. }
  96. static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
  97. struct f2fs_sb_info *sbi, char *buf)
  98. {
  99. unsigned char *ptr = NULL;
  100. unsigned int *ui;
  101. ptr = __struct_ptr(sbi, a->struct_type);
  102. if (!ptr)
  103. return -EINVAL;
  104. ui = (unsigned int *)(ptr + a->offset);
  105. return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
  106. }
  107. static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
  108. struct f2fs_sb_info *sbi,
  109. const char *buf, size_t count)
  110. {
  111. unsigned char *ptr;
  112. unsigned long t;
  113. unsigned int *ui;
  114. ssize_t ret;
  115. ptr = __struct_ptr(sbi, a->struct_type);
  116. if (!ptr)
  117. return -EINVAL;
  118. ui = (unsigned int *)(ptr + a->offset);
  119. ret = kstrtoul(skip_spaces(buf), 0, &t);
  120. if (ret < 0)
  121. return ret;
  122. *ui = t;
  123. return count;
  124. }
  125. static ssize_t f2fs_attr_show(struct kobject *kobj,
  126. struct attribute *attr, char *buf)
  127. {
  128. struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
  129. s_kobj);
  130. struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
  131. return a->show ? a->show(a, sbi, buf) : 0;
  132. }
  133. static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
  134. const char *buf, size_t len)
  135. {
  136. struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
  137. s_kobj);
  138. struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
  139. return a->store ? a->store(a, sbi, buf, len) : 0;
  140. }
  141. static void f2fs_sb_release(struct kobject *kobj)
  142. {
  143. struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
  144. s_kobj);
  145. complete(&sbi->s_kobj_unregister);
  146. }
  147. #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
  148. static struct f2fs_attr f2fs_attr_##_name = { \
  149. .attr = {.name = __stringify(_name), .mode = _mode }, \
  150. .show = _show, \
  151. .store = _store, \
  152. .struct_type = _struct_type, \
  153. .offset = _offset \
  154. }
  155. #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
  156. F2FS_ATTR_OFFSET(struct_type, name, 0644, \
  157. f2fs_sbi_show, f2fs_sbi_store, \
  158. offsetof(struct struct_name, elname))
  159. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
  160. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
  161. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
  162. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
  163. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
  164. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
  165. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
  166. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
  167. F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
  168. F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
  169. F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
  170. #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
  171. static struct attribute *f2fs_attrs[] = {
  172. ATTR_LIST(gc_min_sleep_time),
  173. ATTR_LIST(gc_max_sleep_time),
  174. ATTR_LIST(gc_no_gc_sleep_time),
  175. ATTR_LIST(gc_idle),
  176. ATTR_LIST(reclaim_segments),
  177. ATTR_LIST(max_small_discards),
  178. ATTR_LIST(ipu_policy),
  179. ATTR_LIST(min_ipu_util),
  180. ATTR_LIST(max_victim_search),
  181. ATTR_LIST(dir_level),
  182. ATTR_LIST(ram_thresh),
  183. NULL,
  184. };
  185. static const struct sysfs_ops f2fs_attr_ops = {
  186. .show = f2fs_attr_show,
  187. .store = f2fs_attr_store,
  188. };
  189. static struct kobj_type f2fs_ktype = {
  190. .default_attrs = f2fs_attrs,
  191. .sysfs_ops = &f2fs_attr_ops,
  192. .release = f2fs_sb_release,
  193. };
  194. void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
  195. {
  196. struct va_format vaf;
  197. va_list args;
  198. va_start(args, fmt);
  199. vaf.fmt = fmt;
  200. vaf.va = &args;
  201. printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
  202. va_end(args);
  203. }
  204. static void init_once(void *foo)
  205. {
  206. struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
  207. inode_init_once(&fi->vfs_inode);
  208. }
  209. static int parse_options(struct super_block *sb, char *options)
  210. {
  211. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  212. substring_t args[MAX_OPT_ARGS];
  213. char *p, *name;
  214. int arg = 0;
  215. if (!options)
  216. return 0;
  217. while ((p = strsep(&options, ",")) != NULL) {
  218. int token;
  219. if (!*p)
  220. continue;
  221. /*
  222. * Initialize args struct so we know whether arg was
  223. * found; some options take optional arguments.
