page_alloc.c 206 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/kasan.h>
  28. #include <linux/module.h>
  29. #include <linux/suspend.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/blkdev.h>
  32. #include <linux/slab.h>
  33. #include <linux/ratelimit.h>
  34. #include <linux/oom.h>
  35. #include <linux/notifier.h>
  36. #include <linux/topology.h>
  37. #include <linux/sysctl.h>
  38. #include <linux/cpu.h>
  39. #include <linux/cpuset.h>
  40. #include <linux/memory_hotplug.h>
  41. #include <linux/nodemask.h>
  42. #include <linux/vmalloc.h>
  43. #include <linux/vmstat.h>
  44. #include <linux/mempolicy.h>
  45. #include <linux/memremap.h>
  46. #include <linux/stop_machine.h>
  47. #include <linux/sort.h>
  48. #include <linux/pfn.h>
  49. #include <linux/backing-dev.h>
  50. #include <linux/fault-inject.h>
  51. #include <linux/page-isolation.h>
  52. #include <linux/page_ext.h>
  53. #include <linux/debugobjects.h>
  54. #include <linux/kmemleak.h>
  55. #include <linux/compaction.h>
  56. #include <trace/events/kmem.h>
  57. #include <linux/prefetch.h>
  58. #include <linux/mm_inline.h>
  59. #include <linux/migrate.h>
  60. #include <linux/page_ext.h>
  61. #include <linux/hugetlb.h>
  62. #include <linux/sched/rt.h>
  63. #include <linux/page_owner.h>
  64. #include <linux/kthread.h>
  65. #include <asm/sections.h>
  66. #include <asm/tlbflush.h>
  67. #include <asm/div64.h>
  68. #include "internal.h"
  69. /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  70. static DEFINE_MUTEX(pcp_batch_high_lock);
  71. #define MIN_PERCPU_PAGELIST_FRACTION (8)
  72. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  73. DEFINE_PER_CPU(int, numa_node);
  74. EXPORT_PER_CPU_SYMBOL(numa_node);
  75. #endif
  76. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  77. /*
  78. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  79. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  80. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  81. * defined in <linux/topology.h>.
  82. */
  83. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  84. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  85. int _node_numa_mem_[MAX_NUMNODES];
  86. #endif
  87. /*
  88. * Array of node states.
  89. */
  90. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  91. [N_POSSIBLE] = NODE_MASK_ALL,
  92. [N_ONLINE] = { { [0] = 1UL } },
  93. #ifndef CONFIG_NUMA
  94. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  95. #ifdef CONFIG_HIGHMEM
  96. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  97. #endif
  98. #ifdef CONFIG_MOVABLE_NODE
  99. [N_MEMORY] = { { [0] = 1UL } },
  100. #endif
  101. [N_CPU] = { { [0] = 1UL } },
  102. #endif /* NUMA */
  103. };
  104. EXPORT_SYMBOL(node_states);
  105. /* Protect totalram_pages and zone->managed_pages */
  106. static DEFINE_SPINLOCK(managed_page_count_lock);
  107. unsigned long totalram_pages __read_mostly;
  108. unsigned long totalreserve_pages __read_mostly;
  109. unsigned long totalcma_pages __read_mostly;
  110. int percpu_pagelist_fraction;
  111. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  112. /*
  113. * A cached value of the page's pageblock's migratetype, used when the page is
  114. * put on a pcplist. Used to avoid the pageblock migratetype lookup when
  115. * freeing from pcplists in most cases, at the cost of possibly becoming stale.
  116. * Also the migratetype set in the page does not necessarily match the pcplist
  117. * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
  118. * other index - this ensures that it will be put on the correct CMA freelist.
  119. */
  120. static inline int get_pcppage_migratetype(struct page *page)
  121. {
  122. return page->index;
  123. }
  124. static inline void set_pcppage_migratetype(struct page *page, int migratetype)
  125. {
  126. page->index = migratetype;
  127. }
  128. #ifdef CONFIG_PM_SLEEP
  129. /*
  130. * The following functions are used by the suspend/hibernate code to temporarily
  131. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  132. * while devices are suspended. To avoid races with the suspend/hibernate code,
  133. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  134. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  135. * guaranteed not to run in parallel with that modification).
  136. */
  137. static gfp_t saved_gfp_mask;
  138. void pm_restore_gfp_mask(void)
  139. {
  140. WARN_ON(!mutex_is_locked(&pm_mutex));
  141. if (saved_gfp_mask) {
  142. gfp_allowed_mask = saved_gfp_mask;
  143. saved_gfp_mask = 0;
  144. }
  145. }
  146. void pm_restrict_gfp_mask(void)
  147. {
  148. WARN_ON(!mutex_is_locked(&pm_mutex));
  149. WARN_ON(saved_gfp_mask);
  150. saved_gfp_mask = gfp_allowed_mask;
  151. gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
  152. }
  153. bool pm_suspended_storage(void)
  154. {
  155. if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
  156. return false;
  157. return true;
  158. }
  159. #endif /* CONFIG_PM_SLEEP */
  160. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  161. unsigned int pageblock_order __read_mostly;
  162. #endif
  163. static void __free_pages_ok(struct page *page, unsigned int order);
  164. /*
  165. * results with 256, 32 in the lowmem_reserve sysctl:
  166. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  167. * 1G machine -> (16M dma, 784M normal, 224M high)
  168. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  169. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  170. * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
  171. *
  172. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  173. * don't need any ZONE_NORMAL reservation
  174. */
  175. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  176. #ifdef CONFIG_ZONE_DMA
  177. 256,
  178. #endif
  179. #ifdef CONFIG_ZONE_DMA32
  180. 256,
  181. #endif
  182. #ifdef CONFIG_HIGHMEM
  183. 32,
  184. #endif
  185. 32,
  186. };
  187. EXPORT_SYMBOL(totalram_pages);
  188. static char * const zone_names[MAX_NR_ZONES] = {
  189. #ifdef CONFIG_ZONE_DMA
  190. "DMA",
  191. #endif
  192. #ifdef CONFIG_ZONE_DMA32
  193. "DMA32",
  194. #endif
  195. "Normal",
  196. #ifdef CONFIG_HIGHMEM
  197. "HighMem",
  198. #endif
  199. "Movable",
  200. #ifdef CONFIG_ZONE_DEVICE
  201. "Device",
  202. #endif
  203. };
  204. char * const migratetype_names[MIGRATE_TYPES] = {
  205. "Unmovable",
  206. "Movable",
  207. "Reclaimable",
  208. "HighAtomic",
  209. #ifdef CONFIG_CMA
  210. "CMA",
  211. #endif
  212. #ifdef CONFIG_MEMORY_ISOLATION
  213. "Isolate",
  214. #endif
  215. };
  216. compound_page_dtor * const compound_page_dtors[] = {
  217. NULL,
  218. free_compound_page,
  219. #ifdef CONFIG_HUGETLB_PAGE
  220. free_huge_page,
  221. #endif
  222. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  223. free_transhuge_page,
  224. #endif
  225. };
  226. int min_free_kbytes = 1024;
  227. int user_min_free_kbytes = -1;
  228. int watermark_scale_factor = 10;
  229. static unsigned long __meminitdata nr_kernel_pages;
  230. static unsigned long __meminitdata nr_all_pages;
  231. static unsigned long __meminitdata dma_reserve;
  232. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  233. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  234. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  235. static unsigned long __initdata required_kernelcore;
  236. static unsigned long __initdata required_movablecore;
  237. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  238. static bool mirrored_kernelcore;
  239. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  240. int movable_zone;
  241. EXPORT_SYMBOL(movable_zone);
  242. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  243. #if MAX_NUMNODES > 1
  244. int nr_node_ids __read_mostly = MAX_NUMNODES;
  245. int nr_online_nodes __read_mostly = 1;
  246. EXPORT_SYMBOL(nr_node_ids);
  247. EXPORT_SYMBOL(nr_online_nodes);
  248. #endif
  249. int page_group_by_mobility_disabled __read_mostly;
  250. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  251. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  252. {
  253. pgdat->first_deferred_pfn = ULONG_MAX;
  254. }
  255. /* Returns true if the struct page for the pfn is uninitialised */
  256. static inline bool __meminit early_page_uninitialised(unsigned long pfn)
  257. {
  258. if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
  259. return true;
  260. return false;
  261. }
  262. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  263. {
  264. if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
  265. return true;
  266. return false;
  267. }
  268. /*
  269. * Returns false when the remaining initialisation should be deferred until
  270. * later in the boot cycle when it can be parallelised.
  271. */
  272. static inline bool update_defer_init(pg_data_t *pgdat,
  273. unsigned long pfn, unsigned long zone_end,
  274. unsigned long *nr_initialised)
  275. {
  276. unsigned long max_initialise;
  277. /* Always populate low zones for address-contrained allocations */
  278. if (zone_end < pgdat_end_pfn(pgdat))
  279. return true;
  280. /*
  281. * Initialise at least 2G of a node but also take into account that
  282. * two large system hashes that can take up 1GB for 0.25TB/node.
  283. */
  284. max_initialise = max(2UL << (30 - PAGE_SHIFT),
  285. (pgdat->node_spanned_pages >> 8));
  286. (*nr_initialised)++;
  287. if ((*nr_initialised > max_initialise) &&
  288. (pfn & (PAGES_PER_SECTION - 1)) == 0) {
  289. pgdat->first_deferred_pfn = pfn;
  290. return false;
  291. }
  292. return true;
  293. }
  294. #else
  295. static inline void reset_deferred_meminit(pg_data_t *pgdat)
  296. {
  297. }
  298. static inline bool early_page_uninitialised(unsigned long pfn)
  299. {
  300. return false;
  301. }
  302. static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
  303. {
  304. return false;
  305. }
  306. static inline bool update_defer_init(pg_data_t *pgdat,
  307. unsigned long pfn, unsigned long zone_end,
  308. unsigned long *nr_initialised)
  309. {
  310. return true;
  311. }
  312. #endif
  313. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  314. static inline unsigned long *get_pageblock_bitmap(struct page *page,
  315. unsigned long pfn)
  316. {
  317. #ifdef CONFIG_SPARSEMEM
  318. return __pfn_to_section(pfn)->pageblock_flags;
  319. #else
  320. return page_zone(page)->pageblock_flags;
  321. #endif /* CONFIG_SPARSEMEM */
  322. }
  323. static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
  324. {
  325. #ifdef CONFIG_SPARSEMEM
  326. pfn &= (PAGES_PER_SECTION-1);
  327. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  328. #else
  329. pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
  330. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  331. #endif /* CONFIG_SPARSEMEM */
  332. }
  333. /**
  334. * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
  335. * @page: The page within the block of interest
  336. * @pfn: The target page frame number
  337. * @end_bitidx: The last bit of interest to retrieve
  338. * @mask: mask of bits that the caller is interested in
  339. *
  340. * Return: pageblock_bits flags
  341. */
  342. static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
  343. unsigned long pfn,
  344. unsigned long end_bitidx,
  345. unsigned long mask)
  346. {
  347. unsigned long *bitmap;
  348. unsigned long bitidx, word_bitidx;
  349. unsigned long word;
  350. bitmap = get_pageblock_bitmap(page, pfn);
  351. bitidx = pfn_to_bitidx(page, pfn);
  352. word_bitidx = bitidx / BITS_PER_LONG;
  353. bitidx &= (BITS_PER_LONG-1);
  354. word = bitmap[word_bitidx];
  355. bitidx += end_bitidx;
  356. return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
  357. }
  358. unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
  359. unsigned long end_bitidx,
  360. unsigned long mask)
  361. {
  362. return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
  363. }
  364. static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
  365. {
  366. return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
  367. }
  368. /**
  369. * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
  370. * @page: The page within the block of interest
  371. * @flags: The flags to set
  372. * @pfn: The target page frame number
  373. * @end_bitidx: The last bit of interest
  374. * @mask: mask of bits that the caller is interested in
  375. */
  376. void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
  377. unsigned long pfn,
  378. unsigned long end_bitidx,
  379. unsigned long mask)
  380. {
  381. unsigned long *bitmap;
  382. unsigned long bitidx, word_bitidx;
  383. unsigned long old_word, word;
  384. BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
  385. bitmap = get_pageblock_bitmap(page, pfn);
  386. bitidx = pfn_to_bitidx(page, pfn);
  387. word_bitidx = bitidx / BITS_PER_LONG;
  388. bitidx &= (BITS_PER_LONG-1);
  389. VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
  390. bitidx += end_bitidx;
  391. mask <<= (BITS_PER_LONG - bitidx - 1);
  392. flags <<= (BITS_PER_LONG - bitidx - 1);
  393. word = READ_ONCE(bitmap[word_bitidx]);
  394. for (;;) {
  395. old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
  396. if (word == old_word)
  397. break;
  398. word = old_word;
  399. }
  400. }
  401. void set_pageblock_migratetype(struct page *page, int migratetype)
  402. {
  403. if (unlikely(page_group_by_mobility_disabled &&
  404. migratetype < MIGRATE_PCPTYPES))
  405. migratetype = MIGRATE_UNMOVABLE;
  406. set_pageblock_flags_group(page, (unsigned long)migratetype,
  407. PB_migrate, PB_migrate_end);
  408. }
  409. #ifdef CONFIG_DEBUG_VM
  410. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  411. {
  412. int ret = 0;
  413. unsigned seq;
  414. unsigned long pfn = page_to_pfn(page);
  415. unsigned long sp, start_pfn;
  416. do {
  417. seq = zone_span_seqbegin(zone);
  418. start_pfn = zone->zone_start_pfn;
  419. sp = zone->spanned_pages;
  420. if (!zone_spans_pfn(zone, pfn))
  421. ret = 1;
  422. } while (zone_span_seqretry(zone, seq));
  423. if (ret)
  424. pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
  425. pfn, zone_to_nid(zone), zone->name,
  426. start_pfn, start_pfn + sp);
  427. return ret;
  428. }
  429. static int page_is_consistent(struct zone *zone, struct page *page)
  430. {
  431. if (!pfn_valid_within(page_to_pfn(page)))
  432. return 0;
  433. if (zone != page_zone(page))
  434. return 0;
  435. return 1;
  436. }
  437. /*
  438. * Temporary debugging check for pages not lying within a given zone.
  439. */
  440. static int bad_range(struct zone *zone, struct page *page)
  441. {
  442. if (page_outside_zone_boundaries(zone, page))
  443. return 1;
  444. if (!page_is_consistent(zone, page))
  445. return 1;
  446. return 0;
  447. }
  448. #else
  449. static inline int bad_range(struct zone *zone, struct page *page)
  450. {
  451. return 0;
  452. }
  453. #endif
  454. static void bad_page(struct page *page, const char *reason,
  455. unsigned long bad_flags)
  456. {
  457. static unsigned long resume;
  458. static unsigned long nr_shown;
  459. static unsigned long nr_unshown;
  460. /* Don't complain about poisoned pages */
  461. if (PageHWPoison(page)) {
  462. page_mapcount_reset(page); /* remove PageBuddy */
  463. return;
  464. }
  465. /*
  466. * Allow a burst of 60 reports, then keep quiet for that minute;
  467. * or allow a steady drip of one report per second.
  468. */
  469. if (nr_shown == 60) {
  470. if (time_before(jiffies, resume)) {
  471. nr_unshown++;
  472. goto out;
  473. }
  474. if (nr_unshown) {
  475. pr_alert(
  476. "BUG: Bad page state: %lu messages suppressed\n",
  477. nr_unshown);
  478. nr_unshown = 0;
  479. }
  480. nr_shown = 0;
  481. }
  482. if (nr_shown++ == 0)
  483. resume = jiffies + 60 * HZ;
  484. pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
  485. current->comm, page_to_pfn(page));
  486. __dump_page(page, reason);
  487. bad_flags &= page->flags;
  488. if (bad_flags)
  489. pr_alert("bad because of flags: %#lx(%pGp)\n",
  490. bad_flags, &bad_flags);
  491. dump_page_owner(page);
  492. print_modules();
  493. dump_stack();
  494. out:
  495. /* Leave bad fields for debug, except PageBuddy could make trouble */
  496. page_mapcount_reset(page); /* remove PageBuddy */
  497. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  498. }
  499. /*
  500. * Higher-order pages are called "compound pages". They are structured thusly:
  501. *
  502. * The first PAGE_SIZE page is called the "head page" and have PG_head set.
  503. *
  504. * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
  505. * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
  506. *
  507. * The first tail page's ->compound_dtor holds the offset in array of compound
  508. * page destructors. See compound_page_dtors.
  509. *
  510. * The first tail page's ->compound_order holds the order of allocation.
  511. * This usage means that zero-order pages may not be compound.
  512. */
  513. void free_compound_page(struct page *page)
  514. {
  515. __free_pages_ok(page, compound_order(page));
  516. }
  517. void prep_compound_page(struct page *page, unsigned int order)
  518. {
  519. int i;
  520. int nr_pages = 1 << order;
  521. set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
  522. set_compound_order(page, order);
  523. __SetPageHead(page);
  524. for (i = 1; i < nr_pages; i++) {
  525. struct page *p = page + i;
  526. set_page_count(p, 0);
  527. p->mapping = TAIL_MAPPING;
  528. set_compound_head(p, page);
  529. }
  530. atomic_set(compound_mapcount_ptr(page), -1);
  531. }
  532. #ifdef CONFIG_DEBUG_PAGEALLOC
  533. unsigned int _debug_guardpage_minorder;
  534. bool _debug_pagealloc_enabled __read_mostly
  535. = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
  536. EXPORT_SYMBOL(_debug_pagealloc_enabled);
  537. bool _debug_guardpage_enabled __read_mostly;
  538. static int __init early_debug_pagealloc(char *buf)
  539. {
  540. if (!buf)
  541. return -EINVAL;
  542. if (strcmp(buf, "on") == 0)
  543. _debug_pagealloc_enabled = true;
  544. if (strcmp(buf, "off") == 0)
  545. _debug_pagealloc_enabled = false;
  546. return 0;
  547. }
  548. early_param("debug_pagealloc", early_debug_pagealloc);
  549. static bool need_debug_guardpage(void)
  550. {
  551. /* If we don't use debug_pagealloc, we don't need guard page */
  552. if (!debug_pagealloc_enabled())
  553. return false;
  554. return true;
  555. }
  556. static void init_debug_guardpage(void)
  557. {
  558. if (!debug_pagealloc_enabled())
  559. return;
  560. _debug_guardpage_enabled = true;
  561. }
  562. struct page_ext_operations debug_guardpage_ops = {
  563. .need = need_debug_guardpage,
  564. .init = init_debug_guardpage,
  565. };
  566. static int __init debug_guardpage_minorder_setup(char *buf)
  567. {
  568. unsigned long res;
  569. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  570. pr_err("Bad debug_guardpage_minorder value\n");
  571. return 0;
  572. }
  573. _debug_guardpage_minorder = res;
  574. pr_info("Setting debug_guardpage_minorder to %lu\n", res);
  575. return 0;
  576. }
  577. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  578. static inline void set_page_guard(struct zone *zone, struct page *page,
  579. unsigned int order, int migratetype)
  580. {
  581. struct page_ext *page_ext;
  582. if (!debug_guardpage_enabled())
  583. return;
  584. page_ext = lookup_page_ext(page);
  585. __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  586. INIT_LIST_HEAD(&page->lru);
  587. set_page_private(page, order);
  588. /* Guard pages are not available for any usage */
  589. __mod_zone_freepage_state(zone, -(1 << order), migratetype);
  590. }
  591. static inline void clear_page_guard(struct zone *zone, struct page *page,
  592. unsigned int order, int migratetype)
  593. {
  594. struct page_ext *page_ext;
  595. if (!debug_guardpage_enabled())
  596. return;
  597. page_ext = lookup_page_ext(page);
  598. __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  599. set_page_private(page, 0);
  600. if (!is_migrate_isolate(migratetype))
  601. __mod_zone_freepage_state(zone, (1 << order), migratetype);
  602. }
  603. #else
  604. struct page_ext_operations debug_guardpage_ops = { NULL, };
  605. static inline void set_page_guard(struct zone *zone, struct page *page,
  606. unsigned int order, int migratetype) {}
  607. static inline void clear_page_guard(struct zone *zone, struct page *page,
  608. unsigned int order, int migratetype) {}
  609. #endif
  610. static inline void set_page_order(struct page *page, unsigned int order)
  611. {
  612. set_page_private(page, order);
  613. __SetPageBuddy(page);
  614. }
  615. static inline void rmv_page_order(struct page *page)
  616. {
  617. __ClearPageBuddy(page);
  618. set_page_private(page, 0);
  619. }
  620. /*
  621. * This function checks whether a page is free && is the buddy
  622. * we can do coalesce a page and its buddy if
  623. * (a) the buddy is not in a hole &&
  624. * (b) the buddy is in the buddy system &&
  625. * (c) a page and its buddy have the same order &&
  626. * (d) a page and its buddy are in the same zone.
  627. *
  628. * For recording whether a page is in the buddy system, we set ->_mapcount
  629. * PAGE_BUDDY_MAPCOUNT_VALUE.
  630. * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
  631. * serialized by zone->lock.
  632. *
  633. * For recording page's order, we use page_private(page).
  634. */
  635. static inline int page_is_buddy(struct page *page, struct page *buddy,
  636. unsigned int order)
  637. {
  638. if (!pfn_valid_within(page_to_pfn(buddy)))
  639. return 0;
  640. if (page_is_guard(buddy) && page_order(buddy) == order) {
  641. if (page_zone_id(page) != page_zone_id(buddy))
  642. return 0;
  643. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  644. return 1;
  645. }
  646. if (PageBuddy(buddy) && page_order(buddy) == order) {
  647. /*
  648. * zone check is done late to avoid uselessly
  649. * calculating zone/node ids for pages that could
  650. * never merge.
  651. */
  652. if (page_zone_id(page) != page_zone_id(buddy))
  653. return 0;
  654. VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
  655. return 1;
  656. }
  657. return 0;
  658. }
  659. /*
  660. * Freeing function for a buddy system allocator.
  661. *
  662. * The concept of a buddy system is to maintain direct-mapped table
  663. * (containing bit values) for memory blocks of various "orders".
  664. * The bottom level table contains the map for the smallest allocatable
  665. * units of memory (here, pages), and each level above it describes
  666. * pairs of units from the levels below, hence, "buddies".
  667. * At a high level, all that happens here is marking the table entry
  668. * at the bottom level available, and propagating the changes upward
  669. * as necessary, plus some accounting needed to play nicely with other
  670. * parts of the VM system.
  671. * At each level, we keep a list of pages, which are heads of continuous
  672. * free pages of length of (1 << order) and marked with _mapcount
  673. * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
  674. * field.
  675. * So when we are allocating or freeing one, we can derive the state of the
  676. * other. That is, if we allocate a small block, and both were
  677. * free, the remainder of the region must be split into blocks.
  678. * If a block is freed, and its buddy is also free, then this
  679. * triggers coalescing into a block of larger size.
  680. *
  681. * -- nyc
  682. */
  683. static inline void __free_one_page(struct page *page,
  684. unsigned long pfn,
  685. struct zone *zone, unsigned int order,
  686. int migratetype)
  687. {
  688. unsigned long page_idx;
  689. unsigned long combined_idx;
  690. unsigned long uninitialized_var(buddy_idx);
  691. struct page *buddy;
  692. unsigned int max_order;
  693. max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
  694. VM_BUG_ON(!zone_is_initialized(zone));
  695. VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
  696. VM_BUG_ON(migratetype == -1);
  697. if (likely(!is_migrate_isolate(migratetype)))
  698. __mod_zone_freepage_state(zone, 1 << order, migratetype);
  699. page_idx = pfn & ((1 << MAX_ORDER) - 1);
  700. VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
  701. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  702. continue_merging:
  703. while (order < max_order - 1) {
  704. buddy_idx = __find_buddy_index(page_idx, order);
  705. buddy = page + (buddy_idx - page_idx);
  706. if (!page_is_buddy(page, buddy, order))
  707. goto done_merging;
  708. /*
  709. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  710. * merge with it and move up one order.