  224. */
  225. args[0].to = args[0].from = NULL;
  226. token = match_token(p, f2fs_tokens, args);
  227. switch (token) {
  228. case Opt_gc_background:
  229. name = match_strdup(&args[0]);
  230. if (!name)
  231. return -ENOMEM;
  232. if (strlen(name) == 2 && !strncmp(name, "on", 2))
  233. set_opt(sbi, BG_GC);
  234. else if (strlen(name) == 3 && !strncmp(name, "off", 3))
  235. clear_opt(sbi, BG_GC);
  236. else {
  237. kfree(name);
  238. return -EINVAL;
  239. }
  240. kfree(name);
  241. break;
  242. case Opt_disable_roll_forward:
  243. set_opt(sbi, DISABLE_ROLL_FORWARD);
  244. break;
  245. case Opt_discard:
  246. set_opt(sbi, DISCARD);
  247. break;
  248. case Opt_noheap:
  249. set_opt(sbi, NOHEAP);
  250. break;
  251. #ifdef CONFIG_F2FS_FS_XATTR
  252. case Opt_user_xattr:
  253. set_opt(sbi, XATTR_USER);
  254. break;
  255. case Opt_nouser_xattr:
  256. clear_opt(sbi, XATTR_USER);
  257. break;
  258. case Opt_inline_xattr:
  259. set_opt(sbi, INLINE_XATTR);
  260. break;
  261. #else
  262. case Opt_user_xattr:
  263. f2fs_msg(sb, KERN_INFO,
  264. "user_xattr options not supported");
  265. break;
  266. case Opt_nouser_xattr:
  267. f2fs_msg(sb, KERN_INFO,
  268. "nouser_xattr options not supported");
  269. break;
  270. case Opt_inline_xattr:
  271. f2fs_msg(sb, KERN_INFO,
  272. "inline_xattr options not supported");
  273. break;
  274. #endif
  275. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  276. case Opt_acl:
  277. set_opt(sbi, POSIX_ACL);
  278. break;
  279. case Opt_noacl:
  280. clear_opt(sbi, POSIX_ACL);
  281. break;
  282. #else
  283. case Opt_acl:
  284. f2fs_msg(sb, KERN_INFO, "acl options not supported");
  285. break;
  286. case Opt_noacl:
  287. f2fs_msg(sb, KERN_INFO, "noacl options not supported");
  288. break;
  289. #endif
  290. case Opt_active_logs:
  291. if (args->from && match_int(args, &arg))
  292. return -EINVAL;
  293. if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
  294. return -EINVAL;
  295. sbi->active_logs = arg;
  296. break;
  297. case Opt_disable_ext_identify:
  298. set_opt(sbi, DISABLE_EXT_IDENTIFY);
  299. break;
  300. case Opt_inline_data:
  301. set_opt(sbi, INLINE_DATA);
  302. break;
  303. case Opt_flush_merge:
  304. set_opt(sbi, FLUSH_MERGE);
  305. break;
  306. default:
  307. f2fs_msg(sb, KERN_ERR,
  308. "Unrecognized mount option \"%s\" or missing value",
  309. p);
  310. return -EINVAL;
  311. }
  312. }
  313. return 0;
  314. }
  315. static struct inode *f2fs_alloc_inode(struct super_block *sb)
  316. {
  317. struct f2fs_inode_info *fi;
  318. fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
  319. if (!fi)
  320. return NULL;
  321. init_once((void *) fi);
  322. /* Initialize f2fs-specific inode info */
  323. fi->vfs_inode.i_version = 1;
  324. atomic_set(&fi->dirty_dents, 0);
  325. fi->i_current_depth = 1;
  326. fi->i_advise = 0;
  327. rwlock_init(&fi->ext.ext_lock);
  328. init_rwsem(&fi->i_sem);
  329. set_inode_flag(fi, FI_NEW_INODE);
  330. if (test_opt(F2FS_SB(sb), INLINE_XATTR))
  331. set_inode_flag(fi, FI_INLINE_XATTR);
  332. /* Will be used by directory only */
  333. fi->i_dir_level = F2FS_SB(sb)->dir_level;
  334. return &fi->vfs_inode;
  335. }
  336. static int f2fs_drop_inode(struct inode *inode)
  337. {
  338. /*
  339. * This is to avoid a deadlock condition like below.
  340. * writeback_single_inode(inode)
  341. * - f2fs_write_data_page
  342. * - f2fs_gc -> iput -> evict
  343. * - inode_wait_for_writeback(inode)
  344. */
  345. if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
  346. return 0;
  347. return generic_drop_inode(inode);
  348. }
  349. /*
  350. * f2fs_dirty_inode() is called from __mark_inode_dirty()
  351. *
  352. * We should call set_dirty_inode to write the dirty inode through write_inode.
  353. */
  354. static void f2fs_dirty_inode(struct inode *inode, int flags)
  355. {
  356. set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
  357. }
  358. static void f2fs_i_callback(struct rcu_head *head)
  359. {
  360. struct inode *inode = container_of(head, struct inode, i_rcu);
  361. kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
  362. }
  363. static void f2fs_destroy_inode(struct inode *inode)
  364. {
  365. call_rcu(&inode->i_rcu, f2fs_i_callback);
  366. }
  367. static void f2fs_put_super(struct super_block *sb)
  368. {
  369. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  370. if (sbi->s_proc) {
  371. remove_proc_entry("segment_info", sbi->s_proc);
  372. remove_proc_entry(sb->s_id, f2fs_proc_root);
  373. }
  374. kobject_del(&sbi->s_kobj);
  375. f2fs_destroy_stats(sbi);
  376. stop_gc_thread(sbi);
  377. /* We don't need to do checkpoint when it's clean */
  378. if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES))
  379. write_checkpoint(sbi, true);
  380. iput(sbi->node_inode);
  381. iput(sbi->meta_inode);
  382. /* destroy f2fs internal modules */
  383. destroy_node_manager(sbi);
  384. destroy_segment_manager(sbi);
  385. kfree(sbi->ckpt);
  386. kobject_put(&sbi->s_kobj);
  387. wait_for_completion(&sbi->s_kobj_unregister);
  388. sb->s_fs_info = NULL;
  389. brelse(sbi->raw_super_buf);
  390. kfree(sbi);
  391. }
  392. int f2fs_sync_fs(struct super_block *sb, int sync)
  393. {
  394. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  395. trace_f2fs_sync_fs(sb, sync);
  396. if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
  397. return 0;
  398. if (sync) {
  399. mutex_lock(&sbi->gc_mutex);
  400. write_checkpoint(sbi, false);
  401. mutex_unlock(&sbi->gc_mutex);
  402. } else {
  403. f2fs_balance_fs(sbi);
  404. }
  405. return 0;
  406. }
  407. static int f2fs_freeze(struct super_block *sb)
  408. {
  409. int err;
  410. if (f2fs_readonly(sb))
  411. return 0;
  412. err = f2fs_sync_fs(sb, 1);
  413. return err;
  414. }
  415. static int f2fs_unfreeze(struct super_block *sb)
  416. {
  417. return 0;
  418. }
  419. static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
  420. {
  421. struct super_block *sb = dentry->d_sb;
  422. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  423. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  424. block_t total_count, user_block_count, start_count, ovp_count;
  425. total_count = le64_to_cpu(sbi->raw_super->block_count);
  426. user_block_count = sbi->user_block_count;
  427. start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
  428. ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
  429. buf->f_type = F2FS_SUPER_MAGIC;
  430. buf->f_bsize = sbi->blocksize;
  431. buf->f_blocks = total_count - start_count;
  432. buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
  433. buf->f_bavail = user_block_count - valid_user_blocks(sbi);
  434. buf->f_files = sbi->total_node_count;
  435. buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi);
  436. buf->f_namelen = F2FS_NAME_LEN;
  437. buf->f_fsid.val[0] = (u32)id;
  438. buf->f_fsid.val[1] = (u32)(id >> 32);
  439. return 0;
  440. }
  441. static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
  442. {
  443. struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
  444. if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
  445. seq_printf(seq, ",background_gc=%s", "on");
  446. else
  447. seq_printf(seq, ",background_gc=%s", "off");
  448. if (test_opt(sbi, DISABLE_ROLL_FORWARD))
  449. seq_puts(seq, ",disable_roll_forward");
  450. if (test_opt(sbi, DISCARD))
  451. seq_puts(seq, ",discard");
  452. if (test_opt(sbi, NOHEAP))
  453. seq_puts(seq, ",no_heap_alloc");
  454. #ifdef CONFIG_F2FS_FS_XATTR
  455. if (test_opt(sbi, XATTR_USER))
  456. seq_puts(seq, ",user_xattr");
  457. else
  458. seq_puts(seq, ",nouser_xattr");
  459. if (test_opt(sbi, INLINE_XATTR))
  460. seq_puts(seq, ",inline_xattr");
  461. #endif
  462. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  463. if (test_opt(sbi, POSIX_ACL))
  464. seq_puts(seq, ",acl");
  465. else
  466. seq_puts(seq, ",noacl");
  467. #endif
  468. if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
  469. seq_puts(seq, ",disable_ext_identify");
  470. if (test_opt(sbi, INLINE_DATA))
  471. seq_puts(seq, ",inline_data");