  711. */
  712. if (page_is_guard(buddy)) {
  713. clear_page_guard(zone, buddy, order, migratetype);
  714. } else {
  715. list_del(&buddy->lru);
  716. zone->free_area[order].nr_free--;
  717. rmv_page_order(buddy);
  718. }
  719. combined_idx = buddy_idx & page_idx;
  720. page = page + (combined_idx - page_idx);
  721. page_idx = combined_idx;
  722. order++;
  723. }
  724. if (max_order < MAX_ORDER) {
  725. /* If we are here, it means order is >= pageblock_order.
  726. * We want to prevent merge between freepages on isolate
  727. * pageblock and normal pageblock. Without this, pageblock
  728. * isolation could cause incorrect freepage or CMA accounting.
  729. *
  730. * We don't want to hit this code for the more frequent
  731. * low-order merging.
  732. */
  733. if (unlikely(has_isolate_pageblock(zone))) {
  734. int buddy_mt;
  735. buddy_idx = __find_buddy_index(page_idx, order);
  736. buddy = page + (buddy_idx - page_idx);
  737. buddy_mt = get_pageblock_migratetype(buddy);
  738. if (migratetype != buddy_mt
  739. && (is_migrate_isolate(migratetype) ||
  740. is_migrate_isolate(buddy_mt)))
  741. goto done_merging;
  742. }
  743. max_order++;
  744. goto continue_merging;
  745. }
  746. done_merging:
  747. set_page_order(page, order);
  748. /*
  749. * If this is not the largest possible page, check if the buddy
  750. * of the next-highest order is free. If it is, it's possible
  751. * that pages are being freed that will coalesce soon. In case,
  752. * that is happening, add the free page to the tail of the list
  753. * so it's less likely to be used soon and more likely to be merged
  754. * as a higher order page
  755. */
  756. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  757. struct page *higher_page, *higher_buddy;
  758. combined_idx = buddy_idx & page_idx;
  759. higher_page = page + (combined_idx - page_idx);
  760. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  761. higher_buddy = higher_page + (buddy_idx - combined_idx);
  762. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  763. list_add_tail(&page->lru,
  764. &zone->free_area[order].free_list[migratetype]);
  765. goto out;
  766. }
  767. }
  768. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  769. out:
  770. zone->free_area[order].nr_free++;
  771. }
  772. /*
  773. * A bad page could be due to a number of fields. Instead of multiple branches,
  774. * try and check multiple fields with one check. The caller must do a detailed
  775. * check if necessary.
  776. */
  777. static inline bool page_expected_state(struct page *page,
  778. unsigned long check_flags)
  779. {
  780. if (unlikely(atomic_read(&page->_mapcount) != -1))
  781. return false;
  782. if (unlikely((unsigned long)page->mapping |
  783. page_ref_count(page) |
  784. #ifdef CONFIG_MEMCG
  785. (unsigned long)page->mem_cgroup |
  786. #endif
  787. (page->flags & check_flags)))
  788. return false;
  789. return true;
  790. }
  791. static void free_pages_check_bad(struct page *page)
  792. {
  793. const char *bad_reason;
  794. unsigned long bad_flags;
  795. bad_reason = NULL;
  796. bad_flags = 0;
  797. if (unlikely(atomic_read(&page->_mapcount) != -1))
  798. bad_reason = "nonzero mapcount";
  799. if (unlikely(page->mapping != NULL))
  800. bad_reason = "non-NULL mapping";
  801. if (unlikely(page_ref_count(page) != 0))
  802. bad_reason = "nonzero _refcount";
  803. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
  804. bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
  805. bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
  806. }
  807. #ifdef CONFIG_MEMCG
  808. if (unlikely(page->mem_cgroup))
  809. bad_reason = "page still charged to cgroup";
  810. #endif
  811. bad_page(page, bad_reason, bad_flags);
  812. }
  813. static inline int free_pages_check(struct page *page)
  814. {
  815. if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
  816. return 0;
  817. /* Something has gone sideways, find it */
  818. free_pages_check_bad(page);
  819. return 1;
  820. }
  821. static int free_tail_pages_check(struct page *head_page, struct page *page)
  822. {
  823. int ret = 1;
  824. /*
  825. * We rely page->lru.next never has bit 0 set, unless the page
  826. * is PageTail(). Let's make sure that's true even for poisoned ->lru.
  827. */
  828. BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
  829. if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
  830. ret = 0;
  831. goto out;
  832. }
  833. switch (page - head_page) {
  834. case 1:
  835. /* the first tail page: ->mapping is compound_mapcount() */
  836. if (unlikely(compound_mapcount(page))) {
  837. bad_page(page, "nonzero compound_mapcount", 0);
  838. goto out;
  839. }
  840. break;
  841. case 2:
  842. /*
  843. * the second tail page: ->mapping is
  844. * page_deferred_list().next -- ignore value.
  845. */
  846. break;
  847. default:
  848. if (page->mapping != TAIL_MAPPING) {
  849. bad_page(page, "corrupted mapping in tail page", 0);
  850. goto out;
  851. }
  852. break;
  853. }
  854. if (unlikely(!PageTail(page))) {
  855. bad_page(page, "PageTail not set", 0);
  856. goto out;
  857. }
  858. if (unlikely(compound_head(page) != head_page)) {
  859. bad_page(page, "compound_head not consistent", 0);
  860. goto out;
  861. }
  862. ret = 0;
  863. out:
  864. page->mapping = NULL;
  865. clear_compound_head(page);
  866. return ret;
  867. }
  868. static __always_inline bool free_pages_prepare(struct page *page,
  869. unsigned int order, bool check_free)
  870. {
  871. int bad = 0;
  872. VM_BUG_ON_PAGE(PageTail(page), page);
  873. trace_mm_page_free(page, order);
  874. kmemcheck_free_shadow(page, order);
  875. kasan_free_pages(page, order);
  876. /*
  877. * Check tail pages before head page information is cleared to
  878. * avoid checking PageCompound for order-0 pages.
  879. */
  880. if (unlikely(order)) {
  881. bool compound = PageCompound(page);
  882. int i;
  883. VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
  884. for (i = 1; i < (1 << order); i++) {
  885. if (compound)
  886. bad += free_tail_pages_check(page, page + i);
  887. if (unlikely(free_pages_check(page + i))) {
  888. bad++;
  889. continue;
  890. }
  891. (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  892. }
  893. }
  894. if (PageAnonHead(page))
  895. page->mapping = NULL;
  896. if (check_free)
  897. bad += free_pages_check(page);
  898. if (bad)
  899. return false;
  900. page_cpupid_reset_last(page);
  901. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  902. reset_page_owner(page, order);
  903. if (!PageHighMem(page)) {
  904. debug_check_no_locks_freed(page_address(page),
  905. PAGE_SIZE << order);
  906. debug_check_no_obj_freed(page_address(page),
  907. PAGE_SIZE << order);
  908. }
  909. arch_free_page(page, order);
  910. kernel_poison_pages(page, 1 << order, 0);
  911. kernel_map_pages(page, 1 << order, 0);
  912. return true;
  913. }
  914. #ifdef CONFIG_DEBUG_VM
  915. static inline bool free_pcp_prepare(struct page *page)
  916. {
  917. return free_pages_prepare(page, 0, true);
  918. }
  919. static inline bool bulkfree_pcp_prepare(struct page *page)
  920. {
  921. return false;
  922. }
  923. #else
  924. static bool free_pcp_prepare(struct page *page)
  925. {
  926. return free_pages_prepare(page, 0, false);
  927. }
  928. static bool bulkfree_pcp_prepare(struct page *page)
  929. {
  930. return free_pages_check(page);
  931. }
  932. #endif /* CONFIG_DEBUG_VM */
  933. /*
  934. * Frees a number of pages from the PCP lists
  935. * Assumes all pages on list are in same zone, and of same order.
  936. * count is the number of pages to free.
  937. *
  938. * If the zone was previously in an "all pages pinned" state then look to
  939. * see if this freeing clears that state.
  940. *
  941. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  942. * pinned" detection logic.
  943. */
  944. static void free_pcppages_bulk(struct zone *zone, int count,
  945. struct per_cpu_pages *pcp)
  946. {
  947. int migratetype = 0;
  948. int batch_free = 0;
  949. unsigned long nr_scanned;
  950. bool isolated_pageblocks;
  951. spin_lock(&zone->lock);
  952. isolated_pageblocks = has_isolate_pageblock(zone);
  953. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  954. if (nr_scanned)
  955. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  956. while (count) {
  957. struct page *page;
  958. struct list_head *list;
  959. /*
  960. * Remove pages from lists in a round-robin fashion. A
  961. * batch_free count is maintained that is incremented when an
  962. * empty list is encountered. This is so more pages are freed
  963. * off fuller lists instead of spinning excessively around empty
  964. * lists
  965. */
  966. do {
  967. batch_free++;
  968. if (++migratetype == MIGRATE_PCPTYPES)
  969. migratetype = 0;
  970. list = &pcp->lists[migratetype];
  971. } while (list_empty(list));
  972. /* This is the only non-empty list. Free them all. */
  973. if (batch_free == MIGRATE_PCPTYPES)
  974. batch_free = count;
  975. do {
  976. int mt; /* migratetype of the to-be-freed page */
  977. page = list_last_entry(list, struct page, lru);
  978. /* must delete as __free_one_page list manipulates */
  979. list_del(&page->lru);
  980. mt = get_pcppage_migratetype(page);
  981. /* MIGRATE_ISOLATE page should not go to pcplists */
  982. VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
  983. /* Pageblock could have been isolated meanwhile */
  984. if (unlikely(isolated_pageblocks))
  985. mt = get_pageblock_migratetype(page);
  986. if (bulkfree_pcp_prepare(page))
  987. continue;
  988. __free_one_page(page, page_to_pfn(page), zone, 0, mt);
  989. trace_mm_page_pcpu_drain(page, 0, mt);
  990. } while (--count && --batch_free && !list_empty(list));
  991. }
  992. spin_unlock(&zone->lock);
  993. }
  994. static void free_one_page(struct zone *zone,
  995. struct page *page, unsigned long pfn,
  996. unsigned int order,
  997. int migratetype)
  998. {
  999. unsigned long nr_scanned;
  1000. spin_lock(&zone->lock);
  1001. nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
  1002. if (nr_scanned)
  1003. __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
  1004. if (unlikely(has_isolate_pageblock(zone) ||
  1005. is_migrate_isolate(migratetype))) {
  1006. migratetype = get_pfnblock_migratetype(page, pfn);
  1007. }
  1008. __free_one_page(page, pfn, zone, order, migratetype);
  1009. spin_unlock(&zone->lock);
  1010. }
  1011. static void __meminit __init_single_page(struct page *page, unsigned long pfn,
  1012. unsigned long zone, int nid)
  1013. {
  1014. set_page_links(page, zone, nid, pfn);
  1015. init_page_count(page);
  1016. page_mapcount_reset(page);
  1017. page_cpupid_reset_last(page);
  1018. INIT_LIST_HEAD(&page->lru);
  1019. #ifdef WANT_PAGE_VIRTUAL
  1020. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1021. if (!is_highmem_idx(zone))
  1022. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1023. #endif
  1024. }
  1025. static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
  1026. int nid)
  1027. {
  1028. return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
  1029. }
  1030. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1031. static void init_reserved_page(unsigned long pfn)
  1032. {
  1033. pg_data_t *pgdat;
  1034. int nid, zid;
  1035. if (!early_page_uninitialised(pfn))
  1036. return;
  1037. nid = early_pfn_to_nid(pfn);
  1038. pgdat = NODE_DATA(nid);
  1039. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1040. struct zone *zone = &pgdat->node_zones[zid];
  1041. if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
  1042. break;
  1043. }
  1044. __init_single_pfn(pfn, zid, nid);
  1045. }
  1046. #else
  1047. static inline void init_reserved_page(unsigned long pfn)
  1048. {
  1049. }
  1050. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1051. /*
  1052. * Initialised pages do not have PageReserved set. This function is
  1053. * called for each range allocated by the bootmem allocator and
  1054. * marks the pages PageReserved. The remaining valid pages are later
  1055. * sent to the buddy page allocator.
  1056. */
  1057. void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
  1058. {
  1059. unsigned long start_pfn = PFN_DOWN(start);
  1060. unsigned long end_pfn = PFN_UP(end);
  1061. for (; start_pfn < end_pfn; start_pfn++) {
  1062. if (pfn_valid(start_pfn)) {
  1063. struct page *page = pfn_to_page(start_pfn);
  1064. init_reserved_page(start_pfn);
  1065. /* Avoid false-positive PageTail() */
  1066. INIT_LIST_HEAD(&page->lru);
  1067. SetPageReserved(page);
  1068. }
  1069. }
  1070. }
  1071. static void __free_pages_ok(struct page *page, unsigned int order)
  1072. {
  1073. unsigned long flags;
  1074. int migratetype;
  1075. unsigned long pfn = page_to_pfn(page);
  1076. if (!free_pages_prepare(page, order, true))
  1077. return;
  1078. migratetype = get_pfnblock_migratetype(page, pfn);
  1079. local_irq_save(flags);
  1080. __count_vm_events(PGFREE, 1 << order);
  1081. free_one_page(page_zone(page), page, pfn, order, migratetype);
  1082. local_irq_restore(flags);
  1083. }
  1084. static void __init __free_pages_boot_core(struct page *page, unsigned int order)
  1085. {
  1086. unsigned int nr_pages = 1 << order;
  1087. struct page *p = page;
  1088. unsigned int loop;
  1089. prefetchw(p);
  1090. for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
  1091. prefetchw(p + 1);
  1092. __ClearPageReserved(p);
  1093. set_page_count(p, 0);
  1094. }
  1095. __ClearPageReserved(p);
  1096. set_page_count(p, 0);
  1097. page_zone(page)->managed_pages += nr_pages;
  1098. set_page_refcounted(page);
  1099. __free_pages(page, order);
  1100. }
  1101. #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
  1102. defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  1103. static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
  1104. int __meminit early_pfn_to_nid(unsigned long pfn)
  1105. {
  1106. static DEFINE_SPINLOCK(early_pfn_lock);
  1107. int nid;
  1108. spin_lock(&early_pfn_lock);
  1109. nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
  1110. if (nid < 0)
  1111. nid = 0;
  1112. spin_unlock(&early_pfn_lock);
  1113. return nid;
  1114. }
  1115. #endif
  1116. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  1117. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1118. struct mminit_pfnnid_cache *state)
  1119. {
  1120. int nid;
  1121. nid = __early_pfn_to_nid(pfn, state);
  1122. if (nid >= 0 && nid != node)
  1123. return false;
  1124. return true;
  1125. }
  1126. /* Only safe to use early in boot when initialisation is single-threaded */
  1127. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1128. {
  1129. return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
  1130. }
  1131. #else
  1132. static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  1133. {
  1134. return true;
  1135. }
  1136. static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
  1137. struct mminit_pfnnid_cache *state)
  1138. {
  1139. return true;
  1140. }
  1141. #endif
  1142. void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
  1143. unsigned int order)
  1144. {
  1145. if (early_page_uninitialised(pfn))
  1146. return;
  1147. return __free_pages_boot_core(page, order);
  1148. }
  1149. /*
  1150. * Check that the whole (or subset of) a pageblock given by the interval of
  1151. * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
  1152. * with the migration of free compaction scanner. The scanners then need to
  1153. * use only pfn_valid_within() check for arches that allow holes within
  1154. * pageblocks.
  1155. *
  1156. * Return struct page pointer of start_pfn, or NULL if checks were not passed.
  1157. *
  1158. * It's possible on some configurations to have a setup like node0 node1 node0
  1159. * i.e. it's possible that all pages within a zones range of pages do not
  1160. * belong to a single zone. We assume that a border between node0 and node1
  1161. * can occur within a single pageblock, but not a node0 node1 node0
  1162. * interleaving within a single pageblock. It is therefore sufficient to check
  1163. * the first and last page of a pageblock and avoid checking each individual
  1164. * page in a pageblock.
  1165. */
  1166. struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
  1167. unsigned long end_pfn, struct zone *zone)
  1168. {
  1169. struct page *start_page;
  1170. struct page *end_page;
  1171. /* end_pfn is one past the range we are checking */
  1172. end_pfn--;
  1173. if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
  1174. return NULL;
  1175. start_page = pfn_to_page(start_pfn);
  1176. if (page_zone(start_page) != zone)
  1177. return NULL;
  1178. end_page = pfn_to_page(end_pfn);
  1179. /* This gives a shorter code than deriving page_zone(end_page) */
  1180. if (page_zone_id(start_page) != page_zone_id(end_page))
  1181. return NULL;
  1182. return start_page;
  1183. }
  1184. void set_zone_contiguous(struct zone *zone)
  1185. {
  1186. unsigned long block_start_pfn = zone->zone_start_pfn;
  1187. unsigned long block_end_pfn;
  1188. block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
  1189. for (; block_start_pfn < zone_end_pfn(zone);
  1190. block_start_pfn = block_end_pfn,
  1191. block_end_pfn += pageblock_nr_pages) {
  1192. block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
  1193. if (!__pageblock_pfn_to_page(block_start_pfn,
  1194. block_end_pfn, zone))
  1195. return;
  1196. }
  1197. /* We confirm that there is no hole */
  1198. zone->contiguous = true;
  1199. }
  1200. void clear_zone_contiguous(struct zone *zone)
  1201. {
  1202. zone->contiguous = false;
  1203. }
  1204. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1205. static void __init deferred_free_range(struct page *page,
  1206. unsigned long pfn, int nr_pages)
  1207. {
  1208. int i;
  1209. if (!page)
  1210. return;
  1211. /* Free a large naturally-aligned chunk if possible */
  1212. if (nr_pages == MAX_ORDER_NR_PAGES &&
  1213. (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
  1214. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1215. __free_pages_boot_core(page, MAX_ORDER-1);
  1216. return;
  1217. }
  1218. for (i = 0; i < nr_pages; i++, page++)
  1219. __free_pages_boot_core(page, 0);
  1220. }
  1221. /* Completion tracking for deferred_init_memmap() threads */
  1222. static atomic_t pgdat_init_n_undone __initdata;
  1223. static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
  1224. static inline void __init pgdat_init_report_one_done(void)
  1225. {
  1226. if (atomic_dec_and_test(&pgdat_init_n_undone))
  1227. complete(&pgdat_init_all_done_comp);
  1228. }
  1229. /* Initialise remaining memory on a node */
  1230. static int __init deferred_init_memmap(void *data)
  1231. {
  1232. pg_data_t *pgdat = data;
  1233. int nid = pgdat->node_id;
  1234. struct mminit_pfnnid_cache nid_init_state = { };
  1235. unsigned long start = jiffies;
  1236. unsigned long nr_pages = 0;
  1237. unsigned long walk_start, walk_end;
  1238. int i, zid;
  1239. struct zone *zone;
  1240. unsigned long first_init_pfn = pgdat->first_deferred_pfn;
  1241. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  1242. if (first_init_pfn == ULONG_MAX) {
  1243. pgdat_init_report_one_done();
  1244. return 0;
  1245. }
  1246. /* Bind memory initialisation thread to a local node if possible */
  1247. if (!cpumask_empty(cpumask))
  1248. set_cpus_allowed_ptr(current, cpumask);
  1249. /* Sanity check boundaries */
  1250. BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
  1251. BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
  1252. pgdat->first_deferred_pfn = ULONG_MAX;
  1253. /* Only the highest zone is deferred so find it */
  1254. for (zid = 0; zid < MAX_NR_ZONES; zid++) {
  1255. zone = pgdat->node_zones + zid;
  1256. if (first_init_pfn < zone_end_pfn(zone))
  1257. break;
  1258. }
  1259. for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
  1260. unsigned long pfn, end_pfn;
  1261. struct page *page = NULL;
  1262. struct page *free_base_page = NULL;
  1263. unsigned long free_base_pfn = 0;
  1264. int nr_to_free = 0;
  1265. end_pfn = min(walk_end, zone_end_pfn(zone));
  1266. pfn = first_init_pfn;
  1267. if (pfn < walk_start)
  1268. pfn = walk_start;
  1269. if (pfn < zone->zone_start_pfn)
  1270. pfn = zone->zone_start_pfn;
  1271. for (; pfn < end_pfn; pfn++) {
  1272. if (!pfn_valid_within(pfn))
  1273. goto free_range;
  1274. /*
  1275. * Ensure pfn_valid is checked every
  1276. * MAX_ORDER_NR_PAGES for memory holes
  1277. */
  1278. if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  1279. if (!pfn_valid(pfn)) {
  1280. page = NULL;
  1281. goto free_range;
  1282. }
  1283. }
  1284. if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
  1285. page = NULL;
  1286. goto free_range;
  1287. }
  1288. /* Minimise pfn page lookups and scheduler checks */
  1289. if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
  1290. page++;
  1291. } else {
  1292. nr_pages += nr_to_free;
  1293. deferred_free_range(free_base_page,
  1294. free_base_pfn, nr_to_free);
  1295. free_base_page = NULL;
  1296. free_base_pfn = nr_to_free = 0;
  1297. page = pfn_to_page(pfn);
  1298. cond_resched();
  1299. }
  1300. if (page->flags) {
  1301. VM_BUG_ON(page_zone(page) != zone);
  1302. goto free_range;
  1303. }
  1304. __init_single_page(page, pfn, zid, nid);
  1305. if (!free_base_page) {
  1306. free_base_page = page;
  1307. free_base_pfn = pfn;
  1308. nr_to_free = 0;
  1309. }
  1310. nr_to_free++;
  1311. /* Where possible, batch up pages for a single free */
  1312. continue;
  1313. free_range:
  1314. /* Free the current block of pages to allocator */
  1315. nr_pages += nr_to_free;
  1316. deferred_free_range(free_base_page, free_base_pfn,
  1317. nr_to_free);
  1318. free_base_page = NULL;
  1319. free_base_pfn = nr_to_free = 0;
  1320. }
  1321. first_init_pfn = max(end_pfn, first_init_pfn);
  1322. }
  1323. /* Sanity check that the next zone really is unpopulated */
  1324. WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
  1325. pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
  1326. jiffies_to_msecs(jiffies - start));
  1327. pgdat_init_report_one_done();
  1328. return 0;
  1329. }
  1330. #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
  1331. void __init page_alloc_init_late(void)
  1332. {
  1333. struct zone *zone;
  1334. #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
  1335. int nid;
  1336. /* There will be num_node_state(N_MEMORY) threads */
  1337. atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
  1338. for_each_node_state(nid, N_MEMORY) {
  1339. kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
  1340. }
  1341. /* Block until all are initialised */
  1342. wait_for_completion(&pgdat_init_all_done_comp);
  1343. /* Reinit limits that are based on free pages after the kernel is up */
  1344. files_maxfiles_init();
  1345. #endif
  1346. for_each_populated_zone(zone)
  1347. set_zone_contiguous(zone);
  1348. }
  1349. #ifdef CONFIG_CMA
  1350. /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
  1351. void __init init_cma_reserved_pageblock(struct page *page)
  1352. {
  1353. unsigned i = pageblock_nr_pages;
  1354. struct page *p = page;
  1355. do {
  1356. __ClearPageReserved(p);
  1357. set_page_count(p, 0);
  1358. } while (++p, --i);
  1359. set_pageblock_migratetype(page, MIGRATE_CMA);
  1360. if (pageblock_order >= MAX_ORDER) {
  1361. i = pageblock_nr_pages;
  1362. p = page;
  1363. do {
  1364. set_page_refcounted(p);
  1365. __free_pages(p, MAX_ORDER - 1);
  1366. p += MAX_ORDER_NR_PAGES;
  1367. } while (i -= MAX_ORDER_NR_PAGES);
  1368. } else {
  1369. set_page_refcounted(page);
  1370. __free_pages(page, pageblock_order);
  1371. }
  1372. adjust_managed_page_count(page, pageblock_nr_pages);
  1373. }
  1374. #endif
  1375. /*
  1376. * The order of subdivision here is critical for the IO subsystem.
  1377. * Please do not alter this order without good reasons and regression
  1378. * testing. Specifically, as large blocks of memory are subdivided,
  1379. * the order in which smaller blocks are delivered depends on the order
  1380. * they're subdivided in this function. This is the primary factor
  1381. * influencing the order in which pages are delivered to the IO
  1382. * subsystem according to empirical testing, and this is also justified
  1383. * by considering the behavior of a buddy system containing a single
  1384. * large block of memory acted on by a series of small allocations.
  1385. * This behavior is a critical factor in sglist merging's success.
  1386. *
  1387. * -- nyc
  1388. */
  1389. static inline void expand(struct zone *zone, struct page *page,
  1390. int low, int high, struct free_area *area,
  1391. int migratetype)
  1392. {
  1393. unsigned long size = 1 << high;
  1394. while (high > low) {
  1395. area--;
  1396. high--;
  1397. size >>= 1;
  1398. VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
  1399. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
  1400. debug_guardpage_enabled() &&
  1401. high < debug_guardpage_minorder()) {
  1402. /*
  1403. * Mark as guard pages (or page), that will allow to
  1404. * merge back to allocator when buddy will be freed.
  1405. * Corresponding page table entries will not be touched,
  1406. * pages will stay not present in virtual address space
  1407. */
  1408. set_page_guard(zone, &page[size], high, migratetype);
  1409. continue;
  1410. }
  1411. list_add(&page[size].lru, &area->free_list[migratetype]);
  1412. area->nr_free++;
  1413. set_page_order(&page[size], high);
  1414. }
  1415. }
  1416. static void check_new_page_bad(struct page *page)
  1417. {
  1418. const char *bad_reason = NULL;
  1419. unsigned long bad_flags = 0;
  1420. if (unlikely(atomic_read(&page->_mapcount) != -1))
  1421. bad_reason = "nonzero mapcount";
  1422. if (unlikely(page->mapping != NULL))
  1423. bad_reason = "non-NULL mapping";
  1424. if (unlikely(page_ref_count(page) != 0))
  1425. bad_reason = "nonzero _count";
  1426. if (unlikely(page->flags & __PG_HWPOISON)) {
  1427. bad_reason = "HWPoisoned (hardware-corrupted)";
  1428. bad_flags = __PG_HWPOISON;
  1429. }
  1430. if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
  1431. bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
  1432. bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
  1433. }
  1434. #ifdef CONFIG_MEMCG
  1435. if (unlikely(page->mem_cgroup))
  1436. bad_reason = "page still charged to cgroup";
  1437. #endif
  1438. bad_page(page, bad_reason, bad_flags);
  1439. }
  1440. /*
  1441. * This page is about to be returned from the page allocator
  1442. */
  1443. static inline int check_new_page(struct page *page)
  1444. {
  1445. if (likely(page_expected_state(page,
  1446. PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
  1447. return 0;
  1448. check_new_page_bad(page);
  1449. return 1;
  1450. }
  1451. static inline bool free_pages_prezeroed(bool poisoned)
  1452. {
  1453. return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
  1454. page_poisoning_enabled() && poisoned;
  1455. }
  1456. #ifdef CONFIG_DEBUG_VM
  1457. static bool check_pcp_refill(struct page *page)
  1458. {
  1459. return false;
  1460. }
  1461. static bool check_new_pcp(struct page *page)
  1462. {
  1463. return check_new_page(page);
  1464. }
  1465. #else
  1466. static bool check_pcp_refill(struct page *page)
  1467. {
  1468. return check_new_page(page);
  1469. }
  1470. static bool check_new_pcp(struct page *page)
  1471. {
  1472. return false;
  1473. }
  1474. #endif /* CONFIG_DEBUG_VM */
  1475. static bool check_new_pages(struct page *page, unsigned int order)
  1476. {
  1477. int i;
  1478. for (i = 0; i < (1 << order); i++) {
  1479. struct page *p = page + i;
  1480. if (unlikely(check_new_page(p)))
  1481. return true;
  1482. }
  1483. return false;
  1484. }
  1485. static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
  1486. unsigned int alloc_flags)
  1487. {
  1488. int i;
  1489. bool poisoned = true;
  1490. for (i = 0; i < (1 << order); i++) {
  1491. struct page *p = page + i;
  1492. if (poisoned)
  1493. poisoned &= page_is_poisoned(p);
  1494. }
  1495. set_page_private(page, 0);
  1496. set_page_refcounted(page);
  1497. arch_alloc_page(page, order);
  1498. kernel_map_pages(page, 1 << order, 1);
  1499. kernel_poison_pages(page, 1 << order, 1);
  1500. kasan_alloc_pages(page, order);
  1501. if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
  1502. for (i = 0; i < (1 << order); i++)
  1503. clear_highpage(page + i);
  1504. if (order && (gfp_flags & __GFP_COMP))
  1505. prep_compound_page(page, order);
  1506. set_page_owner(page, order, gfp_flags);
  1507. /*
  1508. * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
  1509. * allocate the page. The expectation is that the caller is taking
  1510. * steps that will free more memory. The caller should avoid the page
  1511. * being used for !PFMEMALLOC purposes.
  1512. */
  1513. if (alloc_flags & ALLOC_NO_WATERMARKS)
  1514. set_page_pfmemalloc(page);
  1515. else
  1516. clear_page_pfmemalloc(page);
  1517. }
  1518. /*
  1519. * Go through the free lists for the given migratetype and remove
  1520. * the smallest available page from the freelists
  1521. */
  1522. static inline
  1523. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  1524. int migratetype)
  1525. {
  1526. unsigned int current_order;
  1527. struct free_area *area;
  1528. struct page *page;
  1529. /* Find a page of the appropriate size in the preferred list */
  1530. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  1531. area = &(zone->free_area[current_order]);
  1532. page = list_first_entry_or_null(&area->free_list[migratetype],
  1533. struct page, lru);
  1534. if (!page)
  1535. continue;
  1536. list_del(&page->lru);
  1537. rmv_page_order(page);
  1538. area->nr_free--;
  1539. expand(zone, page, order, current_order, area, migratetype);
  1540. set_pcppage_migratetype(page, migratetype);
  1541. return page;
  1542. }
  1543. return NULL;
  1544. }
  1545. /*
  1546. * This array describes the order lists are fallen back to when
  1547. * the free lists for the desirable migrate type are depleted
  1548. */
  1549. static int fallbacks[MIGRATE_TYPES][4] = {
  1550. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1551. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
  1552. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
  1553. #ifdef CONFIG_CMA
  1554. [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
  1555. #endif
  1556. #ifdef CONFIG_MEMORY_ISOLATION
  1557. [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
  1558. #endif
  1559. };
  1560. #ifdef CONFIG_CMA
  1561. static struct page *__rmqueue_cma_fallback(struct zone *zone,
  1562. unsigned int order)
  1563. {
  1564. return __rmqueue_smallest(zone, order, MIGRATE_CMA);
  1565. }
  1566. #else
  1567. static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
  1568. unsigned int order) { return NULL; }
  1569. #endif
  1570. /*
  1571. * Move the free pages in a range to the free lists of the requested type.
  1572. * Note that start_page and end_pages are not aligned on a pageblock
  1573. * boundary. If alignment is required, use move_freepages_block()
  1574. */
  1575. int move_freepages(struct zone *zone,
  1576. struct page *start_page, struct page *end_page,
  1577. int migratetype)
  1578. {
  1579. struct page *page;
  1580. unsigned int order;
  1581. int pages_moved = 0;
  1582. #ifndef CONFIG_HOLES_IN_ZONE
  1583. /*
  1584. * page_zone is not safe to call in this context when
  1585. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  1586. * anyway as we check zone boundaries in move_freepages_block().
  1587. * Remove at a later date when no bug reports exist related to
  1588. * grouping pages by mobility
  1589. */
  1590. VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
  1591. #endif
  1592. for (page = start_page; page <= end_page;) {
  1593. /* Make sure we are not inadvertently changing nodes */
  1594. VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
  1595. if (!pfn_valid_within(page_to_pfn(page))) {
  1596. page++;
  1597. continue;
  1598. }
  1599. if (!PageBuddy(page)) {
  1600. page++;
  1601. continue;
  1602. }
  1603. order = page_order(page);
  1604. list_move(&page->lru,
  1605. &zone->free_area[order].free_list[migratetype]);
  1606. page += 1 << order;
  1607. pages_moved += 1 << order;
  1608. }
  1609. return pages_moved;
  1610. }
  1611. int move_freepages_block(struct zone *zone, struct page *page,
  1612. int migratetype)
  1613. {
  1614. unsigned long start_pfn, end_pfn;
  1615. struct page *start_page, *end_page;
  1616. start_pfn = page_to_pfn(page);
  1617. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  1618. start_page = pfn_to_page(start_pfn);
  1619. end_page = start_page + pageblock_nr_pages - 1;
  1620. end_pfn = start_pfn + pageblock_nr_pages - 1;
  1621. /* Do not cross zone boundaries */
  1622. if (!zone_spans_pfn(zone, start_pfn))
  1623. start_page = page;
  1624. if (!zone_spans_pfn(zone, end_pfn))
  1625. return 0;
  1626. return move_freepages(zone, start_page, end_page, migratetype);
  1627. }
  1628. static void change_pageblock_range(struct page *pageblock_page,
  1629. int start_order, int migratetype)
  1630. {
  1631. int nr_pageblocks = 1 << (start_order - pageblock_order);
  1632. while (nr_pageblocks--) {
  1633. set_pageblock_migratetype(pageblock_page, migratetype);
  1634. pageblock_page += pageblock_nr_pages;
  1635. }
  1636. }
  1637. /*
  1638. * When we are falling back to another migratetype during allocation, try to
  1639. * steal extra free pages from the same pageblocks to satisfy further
  1640. * allocations, instead of polluting multiple pageblocks.
  1641. *
  1642. * If we are stealing a relatively large buddy page, it is likely there will
  1643. * be more free pages in the pageblock, so try to steal them all. For
  1644. * reclaimable and unmovable allocations, we steal regardless of page size,
  1645. * as fragmentation caused by those allocations polluting movable pageblocks
  1646. * is worse than movable allocations stealing from unmovable and reclaimable
  1647. * pageblocks.
  1648. */
  1649. static bool can_steal_fallback(unsigned int order, int start_mt)
  1650. {
  1651. /*
  1652. * Leaving this order check is intended, although there is
  1653. * relaxed order check in next check. The reason is that
  1654. * we can actually steal whole pageblock if this condition met,
  1655. * but, below check doesn't guarantee it and that is just heuristic
  1656. * so could be changed anytime.
  1657. */
  1658. if (order >= pageblock_order)
  1659. return true;
  1660. if (order >= pageblock_order / 2 ||
  1661. start_mt == MIGRATE_RECLAIMABLE ||
  1662. start_mt == MIGRATE_UNMOVABLE ||
  1663. page_group_by_mobility_disabled)
  1664. return true;
  1665. return false;
  1666. }
  1667. /*
  1668. * This function implements actual steal behaviour. If order is large enough,
  1669. * we can steal whole pageblock. If not, we first move freepages in this
  1670. * pageblock and check whether half of pages are moved or not. If half of
  1671. * pages are moved, we can change migratetype of pageblock and permanently
  1672. * use it's pages as requested migratetype in the future.
  1673. */
  1674. static void steal_suitable_fallback(struct zone *zone, struct page *page,
  1675. int start_type)
  1676. {
  1677. unsigned int current_order = page_order(page);
  1678. int pages;
  1679. /* Take ownership for orders >= pageblock_order */
  1680. if (current_order >= pageblock_order) {
  1681. change_pageblock_range(page, current_order, start_type);
  1682. return;
  1683. }
  1684. pages = move_freepages_block(zone, page, start_type);
  1685. /* Claim the whole block if over half of it is free */
  1686. if (pages >= (1 << (pageblock_order-1)) ||
  1687. page_group_by_mobility_disabled)
  1688. set_pageblock_migratetype(page, start_type);
  1689. }
  1690. /*
  1691. * Check whether there is a suitable fallback freepage with requested order.
  1692. * If only_stealable is true, this function returns fallback_mt only if
  1693. * we can steal other freepages all together. This would help to reduce
  1694. * fragmentation due to mixed migratetype pages in one pageblock.
  1695. */
  1696. int find_suitable_fallback(struct free_area *area, unsigned int order,
  1697. int migratetype, bool only_stealable, bool *can_steal)
  1698. {
  1699. int i;
  1700. int fallback_mt;
  1701. if (area->nr_free == 0)
  1702. return -1;
  1703. *can_steal = false;
  1704. for (i = 0;; i++) {
  1705. fallback_mt = fallbacks[migratetype][i];
  1706. if (fallback_mt == MIGRATE_TYPES)
  1707. break;
  1708. if (list_empty(&area->free_list[fallback_mt]))
  1709. continue;
  1710. if (can_steal_fallback(order, migratetype))
  1711. *can_steal = true;
  1712. if (!only_stealable)
  1713. return fallback_mt;
  1714. if (*can_steal)
  1715. return fallback_mt;
  1716. }
  1717. return -1;
  1718. }
  1719. /*
  1720. * Reserve a pageblock for exclusive use of high-order atomic allocations if
  1721. * there are no empty page blocks that contain a page with a suitable order
  1722. */
  1723. static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
  1724. unsigned int alloc_order)
  1725. {
  1726. int mt;
  1727. unsigned long max_managed, flags;
  1728. /*
  1729. * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
  1730. * Check is race-prone but harmless.
  1731. */
  1732. max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
  1733. if (zone->nr_reserved_highatomic >= max_managed)
  1734. return;
  1735. spin_lock_irqsave(&zone->lock, flags);
  1736. /* Recheck the nr_reserved_highatomic limit under the lock */
  1737. if (zone->nr_reserved_highatomic >= max_managed)
  1738. goto out_unlock;
  1739. /* Yoink! */
  1740. mt = get_pageblock_migratetype(page);
  1741. if (mt != MIGRATE_HIGHATOMIC &&
  1742. !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
  1743. zone->nr_reserved_highatomic += pageblock_nr_pages;
  1744. set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
  1745. move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
  1746. }
  1747. out_unlock:
  1748. spin_unlock_irqrestore(&zone->lock, flags);
  1749. }
  1750. /*
  1751. * Used when an allocation is about to fail under memory pressure. This
  1752. * potentially hurts the reliability of high-order allocations when under
  1753. * intense memory pressure but failed atomic allocations should be easier
  1754. * to recover from than an OOM.
  1755. */
  1756. static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
  1757. {
  1758. struct zonelist *zonelist = ac->zonelist;
  1759. unsigned long flags;
  1760. struct zoneref *z;
  1761. struct zone *zone;
  1762. struct page *page;
  1763. int order;
  1764. for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
  1765. ac->nodemask) {
  1766. /* Preserve at least one pageblock */
  1767. if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
  1768. continue;
  1769. spin_lock_irqsave(&zone->lock, flags);
  1770. for (order = 0; order < MAX_ORDER; order++) {
  1771. struct free_area *area = &(zone->free_area[order]);
  1772. page = list_first_entry_or_null(
  1773. &area->free_list[MIGRATE_HIGHATOMIC],
  1774. struct page, lru);
  1775. if (!page)
  1776. continue;
  1777. /*
  1778. * It should never happen but changes to locking could
  1779. * inadvertently allow a per-cpu drain to add pages
  1780. * to MIGRATE_HIGHATOMIC while unreserving so be safe
  1781. * and watch for underflows.
  1782. */
  1783. zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
  1784. zone->nr_reserved_highatomic);
  1785. /*
  1786. * Convert to ac->migratetype and avoid the normal
  1787. * pageblock stealing heuristics. Minimally, the caller
  1788. * is doing the work and needs the pages. More
  1789. * importantly, if the block was always converted to
  1790. * MIGRATE_UNMOVABLE or another type then the number
  1791. * of pageblocks that cannot be completely freed
  1792. * may increase.
  1793. */
  1794. set_pageblock_migratetype(page, ac->migratetype);
  1795. move_freepages_block(zone, page, ac->migratetype);
  1796. spin_unlock_irqrestore(&zone->lock, flags);
  1797. return;
  1798. }
  1799. spin_unlock_irqrestore(&zone->lock, flags);
  1800. }
  1801. }
  1802. /* Remove an element from the buddy allocator from the fallback list */
  1803. static inline struct page *
  1804. __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
  1805. {
  1806. struct free_area *area;
  1807. unsigned int current_order;
  1808. struct page *page;
  1809. int fallback_mt;
  1810. bool can_steal;
  1811. /* Find the largest possible block of pages in the other list */
  1812. for (current_order = MAX_ORDER-1;
  1813. current_order >= order && current_order <= MAX_ORDER-1;
  1814. --current_order) {
  1815. area = &(zone->free_area[current_order]);
  1816. fallback_mt = find_suitable_fallback(area, current_order,
  1817. start_migratetype, false, &can_steal);
  1818. if (fallback_mt == -1)
  1819. continue;
  1820. page = list_first_entry(&area->free_list[fallback_mt],
  1821. struct page, lru);
  1822. if (can_steal)
  1823. steal_suitable_fallback(zone, page, start_migratetype);
  1824. /* Remove the page from the freelists */
  1825. area->nr_free--;
  1826. list_del(&page->lru);
  1827. rmv_page_order(page);
  1828. expand(zone, page, order, current_order, area,
  1829. start_migratetype);
  1830. /*
  1831. * The pcppage_migratetype may differ from pageblock's
  1832. * migratetype depending on the decisions in
  1833. * find_suitable_fallback(). This is OK as long as it does not
  1834. * differ for MIGRATE_CMA pageblocks. Those can be used as
  1835. * fallback only via special __rmqueue_cma_fallback() function
  1836. */
  1837. set_pcppage_migratetype(page, start_migratetype);
  1838. trace_mm_page_alloc_extfrag(page, order, current_order,
  1839. start_migratetype, fallback_mt);
  1840. return page;
  1841. }
  1842. return NULL;
  1843. }
  1844. /*
  1845. * Do the hard work of removing an element from the buddy allocator.
  1846. * Call me with the zone->lock already held.
  1847. */
  1848. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  1849. int migratetype)
  1850. {
  1851. struct page *page;
  1852. page = __rmqueue_smallest(zone, order, migratetype);
  1853. if (unlikely(!page)) {
  1854. if (migratetype == MIGRATE_MOVABLE)
  1855. page = __rmqueue_cma_fallback(zone, order);
  1856. if (!page)
  1857. page = __rmqueue_fallback(zone, order, migratetype);
  1858. }
  1859. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  1860. return page;
  1861. }
  1862. /*
  1863. * Obtain a specified number of elements from the buddy allocator, all under
  1864. * a single hold of the lock, for efficiency. Add them to the supplied list.
  1865. * Returns the number of new pages which were placed at *list.
  1866. */
  1867. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  1868. unsigned long count, struct list_head *list,
  1869. int migratetype, bool cold)
  1870. {
  1871. int i;
  1872. spin_lock(&zone->lock);
  1873. for (i = 0; i < count; ++i) {
  1874. struct page *page = __rmqueue(zone, order, migratetype);
  1875. if (unlikely(page == NULL))
  1876. break;
  1877. if (unlikely(check_pcp_refill(page)))
  1878. continue;
  1879. /*
  1880. * Split buddy pages returned by expand() are received here
  1881. * in physical page order. The page is added to the callers and
  1882. * list and the list head then moves forward. From the callers
  1883. * perspective, the linked list is ordered by page number in
  1884. * some conditions. This is useful for IO devices that can
  1885. * merge IO requests if the physical pages are ordered
  1886. * properly.
  1887. */
  1888. if (likely(!cold))
  1889. list_add(&page->lru, list);
  1890. else
  1891. list_add_tail(&page->lru, list);
  1892. list = &page->lru;
  1893. if (is_migrate_cma(get_pcppage_migratetype(page)))
  1894. __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
  1895. -(1 << order));
  1896. }
  1897. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  1898. spin_unlock(&zone->lock);
  1899. return i;
  1900. }
  1901. #ifdef CONFIG_NUMA
  1902. /*
  1903. * Called from the vmstat counter updater to drain pagesets of this
  1904. * currently executing processor on remote nodes after they have
  1905. * expired.
  1906. *
  1907. * Note that this function must be called with the thread pinned to
  1908. * a single processor.
  1909. */
  1910. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  1911. {
  1912. unsigned long flags;
  1913. int to_drain, batch;
  1914. local_irq_save(flags);
  1915. batch = READ_ONCE(pcp->batch);
  1916. to_drain = min(pcp->count, batch);
  1917. if (to_drain > 0) {
  1918. free_pcppages_bulk(zone, to_drain, pcp);
  1919. pcp->count -= to_drain;
  1920. }
  1921. local_irq_restore(flags);
  1922. }
  1923. #endif
  1924. /*
  1925. * Drain pcplists of the indicated processor and zone.
  1926. *
  1927. * The processor must either be the current processor and the
  1928. * thread pinned to the current processor or a processor that
  1929. * is not online.
  1930. */
  1931. static void drain_pages_zone(unsigned int cpu, struct zone *zone)
  1932. {
  1933. unsigned long flags;
  1934. struct per_cpu_pageset *pset;
  1935. struct per_cpu_pages *pcp;
  1936. local_irq_save(flags);
  1937. pset = per_cpu_ptr(zone->pageset, cpu);
  1938. pcp = &pset->pcp;
  1939. if (pcp->count) {
  1940. free_pcppages_bulk(zone, pcp->count, pcp);
  1941. pcp->count = 0;
  1942. }
  1943. local_irq_restore(flags);
  1944. }
  1945. /*
  1946. * Drain pcplists of all zones on the indicated processor.
  1947. *
  1948. * The processor must either be the current processor and the
  1949. * thread pinned to the current processor or a processor that
  1950. * is not online.
  1951. */
  1952. static void drain_pages(unsigned int cpu)
  1953. {
  1954. struct zone *zone;
  1955. for_each_populated_zone(zone) {
  1956. drain_pages_zone(cpu, zone);
  1957. }
  1958. }
  1959. /*
  1960. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1961. *
  1962. * The CPU has to be pinned. When zone parameter is non-NULL, spill just
  1963. * the single zone's pages.
  1964. */
  1965. void drain_local_pages(struct zone *zone)
  1966. {
  1967. int cpu = smp_processor_id();
  1968. if (zone)
  1969. drain_pages_zone(cpu, zone);
  1970. else
  1971. drain_pages(cpu);
  1972. }
  1973. /*
  1974. * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
  1975. *
  1976. * When zone parameter is non-NULL, spill just the single zone's pages.
  1977. *
  1978. * Note that this code is protected against sending an IPI to an offline
  1979. * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
  1980. * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
  1981. * nothing keeps CPUs from showing up after we populated the cpumask and
  1982. * before the call to on_each_cpu_mask().