  472. if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
  473. seq_puts(seq, ",flush_merge");
  474. seq_printf(seq, ",active_logs=%u", sbi->active_logs);
  475. return 0;
  476. }
  477. static int segment_info_seq_show(struct seq_file *seq, void *offset)
  478. {
  479. struct super_block *sb = seq->private;
  480. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  481. unsigned int total_segs =
  482. le32_to_cpu(sbi->raw_super->segment_count_main);
  483. int i;
  484. seq_puts(seq, "format: segment_type|valid_blocks\n"
  485. "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
  486. for (i = 0; i < total_segs; i++) {
  487. struct seg_entry *se = get_seg_entry(sbi, i);
  488. if ((i % 10) == 0)
  489. seq_printf(seq, "%-5d", i);
  490. seq_printf(seq, "%d|%-3u", se->type,
  491. get_valid_blocks(sbi, i, 1));
  492. if ((i % 10) == 9 || i == (total_segs - 1))
  493. seq_putc(seq, '\n');
  494. else
  495. seq_putc(seq, ' ');
  496. }
  497. return 0;
  498. }
  499. static int segment_info_open_fs(struct inode *inode, struct file *file)
  500. {
  501. return single_open(file, segment_info_seq_show, PDE_DATA(inode));
  502. }
  503. static const struct file_operations f2fs_seq_segment_info_fops = {
  504. .owner = THIS_MODULE,
  505. .open = segment_info_open_fs,
  506. .read = seq_read,
  507. .llseek = seq_lseek,
  508. .release = single_release,
  509. };
  510. static int f2fs_remount(struct super_block *sb, int *flags, char *data)
  511. {
  512. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  513. struct f2fs_mount_info org_mount_opt;
  514. int err, active_logs;
  515. bool need_restart_gc = false;
  516. bool need_stop_gc = false;
  517. sync_filesystem(sb);
  518. /*
  519. * Save the old mount options in case we
  520. * need to restore them.
  521. */
  522. org_mount_opt = sbi->mount_opt;
  523. active_logs = sbi->active_logs;
  524. /* parse mount options */
  525. err = parse_options(sb, data);
  526. if (err)
  527. goto restore_opts;
  528. /*
  529. * Previous and new state of filesystem is RO,
  530. * so skip checking GC and FLUSH_MERGE conditions.
  531. */
  532. if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
  533. goto skip;
  534. /*
  535. * We stop the GC thread if FS is mounted as RO
  536. * or if background_gc = off is passed in mount
  537. * option. Also sync the filesystem.
  538. */
  539. if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
  540. if (sbi->gc_thread) {
  541. stop_gc_thread(sbi);
  542. f2fs_sync_fs(sb, 1);
  543. need_restart_gc = true;
  544. }
  545. } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
  546. err = start_gc_thread(sbi);
  547. if (err)
  548. goto restore_opts;
  549. need_stop_gc = true;
  550. }
  551. /*
  552. * We stop issue flush thread if FS is mounted as RO
  553. * or if flush_merge is not passed in mount option.
  554. */
  555. if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
  556. struct f2fs_sm_info *sm_info = sbi->sm_info;
  557. if (sm_info->f2fs_issue_flush)
  558. kthread_stop(sm_info->f2fs_issue_flush);
  559. sm_info->issue_list = sm_info->dispatch_list = NULL;
  560. sm_info->f2fs_issue_flush = NULL;
  561. } else if (test_opt(sbi, FLUSH_MERGE)) {
  562. struct f2fs_sm_info *sm_info = sbi->sm_info;
  563. if (!sm_info->f2fs_issue_flush) {
  564. dev_t dev = sbi->sb->s_bdev->bd_dev;
  565. spin_lock_init(&sm_info->issue_lock);
  566. init_waitqueue_head(&sm_info->flush_wait_queue);
  567. sm_info->f2fs_issue_flush =
  568. kthread_run(issue_flush_thread, sbi,
  569. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  570. if (IS_ERR(sm_info->f2fs_issue_flush)) {
  571. err = PTR_ERR(sm_info->f2fs_issue_flush);
  572. sm_info->f2fs_issue_flush = NULL;
  573. goto restore_gc;
  574. }
  575. }
  576. }
  577. skip:
  578. /* Update the POSIXACL Flag */
  579. sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
  580. (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
  581. return 0;
  582. restore_gc:
  583. if (need_restart_gc) {
  584. if (start_gc_thread(sbi))
  585. f2fs_msg(sbi->sb, KERN_WARNING,
  586. "background gc thread is stop");
  587. } else if (need_stop_gc) {
  588. stop_gc_thread(sbi);
  589. }
  590. restore_opts:
  591. sbi->mount_opt = org_mount_opt;
  592. sbi->active_logs = active_logs;
  593. return err;
  594. }