  1983. */
  1984. void drain_all_pages(struct zone *zone)
  1985. {
  1986. int cpu;
  1987. /*
  1988. * Allocate in the BSS so we wont require allocation in
  1989. * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
  1990. */
  1991. static cpumask_t cpus_with_pcps;
  1992. /*
  1993. * We don't care about racing with CPU hotplug event
  1994. * as offline notification will cause the notified
  1995. * cpu to drain that CPU pcps and on_each_cpu_mask
  1996. * disables preemption as part of its processing
  1997. */
  1998. for_each_online_cpu(cpu) {
  1999. struct per_cpu_pageset *pcp;
  2000. struct zone *z;
  2001. bool has_pcps = false;
  2002. if (zone) {
  2003. pcp = per_cpu_ptr(zone->pageset, cpu);
  2004. if (pcp->pcp.count)
  2005. has_pcps = true;
  2006. } else {
  2007. for_each_populated_zone(z) {
  2008. pcp = per_cpu_ptr(z->pageset, cpu);
  2009. if (pcp->pcp.count) {
  2010. has_pcps = true;
  2011. break;
  2012. }
  2013. }
  2014. }
  2015. if (has_pcps)
  2016. cpumask_set_cpu(cpu, &cpus_with_pcps);
  2017. else
  2018. cpumask_clear_cpu(cpu, &cpus_with_pcps);
  2019. }
  2020. on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
  2021. zone, 1);
  2022. }
  2023. #ifdef CONFIG_HIBERNATION
  2024. void mark_free_pages(struct zone *zone)
  2025. {
  2026. unsigned long pfn, max_zone_pfn;
  2027. unsigned long flags;
  2028. unsigned int order, t;
  2029. struct page *page;
  2030. if (zone_is_empty(zone))
  2031. return;
  2032. spin_lock_irqsave(&zone->lock, flags);
  2033. max_zone_pfn = zone_end_pfn(zone);
  2034. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  2035. if (pfn_valid(pfn)) {
  2036. page = pfn_to_page(pfn);
  2037. if (page_zone(page) != zone)
  2038. continue;
  2039. if (!swsusp_page_is_forbidden(page))
  2040. swsusp_unset_page_free(page);
  2041. }
  2042. for_each_migratetype_order(order, t) {
  2043. list_for_each_entry(page,
  2044. &zone->free_area[order].free_list[t], lru) {
  2045. unsigned long i;
  2046. pfn = page_to_pfn(page);
  2047. for (i = 0; i < (1UL << order); i++)
  2048. swsusp_set_page_free(pfn_to_page(pfn + i));
  2049. }
  2050. }
  2051. spin_unlock_irqrestore(&zone->lock, flags);
  2052. }
  2053. #endif /* CONFIG_PM */
  2054. /*
  2055. * Free a 0-order page
  2056. * cold == true ? free a cold page : free a hot page
  2057. */
  2058. void free_hot_cold_page(struct page *page, bool cold)
  2059. {
  2060. struct zone *zone = page_zone(page);
  2061. struct per_cpu_pages *pcp;
  2062. unsigned long flags;
  2063. unsigned long pfn = page_to_pfn(page);
  2064. int migratetype;
  2065. if (!free_pcp_prepare(page))
  2066. return;
  2067. migratetype = get_pfnblock_migratetype(page, pfn);
  2068. set_pcppage_migratetype(page, migratetype);
  2069. local_irq_save(flags);
  2070. __count_vm_event(PGFREE);
  2071. /*
  2072. * We only track unmovable, reclaimable and movable on pcp lists.
  2073. * Free ISOLATE pages back to the allocator because they are being
  2074. * offlined but treat RESERVE as movable pages so we can get those
  2075. * areas back if necessary. Otherwise, we may have to free
  2076. * excessively into the page allocator
  2077. */
  2078. if (migratetype >= MIGRATE_PCPTYPES) {
  2079. if (unlikely(is_migrate_isolate(migratetype))) {
  2080. free_one_page(zone, page, pfn, 0, migratetype);
  2081. goto out;
  2082. }
  2083. migratetype = MIGRATE_MOVABLE;
  2084. }
  2085. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2086. if (!cold)
  2087. list_add(&page->lru, &pcp->lists[migratetype]);
  2088. else
  2089. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  2090. pcp->count++;
  2091. if (pcp->count >= pcp->high) {
  2092. unsigned long batch = READ_ONCE(pcp->batch);
  2093. free_pcppages_bulk(zone, batch, pcp);
  2094. pcp->count -= batch;
  2095. }
  2096. out:
  2097. local_irq_restore(flags);
  2098. }
  2099. /*
  2100. * Free a list of 0-order pages
  2101. */
  2102. void free_hot_cold_page_list(struct list_head *list, bool cold)
  2103. {
  2104. struct page *page, *next;
  2105. list_for_each_entry_safe(page, next, list, lru) {
  2106. trace_mm_page_free_batched(page, cold);
  2107. free_hot_cold_page(page, cold);
  2108. }
  2109. }
  2110. /*
  2111. * split_page takes a non-compound higher-order page, and splits it into
  2112. * n (1<<order) sub-pages: page[0..n]
  2113. * Each sub-page must be freed individually.
  2114. *
  2115. * Note: this is probably too low level an operation for use in drivers.
  2116. * Please consult with lkml before using this in your driver.
  2117. */
  2118. void split_page(struct page *page, unsigned int order)
  2119. {
  2120. int i;
  2121. gfp_t gfp_mask;
  2122. VM_BUG_ON_PAGE(PageCompound(page), page);
  2123. VM_BUG_ON_PAGE(!page_count(page), page);
  2124. #ifdef CONFIG_KMEMCHECK
  2125. /*
  2126. * Split shadow pages too, because free(page[0]) would
  2127. * otherwise free the whole shadow.
  2128. */
  2129. if (kmemcheck_page_is_tracked(page))
  2130. split_page(virt_to_page(page[0].shadow), order);
  2131. #endif
  2132. gfp_mask = get_page_owner_gfp(page);
  2133. set_page_owner(page, 0, gfp_mask);
  2134. for (i = 1; i < (1 << order); i++) {
  2135. set_page_refcounted(page + i);
  2136. set_page_owner(page + i, 0, gfp_mask);
  2137. }
  2138. }
  2139. EXPORT_SYMBOL_GPL(split_page);
  2140. int __isolate_free_page(struct page *page, unsigned int order)
  2141. {
  2142. unsigned long watermark;
  2143. struct zone *zone;
  2144. int mt;
  2145. BUG_ON(!PageBuddy(page));
  2146. zone = page_zone(page);
  2147. mt = get_pageblock_migratetype(page);
  2148. if (!is_migrate_isolate(mt)) {
  2149. /* Obey watermarks as if the page was being allocated */
  2150. watermark = low_wmark_pages(zone) + (1 << order);
  2151. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  2152. return 0;
  2153. __mod_zone_freepage_state(zone, -(1UL << order), mt);
  2154. }
  2155. /* Remove page from free list */
  2156. list_del(&page->lru);
  2157. zone->free_area[order].nr_free--;
  2158. rmv_page_order(page);
  2159. set_page_owner(page, order, __GFP_MOVABLE);
  2160. /* Set the pageblock if the isolated page is at least a pageblock */
  2161. if (order >= pageblock_order - 1) {
  2162. struct page *endpage = page + (1 << order) - 1;
  2163. for (; page < endpage; page += pageblock_nr_pages) {
  2164. int mt = get_pageblock_migratetype(page);
  2165. if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
  2166. set_pageblock_migratetype(page,
  2167. MIGRATE_MOVABLE);
  2168. }
  2169. }
  2170. return 1UL << order;
  2171. }
  2172. /*
  2173. * Similar to split_page except the page is already free. As this is only
  2174. * being used for migration, the migratetype of the block also changes.
  2175. * As this is called with interrupts disabled, the caller is responsible
  2176. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  2177. * are enabled.
  2178. *
  2179. * Note: this is probably too low level an operation for use in drivers.
  2180. * Please consult with lkml before using this in your driver.
  2181. */
  2182. int split_free_page(struct page *page)
  2183. {
  2184. unsigned int order;
  2185. int nr_pages;
  2186. order = page_order(page);
  2187. nr_pages = __isolate_free_page(page, order);
  2188. if (!nr_pages)
  2189. return 0;
  2190. /* Split into individual pages */
  2191. set_page_refcounted(page);
  2192. split_page(page, order);
  2193. return nr_pages;
  2194. }
  2195. /*
  2196. * Update NUMA hit/miss statistics
  2197. *
  2198. * Must be called with interrupts disabled.
  2199. *
  2200. * When __GFP_OTHER_NODE is set assume the node of the preferred
  2201. * zone is the local node. This is useful for daemons who allocate
  2202. * memory on behalf of other processes.
  2203. */
  2204. static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
  2205. gfp_t flags)
  2206. {
  2207. #ifdef CONFIG_NUMA
  2208. int local_nid = numa_node_id();
  2209. enum zone_stat_item local_stat = NUMA_LOCAL;
  2210. if (unlikely(flags & __GFP_OTHER_NODE)) {
  2211. local_stat = NUMA_OTHER;
  2212. local_nid = preferred_zone->node;
  2213. }
  2214. if (z->node == local_nid) {
  2215. __inc_zone_state(z, NUMA_HIT);
  2216. __inc_zone_state(z, local_stat);
  2217. } else {
  2218. __inc_zone_state(z, NUMA_MISS);
  2219. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  2220. }
  2221. #endif
  2222. }
  2223. /*
  2224. * Allocate a page from the given zone. Use pcplists for order-0 allocations.
  2225. */
  2226. static inline
  2227. struct page *buffered_rmqueue(struct zone *preferred_zone,
  2228. struct zone *zone, unsigned int order,
  2229. gfp_t gfp_flags, unsigned int alloc_flags,
  2230. int migratetype)
  2231. {
  2232. unsigned long flags;
  2233. struct page *page;
  2234. bool cold = ((gfp_flags & __GFP_COLD) != 0);
  2235. if (likely(order == 0)) {
  2236. struct per_cpu_pages *pcp;
  2237. struct list_head *list;
  2238. local_irq_save(flags);
  2239. do {
  2240. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  2241. list = &pcp->lists[migratetype];
  2242. if (list_empty(list)) {
  2243. pcp->count += rmqueue_bulk(zone, 0,
  2244. pcp->batch, list,
  2245. migratetype, cold);
  2246. if (unlikely(list_empty(list)))
  2247. goto failed;
  2248. }
  2249. if (cold)
  2250. page = list_last_entry(list, struct page, lru);
  2251. else
  2252. page = list_first_entry(list, struct page, lru);
  2253. } while (page && check_new_pcp(page));
  2254. __dec_zone_state(zone, NR_ALLOC_BATCH);
  2255. list_del(&page->lru);
  2256. pcp->count--;
  2257. } else {
  2258. /*
  2259. * We most definitely don't want callers attempting to
  2260. * allocate greater than order-1 page units with __GFP_NOFAIL.
  2261. */
  2262. WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
  2263. spin_lock_irqsave(&zone->lock, flags);
  2264. do {
  2265. page = NULL;
  2266. if (alloc_flags & ALLOC_HARDER) {
  2267. page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
  2268. if (page)
  2269. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  2270. }
  2271. if (!page)
  2272. page = __rmqueue(zone, order, migratetype);
  2273. } while (page && check_new_pages(page, order));
  2274. spin_unlock(&zone->lock);
  2275. if (!page)
  2276. goto failed;
  2277. __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
  2278. __mod_zone_freepage_state(zone, -(1 << order),
  2279. get_pcppage_migratetype(page));
  2280. }
  2281. if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
  2282. !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
  2283. set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2284. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  2285. zone_statistics(preferred_zone, zone, gfp_flags);
  2286. local_irq_restore(flags);
  2287. VM_BUG_ON_PAGE(bad_range(zone, page), page);
  2288. return page;
  2289. failed:
  2290. local_irq_restore(flags);
  2291. return NULL;
  2292. }
  2293. #ifdef CONFIG_FAIL_PAGE_ALLOC
  2294. static struct {
  2295. struct fault_attr attr;
  2296. bool ignore_gfp_highmem;
  2297. bool ignore_gfp_reclaim;
  2298. u32 min_order;
  2299. } fail_page_alloc = {
  2300. .attr = FAULT_ATTR_INITIALIZER,
  2301. .ignore_gfp_reclaim = true,
  2302. .ignore_gfp_highmem = true,
  2303. .min_order = 1,
  2304. };
  2305. static int __init setup_fail_page_alloc(char *str)
  2306. {
  2307. return setup_fault_attr(&fail_page_alloc.attr, str);
  2308. }
  2309. __setup("fail_page_alloc=", setup_fail_page_alloc);
  2310. static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2311. {
  2312. if (order < fail_page_alloc.min_order)
  2313. return false;
  2314. if (gfp_mask & __GFP_NOFAIL)
  2315. return false;
  2316. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  2317. return false;
  2318. if (fail_page_alloc.ignore_gfp_reclaim &&
  2319. (gfp_mask & __GFP_DIRECT_RECLAIM))
  2320. return false;
  2321. return should_fail(&fail_page_alloc.attr, 1 << order);
  2322. }
  2323. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  2324. static int __init fail_page_alloc_debugfs(void)
  2325. {
  2326. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  2327. struct dentry *dir;
  2328. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  2329. &fail_page_alloc.attr);
  2330. if (IS_ERR(dir))
  2331. return PTR_ERR(dir);
  2332. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  2333. &fail_page_alloc.ignore_gfp_reclaim))
  2334. goto fail;
  2335. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  2336. &fail_page_alloc.ignore_gfp_highmem))
  2337. goto fail;
  2338. if (!debugfs_create_u32("min-order", mode, dir,
  2339. &fail_page_alloc.min_order))
  2340. goto fail;
  2341. return 0;
  2342. fail:
  2343. debugfs_remove_recursive(dir);
  2344. return -ENOMEM;
  2345. }
  2346. late_initcall(fail_page_alloc_debugfs);
  2347. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  2348. #else /* CONFIG_FAIL_PAGE_ALLOC */
  2349. static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  2350. {
  2351. return false;
  2352. }
  2353. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  2354. /*
  2355. * Return true if free base pages are above 'mark'. For high-order checks it
  2356. * will return true of the order-0 watermark is reached and there is at least
  2357. * one free page of a suitable size. Checking now avoids taking the zone lock
  2358. * to check in the allocation paths if no pages are free.
  2359. */
  2360. bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2361. int classzone_idx, unsigned int alloc_flags,
  2362. long free_pages)
  2363. {
  2364. long min = mark;
  2365. int o;
  2366. const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
  2367. /* free_pages may go negative - that's OK */
  2368. free_pages -= (1 << order) - 1;
  2369. if (alloc_flags & ALLOC_HIGH)
  2370. min -= min / 2;
  2371. /*
  2372. * If the caller does not have rights to ALLOC_HARDER then subtract
  2373. * the high-atomic reserves. This will over-estimate the size of the
  2374. * atomic reserve but it avoids a search.
  2375. */
  2376. if (likely(!alloc_harder))
  2377. free_pages -= z->nr_reserved_highatomic;
  2378. else
  2379. min -= min / 4;
  2380. #ifdef CONFIG_CMA
  2381. /* If allocation can't use CMA areas don't use free CMA pages */
  2382. if (!(alloc_flags & ALLOC_CMA))
  2383. free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
  2384. #endif
  2385. /*
  2386. * Check watermarks for an order-0 allocation request. If these
  2387. * are not met, then a high-order request also cannot go ahead
  2388. * even if a suitable page happened to be free.
  2389. */
  2390. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  2391. return false;
  2392. /* If this is an order-0 request then the watermark is fine */
  2393. if (!order)
  2394. return true;
  2395. /* For a high-order request, check at least one suitable page is free */
  2396. for (o = order; o < MAX_ORDER; o++) {
  2397. struct free_area *area = &z->free_area[o];
  2398. int mt;
  2399. if (!area->nr_free)
  2400. continue;
  2401. if (alloc_harder)
  2402. return true;
  2403. for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
  2404. if (!list_empty(&area->free_list[mt]))
  2405. return true;
  2406. }
  2407. #ifdef CONFIG_CMA
  2408. if ((alloc_flags & ALLOC_CMA) &&
  2409. !list_empty(&area->free_list[MIGRATE_CMA])) {
  2410. return true;
  2411. }
  2412. #endif
  2413. }
  2414. return false;
  2415. }
  2416. bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
  2417. int classzone_idx, unsigned int alloc_flags)
  2418. {
  2419. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2420. zone_page_state(z, NR_FREE_PAGES));
  2421. }
  2422. static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
  2423. unsigned long mark, int classzone_idx, unsigned int alloc_flags)
  2424. {
  2425. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2426. long cma_pages = 0;
  2427. #ifdef CONFIG_CMA
  2428. /* If allocation can't use CMA areas don't use free CMA pages */
  2429. if (!(alloc_flags & ALLOC_CMA))
  2430. cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
  2431. #endif
  2432. /*
  2433. * Fast check for order-0 only. If this fails then the reserves
  2434. * need to be calculated. There is a corner case where the check
  2435. * passes but only the high-order atomic reserve are free. If
  2436. * the caller is !atomic then it'll uselessly search the free
  2437. * list. That corner case is then slower but it is harmless.
  2438. */
  2439. if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
  2440. return true;
  2441. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  2442. free_pages);
  2443. }
  2444. bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
  2445. unsigned long mark, int classzone_idx)
  2446. {
  2447. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  2448. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  2449. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  2450. return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
  2451. free_pages);
  2452. }
  2453. #ifdef CONFIG_NUMA
  2454. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2455. {
  2456. return local_zone->node == zone->node;
  2457. }
  2458. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2459. {
  2460. return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
  2461. RECLAIM_DISTANCE;
  2462. }
  2463. #else /* CONFIG_NUMA */
  2464. static bool zone_local(struct zone *local_zone, struct zone *zone)
  2465. {
  2466. return true;
  2467. }
  2468. static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
  2469. {
  2470. return true;
  2471. }
  2472. #endif /* CONFIG_NUMA */
  2473. static void reset_alloc_batches(struct zone *preferred_zone)
  2474. {
  2475. struct zone *zone = preferred_zone->zone_pgdat->node_zones;
  2476. do {
  2477. mod_zone_page_state(zone, NR_ALLOC_BATCH,
  2478. high_wmark_pages(zone) - low_wmark_pages(zone) -
  2479. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  2480. clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
  2481. } while (zone++ != preferred_zone);
  2482. }
  2483. /*
  2484. * get_page_from_freelist goes through the zonelist trying to allocate
  2485. * a page.
  2486. */
  2487. static struct page *
  2488. get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
  2489. const struct alloc_context *ac)
  2490. {
  2491. struct zoneref *z = ac->preferred_zoneref;
  2492. struct zone *zone;
  2493. bool fair_skipped = false;
  2494. bool apply_fair = (alloc_flags & ALLOC_FAIR);
  2495. zonelist_scan:
  2496. /*
  2497. * Scan zonelist, looking for a zone with enough free.
  2498. * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
  2499. */
  2500. for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2501. ac->nodemask) {
  2502. struct page *page;
  2503. unsigned long mark;
  2504. if (cpusets_enabled() &&
  2505. (alloc_flags & ALLOC_CPUSET) &&
  2506. !__cpuset_zone_allowed(zone, gfp_mask))
  2507. continue;
  2508. /*
  2509. * Distribute pages in proportion to the individual
  2510. * zone size to ensure fair page aging. The zone a
  2511. * page was allocated in should have no effect on the
  2512. * time the page has in memory before being reclaimed.
  2513. */
  2514. if (apply_fair) {
  2515. if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
  2516. fair_skipped = true;
  2517. continue;
  2518. }
  2519. if (!zone_local(ac->preferred_zoneref->zone, zone)) {
  2520. if (fair_skipped)
  2521. goto reset_fair;
  2522. apply_fair = false;
  2523. }
  2524. }
  2525. /*
  2526. * When allocating a page cache page for writing, we
  2527. * want to get it from a zone that is within its dirty
  2528. * limit, such that no single zone holds more than its
  2529. * proportional share of globally allowed dirty pages.
  2530. * The dirty limits take into account the zone's
  2531. * lowmem reserves and high watermark so that kswapd
  2532. * should be able to balance it without having to
  2533. * write pages from its LRU list.
  2534. *
  2535. * This may look like it could increase pressure on
  2536. * lower zones by failing allocations in higher zones
  2537. * before they are full. But the pages that do spill
  2538. * over are limited as the lower zones are protected
  2539. * by this very same mechanism. It should not become
  2540. * a practical burden to them.
  2541. *
  2542. * XXX: For now, allow allocations to potentially
  2543. * exceed the per-zone dirty limit in the slowpath
  2544. * (spread_dirty_pages unset) before going into reclaim,
  2545. * which is important when on a NUMA setup the allowed
  2546. * zones are together not big enough to reach the
  2547. * global limit. The proper fix for these situations
  2548. * will require awareness of zones in the
  2549. * dirty-throttling and the flusher threads.
  2550. */
  2551. if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
  2552. continue;
  2553. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  2554. if (!zone_watermark_fast(zone, order, mark,
  2555. ac_classzone_idx(ac), alloc_flags)) {
  2556. int ret;
  2557. /* Checked here to keep the fast path fast */
  2558. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  2559. if (alloc_flags & ALLOC_NO_WATERMARKS)
  2560. goto try_this_zone;
  2561. if (zone_reclaim_mode == 0 ||
  2562. !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
  2563. continue;
  2564. ret = zone_reclaim(zone, gfp_mask, order);
  2565. switch (ret) {
  2566. case ZONE_RECLAIM_NOSCAN:
  2567. /* did not scan */
  2568. continue;
  2569. case ZONE_RECLAIM_FULL:
  2570. /* scanned but unreclaimable */
  2571. continue;
  2572. default:
  2573. /* did we reclaim enough */
  2574. if (zone_watermark_ok(zone, order, mark,
  2575. ac_classzone_idx(ac), alloc_flags))
  2576. goto try_this_zone;
  2577. continue;
  2578. }
  2579. }
  2580. try_this_zone:
  2581. page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
  2582. gfp_mask, alloc_flags, ac->migratetype);
  2583. if (page) {
  2584. prep_new_page(page, order, gfp_mask, alloc_flags);
  2585. /*
  2586. * If this is a high-order atomic allocation then check
  2587. * if the pageblock should be reserved for the future
  2588. */
  2589. if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
  2590. reserve_highatomic_pageblock(page, zone, order);
  2591. return page;
  2592. }
  2593. }
  2594. /*
  2595. * The first pass makes sure allocations are spread fairly within the
  2596. * local node. However, the local node might have free pages left
  2597. * after the fairness batches are exhausted, and remote zones haven't
  2598. * even been considered yet. Try once more without fairness, and
  2599. * include remote zones now, before entering the slowpath and waking
  2600. * kswapd: prefer spilling to a remote zone over swapping locally.
  2601. */
  2602. if (fair_skipped) {
  2603. reset_fair:
  2604. apply_fair = false;
  2605. fair_skipped = false;
  2606. reset_alloc_batches(ac->preferred_zoneref->zone);
  2607. goto zonelist_scan;
  2608. }
  2609. return NULL;
  2610. }
  2611. /*
  2612. * Large machines with many possible nodes should not always dump per-node
  2613. * meminfo in irq context.
  2614. */
  2615. static inline bool should_suppress_show_mem(void)
  2616. {
  2617. bool ret = false;
  2618. #if NODES_SHIFT > 8
  2619. ret = in_interrupt();
  2620. #endif
  2621. return ret;
  2622. }
  2623. static DEFINE_RATELIMIT_STATE(nopage_rs,
  2624. DEFAULT_RATELIMIT_INTERVAL,
  2625. DEFAULT_RATELIMIT_BURST);
  2626. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
  2627. {
  2628. unsigned int filter = SHOW_MEM_FILTER_NODES;
  2629. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  2630. debug_guardpage_minorder() > 0)
  2631. return;
  2632. /*
  2633. * This documents exceptions given to allocations in certain
  2634. * contexts that are allowed to allocate outside current's set
  2635. * of allowed nodes.
  2636. */
  2637. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2638. if (test_thread_flag(TIF_MEMDIE) ||
  2639. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  2640. filter &= ~SHOW_MEM_FILTER_NODES;
  2641. if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
  2642. filter &= ~SHOW_MEM_FILTER_NODES;
  2643. if (fmt) {
  2644. struct va_format vaf;
  2645. va_list args;
  2646. va_start(args, fmt);
  2647. vaf.fmt = fmt;
  2648. vaf.va = &args;
  2649. pr_warn("%pV", &vaf);
  2650. va_end(args);
  2651. }
  2652. pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
  2653. current->comm, order, gfp_mask, &gfp_mask);
  2654. dump_stack();
  2655. if (!should_suppress_show_mem())
  2656. show_mem(filter);
  2657. }
  2658. static inline struct page *
  2659. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  2660. const struct alloc_context *ac, unsigned long *did_some_progress)
  2661. {
  2662. struct oom_control oc = {
  2663. .zonelist = ac->zonelist,
  2664. .nodemask = ac->nodemask,
  2665. .gfp_mask = gfp_mask,
  2666. .order = order,
  2667. };
  2668. struct page *page;
  2669. *did_some_progress = 0;
  2670. /*
  2671. * Acquire the oom lock. If that fails, somebody else is
  2672. * making progress for us.