  595. static struct super_operations f2fs_sops = {
  596. .alloc_inode = f2fs_alloc_inode,
  597. .drop_inode = f2fs_drop_inode,
  598. .destroy_inode = f2fs_destroy_inode,
  599. .write_inode = f2fs_write_inode,
  600. .dirty_inode = f2fs_dirty_inode,
  601. .show_options = f2fs_show_options,
  602. .evict_inode = f2fs_evict_inode,
  603. .put_super = f2fs_put_super,
  604. .sync_fs = f2fs_sync_fs,
  605. .freeze_fs = f2fs_freeze,
  606. .unfreeze_fs = f2fs_unfreeze,
  607. .statfs = f2fs_statfs,
  608. .remount_fs = f2fs_remount,
  609. };
  610. static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
  611. u64 ino, u32 generation)
  612. {
  613. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  614. struct inode *inode;
  615. if (unlikely(ino < F2FS_ROOT_INO(sbi)))
  616. return ERR_PTR(-ESTALE);
  617. if (unlikely(ino >= NM_I(sbi)->max_nid))
  618. return ERR_PTR(-ESTALE);
  619. /*
  620. * f2fs_iget isn't quite right if the inode is currently unallocated!
  621. * However f2fs_iget currently does appropriate checks to handle stale
  622. * inodes so everything is OK.
  623. */
  624. inode = f2fs_iget(sb, ino);
  625. if (IS_ERR(inode))
  626. return ERR_CAST(inode);
  627. if (unlikely(generation && inode->i_generation != generation)) {
  628. /* we didn't find the right inode.. */
  629. iput(inode);
  630. return ERR_PTR(-ESTALE);
  631. }
  632. return inode;
  633. }
  634. static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
  635. int fh_len, int fh_type)
  636. {
  637. return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
  638. f2fs_nfs_get_inode);
  639. }
  640. static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
  641. int fh_len, int fh_type)
  642. {
  643. return generic_fh_to_parent(sb, fid, fh_len, fh_type,
  644. f2fs_nfs_get_inode);
  645. }
  646. static const struct export_operations f2fs_export_ops = {
  647. .fh_to_dentry = f2fs_fh_to_dentry,
  648. .fh_to_parent = f2fs_fh_to_parent,
  649. .get_parent = f2fs_get_parent,
  650. };
  651. static loff_t max_file_size(unsigned bits)
  652. {
  653. loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
  654. loff_t leaf_count = ADDRS_PER_BLOCK;
  655. /* two direct node blocks */
  656. result += (leaf_count * 2);
  657. /* two indirect node blocks */
  658. leaf_count *= NIDS_PER_BLOCK;
  659. result += (leaf_count * 2);
  660. /* one double indirect node block */
  661. leaf_count *= NIDS_PER_BLOCK;
  662. result += leaf_count;
  663. result <<= bits;
  664. return result;
  665. }
  666. static int sanity_check_raw_super(struct super_block *sb,
  667. struct f2fs_super_block *raw_super)
  668. {
  669. unsigned int blocksize;
  670. if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
  671. f2fs_msg(sb, KERN_INFO,
  672. "Magic Mismatch, valid(0x%x) - read(0x%x)",
  673. F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
  674. return 1;
  675. }
  676. /* Currently, support only 4KB page cache size */
  677. if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
  678. f2fs_msg(sb, KERN_INFO,
  679. "Invalid page_cache_size (%lu), supports only 4KB\n",
  680. PAGE_CACHE_SIZE);
  681. return 1;
  682. }
  683. /* Currently, support only 4KB block size */
  684. blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
  685. if (blocksize != F2FS_BLKSIZE) {
  686. f2fs_msg(sb, KERN_INFO,
  687. "Invalid blocksize (%u), supports only 4KB\n",
  688. blocksize);
  689. return 1;
  690. }
  691. if (le32_to_cpu(raw_super->log_sectorsize) !=
  692. F2FS_LOG_SECTOR_SIZE) {
  693. f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize");
  694. return 1;
  695. }
  696. if (le32_to_cpu(raw_super->log_sectors_per_block) !=
  697. F2FS_LOG_SECTORS_PER_BLOCK) {
  698. f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block");
  699. return 1;
  700. }
  701. return 0;
  702. }
  703. static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
  704. {
  705. unsigned int total, fsmeta;
  706. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  707. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  708. total = le32_to_cpu(raw_super->segment_count);
  709. fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
  710. fsmeta += le32_to_cpu(raw_super->segment_count_sit);
  711. fsmeta += le32_to_cpu(raw_super->segment_count_nat);
  712. fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