  2673. */
  2674. if (!mutex_trylock(&oom_lock)) {
  2675. *did_some_progress = 1;
  2676. schedule_timeout_uninterruptible(1);
  2677. return NULL;
  2678. }
  2679. /*
  2680. * Go through the zonelist yet one more time, keep very high watermark
  2681. * here, this is only to catch a parallel oom killing, we must fail if
  2682. * we're still under heavy pressure.
  2683. */
  2684. page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
  2685. ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
  2686. if (page)
  2687. goto out;
  2688. if (!(gfp_mask & __GFP_NOFAIL)) {
  2689. /* Coredumps can quickly deplete all memory reserves */
  2690. if (current->flags & PF_DUMPCORE)
  2691. goto out;
  2692. /* The OOM killer will not help higher order allocs */
  2693. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2694. goto out;
  2695. /* The OOM killer does not needlessly kill tasks for lowmem */
  2696. if (ac->high_zoneidx < ZONE_NORMAL)
  2697. goto out;
  2698. if (pm_suspended_storage())
  2699. goto out;
  2700. /*
  2701. * XXX: GFP_NOFS allocations should rather fail than rely on
  2702. * other request to make a forward progress.
  2703. * We are in an unfortunate situation where out_of_memory cannot
  2704. * do much for this context but let's try it to at least get
  2705. * access to memory reserved if the current task is killed (see
  2706. * out_of_memory). Once filesystems are ready to handle allocation
  2707. * failures more gracefully we should just bail out here.
  2708. */
  2709. /* The OOM killer may not free memory on a specific node */
  2710. if (gfp_mask & __GFP_THISNODE)
  2711. goto out;
  2712. }
  2713. /* Exhausted what can be done so it's blamo time */
  2714. if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  2715. *did_some_progress = 1;
  2716. if (gfp_mask & __GFP_NOFAIL) {
  2717. page = get_page_from_freelist(gfp_mask, order,
  2718. ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
  2719. /*
  2720. * fallback to ignore cpuset restriction if our nodes
  2721. * are depleted
  2722. */
  2723. if (!page)
  2724. page = get_page_from_freelist(gfp_mask, order,
  2725. ALLOC_NO_WATERMARKS, ac);
  2726. }
  2727. }
  2728. out:
  2729. mutex_unlock(&oom_lock);
  2730. return page;
  2731. }
  2732. /*
  2733. * Maximum number of compaction retries wit a progress before OOM
  2734. * killer is consider as the only way to move forward.
  2735. */
  2736. #define MAX_COMPACT_RETRIES 16
  2737. #ifdef CONFIG_COMPACTION
  2738. /* Try memory compaction for high-order allocations before reclaim */
  2739. static struct page *
  2740. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2741. unsigned int alloc_flags, const struct alloc_context *ac,
  2742. enum migrate_mode mode, enum compact_result *compact_result)
  2743. {
  2744. struct page *page;
  2745. int contended_compaction;
  2746. if (!order)
  2747. return NULL;
  2748. current->flags |= PF_MEMALLOC;
  2749. *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
  2750. mode, &contended_compaction);
  2751. current->flags &= ~PF_MEMALLOC;
  2752. if (*compact_result <= COMPACT_INACTIVE)
  2753. return NULL;
  2754. /*
  2755. * At least in one zone compaction wasn't deferred or skipped, so let's
  2756. * count a compaction stall
  2757. */
  2758. count_vm_event(COMPACTSTALL);
  2759. page = get_page_from_freelist(gfp_mask, order,
  2760. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2761. if (page) {
  2762. struct zone *zone = page_zone(page);
  2763. zone->compact_blockskip_flush = false;
  2764. compaction_defer_reset(zone, order, true);
  2765. count_vm_event(COMPACTSUCCESS);
  2766. return page;
  2767. }
  2768. /*
  2769. * It's bad if compaction run occurs and fails. The most likely reason
  2770. * is that pages exist, but not enough to satisfy watermarks.
  2771. */
  2772. count_vm_event(COMPACTFAIL);
  2773. /*
  2774. * In all zones where compaction was attempted (and not
  2775. * deferred or skipped), lock contention has been detected.
  2776. * For THP allocation we do not want to disrupt the others
  2777. * so we fallback to base pages instead.
  2778. */
  2779. if (contended_compaction == COMPACT_CONTENDED_LOCK)
  2780. *compact_result = COMPACT_CONTENDED;
  2781. /*
  2782. * If compaction was aborted due to need_resched(), we do not
  2783. * want to further increase allocation latency, unless it is
  2784. * khugepaged trying to collapse.
  2785. */
  2786. if (contended_compaction == COMPACT_CONTENDED_SCHED
  2787. && !(current->flags & PF_KTHREAD))
  2788. *compact_result = COMPACT_CONTENDED;
  2789. cond_resched();
  2790. return NULL;
  2791. }
  2792. static inline bool
  2793. should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
  2794. enum compact_result compact_result, enum migrate_mode *migrate_mode,
  2795. int compaction_retries)
  2796. {
  2797. int max_retries = MAX_COMPACT_RETRIES;
  2798. if (!order)
  2799. return false;
  2800. /*
  2801. * compaction considers all the zone as desperately out of memory
  2802. * so it doesn't really make much sense to retry except when the
  2803. * failure could be caused by weak migration mode.
  2804. */
  2805. if (compaction_failed(compact_result)) {
  2806. if (*migrate_mode == MIGRATE_ASYNC) {
  2807. *migrate_mode = MIGRATE_SYNC_LIGHT;
  2808. return true;
  2809. }
  2810. return false;
  2811. }
  2812. /*
  2813. * make sure the compaction wasn't deferred or didn't bail out early
  2814. * due to locks contention before we declare that we should give up.
  2815. * But do not retry if the given zonelist is not suitable for
  2816. * compaction.
  2817. */
  2818. if (compaction_withdrawn(compact_result))
  2819. return compaction_zonelist_suitable(ac, order, alloc_flags);
  2820. /*
  2821. * !costly requests are much more important than __GFP_REPEAT
  2822. * costly ones because they are de facto nofail and invoke OOM
  2823. * killer to move on while costly can fail and users are ready
  2824. * to cope with that. 1/4 retries is rather arbitrary but we
  2825. * would need much more detailed feedback from compaction to
  2826. * make a better decision.
  2827. */
  2828. if (order > PAGE_ALLOC_COSTLY_ORDER)
  2829. max_retries /= 4;
  2830. if (compaction_retries <= max_retries)
  2831. return true;
  2832. return false;
  2833. }
  2834. #else
  2835. static inline struct page *
  2836. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  2837. unsigned int alloc_flags, const struct alloc_context *ac,
  2838. enum migrate_mode mode, enum compact_result *compact_result)
  2839. {
  2840. *compact_result = COMPACT_SKIPPED;
  2841. return NULL;
  2842. }
  2843. static inline bool
  2844. should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
  2845. enum compact_result compact_result,
  2846. enum migrate_mode *migrate_mode,
  2847. int compaction_retries)
  2848. {
  2849. return false;
  2850. }
  2851. #endif /* CONFIG_COMPACTION */
  2852. /* Perform direct synchronous page reclaim */
  2853. static int
  2854. __perform_reclaim(gfp_t gfp_mask, unsigned int order,
  2855. const struct alloc_context *ac)
  2856. {
  2857. struct reclaim_state reclaim_state;
  2858. int progress;
  2859. cond_resched();
  2860. /* We now go into synchronous reclaim */
  2861. cpuset_memory_pressure_bump();
  2862. current->flags |= PF_MEMALLOC;
  2863. lockdep_set_current_reclaim_state(gfp_mask);
  2864. reclaim_state.reclaimed_slab = 0;
  2865. current->reclaim_state = &reclaim_state;
  2866. progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
  2867. ac->nodemask);
  2868. current->reclaim_state = NULL;
  2869. lockdep_clear_current_reclaim_state();
  2870. current->flags &= ~PF_MEMALLOC;
  2871. cond_resched();
  2872. return progress;
  2873. }
  2874. /* The really slow allocator path where we enter direct reclaim */
  2875. static inline struct page *
  2876. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  2877. unsigned int alloc_flags, const struct alloc_context *ac,
  2878. unsigned long *did_some_progress)
  2879. {
  2880. struct page *page = NULL;
  2881. bool drained = false;
  2882. *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
  2883. if (unlikely(!(*did_some_progress)))
  2884. return NULL;
  2885. retry:
  2886. page = get_page_from_freelist(gfp_mask, order,
  2887. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  2888. /*
  2889. * If an allocation failed after direct reclaim, it could be because
  2890. * pages are pinned on the per-cpu lists or in high alloc reserves.
  2891. * Shrink them them and try again
  2892. */
  2893. if (!page && !drained) {
  2894. unreserve_highatomic_pageblock(ac);
  2895. drain_all_pages(NULL);
  2896. drained = true;
  2897. goto retry;
  2898. }
  2899. return page;
  2900. }
  2901. static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
  2902. {
  2903. struct zoneref *z;
  2904. struct zone *zone;
  2905. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
  2906. ac->high_zoneidx, ac->nodemask)
  2907. wakeup_kswapd(zone, order, ac_classzone_idx(ac));
  2908. }
  2909. static inline unsigned int
  2910. gfp_to_alloc_flags(gfp_t gfp_mask)
  2911. {
  2912. unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  2913. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  2914. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  2915. /*
  2916. * The caller may dip into page reserves a bit more if the caller
  2917. * cannot run direct reclaim, or if the caller has realtime scheduling
  2918. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  2919. * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
  2920. */
  2921. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  2922. if (gfp_mask & __GFP_ATOMIC) {
  2923. /*
  2924. * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
  2925. * if it can't schedule.
  2926. */
  2927. if (!(gfp_mask & __GFP_NOMEMALLOC))
  2928. alloc_flags |= ALLOC_HARDER;
  2929. /*
  2930. * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
  2931. * comment for __cpuset_node_allowed().
  2932. */
  2933. alloc_flags &= ~ALLOC_CPUSET;
  2934. } else if (unlikely(rt_task(current)) && !in_interrupt())
  2935. alloc_flags |= ALLOC_HARDER;
  2936. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  2937. if (gfp_mask & __GFP_MEMALLOC)
  2938. alloc_flags |= ALLOC_NO_WATERMARKS;
  2939. else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
  2940. alloc_flags |= ALLOC_NO_WATERMARKS;
  2941. else if (!in_interrupt() &&
  2942. ((current->flags & PF_MEMALLOC) ||
  2943. unlikely(test_thread_flag(TIF_MEMDIE))))
  2944. alloc_flags |= ALLOC_NO_WATERMARKS;
  2945. }
  2946. #ifdef CONFIG_CMA
  2947. if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
  2948. alloc_flags |= ALLOC_CMA;
  2949. #endif
  2950. return alloc_flags;
  2951. }
  2952. bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
  2953. {
  2954. return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
  2955. }
  2956. static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
  2957. {
  2958. return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
  2959. }
  2960. /*
  2961. * Maximum number of reclaim retries without any progress before OOM killer
  2962. * is consider as the only way to move forward.
  2963. */
  2964. #define MAX_RECLAIM_RETRIES 16
  2965. /*
  2966. * Checks whether it makes sense to retry the reclaim to make a forward progress
  2967. * for the given allocation request.
  2968. * The reclaim feedback represented by did_some_progress (any progress during
  2969. * the last reclaim round) and no_progress_loops (number of reclaim rounds without
  2970. * any progress in a row) is considered as well as the reclaimable pages on the
  2971. * applicable zone list (with a backoff mechanism which is a function of
  2972. * no_progress_loops).
  2973. *
  2974. * Returns true if a retry is viable or false to enter the oom path.
  2975. */
  2976. static inline bool
  2977. should_reclaim_retry(gfp_t gfp_mask, unsigned order,
  2978. struct alloc_context *ac, int alloc_flags,
  2979. bool did_some_progress, int no_progress_loops)
  2980. {
  2981. struct zone *zone;
  2982. struct zoneref *z;
  2983. /*
  2984. * Make sure we converge to OOM if we cannot make any progress
  2985. * several times in the row.
  2986. */
  2987. if (no_progress_loops > MAX_RECLAIM_RETRIES)
  2988. return false;
  2989. /*
  2990. * Keep reclaiming pages while there is a chance this will lead somewhere.
  2991. * If none of the target zones can satisfy our allocation request even
  2992. * if all reclaimable pages are considered then we are screwed and have
  2993. * to go OOM.
  2994. */
  2995. for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
  2996. ac->nodemask) {
  2997. unsigned long available;
  2998. unsigned long reclaimable;
  2999. available = reclaimable = zone_reclaimable_pages(zone);
  3000. available -= DIV_ROUND_UP(no_progress_loops * available,
  3001. MAX_RECLAIM_RETRIES);
  3002. available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
  3003. /*
  3004. * Would the allocation succeed if we reclaimed the whole
  3005. * available?
  3006. */
  3007. if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
  3008. ac_classzone_idx(ac), alloc_flags, available)) {
  3009. /*
  3010. * If we didn't make any progress and have a lot of
  3011. * dirty + writeback pages then we should wait for
  3012. * an IO to complete to slow down the reclaim and
  3013. * prevent from pre mature OOM
  3014. */
  3015. if (!did_some_progress) {
  3016. unsigned long writeback;
  3017. unsigned long dirty;
  3018. writeback = zone_page_state_snapshot(zone,
  3019. NR_WRITEBACK);
  3020. dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
  3021. if (2*(writeback + dirty) > reclaimable) {
  3022. congestion_wait(BLK_RW_ASYNC, HZ/10);
  3023. return true;
  3024. }
  3025. }
  3026. /*
  3027. * Memory allocation/reclaim might be called from a WQ
  3028. * context and the current implementation of the WQ
  3029. * concurrency control doesn't recognize that
  3030. * a particular WQ is congested if the worker thread is
  3031. * looping without ever sleeping. Therefore we have to
  3032. * do a short sleep here rather than calling
  3033. * cond_resched().
  3034. */
  3035. if (current->flags & PF_WQ_WORKER)
  3036. schedule_timeout_uninterruptible(1);
  3037. else
  3038. cond_resched();
  3039. return true;
  3040. }
  3041. }
  3042. return false;
  3043. }
  3044. static inline struct page *
  3045. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  3046. struct alloc_context *ac)
  3047. {
  3048. bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
  3049. struct page *page = NULL;
  3050. unsigned int alloc_flags;
  3051. unsigned long did_some_progress;
  3052. enum migrate_mode migration_mode = MIGRATE_ASYNC;
  3053. enum compact_result compact_result;
  3054. int compaction_retries = 0;
  3055. int no_progress_loops = 0;
  3056. /*
  3057. * In the slowpath, we sanity check order to avoid ever trying to
  3058. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  3059. * be using allocators in order of preference for an area that is
  3060. * too large.
  3061. */
  3062. if (order >= MAX_ORDER) {
  3063. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  3064. return NULL;
  3065. }
  3066. /*
  3067. * We also sanity check to catch abuse of atomic reserves being used by
  3068. * callers that are not in atomic context.
  3069. */
  3070. if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
  3071. (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
  3072. gfp_mask &= ~__GFP_ATOMIC;
  3073. retry:
  3074. if (gfp_mask & __GFP_KSWAPD_RECLAIM)
  3075. wake_all_kswapds(order, ac);
  3076. /*
  3077. * OK, we're below the kswapd watermark and have kicked background
  3078. * reclaim. Now things get more complex, so set up alloc_flags according
  3079. * to how we want to proceed.
  3080. */
  3081. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  3082. /* This is the last chance, in general, before the goto nopage. */
  3083. page = get_page_from_freelist(gfp_mask, order,
  3084. alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
  3085. if (page)
  3086. goto got_pg;
  3087. /* Allocate without watermarks if the context allows */
  3088. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  3089. /*
  3090. * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
  3091. * the allocation is high priority and these type of
  3092. * allocations are system rather than user orientated
  3093. */
  3094. ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
  3095. page = get_page_from_freelist(gfp_mask, order,
  3096. ALLOC_NO_WATERMARKS, ac);
  3097. if (page)
  3098. goto got_pg;
  3099. }
  3100. /* Caller is not willing to reclaim, we can't balance anything */
  3101. if (!can_direct_reclaim) {
  3102. /*
  3103. * All existing users of the __GFP_NOFAIL are blockable, so warn
  3104. * of any new users that actually allow this type of allocation
  3105. * to fail.
  3106. */
  3107. WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
  3108. goto nopage;
  3109. }
  3110. /* Avoid recursion of direct reclaim */
  3111. if (current->flags & PF_MEMALLOC) {
  3112. /*
  3113. * __GFP_NOFAIL request from this context is rather bizarre
  3114. * because we cannot reclaim anything and only can loop waiting
  3115. * for somebody to do a work for us.
  3116. */
  3117. if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
  3118. cond_resched();
  3119. goto retry;
  3120. }
  3121. goto nopage;
  3122. }
  3123. /* Avoid allocations with no watermarks from looping endlessly */
  3124. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  3125. goto nopage;
  3126. /*
  3127. * Try direct compaction. The first pass is asynchronous. Subsequent
  3128. * attempts after direct reclaim are synchronous
  3129. */
  3130. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
  3131. migration_mode,
  3132. &compact_result);
  3133. if (page)
  3134. goto got_pg;
  3135. /* Checks for THP-specific high-order allocations */
  3136. if (is_thp_gfp_mask(gfp_mask)) {
  3137. /*
  3138. * If compaction is deferred for high-order allocations, it is
  3139. * because sync compaction recently failed. If this is the case
  3140. * and the caller requested a THP allocation, we do not want
  3141. * to heavily disrupt the system, so we fail the allocation
  3142. * instead of entering direct reclaim.
  3143. */
  3144. if (compact_result == COMPACT_DEFERRED)
  3145. goto nopage;
  3146. /*
  3147. * Compaction is contended so rather back off than cause
  3148. * excessive stalls.
  3149. */
  3150. if(compact_result == COMPACT_CONTENDED)
  3151. goto nopage;
  3152. }
  3153. if (order && compaction_made_progress(compact_result))
  3154. compaction_retries++;
  3155. /* Try direct reclaim and then allocating */
  3156. page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
  3157. &did_some_progress);
  3158. if (page)
  3159. goto got_pg;
  3160. /* Do not loop if specifically requested */
  3161. if (gfp_mask & __GFP_NORETRY)
  3162. goto noretry;
  3163. /*
  3164. * Do not retry costly high order allocations unless they are
  3165. * __GFP_REPEAT
  3166. */
  3167. if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
  3168. goto noretry;
  3169. /*
  3170. * Costly allocations might have made a progress but this doesn't mean
  3171. * their order will become available due to high fragmentation so
  3172. * always increment the no progress counter for them
  3173. */
  3174. if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
  3175. no_progress_loops = 0;
  3176. else
  3177. no_progress_loops++;
  3178. if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
  3179. did_some_progress > 0, no_progress_loops))
  3180. goto retry;
  3181. /*
  3182. * It doesn't make any sense to retry for the compaction if the order-0
  3183. * reclaim is not able to make any progress because the current
  3184. * implementation of the compaction depends on the sufficient amount
  3185. * of free memory (see __compaction_suitable)
  3186. */
  3187. if (did_some_progress > 0 &&
  3188. should_compact_retry(ac, order, alloc_flags,
  3189. compact_result, &migration_mode,
  3190. compaction_retries))
  3191. goto retry;
  3192. /* Reclaim has failed us, start killing things */
  3193. page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
  3194. if (page)
  3195. goto got_pg;
  3196. /* Retry as long as the OOM killer is making progress */
  3197. if (did_some_progress) {
  3198. no_progress_loops = 0;
  3199. goto retry;
  3200. }
  3201. noretry:
  3202. /*
  3203. * High-order allocations do not necessarily loop after direct reclaim
  3204. * and reclaim/compaction depends on compaction being called after
  3205. * reclaim so call directly if necessary.
  3206. * It can become very expensive to allocate transparent hugepages at
  3207. * fault, so use asynchronous memory compaction for THP unless it is
  3208. * khugepaged trying to collapse. All other requests should tolerate
  3209. * at least light sync migration.
  3210. */
  3211. if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
  3212. migration_mode = MIGRATE_ASYNC;
  3213. else
  3214. migration_mode = MIGRATE_SYNC_LIGHT;
  3215. page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
  3216. ac, migration_mode,
  3217. &compact_result);
  3218. if (page)
  3219. goto got_pg;
  3220. nopage:
  3221. warn_alloc_failed(gfp_mask, order, NULL);
  3222. got_pg:
  3223. return page;
  3224. }
  3225. /*
  3226. * This is the 'heart' of the zoned buddy allocator.
  3227. */
  3228. struct page *
  3229. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  3230. struct zonelist *zonelist, nodemask_t *nodemask)
  3231. {
  3232. struct page *page;
  3233. unsigned int cpuset_mems_cookie;
  3234. unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
  3235. gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
  3236. struct alloc_context ac = {
  3237. .high_zoneidx = gfp_zone(gfp_mask),
  3238. .zonelist = zonelist,
  3239. .nodemask = nodemask,
  3240. .migratetype = gfpflags_to_migratetype(gfp_mask),
  3241. };
  3242. if (cpusets_enabled()) {
  3243. alloc_mask |= __GFP_HARDWALL;
  3244. alloc_flags |= ALLOC_CPUSET;
  3245. if (!ac.nodemask)
  3246. ac.nodemask = &cpuset_current_mems_allowed;
  3247. }
  3248. gfp_mask &= gfp_allowed_mask;
  3249. lockdep_trace_alloc(gfp_mask);
  3250. might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
  3251. if (should_fail_alloc_page(gfp_mask, order))
  3252. return NULL;
  3253. /*
  3254. * Check the zones suitable for the gfp_mask contain at least one
  3255. * valid zone. It's possible to have an empty zonelist as a result
  3256. * of __GFP_THISNODE and a memoryless node
  3257. */
  3258. if (unlikely(!zonelist->_zonerefs->zone))
  3259. return NULL;
  3260. if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
  3261. alloc_flags |= ALLOC_CMA;
  3262. retry_cpuset:
  3263. cpuset_mems_cookie = read_mems_allowed_begin();
  3264. /* Dirty zone balancing only done in the fast path */
  3265. ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
  3266. /* The preferred zone is used for statistics later */
  3267. ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
  3268. ac.high_zoneidx, ac.nodemask);
  3269. if (!ac.preferred_zoneref) {
  3270. page = NULL;
  3271. goto no_zone;
  3272. }
  3273. /* First allocation attempt */
  3274. page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
  3275. if (likely(page))
  3276. goto out;
  3277. /*
  3278. * Runtime PM, block IO and its error handling path can deadlock
  3279. * because I/O on the device might not complete.
  3280. */
  3281. alloc_mask = memalloc_noio_flags(gfp_mask);
  3282. ac.spread_dirty_pages = false;
  3283. /*
  3284. * Restore the original nodemask if it was potentially replaced with
  3285. * &cpuset_current_mems_allowed to optimize the fast-path attempt.
  3286. */
  3287. if (cpusets_enabled())
  3288. ac.nodemask = nodemask;
  3289. page = __alloc_pages_slowpath(alloc_mask, order, &ac);
  3290. no_zone:
  3291. /*
  3292. * When updating a task's mems_allowed, it is possible to race with
  3293. * parallel threads in such a way that an allocation can fail while
  3294. * the mask is being updated. If a page allocation is about to fail,
  3295. * check if the cpuset changed during allocation and if so, retry.
  3296. */
  3297. if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
  3298. alloc_mask = gfp_mask;
  3299. goto retry_cpuset;
  3300. }
  3301. out:
  3302. if (kmemcheck_enabled && page)
  3303. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  3304. trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
  3305. return page;
  3306. }
  3307. EXPORT_SYMBOL(__alloc_pages_nodemask);
  3308. /*
  3309. * Common helper functions.