  713. fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
  714. if (unlikely(fsmeta >= total))
  715. return 1;
  716. if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
  717. f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
  718. return 1;
  719. }
  720. return 0;
  721. }
  722. static void init_sb_info(struct f2fs_sb_info *sbi)
  723. {
  724. struct f2fs_super_block *raw_super = sbi->raw_super;
  725. int i;
  726. sbi->log_sectors_per_block =
  727. le32_to_cpu(raw_super->log_sectors_per_block);
  728. sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
  729. sbi->blocksize = 1 << sbi->log_blocksize;
  730. sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
  731. sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
  732. sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
  733. sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
  734. sbi->total_sections = le32_to_cpu(raw_super->section_count);
  735. sbi->total_node_count =
  736. (le32_to_cpu(raw_super->segment_count_nat) / 2)
  737. * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
  738. sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
  739. sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
  740. sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
  741. sbi->cur_victim_sec = NULL_SECNO;
  742. sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
  743. for (i = 0; i < NR_COUNT_TYPE; i++)
  744. atomic_set(&sbi->nr_pages[i], 0);
  745. sbi->dir_level = DEF_DIR_LEVEL;
  746. }
  747. /*
  748. * Read f2fs raw super block.
  749. * Because we have two copies of super block, so read the first one at first,
  750. * if the first one is invalid, move to read the second one.
  751. */
  752. static int read_raw_super_block(struct super_block *sb,
  753. struct f2fs_super_block **raw_super,
  754. struct buffer_head **raw_super_buf)
  755. {
  756. int block = 0;
  757. retry:
  758. *raw_super_buf = sb_bread(sb, block);
  759. if (!*raw_super_buf) {
  760. f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
  761. block + 1);
  762. if (block == 0) {
  763. block++;
  764. goto retry;
  765. } else {
  766. return -EIO;
  767. }
  768. }
  769. *raw_super = (struct f2fs_super_block *)
  770. ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
  771. /* sanity checking of raw super */
  772. if (sanity_check_raw_super(sb, *raw_super)) {
  773. brelse(*raw_super_buf);
  774. f2fs_msg(sb, KERN_ERR,
  775. "Can't find valid F2FS filesystem in %dth superblock",
  776. block + 1);
  777. if (block == 0) {
  778. block++;
  779. goto retry;
  780. } else {
  781. return -EINVAL;
  782. }
  783. }
  784. return 0;
  785. }
  786. static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
  787. {
  788. struct f2fs_sb_info *sbi;
  789. struct f2fs_super_block *raw_super;
  790. struct buffer_head *raw_super_buf;
  791. struct inode *root;
  792. long err = -EINVAL;
  793. int i;
  794. /* allocate memory for f2fs-specific super block info */
  795. sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
  796. if (!sbi)
  797. return -ENOMEM;
  798. /* set a block size */
  799. if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
  800. f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
  801. goto free_sbi;
  802. }
  803. err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
  804. if (err)
  805. goto free_sbi;
  806. sb->s_fs_info = sbi;
  807. /* init some FS parameters */
  808. sbi->active_logs = NR_CURSEG_TYPE;
  809. set_opt(sbi, BG_GC);
  810. #ifdef CONFIG_F2FS_FS_XATTR
  811. set_opt(sbi, XATTR_USER);
  812. #endif
  813. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  814. set_opt(sbi, POSIX_ACL);
  815. #endif
  816. /* parse mount options */
  817. err = parse_options(sb, (char *)data);
  818. if (err)
  819. goto free_sb_buf;
  820. sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
  821. sb->s_max_links = F2FS_LINK_MAX;
  822. get_random_bytes(&sbi->s_next_generation, sizeof(u32));
  823. sb->s_op = &f2fs_sops;
  824. sb->s_xattr = f2fs_xattr_handlers;
  825. sb->s_export_op = &f2fs_export_ops;
  826. sb->s_magic = F2FS_SUPER_MAGIC;
  827. sb->s_time_gran = 1;
  828. sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
  829. (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
  830. memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
  831. /* init f2fs-specific super block info */
  832. sbi->sb = sb;
  833. sbi->raw_super = raw_super;
  834. sbi->raw_super_buf = raw_super_buf;
  835. mutex_init(&sbi->gc_mutex);
  836. mutex_init(&sbi->writepages);
  837. mutex_init(&sbi->cp_mutex);
  838. mutex_init(&sbi->node_write);
  839. sbi->por_doing = false;
  840. spin_lock_init(&sbi->stat_lock);
  841. init_rwsem(&sbi->read_io.io_rwsem);
  842. sbi->read_io.sbi = sbi;
  843. sbi->read_io.bio = NULL;
  844. for (i = 0; i < NR_PAGE_TYPE; i++) {
  845. init_rwsem(&sbi->write_io[i].io_rwsem);
  846. sbi->write_io[i].sbi = sbi;
  847. sbi->write_io[i].bio = NULL;
  848. }
  849. init_rwsem(&sbi->cp_rwsem);
  850. init_waitqueue_head(&sbi->cp_wait);
  851. init_sb_info(sbi);
  852. /* get an inode for meta space */
  853. sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
  854. if (IS_ERR(sbi->meta_inode)) {
  855. f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
  856. err = PTR_ERR(sbi->meta_inode);
  857. goto free_sb_buf;
  858. }
  859. err = get_valid_checkpoint(sbi);
  860. if (err) {
  861. f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
  862. goto free_meta_inode;
  863. }
  864. /* sanity checking of checkpoint */
  865. err = -EINVAL;
  866. if (sanity_check_ckpt(sbi)) {
  867. f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
  868. goto free_cp;
  869. }
  870. sbi->total_valid_node_count =
  871. le32_to_cpu(sbi->ckpt->valid_node_count);
  872. sbi->total_valid_inode_count =
  873. le32_to_cpu(sbi->ckpt->valid_inode_count);
  874. sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
  875. sbi->total_valid_block_count =
  876. le64_to_cpu(sbi->ckpt->valid_block_count);
  877. sbi->last_valid_block_count = sbi->total_valid_block_count;
  878. sbi->alloc_valid_block_count = 0;
  879. INIT_LIST_HEAD(&sbi->dir_inode_list);
  880. spin_lock_init(&sbi->dir_inode_lock);
  881. init_orphan_info(sbi);
  882. /* setup f2fs internal modules */
  883. err = build_segment_manager(sbi);
  884. if (err) {
  885. f2fs_msg(sb, KERN_ERR,
  886. "Failed to initialize F2FS segment manager");
  887. goto free_sm;
  888. }
  889. err = build_node_manager(sbi);
  890. if (err) {
  891. f2fs_msg(sb, KERN_ERR,
  892. "Failed to initialize F2FS node manager");
  893. goto free_nm;
  894. }
  895. build_gc_manager(sbi);
  896. /* get an inode for node space */
  897. sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
  898. if (IS_ERR(sbi->node_inode)) {
  899. f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
  900. err = PTR_ERR(sbi->node_inode);
  901. goto free_nm;
  902. }
  903. /* if there are nt orphan nodes free them */
  904. recover_orphan_inodes(sbi);
  905. /* read root inode and dentry */
  906. root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
  907. if (IS_ERR(root)) {
  908. f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
  909. err = PTR_ERR(root);
  910. goto free_node_inode;
  911. }
  912. if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
  913. err = -EINVAL;
  914. goto free_root_inode;
  915. }
  916. sb->s_root = d_make_root(root); /* allocate root dentry */
  917. if (!sb->s_root) {
  918. err = -ENOMEM;
  919. goto free_root_inode;
  920. }
  921. err = f2fs_build_stats(sbi);
  922. if (err)
  923. goto free_root_inode;
  924. if (f2fs_proc_root)
  925. sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
  926. if (sbi->s_proc)
  927. proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
  928. &f2fs_seq_segment_info_fops, sb);
  929. if (test_opt(sbi, DISCARD)) {
  930. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  931. if (!blk_queue_discard(q))
  932. f2fs_msg(sb, KERN_WARNING,
  933. "mounting with \"discard\" option, but "
  934. "the device does not support discard");
  935. }
  936. sbi->s_kobj.kset = f2fs_kset;
  937. init_completion(&sbi->s_kobj_unregister);
  938. err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
  939. "%s", sb->s_id);
  940. if (err)
  941. goto free_proc;
  942. /* recover fsynced data */
  943. if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
  944. err = recover_fsync_data(sbi);
  945. if (err)
  946. f2fs_msg(sb, KERN_ERR,
  947. "Cannot recover all fsync data errno=%ld", err);
  948. }
  949. /*
  950. * If filesystem is not mounted as read-only then
  951. * do start the gc_thread.