  3310. */
  3311. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  3312. {
  3313. struct page *page;
  3314. /*
  3315. * __get_free_pages() returns a 32-bit address, which cannot represent
  3316. * a highmem page
  3317. */
  3318. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  3319. page = alloc_pages(gfp_mask, order);
  3320. if (!page)
  3321. return 0;
  3322. return (unsigned long) page_address(page);
  3323. }
  3324. EXPORT_SYMBOL(__get_free_pages);
  3325. unsigned long get_zeroed_page(gfp_t gfp_mask)
  3326. {
  3327. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  3328. }
  3329. EXPORT_SYMBOL(get_zeroed_page);
  3330. void __free_pages(struct page *page, unsigned int order)
  3331. {
  3332. if (put_page_testzero(page)) {
  3333. if (order == 0)
  3334. free_hot_cold_page(page, false);
  3335. else
  3336. __free_pages_ok(page, order);
  3337. }
  3338. }
  3339. EXPORT_SYMBOL(__free_pages);
  3340. void free_pages(unsigned long addr, unsigned int order)
  3341. {
  3342. if (addr != 0) {
  3343. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3344. __free_pages(virt_to_page((void *)addr), order);
  3345. }
  3346. }
  3347. EXPORT_SYMBOL(free_pages);
  3348. /*
  3349. * Page Fragment:
  3350. * An arbitrary-length arbitrary-offset area of memory which resides
  3351. * within a 0 or higher order page. Multiple fragments within that page
  3352. * are individually refcounted, in the page's reference counter.
  3353. *
  3354. * The page_frag functions below provide a simple allocation framework for
  3355. * page fragments. This is used by the network stack and network device
  3356. * drivers to provide a backing region of memory for use as either an
  3357. * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
  3358. */
  3359. static struct page *__page_frag_refill(struct page_frag_cache *nc,
  3360. gfp_t gfp_mask)
  3361. {
  3362. struct page *page = NULL;
  3363. gfp_t gfp = gfp_mask;
  3364. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3365. gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
  3366. __GFP_NOMEMALLOC;
  3367. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
  3368. PAGE_FRAG_CACHE_MAX_ORDER);
  3369. nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
  3370. #endif
  3371. if (unlikely(!page))
  3372. page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
  3373. nc->va = page ? page_address(page) : NULL;
  3374. return page;
  3375. }
  3376. void *__alloc_page_frag(struct page_frag_cache *nc,
  3377. unsigned int fragsz, gfp_t gfp_mask)
  3378. {
  3379. unsigned int size = PAGE_SIZE;
  3380. struct page *page;
  3381. int offset;
  3382. if (unlikely(!nc->va)) {
  3383. refill:
  3384. page = __page_frag_refill(nc, gfp_mask);
  3385. if (!page)
  3386. return NULL;
  3387. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3388. /* if size can vary use size else just use PAGE_SIZE */
  3389. size = nc->size;
  3390. #endif
  3391. /* Even if we own the page, we do not use atomic_set().
  3392. * This would break get_page_unless_zero() users.
  3393. */
  3394. page_ref_add(page, size - 1);
  3395. /* reset page count bias and offset to start of new frag */
  3396. nc->pfmemalloc = page_is_pfmemalloc(page);
  3397. nc->pagecnt_bias = size;
  3398. nc->offset = size;
  3399. }
  3400. offset = nc->offset - fragsz;
  3401. if (unlikely(offset < 0)) {
  3402. page = virt_to_page(nc->va);
  3403. if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
  3404. goto refill;
  3405. #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
  3406. /* if size can vary use size else just use PAGE_SIZE */
  3407. size = nc->size;
  3408. #endif
  3409. /* OK, page count is 0, we can safely set it */
  3410. set_page_count(page, size);
  3411. /* reset page count bias and offset to start of new frag */
  3412. nc->pagecnt_bias = size;
  3413. offset = size - fragsz;
  3414. }
  3415. nc->pagecnt_bias--;
  3416. nc->offset = offset;
  3417. return nc->va + offset;
  3418. }
  3419. EXPORT_SYMBOL(__alloc_page_frag);
  3420. /*
  3421. * Frees a page fragment allocated out of either a compound or order 0 page.
  3422. */
  3423. void __free_page_frag(void *addr)
  3424. {
  3425. struct page *page = virt_to_head_page(addr);
  3426. if (unlikely(put_page_testzero(page)))
  3427. __free_pages_ok(page, compound_order(page));
  3428. }
  3429. EXPORT_SYMBOL(__free_page_frag);
  3430. /*
  3431. * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
  3432. * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
  3433. * equivalent to alloc_pages.
  3434. *
  3435. * It should be used when the caller would like to use kmalloc, but since the
  3436. * allocation is large, it has to fall back to the page allocator.
  3437. */
  3438. struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
  3439. {
  3440. struct page *page;
  3441. page = alloc_pages(gfp_mask, order);
  3442. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  3443. __free_pages(page, order);
  3444. page = NULL;
  3445. }
  3446. return page;
  3447. }
  3448. struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
  3449. {
  3450. struct page *page;
  3451. page = alloc_pages_node(nid, gfp_mask, order);
  3452. if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
  3453. __free_pages(page, order);
  3454. page = NULL;
  3455. }
  3456. return page;
  3457. }
  3458. /*
  3459. * __free_kmem_pages and free_kmem_pages will free pages allocated with
  3460. * alloc_kmem_pages.
  3461. */
  3462. void __free_kmem_pages(struct page *page, unsigned int order)
  3463. {
  3464. memcg_kmem_uncharge(page, order);
  3465. __free_pages(page, order);
  3466. }
  3467. void free_kmem_pages(unsigned long addr, unsigned int order)
  3468. {
  3469. if (addr != 0) {
  3470. VM_BUG_ON(!virt_addr_valid((void *)addr));
  3471. __free_kmem_pages(virt_to_page((void *)addr), order);
  3472. }
  3473. }
  3474. static void *make_alloc_exact(unsigned long addr, unsigned int order,
  3475. size_t size)
  3476. {
  3477. if (addr) {
  3478. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  3479. unsigned long used = addr + PAGE_ALIGN(size);
  3480. split_page(virt_to_page((void *)addr), order);
  3481. while (used < alloc_end) {
  3482. free_page(used);
  3483. used += PAGE_SIZE;
  3484. }
  3485. }
  3486. return (void *)addr;
  3487. }
  3488. /**
  3489. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  3490. * @size: the number of bytes to allocate
  3491. * @gfp_mask: GFP flags for the allocation
  3492. *
  3493. * This function is similar to alloc_pages(), except that it allocates the
  3494. * minimum number of pages to satisfy the request. alloc_pages() can only
  3495. * allocate memory in power-of-two pages.
  3496. *
  3497. * This function is also limited by MAX_ORDER.
  3498. *
  3499. * Memory allocated by this function must be released by free_pages_exact().
  3500. */
  3501. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  3502. {
  3503. unsigned int order = get_order(size);
  3504. unsigned long addr;
  3505. addr = __get_free_pages(gfp_mask, order);
  3506. return make_alloc_exact(addr, order, size);
  3507. }
  3508. EXPORT_SYMBOL(alloc_pages_exact);
  3509. /**
  3510. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  3511. * pages on a node.
  3512. * @nid: the preferred node ID where memory should be allocated
  3513. * @size: the number of bytes to allocate
  3514. * @gfp_mask: GFP flags for the allocation
  3515. *
  3516. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  3517. * back.
  3518. */
  3519. void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  3520. {
  3521. unsigned int order = get_order(size);
  3522. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  3523. if (!p)
  3524. return NULL;
  3525. return make_alloc_exact((unsigned long)page_address(p), order, size);
  3526. }
  3527. /**
  3528. * free_pages_exact - release memory allocated via alloc_pages_exact()
  3529. * @virt: the value returned by alloc_pages_exact.
  3530. * @size: size of allocation, same value as passed to alloc_pages_exact().
  3531. *
  3532. * Release the memory allocated by a previous call to alloc_pages_exact.
  3533. */
  3534. void free_pages_exact(void *virt, size_t size)
  3535. {
  3536. unsigned long addr = (unsigned long)virt;
  3537. unsigned long end = addr + PAGE_ALIGN(size);
  3538. while (addr < end) {
  3539. free_page(addr);
  3540. addr += PAGE_SIZE;
  3541. }
  3542. }
  3543. EXPORT_SYMBOL(free_pages_exact);
  3544. /**
  3545. * nr_free_zone_pages - count number of pages beyond high watermark
  3546. * @offset: The zone index of the highest zone
  3547. *
  3548. * nr_free_zone_pages() counts the number of counts pages which are beyond the
  3549. * high watermark within all zones at or below a given zone index. For each
  3550. * zone, the number of pages is calculated as:
  3551. * managed_pages - high_pages
  3552. */
  3553. static unsigned long nr_free_zone_pages(int offset)
  3554. {
  3555. struct zoneref *z;
  3556. struct zone *zone;
  3557. /* Just pick one node, since fallback list is circular */
  3558. unsigned long sum = 0;
  3559. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  3560. for_each_zone_zonelist(zone, z, zonelist, offset) {
  3561. unsigned long size = zone->managed_pages;
  3562. unsigned long high = high_wmark_pages(zone);
  3563. if (size > high)
  3564. sum += size - high;
  3565. }
  3566. return sum;
  3567. }
  3568. /**
  3569. * nr_free_buffer_pages - count number of pages beyond high watermark
  3570. *
  3571. * nr_free_buffer_pages() counts the number of pages which are beyond the high
  3572. * watermark within ZONE_DMA and ZONE_NORMAL.
  3573. */
  3574. unsigned long nr_free_buffer_pages(void)
  3575. {
  3576. return nr_free_zone_pages(gfp_zone(GFP_USER));
  3577. }
  3578. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  3579. /**
  3580. * nr_free_pagecache_pages - count number of pages beyond high watermark
  3581. *
  3582. * nr_free_pagecache_pages() counts the number of pages which are beyond the
  3583. * high watermark within all zones.
  3584. */
  3585. unsigned long nr_free_pagecache_pages(void)
  3586. {
  3587. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  3588. }
  3589. static inline void show_node(struct zone *zone)
  3590. {
  3591. if (IS_ENABLED(CONFIG_NUMA))
  3592. printk("Node %d ", zone_to_nid(zone));
  3593. }
  3594. long si_mem_available(void)
  3595. {
  3596. long available;
  3597. unsigned long pagecache;
  3598. unsigned long wmark_low = 0;
  3599. unsigned long pages[NR_LRU_LISTS];
  3600. struct zone *zone;
  3601. int lru;
  3602. for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
  3603. pages[lru] = global_page_state(NR_LRU_BASE + lru);
  3604. for_each_zone(zone)
  3605. wmark_low += zone->watermark[WMARK_LOW];
  3606. /*
  3607. * Estimate the amount of memory available for userspace allocations,
  3608. * without causing swapping.
  3609. */
  3610. available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
  3611. /*
  3612. * Not all the page cache can be freed, otherwise the system will
  3613. * start swapping. Assume at least half of the page cache, or the
  3614. * low watermark worth of cache, needs to stay.
  3615. */
  3616. pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
  3617. pagecache -= min(pagecache / 2, wmark_low);
  3618. available += pagecache;
  3619. /*
  3620. * Part of the reclaimable slab consists of items that are in use,
  3621. * and cannot be freed. Cap this estimate at the low watermark.
  3622. */
  3623. available += global_page_state(NR_SLAB_RECLAIMABLE) -
  3624. min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
  3625. if (available < 0)
  3626. available = 0;
  3627. return available;
  3628. }
  3629. EXPORT_SYMBOL_GPL(si_mem_available);
  3630. void si_meminfo(struct sysinfo *val)
  3631. {
  3632. val->totalram = totalram_pages;
  3633. val->sharedram = global_page_state(NR_SHMEM);
  3634. val->freeram = global_page_state(NR_FREE_PAGES);
  3635. val->bufferram = nr_blockdev_pages();
  3636. val->totalhigh = totalhigh_pages;
  3637. val->freehigh = nr_free_highpages();
  3638. val->mem_unit = PAGE_SIZE;
  3639. }
  3640. EXPORT_SYMBOL(si_meminfo);
  3641. #ifdef CONFIG_NUMA
  3642. void si_meminfo_node(struct sysinfo *val, int nid)
  3643. {
  3644. int zone_type; /* needs to be signed */
  3645. unsigned long managed_pages = 0;
  3646. unsigned long managed_highpages = 0;
  3647. unsigned long free_highpages = 0;
  3648. pg_data_t *pgdat = NODE_DATA(nid);
  3649. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
  3650. managed_pages += pgdat->node_zones[zone_type].managed_pages;
  3651. val->totalram = managed_pages;
  3652. val->sharedram = node_page_state(nid, NR_SHMEM);
  3653. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  3654. #ifdef CONFIG_HIGHMEM
  3655. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  3656. struct zone *zone = &pgdat->node_zones[zone_type];
  3657. if (is_highmem(zone)) {
  3658. managed_highpages += zone->managed_pages;
  3659. free_highpages += zone_page_state(zone, NR_FREE_PAGES);
  3660. }
  3661. }
  3662. val->totalhigh = managed_highpages;
  3663. val->freehigh = free_highpages;
  3664. #else
  3665. val->totalhigh = managed_highpages;
  3666. val->freehigh = free_highpages;
  3667. #endif
  3668. val->mem_unit = PAGE_SIZE;
  3669. }
  3670. #endif
  3671. /*
  3672. * Determine whether the node should be displayed or not, depending on whether
  3673. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  3674. */
  3675. bool skip_free_areas_node(unsigned int flags, int nid)
  3676. {
  3677. bool ret = false;
  3678. unsigned int cpuset_mems_cookie;
  3679. if (!(flags & SHOW_MEM_FILTER_NODES))
  3680. goto out;
  3681. do {
  3682. cpuset_mems_cookie = read_mems_allowed_begin();
  3683. ret = !node_isset(nid, cpuset_current_mems_allowed);
  3684. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  3685. out:
  3686. return ret;
  3687. }
  3688. #define K(x) ((x) << (PAGE_SHIFT-10))
  3689. static void show_migration_types(unsigned char type)
  3690. {
  3691. static const char types[MIGRATE_TYPES] = {
  3692. [MIGRATE_UNMOVABLE] = 'U',
  3693. [MIGRATE_MOVABLE] = 'M',
  3694. [MIGRATE_RECLAIMABLE] = 'E',
  3695. [MIGRATE_HIGHATOMIC] = 'H',
  3696. #ifdef CONFIG_CMA
  3697. [MIGRATE_CMA] = 'C',
  3698. #endif
  3699. #ifdef CONFIG_MEMORY_ISOLATION
  3700. [MIGRATE_ISOLATE] = 'I',
  3701. #endif
  3702. };
  3703. char tmp[MIGRATE_TYPES + 1];
  3704. char *p = tmp;
  3705. int i;
  3706. for (i = 0; i < MIGRATE_TYPES; i++) {
  3707. if (type & (1 << i))
  3708. *p++ = types[i];
  3709. }
  3710. *p = '\0';
  3711. printk("(%s) ", tmp);
  3712. }
  3713. /*
  3714. * Show free area list (used inside shift_scroll-lock stuff)
  3715. * We also calculate the percentage fragmentation. We do this by counting the
  3716. * memory on each free list with the exception of the first item on the list.
  3717. *
  3718. * Bits in @filter:
  3719. * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
  3720. * cpuset.
  3721. */
  3722. void show_free_areas(unsigned int filter)
  3723. {
  3724. unsigned long free_pcp = 0;
  3725. int cpu;
  3726. struct zone *zone;
  3727. for_each_populated_zone(zone) {
  3728. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3729. continue;
  3730. for_each_online_cpu(cpu)
  3731. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3732. }
  3733. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  3734. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  3735. " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  3736. " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  3737. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
  3738. " free:%lu free_pcp:%lu free_cma:%lu\n",
  3739. global_page_state(NR_ACTIVE_ANON),
  3740. global_page_state(NR_INACTIVE_ANON),
  3741. global_page_state(NR_ISOLATED_ANON),
  3742. global_page_state(NR_ACTIVE_FILE),
  3743. global_page_state(NR_INACTIVE_FILE),
  3744. global_page_state(NR_ISOLATED_FILE),
  3745. global_page_state(NR_UNEVICTABLE),
  3746. global_page_state(NR_FILE_DIRTY),
  3747. global_page_state(NR_WRITEBACK),
  3748. global_page_state(NR_UNSTABLE_NFS),
  3749. global_page_state(NR_SLAB_RECLAIMABLE),
  3750. global_page_state(NR_SLAB_UNRECLAIMABLE),
  3751. global_page_state(NR_FILE_MAPPED),
  3752. global_page_state(NR_SHMEM),
  3753. global_page_state(NR_PAGETABLE),
  3754. global_page_state(NR_BOUNCE),
  3755. global_page_state(NR_FREE_PAGES),
  3756. free_pcp,
  3757. global_page_state(NR_FREE_CMA_PAGES));
  3758. for_each_populated_zone(zone) {
  3759. int i;
  3760. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3761. continue;
  3762. free_pcp = 0;
  3763. for_each_online_cpu(cpu)
  3764. free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
  3765. show_node(zone);
  3766. printk("%s"
  3767. " free:%lukB"
  3768. " min:%lukB"
  3769. " low:%lukB"
  3770. " high:%lukB"
  3771. " active_anon:%lukB"
  3772. " inactive_anon:%lukB"
  3773. " active_file:%lukB"
  3774. " inactive_file:%lukB"
  3775. " unevictable:%lukB"
  3776. " isolated(anon):%lukB"
  3777. " isolated(file):%lukB"
  3778. " present:%lukB"
  3779. " managed:%lukB"
  3780. " mlocked:%lukB"
  3781. " dirty:%lukB"
  3782. " writeback:%lukB"
  3783. " mapped:%lukB"
  3784. " shmem:%lukB"
  3785. " slab_reclaimable:%lukB"
  3786. " slab_unreclaimable:%lukB"
  3787. " kernel_stack:%lukB"
  3788. " pagetables:%lukB"
  3789. " unstable:%lukB"
  3790. " bounce:%lukB"
  3791. " free_pcp:%lukB"
  3792. " local_pcp:%ukB"
  3793. " free_cma:%lukB"
  3794. " writeback_tmp:%lukB"
  3795. " pages_scanned:%lu"
  3796. " all_unreclaimable? %s"
  3797. "\n",
  3798. zone->name,
  3799. K(zone_page_state(zone, NR_FREE_PAGES)),
  3800. K(min_wmark_pages(zone)),
  3801. K(low_wmark_pages(zone)),
  3802. K(high_wmark_pages(zone)),
  3803. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  3804. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  3805. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  3806. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  3807. K(zone_page_state(zone, NR_UNEVICTABLE)),
  3808. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  3809. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  3810. K(zone->present_pages),
  3811. K(zone->managed_pages),
  3812. K(zone_page_state(zone, NR_MLOCK)),
  3813. K(zone_page_state(zone, NR_FILE_DIRTY)),
  3814. K(zone_page_state(zone, NR_WRITEBACK)),
  3815. K(zone_page_state(zone, NR_FILE_MAPPED)),
  3816. K(zone_page_state(zone, NR_SHMEM)),
  3817. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  3818. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  3819. zone_page_state(zone, NR_KERNEL_STACK) *
  3820. THREAD_SIZE / 1024,
  3821. K(zone_page_state(zone, NR_PAGETABLE)),
  3822. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  3823. K(zone_page_state(zone, NR_BOUNCE)),
  3824. K(free_pcp),
  3825. K(this_cpu_read(zone->pageset->pcp.count)),
  3826. K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
  3827. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  3828. K(zone_page_state(zone, NR_PAGES_SCANNED)),
  3829. (!zone_reclaimable(zone) ? "yes" : "no")
  3830. );
  3831. printk("lowmem_reserve[]:");
  3832. for (i = 0; i < MAX_NR_ZONES; i++)
  3833. printk(" %ld", zone->lowmem_reserve[i]);
  3834. printk("\n");
  3835. }
  3836. for_each_populated_zone(zone) {
  3837. unsigned int order;
  3838. unsigned long nr[MAX_ORDER], flags, total = 0;
  3839. unsigned char types[MAX_ORDER];
  3840. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  3841. continue;
  3842. show_node(zone);
  3843. printk("%s: ", zone->name);
  3844. spin_lock_irqsave(&zone->lock, flags);
  3845. for (order = 0; order < MAX_ORDER; order++) {
  3846. struct free_area *area = &zone->free_area[order];
  3847. int type;
  3848. nr[order] = area->nr_free;
  3849. total += nr[order] << order;
  3850. types[order] = 0;
  3851. for (type = 0; type < MIGRATE_TYPES; type++) {
  3852. if (!list_empty(&area->free_list[type]))
  3853. types[order] |= 1 << type;
  3854. }
  3855. }
  3856. spin_unlock_irqrestore(&zone->lock, flags);
  3857. for (order = 0; order < MAX_ORDER; order++) {
  3858. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  3859. if (nr[order])
  3860. show_migration_types(types[order]);
  3861. }
  3862. printk("= %lukB\n", K(total));
  3863. }
  3864. hugetlb_show_meminfo();
  3865. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  3866. show_swap_cache_info();
  3867. }
  3868. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  3869. {
  3870. zoneref->zone = zone;
  3871. zoneref->zone_idx = zone_idx(zone);
  3872. }
  3873. /*
  3874. * Builds allocation fallback zone lists.
  3875. *
  3876. * Add all populated zones of a node to the zonelist.
  3877. */
  3878. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  3879. int nr_zones)
  3880. {
  3881. struct zone *zone;
  3882. enum zone_type zone_type = MAX_NR_ZONES;
  3883. do {
  3884. zone_type--;
  3885. zone = pgdat->node_zones + zone_type;
  3886. if (populated_zone(zone)) {
  3887. zoneref_set_zone(zone,
  3888. &zonelist->_zonerefs[nr_zones++]);
  3889. check_highest_zone(zone_type);
  3890. }
  3891. } while (zone_type);
  3892. return nr_zones;
  3893. }
  3894. /*
  3895. * zonelist_order:
  3896. * 0 = automatic detection of better ordering.
  3897. * 1 = order by ([node] distance, -zonetype)
  3898. * 2 = order by (-zonetype, [node] distance)
  3899. *
  3900. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  3901. * the same zonelist. So only NUMA can configure this param.
  3902. */
  3903. #define ZONELIST_ORDER_DEFAULT 0
  3904. #define ZONELIST_ORDER_NODE 1
  3905. #define ZONELIST_ORDER_ZONE 2
  3906. /* zonelist order in the kernel.
  3907. * set_zonelist_order() will set this to NODE or ZONE.
  3908. */
  3909. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3910. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  3911. #ifdef CONFIG_NUMA
  3912. /* The value user specified ....changed by config */
  3913. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3914. /* string for sysctl */
  3915. #define NUMA_ZONELIST_ORDER_LEN 16
  3916. char numa_zonelist_order[16] = "default";
  3917. /*
  3918. * interface for configure zonelist ordering.
  3919. * command line option "numa_zonelist_order"
  3920. * = "[dD]efault - default, automatic configuration.