  952. */
  953. if (!(sb->s_flags & MS_RDONLY)) {
  954. /* After POR, we can run background GC thread.*/
  955. err = start_gc_thread(sbi);
  956. if (err)
  957. goto free_kobj;
  958. }
  959. return 0;
  960. free_kobj:
  961. kobject_del(&sbi->s_kobj);
  962. free_proc:
  963. if (sbi->s_proc) {
  964. remove_proc_entry("segment_info", sbi->s_proc);
  965. remove_proc_entry(sb->s_id, f2fs_proc_root);
  966. }
  967. f2fs_destroy_stats(sbi);
  968. free_root_inode:
  969. dput(sb->s_root);
  970. sb->s_root = NULL;
  971. free_node_inode:
  972. iput(sbi->node_inode);
  973. free_nm:
  974. destroy_node_manager(sbi);
  975. free_sm:
  976. destroy_segment_manager(sbi);
  977. free_cp:
  978. kfree(sbi->ckpt);
  979. free_meta_inode:
  980. make_bad_inode(sbi->meta_inode);
  981. iput(sbi->meta_inode);
  982. free_sb_buf:
  983. brelse(raw_super_buf);
  984. free_sbi:
  985. kfree(sbi);
  986. return err;
  987. }
  988. static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
  989. const char *dev_name, void *data)
  990. {
  991. return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
  992. }
  993. static struct file_system_type f2fs_fs_type = {
  994. .owner = THIS_MODULE,
  995. .name = "f2fs",
  996. .mount = f2fs_mount,
  997. .kill_sb = kill_block_super,
  998. .fs_flags = FS_REQUIRES_DEV,
  999. };
  1000. MODULE_ALIAS_FS("f2fs");
  1001. static int __init init_inodecache(void)
  1002. {
  1003. f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
  1004. sizeof(struct f2fs_inode_info));
  1005. if (!f2fs_inode_cachep)
  1006. return -ENOMEM;
  1007. return 0;
  1008. }
  1009. static void destroy_inodecache(void)
  1010. {
  1011. /*
  1012. * Make sure all delayed rcu free inodes are flushed before we
  1013. * destroy cache.
  1014. */
  1015. rcu_barrier();
  1016. kmem_cache_destroy(f2fs_inode_cachep);
  1017. }
  1018. static int __init init_f2fs_fs(void)
  1019. {
  1020. int err;
  1021. err = init_inodecache();
  1022. if (err)
  1023. goto fail;
  1024. err = create_node_manager_caches();
  1025. if (err)
  1026. goto free_inodecache;
  1027. err = create_segment_manager_caches();
  1028. if (err)
  1029. goto free_node_manager_caches;
  1030. err = create_gc_caches();
  1031. if (err)
  1032. goto free_segment_manager_caches;
  1033. err = create_checkpoint_caches();
  1034. if (err)
  1035. goto free_gc_caches;
  1036. f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
  1037. if (!f2fs_kset) {
  1038. err = -ENOMEM;
  1039. goto free_checkpoint_caches;
  1040. }
  1041. err = register_filesystem(&f2fs_fs_type);
  1042. if (err)
  1043. goto free_kset;
  1044. f2fs_create_root_stats();
  1045. f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
  1046. return 0;
  1047. free_kset:
  1048. kset_unregister(f2fs_kset);
  1049. free_checkpoint_caches:
  1050. destroy_checkpoint_caches();
  1051. free_gc_caches:
  1052. destroy_gc_caches();
  1053. free_segment_manager_caches:
  1054. destroy_segment_manager_caches();
  1055. free_node_manager_caches:
  1056. destroy_node_manager_caches();
  1057. free_inodecache:
  1058. destroy_inodecache();
  1059. fail:
  1060. return err;
  1061. }
  1062. static void __exit exit_f2fs_fs(void)
  1063. {
  1064. remove_proc_entry("fs/f2fs", NULL);
  1065. f2fs_destroy_root_stats();
  1066. unregister_filesystem(&f2fs_fs_type);
  1067. destroy_checkpoint_caches();
  1068. destroy_gc_caches();
  1069. destroy_segment_manager_caches();
  1070. destroy_node_manager_caches();
  1071. destroy_inodecache();
  1072. kset_unregister(f2fs_kset);
  1073. }
  1074. module_init(init_f2fs_fs)
  1075. module_exit(exit_f2fs_fs)
  1076. MODULE_AUTHOR("Samsung Electronics's Praesto Team");
  1077. MODULE_DESCRIPTION("Flash Friendly File System");
  1078. MODULE_LICENSE("GPL");