  3921. * = "[nN]ode - order by node locality, then by zone within node
  3922. * = "[zZ]one - order by zone, then by locality within zone
  3923. */
  3924. static int __parse_numa_zonelist_order(char *s)
  3925. {
  3926. if (*s == 'd' || *s == 'D') {
  3927. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  3928. } else if (*s == 'n' || *s == 'N') {
  3929. user_zonelist_order = ZONELIST_ORDER_NODE;
  3930. } else if (*s == 'z' || *s == 'Z') {
  3931. user_zonelist_order = ZONELIST_ORDER_ZONE;
  3932. } else {
  3933. pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
  3934. return -EINVAL;
  3935. }
  3936. return 0;
  3937. }
  3938. static __init int setup_numa_zonelist_order(char *s)
  3939. {
  3940. int ret;
  3941. if (!s)
  3942. return 0;
  3943. ret = __parse_numa_zonelist_order(s);
  3944. if (ret == 0)
  3945. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  3946. return ret;
  3947. }
  3948. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  3949. /*
  3950. * sysctl handler for numa_zonelist_order
  3951. */
  3952. int numa_zonelist_order_handler(struct ctl_table *table, int write,
  3953. void __user *buffer, size_t *length,
  3954. loff_t *ppos)
  3955. {
  3956. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  3957. int ret;
  3958. static DEFINE_MUTEX(zl_order_mutex);
  3959. mutex_lock(&zl_order_mutex);
  3960. if (write) {
  3961. if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
  3962. ret = -EINVAL;
  3963. goto out;
  3964. }
  3965. strcpy(saved_string, (char *)table->data);
  3966. }
  3967. ret = proc_dostring(table, write, buffer, length, ppos);
  3968. if (ret)
  3969. goto out;
  3970. if (write) {
  3971. int oldval = user_zonelist_order;
  3972. ret = __parse_numa_zonelist_order((char *)table->data);
  3973. if (ret) {
  3974. /*
  3975. * bogus value. restore saved string
  3976. */
  3977. strncpy((char *)table->data, saved_string,
  3978. NUMA_ZONELIST_ORDER_LEN);
  3979. user_zonelist_order = oldval;
  3980. } else if (oldval != user_zonelist_order) {
  3981. mutex_lock(&zonelists_mutex);
  3982. build_all_zonelists(NULL, NULL);
  3983. mutex_unlock(&zonelists_mutex);
  3984. }
  3985. }
  3986. out:
  3987. mutex_unlock(&zl_order_mutex);
  3988. return ret;
  3989. }
  3990. #define MAX_NODE_LOAD (nr_online_nodes)
  3991. static int node_load[MAX_NUMNODES];
  3992. /**
  3993. * find_next_best_node - find the next node that should appear in a given node's fallback list
  3994. * @node: node whose fallback list we're appending
  3995. * @used_node_mask: nodemask_t of already used nodes
  3996. *
  3997. * We use a number of factors to determine which is the next node that should
  3998. * appear on a given node's fallback list. The node should not have appeared
  3999. * already in @node's fallback list, and it should be the next closest node
  4000. * according to the distance array (which contains arbitrary distance values
  4001. * from each node to each node in the system), and should also prefer nodes
  4002. * with no CPUs, since presumably they'll have very little allocation pressure
  4003. * on them otherwise.
  4004. * It returns -1 if no node is found.
  4005. */
  4006. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  4007. {
  4008. int n, val;
  4009. int min_val = INT_MAX;
  4010. int best_node = NUMA_NO_NODE;
  4011. const struct cpumask *tmp = cpumask_of_node(0);
  4012. /* Use the local node if we haven't already */
  4013. if (!node_isset(node, *used_node_mask)) {
  4014. node_set(node, *used_node_mask);
  4015. return node;
  4016. }
  4017. for_each_node_state(n, N_MEMORY) {
  4018. /* Don't want a node to appear more than once */
  4019. if (node_isset(n, *used_node_mask))
  4020. continue;
  4021. /* Use the distance array to find the distance */
  4022. val = node_distance(node, n);
  4023. /* Penalize nodes under us ("prefer the next node") */
  4024. val += (n < node);
  4025. /* Give preference to headless and unused nodes */
  4026. tmp = cpumask_of_node(n);
  4027. if (!cpumask_empty(tmp))
  4028. val += PENALTY_FOR_NODE_WITH_CPUS;
  4029. /* Slight preference for less loaded node */
  4030. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  4031. val += node_load[n];
  4032. if (val < min_val) {
  4033. min_val = val;
  4034. best_node = n;
  4035. }
  4036. }
  4037. if (best_node >= 0)
  4038. node_set(best_node, *used_node_mask);
  4039. return best_node;
  4040. }
  4041. /*
  4042. * Build zonelists ordered by node and zones within node.
  4043. * This results in maximum locality--normal zone overflows into local
  4044. * DMA zone, if any--but risks exhausting DMA zone.
  4045. */
  4046. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  4047. {
  4048. int j;
  4049. struct zonelist *zonelist;
  4050. zonelist = &pgdat->node_zonelists[0];
  4051. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  4052. ;
  4053. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4054. zonelist->_zonerefs[j].zone = NULL;
  4055. zonelist->_zonerefs[j].zone_idx = 0;
  4056. }
  4057. /*
  4058. * Build gfp_thisnode zonelists
  4059. */
  4060. static void build_thisnode_zonelists(pg_data_t *pgdat)
  4061. {
  4062. int j;
  4063. struct zonelist *zonelist;
  4064. zonelist = &pgdat->node_zonelists[1];
  4065. j = build_zonelists_node(pgdat, zonelist, 0);
  4066. zonelist->_zonerefs[j].zone = NULL;
  4067. zonelist->_zonerefs[j].zone_idx = 0;
  4068. }
  4069. /*
  4070. * Build zonelists ordered by zone and nodes within zones.
  4071. * This results in conserving DMA zone[s] until all Normal memory is
  4072. * exhausted, but results in overflowing to remote node while memory
  4073. * may still exist in local DMA zone.
  4074. */
  4075. static int node_order[MAX_NUMNODES];
  4076. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  4077. {
  4078. int pos, j, node;
  4079. int zone_type; /* needs to be signed */
  4080. struct zone *z;
  4081. struct zonelist *zonelist;
  4082. zonelist = &pgdat->node_zonelists[0];
  4083. pos = 0;
  4084. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  4085. for (j = 0; j < nr_nodes; j++) {
  4086. node = node_order[j];
  4087. z = &NODE_DATA(node)->node_zones[zone_type];
  4088. if (populated_zone(z)) {
  4089. zoneref_set_zone(z,
  4090. &zonelist->_zonerefs[pos++]);
  4091. check_highest_zone(zone_type);
  4092. }
  4093. }
  4094. }
  4095. zonelist->_zonerefs[pos].zone = NULL;
  4096. zonelist->_zonerefs[pos].zone_idx = 0;
  4097. }
  4098. #if defined(CONFIG_64BIT)
  4099. /*
  4100. * Devices that require DMA32/DMA are relatively rare and do not justify a
  4101. * penalty to every machine in case the specialised case applies. Default
  4102. * to Node-ordering on 64-bit NUMA machines
  4103. */
  4104. static int default_zonelist_order(void)
  4105. {
  4106. return ZONELIST_ORDER_NODE;
  4107. }
  4108. #else
  4109. /*
  4110. * On 32-bit, the Normal zone needs to be preserved for allocations accessible
  4111. * by the kernel. If processes running on node 0 deplete the low memory zone
  4112. * then reclaim will occur more frequency increasing stalls and potentially
  4113. * be easier to OOM if a large percentage of the zone is under writeback or
  4114. * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
  4115. * Hence, default to zone ordering on 32-bit.
  4116. */
  4117. static int default_zonelist_order(void)
  4118. {
  4119. return ZONELIST_ORDER_ZONE;
  4120. }
  4121. #endif /* CONFIG_64BIT */
  4122. static void set_zonelist_order(void)
  4123. {
  4124. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  4125. current_zonelist_order = default_zonelist_order();
  4126. else
  4127. current_zonelist_order = user_zonelist_order;
  4128. }
  4129. static void build_zonelists(pg_data_t *pgdat)
  4130. {
  4131. int i, node, load;
  4132. nodemask_t used_mask;
  4133. int local_node, prev_node;
  4134. struct zonelist *zonelist;
  4135. unsigned int order = current_zonelist_order;
  4136. /* initialize zonelists */
  4137. for (i = 0; i < MAX_ZONELISTS; i++) {
  4138. zonelist = pgdat->node_zonelists + i;
  4139. zonelist->_zonerefs[0].zone = NULL;
  4140. zonelist->_zonerefs[0].zone_idx = 0;
  4141. }
  4142. /* NUMA-aware ordering of nodes */
  4143. local_node = pgdat->node_id;
  4144. load = nr_online_nodes;
  4145. prev_node = local_node;
  4146. nodes_clear(used_mask);
  4147. memset(node_order, 0, sizeof(node_order));
  4148. i = 0;
  4149. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  4150. /*
  4151. * We don't want to pressure a particular node.
  4152. * So adding penalty to the first node in same
  4153. * distance group to make it round-robin.
  4154. */
  4155. if (node_distance(local_node, node) !=
  4156. node_distance(local_node, prev_node))
  4157. node_load[node] = load;
  4158. prev_node = node;
  4159. load--;
  4160. if (order == ZONELIST_ORDER_NODE)
  4161. build_zonelists_in_node_order(pgdat, node);
  4162. else
  4163. node_order[i++] = node; /* remember order */
  4164. }
  4165. if (order == ZONELIST_ORDER_ZONE) {
  4166. /* calculate node order -- i.e., DMA last! */
  4167. build_zonelists_in_zone_order(pgdat, i);
  4168. }
  4169. build_thisnode_zonelists(pgdat);
  4170. }
  4171. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4172. /*
  4173. * Return node id of node used for "local" allocations.
  4174. * I.e., first node id of first zone in arg node's generic zonelist.
  4175. * Used for initializing percpu 'numa_mem', which is used primarily
  4176. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  4177. */
  4178. int local_memory_node(int node)
  4179. {
  4180. struct zoneref *z;
  4181. z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  4182. gfp_zone(GFP_KERNEL),
  4183. NULL);
  4184. return z->zone->node;
  4185. }
  4186. #endif
  4187. #else /* CONFIG_NUMA */
  4188. static void set_zonelist_order(void)
  4189. {
  4190. current_zonelist_order = ZONELIST_ORDER_ZONE;
  4191. }
  4192. static void build_zonelists(pg_data_t *pgdat)
  4193. {
  4194. int node, local_node;
  4195. enum zone_type j;
  4196. struct zonelist *zonelist;
  4197. local_node = pgdat->node_id;
  4198. zonelist = &pgdat->node_zonelists[0];
  4199. j = build_zonelists_node(pgdat, zonelist, 0);
  4200. /*
  4201. * Now we build the zonelist so that it contains the zones
  4202. * of all the other nodes.
  4203. * We don't want to pressure a particular node, so when
  4204. * building the zones for node N, we make sure that the
  4205. * zones coming right after the local ones are those from
  4206. * node N+1 (modulo N)
  4207. */
  4208. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  4209. if (!node_online(node))
  4210. continue;
  4211. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4212. }
  4213. for (node = 0; node < local_node; node++) {
  4214. if (!node_online(node))
  4215. continue;
  4216. j = build_zonelists_node(NODE_DATA(node), zonelist, j);
  4217. }
  4218. zonelist->_zonerefs[j].zone = NULL;
  4219. zonelist->_zonerefs[j].zone_idx = 0;
  4220. }
  4221. #endif /* CONFIG_NUMA */
  4222. /*
  4223. * Boot pageset table. One per cpu which is going to be used for all
  4224. * zones and all nodes. The parameters will be set in such a way
  4225. * that an item put on a list will immediately be handed over to
  4226. * the buddy list. This is safe since pageset manipulation is done
  4227. * with interrupts disabled.
  4228. *
  4229. * The boot_pagesets must be kept even after bootup is complete for
  4230. * unused processors and/or zones. They do play a role for bootstrapping
  4231. * hotplugged processors.
  4232. *
  4233. * zoneinfo_show() and maybe other functions do
  4234. * not check if the processor is online before following the pageset pointer.
  4235. * Other parts of the kernel may not check if the zone is available.
  4236. */
  4237. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  4238. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  4239. static void setup_zone_pageset(struct zone *zone);
  4240. /*
  4241. * Global mutex to protect against size modification of zonelists
  4242. * as well as to serialize pageset setup for the new populated zone.
  4243. */
  4244. DEFINE_MUTEX(zonelists_mutex);
  4245. /* return values int ....just for stop_machine() */
  4246. static int __build_all_zonelists(void *data)
  4247. {
  4248. int nid;
  4249. int cpu;
  4250. pg_data_t *self = data;
  4251. #ifdef CONFIG_NUMA
  4252. memset(node_load, 0, sizeof(node_load));
  4253. #endif
  4254. if (self && !node_online(self->node_id)) {
  4255. build_zonelists(self);
  4256. }
  4257. for_each_online_node(nid) {
  4258. pg_data_t *pgdat = NODE_DATA(nid);
  4259. build_zonelists(pgdat);
  4260. }
  4261. /*
  4262. * Initialize the boot_pagesets that are going to be used
  4263. * for bootstrapping processors. The real pagesets for
  4264. * each zone will be allocated later when the per cpu
  4265. * allocator is available.
  4266. *
  4267. * boot_pagesets are used also for bootstrapping offline
  4268. * cpus if the system is already booted because the pagesets
  4269. * are needed to initialize allocators on a specific cpu too.
  4270. * F.e. the percpu allocator needs the page allocator which
  4271. * needs the percpu allocator in order to allocate its pagesets
  4272. * (a chicken-egg dilemma).
  4273. */
  4274. for_each_possible_cpu(cpu) {
  4275. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  4276. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  4277. /*
  4278. * We now know the "local memory node" for each node--
  4279. * i.e., the node of the first zone in the generic zonelist.
  4280. * Set up numa_mem percpu variable for on-line cpus. During
  4281. * boot, only the boot cpu should be on-line; we'll init the
  4282. * secondary cpus' numa_mem as they come on-line. During
  4283. * node/memory hotplug, we'll fixup all on-line cpus.
  4284. */
  4285. if (cpu_online(cpu))
  4286. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  4287. #endif
  4288. }
  4289. return 0;
  4290. }
  4291. static noinline void __init
  4292. build_all_zonelists_init(void)
  4293. {
  4294. __build_all_zonelists(NULL);
  4295. mminit_verify_zonelist();
  4296. cpuset_init_current_mems_allowed();
  4297. }
  4298. /*
  4299. * Called with zonelists_mutex held always
  4300. * unless system_state == SYSTEM_BOOTING.
  4301. *
  4302. * __ref due to (1) call of __meminit annotated setup_zone_pageset
  4303. * [we're only called with non-NULL zone through __meminit paths] and
  4304. * (2) call of __init annotated helper build_all_zonelists_init
  4305. * [protected by SYSTEM_BOOTING].
  4306. */
  4307. void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
  4308. {
  4309. set_zonelist_order();
  4310. if (system_state == SYSTEM_BOOTING) {
  4311. build_all_zonelists_init();
  4312. } else {
  4313. #ifdef CONFIG_MEMORY_HOTPLUG
  4314. if (zone)
  4315. setup_zone_pageset(zone);
  4316. #endif
  4317. /* we have to stop all cpus to guarantee there is no user
  4318. of zonelist */
  4319. stop_machine(__build_all_zonelists, pgdat, NULL);
  4320. /* cpuset refresh routine should be here */
  4321. }
  4322. vm_total_pages = nr_free_pagecache_pages();
  4323. /*
  4324. * Disable grouping by mobility if the number of pages in the
  4325. * system is too low to allow the mechanism to work. It would be
  4326. * more accurate, but expensive to check per-zone. This check is
  4327. * made on memory-hotadd so a system can start with mobility
  4328. * disabled and enable it later
  4329. */
  4330. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  4331. page_group_by_mobility_disabled = 1;
  4332. else
  4333. page_group_by_mobility_disabled = 0;
  4334. pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
  4335. nr_online_nodes,
  4336. zonelist_order_name[current_zonelist_order],
  4337. page_group_by_mobility_disabled ? "off" : "on",
  4338. vm_total_pages);
  4339. #ifdef CONFIG_NUMA
  4340. pr_info("Policy zone: %s\n", zone_names[policy_zone]);
  4341. #endif
  4342. }
  4343. /*
  4344. * Helper functions to size the waitqueue hash table.
  4345. * Essentially these want to choose hash table sizes sufficiently
  4346. * large so that collisions trying to wait on pages are rare.
  4347. * But in fact, the number of active page waitqueues on typical
  4348. * systems is ridiculously low, less than 200. So this is even
  4349. * conservative, even though it seems large.
  4350. *
  4351. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  4352. * waitqueues, i.e. the size of the waitq table given the number of pages.
  4353. */
  4354. #define PAGES_PER_WAITQUEUE 256
  4355. #ifndef CONFIG_MEMORY_HOTPLUG
  4356. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4357. {
  4358. unsigned long size = 1;
  4359. pages /= PAGES_PER_WAITQUEUE;
  4360. while (size < pages)
  4361. size <<= 1;
  4362. /*
  4363. * Once we have dozens or even hundreds of threads sleeping
  4364. * on IO we've got bigger problems than wait queue collision.
  4365. * Limit the size of the wait table to a reasonable size.
  4366. */
  4367. size = min(size, 4096UL);
  4368. return max(size, 4UL);
  4369. }
  4370. #else
  4371. /*
  4372. * A zone's size might be changed by hot-add, so it is not possible to determine
  4373. * a suitable size for its wait_table. So we use the maximum size now.
  4374. *
  4375. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  4376. *
  4377. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  4378. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  4379. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  4380. *
  4381. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  4382. * or more by the traditional way. (See above). It equals:
  4383. *
  4384. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  4385. * ia64(16K page size) : = ( 8G + 4M)byte.
  4386. * powerpc (64K page size) : = (32G +16M)byte.
  4387. */
  4388. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  4389. {
  4390. return 4096UL;
  4391. }
  4392. #endif
  4393. /*
  4394. * This is an integer logarithm so that shifts can be used later
  4395. * to extract the more random high bits from the multiplicative
  4396. * hash function before the remainder is taken.
  4397. */
  4398. static inline unsigned long wait_table_bits(unsigned long size)
  4399. {
  4400. return ffz(~size);
  4401. }
  4402. /*
  4403. * Initially all pages are reserved - free ones are freed
  4404. * up by free_all_bootmem() once the early boot process is
  4405. * done. Non-atomic initialization, single-pass.
  4406. */
  4407. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  4408. unsigned long start_pfn, enum memmap_context context)
  4409. {
  4410. struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
  4411. unsigned long end_pfn = start_pfn + size;
  4412. pg_data_t *pgdat = NODE_DATA(nid);
  4413. unsigned long pfn;
  4414. unsigned long nr_initialised = 0;
  4415. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4416. struct memblock_region *r = NULL, *tmp;
  4417. #endif
  4418. if (highest_memmap_pfn < end_pfn - 1)
  4419. highest_memmap_pfn = end_pfn - 1;
  4420. /*
  4421. * Honor reservation requested by the driver for this ZONE_DEVICE
  4422. * memory
  4423. */
  4424. if (altmap && start_pfn == altmap->base_pfn)
  4425. start_pfn += altmap->reserve;
  4426. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  4427. /*
  4428. * There can be holes in boot-time mem_map[]s handed to this
  4429. * function. They do not exist on hotplugged memory.
  4430. */
  4431. if (context != MEMMAP_EARLY)
  4432. goto not_early;
  4433. if (!early_pfn_valid(pfn))
  4434. continue;
  4435. if (!early_pfn_in_nid(pfn, nid))
  4436. continue;
  4437. if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
  4438. break;
  4439. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4440. /*
  4441. * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
  4442. * from zone_movable_pfn[nid] to end of each node should be
  4443. * ZONE_MOVABLE not ZONE_NORMAL. skip it.
  4444. */
  4445. if (!mirrored_kernelcore && zone_movable_pfn[nid])
  4446. if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
  4447. continue;
  4448. /*
  4449. * Check given memblock attribute by firmware which can affect
  4450. * kernel memory layout. If zone==ZONE_MOVABLE but memory is
  4451. * mirrored, it's an overlapped memmap init. skip it.
  4452. */
  4453. if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
  4454. if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
  4455. for_each_memblock(memory, tmp)
  4456. if (pfn < memblock_region_memory_end_pfn(tmp))
  4457. break;
  4458. r = tmp;
  4459. }
  4460. if (pfn >= memblock_region_memory_base_pfn(r) &&
  4461. memblock_is_mirror(r)) {
  4462. /* already initialized as NORMAL */
  4463. pfn = memblock_region_memory_end_pfn(r);
  4464. continue;
  4465. }
  4466. }
  4467. #endif
  4468. not_early:
  4469. /*
  4470. * Mark the block movable so that blocks are reserved for
  4471. * movable at startup. This will force kernel allocations
  4472. * to reserve their blocks rather than leaking throughout
  4473. * the address space during boot when many long-lived
  4474. * kernel allocations are made.
  4475. *
  4476. * bitmap is created for zone's valid pfn range. but memmap
  4477. * can be created for invalid pages (for alignment)
  4478. * check here not to call set_pageblock_migratetype() against
  4479. * pfn out of zone.
  4480. */
  4481. if (!(pfn & (pageblock_nr_pages - 1))) {
  4482. struct page *page = pfn_to_page(pfn);
  4483. __init_single_page(page, pfn, zone, nid);
  4484. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4485. } else {
  4486. __init_single_pfn(pfn, zone, nid);
  4487. }
  4488. }
  4489. }
  4490. static void __meminit zone_init_free_lists(struct zone *zone)
  4491. {
  4492. unsigned int order, t;
  4493. for_each_migratetype_order(order, t) {
  4494. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  4495. zone->free_area[order].nr_free = 0;
  4496. }
  4497. }
  4498. #ifndef __HAVE_ARCH_MEMMAP_INIT
  4499. #define memmap_init(size, nid, zone, start_pfn) \
  4500. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  4501. #endif
  4502. static int zone_batchsize(struct zone *zone)
  4503. {
  4504. #ifdef CONFIG_MMU
  4505. int batch;
  4506. /*
  4507. * The per-cpu-pages pools are set to around 1000th of the
  4508. * size of the zone. But no more than 1/2 of a meg.
  4509. *
  4510. * OK, so we don't know how big the cache is. So guess.
  4511. */
  4512. batch = zone->managed_pages / 1024;
  4513. if (batch * PAGE_SIZE > 512 * 1024)
  4514. batch = (512 * 1024) / PAGE_SIZE;
  4515. batch /= 4; /* We effectively *= 4 below */
  4516. if (batch < 1)
  4517. batch = 1;
  4518. /*
  4519. * Clamp the batch to a 2^n - 1 value. Having a power
  4520. * of 2 value was found to be more likely to have
  4521. * suboptimal cache aliasing properties in some cases.
  4522. *
  4523. * For example if 2 tasks are alternately allocating
  4524. * batches of pages, one task can end up with a lot
  4525. * of pages of one half of the possible page colors
  4526. * and the other with pages of the other colors.
  4527. */
  4528. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  4529. return batch;
  4530. #else
  4531. /* The deferral and batching of frees should be suppressed under NOMMU
  4532. * conditions.
  4533. *
  4534. * The problem is that NOMMU needs to be able to allocate large chunks
  4535. * of contiguous memory as there's no hardware page translation to
  4536. * assemble apparent contiguous memory from discontiguous pages.
  4537. *
  4538. * Queueing large contiguous runs of pages for batching, however,
  4539. * causes the pages to actually be freed in smaller chunks. As there
  4540. * can be a significant delay between the individual batches being
  4541. * recycled, this leads to the once large chunks of space being
  4542. * fragmented and becoming unavailable for high-order allocations.
  4543. */
  4544. return 0;
  4545. #endif
  4546. }
  4547. /*
  4548. * pcp->high and pcp->batch values are related and dependent on one another:
  4549. * ->batch must never be higher then ->high.
  4550. * The following function updates them in a safe manner without read side
  4551. * locking.
  4552. *
  4553. * Any new users of pcp->batch and pcp->high should ensure they can cope with
  4554. * those fields changing asynchronously (acording the the above rule).
  4555. *
  4556. * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
  4557. * outside of boot time (or some other assurance that no concurrent updaters
  4558. * exist).
  4559. */
  4560. static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
  4561. unsigned long batch)
  4562. {
  4563. /* start with a fail safe value for batch */
  4564. pcp->batch = 1;
  4565. smp_wmb();
  4566. /* Update high, then batch, in order */
  4567. pcp->high = high;
  4568. smp_wmb();
  4569. pcp->batch = batch;
  4570. }
  4571. /* a companion to pageset_set_high() */
  4572. static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
  4573. {
  4574. pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
  4575. }
  4576. static void pageset_init(struct per_cpu_pageset *p)
  4577. {
  4578. struct per_cpu_pages *pcp;
  4579. int migratetype;
  4580. memset(p, 0, sizeof(*p));
  4581. pcp = &p->pcp;
  4582. pcp->count = 0;
  4583. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  4584. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  4585. }
  4586. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  4587. {
  4588. pageset_init(p);
  4589. pageset_set_batch(p, batch);
  4590. }
  4591. /*
  4592. * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
  4593. * to the value high for the pageset p.
  4594. */
  4595. static void pageset_set_high(struct per_cpu_pageset *p,
  4596. unsigned long high)
  4597. {
  4598. unsigned long batch = max(1UL, high / 4);
  4599. if ((high / 4) > (PAGE_SHIFT * 8))
  4600. batch = PAGE_SHIFT * 8;
  4601. pageset_update(&p->pcp, high, batch);
  4602. }
  4603. static void pageset_set_high_and_batch(struct zone *zone,
  4604. struct per_cpu_pageset *pcp)
  4605. {
  4606. if (percpu_pagelist_fraction)
  4607. pageset_set_high(pcp,
  4608. (zone->managed_pages /
  4609. percpu_pagelist_fraction));
  4610. else
  4611. pageset_set_batch(pcp, zone_batchsize(zone));
  4612. }
  4613. static void __meminit zone_pageset_init(struct zone *zone, int cpu)
  4614. {
  4615. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  4616. pageset_init(pcp);
  4617. pageset_set_high_and_batch(zone, pcp);
  4618. }
  4619. static void __meminit setup_zone_pageset(struct zone *zone)
  4620. {
  4621. int cpu;
  4622. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  4623. for_each_possible_cpu(cpu)
  4624. zone_pageset_init(zone, cpu);
  4625. }
  4626. /*
  4627. * Allocate per cpu pagesets and initialize them.
  4628. * Before this call only boot pagesets were available.
  4629. */
  4630. void __init setup_per_cpu_pageset(void)
  4631. {
  4632. struct zone *zone;
  4633. for_each_populated_zone(zone)
  4634. setup_zone_pageset(zone);
  4635. }
  4636. static noinline __init_refok
  4637. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  4638. {
  4639. int i;
  4640. size_t alloc_size;
  4641. /*
  4642. * The per-page waitqueue mechanism uses hashed waitqueues
  4643. * per zone.
  4644. */
  4645. zone->wait_table_hash_nr_entries =
  4646. wait_table_hash_nr_entries(zone_size_pages);
  4647. zone->wait_table_bits =
  4648. wait_table_bits(zone->wait_table_hash_nr_entries);
  4649. alloc_size = zone->wait_table_hash_nr_entries
  4650. * sizeof(wait_queue_head_t);
  4651. if (!slab_is_available()) {
  4652. zone->wait_table = (wait_queue_head_t *)
  4653. memblock_virt_alloc_node_nopanic(
  4654. alloc_size, zone->zone_pgdat->node_id);
  4655. } else {
  4656. /*
  4657. * This case means that a zone whose size was 0 gets new memory
  4658. * via memory hot-add.
  4659. * But it may be the case that a new node was hot-added. In
  4660. * this case vmalloc() will not be able to use this new node's
  4661. * memory - this wait_table must be initialized to use this new
  4662. * node itself as well.
  4663. * To use this new node's memory, further consideration will be
  4664. * necessary.
  4665. */
  4666. zone->wait_table = vmalloc(alloc_size);
  4667. }
  4668. if (!zone->wait_table)
  4669. return -ENOMEM;
  4670. for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  4671. init_waitqueue_head(zone->wait_table + i);
  4672. return 0;
  4673. }
  4674. static __meminit void zone_pcp_init(struct zone *zone)
  4675. {
  4676. /*
  4677. * per cpu subsystem is not up at this point. The following code
  4678. * relies on the ability of the linker to provide the
  4679. * offset of a (static) per cpu variable into the per cpu area.
  4680. */
  4681. zone->pageset = &boot_pageset;
  4682. if (populated_zone(zone))
  4683. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  4684. zone->name, zone->present_pages,
  4685. zone_batchsize(zone));
  4686. }
  4687. int __meminit init_currently_empty_zone(struct zone *zone,
  4688. unsigned long zone_start_pfn,
  4689. unsigned long size)
  4690. {
  4691. struct pglist_data *pgdat = zone->zone_pgdat;
  4692. int ret;
  4693. ret = zone_wait_table_init(zone, size);
  4694. if (ret)
  4695. return ret;
  4696. pgdat->nr_zones = zone_idx(zone) + 1;
  4697. zone->zone_start_pfn = zone_start_pfn;
  4698. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  4699. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  4700. pgdat->node_id,
  4701. (unsigned long)zone_idx(zone),
  4702. zone_start_pfn, (zone_start_pfn + size));
  4703. zone_init_free_lists(zone);
  4704. return 0;
  4705. }
  4706. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  4707. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  4708. /*
  4709. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  4710. */
  4711. int __meminit __early_pfn_to_nid(unsigned long pfn,
  4712. struct mminit_pfnnid_cache *state)
  4713. {
  4714. unsigned long start_pfn, end_pfn;
  4715. int nid;
  4716. if (state->last_start <= pfn && pfn < state->last_end)
  4717. return state->last_nid;
  4718. nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
  4719. if (nid != -1) {
  4720. state->last_start = start_pfn;
  4721. state->last_end = end_pfn;
  4722. state->last_nid = nid;
  4723. }
  4724. return nid;
  4725. }
  4726. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  4727. /**
  4728. * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
  4729. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  4730. * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
  4731. *
  4732. * If an architecture guarantees that all ranges registered contain no holes
  4733. * and may be freed, this this function may be used instead of calling
  4734. * memblock_free_early_nid() manually.
  4735. */
  4736. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  4737. {
  4738. unsigned long start_pfn, end_pfn;
  4739. int i, this_nid;
  4740. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  4741. start_pfn = min(start_pfn, max_low_pfn);
  4742. end_pfn = min(end_pfn, max_low_pfn);
  4743. if (start_pfn < end_pfn)
  4744. memblock_free_early_nid(PFN_PHYS(start_pfn),
  4745. (end_pfn - start_pfn) << PAGE_SHIFT,
  4746. this_nid);
  4747. }
  4748. }
  4749. /**
  4750. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  4751. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  4752. *
  4753. * If an architecture guarantees that all ranges registered contain no holes and may
  4754. * be freed, this function may be used instead of calling memory_present() manually.
  4755. */
  4756. void __init sparse_memory_present_with_active_regions(int nid)
  4757. {
  4758. unsigned long start_pfn, end_pfn;
  4759. int i, this_nid;
  4760. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  4761. memory_present(this_nid, start_pfn, end_pfn);
  4762. }
  4763. /**
  4764. * get_pfn_range_for_nid - Return the start and end page frames for a node
  4765. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  4766. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  4767. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  4768. *
  4769. * It returns the start and end page frame of a node based on information
  4770. * provided by memblock_set_node(). If called for a node
  4771. * with no available memory, a warning is printed and the start and end
  4772. * PFNs will be 0.
  4773. */
  4774. void __meminit get_pfn_range_for_nid(unsigned int nid,
  4775. unsigned long *start_pfn, unsigned long *end_pfn)
  4776. {
  4777. unsigned long this_start_pfn, this_end_pfn;
  4778. int i;
  4779. *start_pfn = -1UL;
  4780. *end_pfn = 0;
  4781. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  4782. *start_pfn = min(*start_pfn, this_start_pfn);
  4783. *end_pfn = max(*end_pfn, this_end_pfn);
  4784. }
  4785. if (*start_pfn == -1UL)
  4786. *start_pfn = 0;
  4787. }
  4788. /*
  4789. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  4790. * assumption is made that zones within a node are ordered in monotonic
  4791. * increasing memory addresses so that the "highest" populated zone is used
  4792. */
  4793. static void __init find_usable_zone_for_movable(void)
  4794. {
  4795. int zone_index;
  4796. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  4797. if (zone_index == ZONE_MOVABLE)
  4798. continue;
  4799. if (arch_zone_highest_possible_pfn[zone_index] >
  4800. arch_zone_lowest_possible_pfn[zone_index])
  4801. break;
  4802. }
  4803. VM_BUG_ON(zone_index == -1);
  4804. movable_zone = zone_index;
  4805. }
  4806. /*
  4807. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  4808. * because it is sized independent of architecture. Unlike the other zones,
  4809. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  4810. * in each node depending on the size of each node and how evenly kernelcore
  4811. * is distributed. This helper function adjusts the zone ranges
  4812. * provided by the architecture for a given node by using the end of the
  4813. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  4814. * zones within a node are in order of monotonic increases memory addresses
  4815. */
  4816. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  4817. unsigned long zone_type,
  4818. unsigned long node_start_pfn,
  4819. unsigned long node_end_pfn,
  4820. unsigned long *zone_start_pfn,
  4821. unsigned long *zone_end_pfn)
  4822. {
  4823. /* Only adjust if ZONE_MOVABLE is on this node */
  4824. if (zone_movable_pfn[nid]) {
  4825. /* Size ZONE_MOVABLE */
  4826. if (zone_type == ZONE_MOVABLE) {
  4827. *zone_start_pfn = zone_movable_pfn[nid];
  4828. *zone_end_pfn = min(node_end_pfn,
  4829. arch_zone_highest_possible_pfn[movable_zone]);
  4830. /* Check if this whole range is within ZONE_MOVABLE */
  4831. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  4832. *zone_start_pfn = *zone_end_pfn;
  4833. }
  4834. }
  4835. /*
  4836. * Return the number of pages a zone spans in a node, including holes
  4837. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  4838. */
  4839. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4840. unsigned long zone_type,
  4841. unsigned long node_start_pfn,
  4842. unsigned long node_end_pfn,
  4843. unsigned long *zone_start_pfn,
  4844. unsigned long *zone_end_pfn,
  4845. unsigned long *ignored)
  4846. {
  4847. /* When hotadd a new node from cpu_up(), the node should be empty */
  4848. if (!node_start_pfn && !node_end_pfn)
  4849. return 0;
  4850. /* Get the start and end of the zone */
  4851. *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  4852. *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  4853. adjust_zone_range_for_zone_movable(nid, zone_type,
  4854. node_start_pfn, node_end_pfn,
  4855. zone_start_pfn, zone_end_pfn);
  4856. /* Check that this node has pages within the zone's required range */
  4857. if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
  4858. return 0;
  4859. /* Move the zone boundaries inside the node if necessary */
  4860. *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
  4861. *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
  4862. /* Return the spanned pages */
  4863. return *zone_end_pfn - *zone_start_pfn;
  4864. }
  4865. /*
  4866. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  4867. * then all holes in the requested range will be accounted for.
  4868. */
  4869. unsigned long __meminit __absent_pages_in_range(int nid,
  4870. unsigned long range_start_pfn,
  4871. unsigned long range_end_pfn)
  4872. {
  4873. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  4874. unsigned long start_pfn, end_pfn;
  4875. int i;
  4876. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  4877. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  4878. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  4879. nr_absent -= end_pfn - start_pfn;
  4880. }
  4881. return nr_absent;
  4882. }
  4883. /**
  4884. * absent_pages_in_range - Return number of page frames in holes within a range
  4885. * @start_pfn: The start PFN to start searching for holes
  4886. * @end_pfn: The end PFN to stop searching for holes
  4887. *
  4888. * It returns the number of pages frames in memory holes within a range.
  4889. */
  4890. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  4891. unsigned long end_pfn)
  4892. {
  4893. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  4894. }
  4895. /* Return the number of page frames in holes in a zone on a node */
  4896. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  4897. unsigned long zone_type,
  4898. unsigned long node_start_pfn,
  4899. unsigned long node_end_pfn,
  4900. unsigned long *ignored)
  4901. {
  4902. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  4903. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  4904. unsigned long zone_start_pfn, zone_end_pfn;
  4905. unsigned long nr_absent;
  4906. /* When hotadd a new node from cpu_up(), the node should be empty */
  4907. if (!node_start_pfn && !node_end_pfn)
  4908. return 0;
  4909. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  4910. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  4911. adjust_zone_range_for_zone_movable(nid, zone_type,
  4912. node_start_pfn, node_end_pfn,
  4913. &zone_start_pfn, &zone_end_pfn);
  4914. nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  4915. /*
  4916. * ZONE_MOVABLE handling.
  4917. * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
  4918. * and vice versa.
  4919. */
  4920. if (zone_movable_pfn[nid]) {
  4921. if (mirrored_kernelcore) {
  4922. unsigned long start_pfn, end_pfn;
  4923. struct memblock_region *r;
  4924. for_each_memblock(memory, r) {
  4925. start_pfn = clamp(memblock_region_memory_base_pfn(r),
  4926. zone_start_pfn, zone_end_pfn);
  4927. end_pfn = clamp(memblock_region_memory_end_pfn(r),
  4928. zone_start_pfn, zone_end_pfn);
  4929. if (zone_type == ZONE_MOVABLE &&
  4930. memblock_is_mirror(r))
  4931. nr_absent += end_pfn - start_pfn;
  4932. if (zone_type == ZONE_NORMAL &&
  4933. !memblock_is_mirror(r))
  4934. nr_absent += end_pfn - start_pfn;
  4935. }
  4936. } else {
  4937. if (zone_type == ZONE_NORMAL)
  4938. nr_absent += node_end_pfn - zone_movable_pfn[nid];
  4939. }
  4940. }
  4941. return nr_absent;
  4942. }
  4943. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4944. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  4945. unsigned long zone_type,
  4946. unsigned long node_start_pfn,
  4947. unsigned long node_end_pfn,
  4948. unsigned long *zone_start_pfn,
  4949. unsigned long *zone_end_pfn,
  4950. unsigned long *zones_size)
  4951. {
  4952. unsigned int zone;
  4953. *zone_start_pfn = node_start_pfn;
  4954. for (zone = 0; zone < zone_type; zone++)
  4955. *zone_start_pfn += zones_size[zone];
  4956. *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
  4957. return zones_size[zone_type];
  4958. }
  4959. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  4960. unsigned long zone_type,
  4961. unsigned long node_start_pfn,
  4962. unsigned long node_end_pfn,
  4963. unsigned long *zholes_size)
  4964. {
  4965. if (!zholes_size)
  4966. return 0;
  4967. return zholes_size[zone_type];
  4968. }
  4969. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4970. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  4971. unsigned long node_start_pfn,
  4972. unsigned long node_end_pfn,
  4973. unsigned long *zones_size,
  4974. unsigned long *zholes_size)
  4975. {
  4976. unsigned long realtotalpages = 0, totalpages = 0;
  4977. enum zone_type i;
  4978. for (i = 0; i < MAX_NR_ZONES; i++) {
  4979. struct zone *zone = pgdat->node_zones + i;
  4980. unsigned long zone_start_pfn, zone_end_pfn;
  4981. unsigned long size, real_size;
  4982. size = zone_spanned_pages_in_node(pgdat->node_id, i,
  4983. node_start_pfn,
  4984. node_end_pfn,
  4985. &zone_start_pfn,
  4986. &zone_end_pfn,
  4987. zones_size);
  4988. real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
  4989. node_start_pfn, node_end_pfn,
  4990. zholes_size);
  4991. if (size)
  4992. zone->zone_start_pfn = zone_start_pfn;
  4993. else
  4994. zone->zone_start_pfn = 0;
  4995. zone->spanned_pages = size;
  4996. zone->present_pages = real_size;
  4997. totalpages += size;
  4998. realtotalpages += real_size;
  4999. }
  5000. pgdat->node_spanned_pages = totalpages;
  5001. pgdat->node_present_pages = realtotalpages;
  5002. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  5003. realtotalpages);
  5004. }
  5005. #ifndef CONFIG_SPARSEMEM
  5006. /*
  5007. * Calculate the size of the zone->blockflags rounded to an unsigned long
  5008. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  5009. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  5010. * round what is now in bits to nearest long in bits, then return it in
  5011. * bytes.
  5012. */
  5013. static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
  5014. {
  5015. unsigned long usemapsize;
  5016. zonesize += zone_start_pfn & (pageblock_nr_pages-1);
  5017. usemapsize = roundup(zonesize, pageblock_nr_pages);
  5018. usemapsize = usemapsize >> pageblock_order;
  5019. usemapsize *= NR_PAGEBLOCK_BITS;
  5020. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  5021. return usemapsize / 8;
  5022. }
  5023. static void __init setup_usemap(struct pglist_data *pgdat,
  5024. struct zone *zone,
  5025. unsigned long zone_start_pfn,
  5026. unsigned long zonesize)
  5027. {
  5028. unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
  5029. zone->pageblock_flags = NULL;
  5030. if (usemapsize)
  5031. zone->pageblock_flags =
  5032. memblock_virt_alloc_node_nopanic(usemapsize,
  5033. pgdat->node_id);
  5034. }
  5035. #else
  5036. static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
  5037. unsigned long zone_start_pfn, unsigned long zonesize) {}
  5038. #endif /* CONFIG_SPARSEMEM */
  5039. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  5040. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  5041. void __paginginit set_pageblock_order(void)
  5042. {
  5043. unsigned int order;
  5044. /* Check that pageblock_nr_pages has not already been setup */
  5045. if (pageblock_order)
  5046. return;
  5047. if (HPAGE_SHIFT > PAGE_SHIFT)
  5048. order = HUGETLB_PAGE_ORDER;
  5049. else
  5050. order = MAX_ORDER - 1;
  5051. /*
  5052. * Assume the largest contiguous order of interest is a huge page.
  5053. * This value may be variable depending on boot parameters on IA64 and
  5054. * powerpc.
  5055. */
  5056. pageblock_order = order;
  5057. }
  5058. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5059. /*
  5060. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  5061. * is unused as pageblock_order is set at compile-time. See
  5062. * include/linux/pageblock-flags.h for the values of pageblock_order based on
  5063. * the kernel config
  5064. */
  5065. void __paginginit set_pageblock_order(void)
  5066. {
  5067. }
  5068. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  5069. static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
  5070. unsigned long present_pages)
  5071. {
  5072. unsigned long pages = spanned_pages;
  5073. /*
  5074. * Provide a more accurate estimation if there are holes within
  5075. * the zone and SPARSEMEM is in use. If there are holes within the
  5076. * zone, each populated memory region may cost us one or two extra
  5077. * memmap pages due to alignment because memmap pages for each
  5078. * populated regions may not naturally algined on page boundary.
  5079. * So the (present_pages >> 4) heuristic is a tradeoff for that.
  5080. */
  5081. if (spanned_pages > present_pages + (present_pages >> 4) &&
  5082. IS_ENABLED(CONFIG_SPARSEMEM))
  5083. pages = present_pages;
  5084. return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
  5085. }
  5086. /*
  5087. * Set up the zone data structures:
  5088. * - mark all pages reserved
  5089. * - mark all memory queues empty
  5090. * - clear the memory bitmaps
  5091. *
  5092. * NOTE: pgdat should get zeroed by caller.
  5093. */
  5094. static void __paginginit free_area_init_core(struct pglist_data *pgdat)
  5095. {
  5096. enum zone_type j;
  5097. int nid = pgdat->node_id;
  5098. int ret;
  5099. pgdat_resize_init(pgdat);
  5100. #ifdef CONFIG_NUMA_BALANCING
  5101. spin_lock_init(&pgdat->numabalancing_migrate_lock);
  5102. pgdat->numabalancing_migrate_nr_pages = 0;
  5103. pgdat->numabalancing_migrate_next_window = jiffies;
  5104. #endif
  5105. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  5106. spin_lock_init(&pgdat->split_queue_lock);
  5107. INIT_LIST_HEAD(&pgdat->split_queue);
  5108. pgdat->split_queue_len = 0;
  5109. #endif
  5110. init_waitqueue_head(&pgdat->kswapd_wait);
  5111. init_waitqueue_head(&pgdat->pfmemalloc_wait);
  5112. #ifdef CONFIG_COMPACTION
  5113. init_waitqueue_head(&pgdat->kcompactd_wait);
  5114. #endif
  5115. pgdat_page_ext_init(pgdat);
  5116. for (j = 0; j < MAX_NR_ZONES; j++) {
  5117. struct zone *zone = pgdat->node_zones + j;
  5118. unsigned long size, realsize, freesize, memmap_pages;
  5119. unsigned long zone_start_pfn = zone->zone_start_pfn;
  5120. size = zone->spanned_pages;
  5121. realsize = freesize = zone->present_pages;
  5122. /*
  5123. * Adjust freesize so that it accounts for how much memory
  5124. * is used by this zone for memmap. This affects the watermark
  5125. * and per-cpu initialisations
  5126. */
  5127. memmap_pages = calc_memmap_size(size, realsize);
  5128. if (!is_highmem_idx(j)) {
  5129. if (freesize >= memmap_pages) {
  5130. freesize -= memmap_pages;
  5131. if (memmap_pages)
  5132. printk(KERN_DEBUG
  5133. " %s zone: %lu pages used for memmap\n",
  5134. zone_names[j], memmap_pages);
  5135. } else
  5136. pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
  5137. zone_names[j], memmap_pages, freesize);
  5138. }
  5139. /* Account for reserved pages */
  5140. if (j == 0 && freesize > dma_reserve) {
  5141. freesize -= dma_reserve;
  5142. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  5143. zone_names[0], dma_reserve);
  5144. }
  5145. if (!is_highmem_idx(j))
  5146. nr_kernel_pages += freesize;
  5147. /* Charge for highmem memmap if there are enough kernel pages */
  5148. else if (nr_kernel_pages > memmap_pages * 2)
  5149. nr_kernel_pages -= memmap_pages;
  5150. nr_all_pages += freesize;
  5151. /*
  5152. * Set an approximate value for lowmem here, it will be adjusted
  5153. * when the bootmem allocator frees pages into the buddy system.
  5154. * And all highmem pages will be managed by the buddy system.
  5155. */
  5156. zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
  5157. #ifdef CONFIG_NUMA
  5158. zone->node = nid;
  5159. zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
  5160. / 100;
  5161. zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
  5162. #endif
  5163. zone->name = zone_names[j];
  5164. spin_lock_init(&zone->lock);
  5165. spin_lock_init(&zone->lru_lock);
  5166. zone_seqlock_init(zone);
  5167. zone->zone_pgdat = pgdat;
  5168. zone_pcp_init(zone);
  5169. /* For bootup, initialized properly in watermark setup */
  5170. mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
  5171. lruvec_init(&zone->lruvec);
  5172. if (!size)
  5173. continue;
  5174. set_pageblock_order();
  5175. setup_usemap(pgdat, zone, zone_start_pfn, size);
  5176. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  5177. BUG_ON(ret);
  5178. memmap_init(size, nid, j, zone_start_pfn);
  5179. }
  5180. }
  5181. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  5182. {
  5183. unsigned long __maybe_unused start = 0;
  5184. unsigned long __maybe_unused offset = 0;
  5185. /* Skip empty nodes */
  5186. if (!pgdat->node_spanned_pages)
  5187. return;
  5188. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5189. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  5190. offset = pgdat->node_start_pfn - start;
  5191. /* ia64 gets its own node_mem_map, before this, without bootmem */
  5192. if (!pgdat->node_mem_map) {
  5193. unsigned long size, end;
  5194. struct page *map;
  5195. /*
  5196. * The zone's endpoints aren't required to be MAX_ORDER
  5197. * aligned but the node_mem_map endpoints must be in order
  5198. * for the buddy allocator to function correctly.
  5199. */
  5200. end = pgdat_end_pfn(pgdat);
  5201. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  5202. size = (end - start) * sizeof(struct page);
  5203. map = alloc_remap(pgdat->node_id, size);
  5204. if (!map)
  5205. map = memblock_virt_alloc_node_nopanic(size,
  5206. pgdat->node_id);
  5207. pgdat->node_mem_map = map + offset;
  5208. }
  5209. #ifndef CONFIG_NEED_MULTIPLE_NODES
  5210. /*
  5211. * With no DISCONTIG, the global mem_map is just set as node 0's
  5212. */
  5213. if (pgdat == NODE_DATA(0)) {
  5214. mem_map = NODE_DATA(0)->node_mem_map;
  5215. #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
  5216. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  5217. mem_map -= offset;
  5218. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5219. }
  5220. #endif
  5221. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  5222. }
  5223. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  5224. unsigned long node_start_pfn, unsigned long *zholes_size)
  5225. {
  5226. pg_data_t *pgdat = NODE_DATA(nid);
  5227. unsigned long start_pfn = 0;
  5228. unsigned long end_pfn = 0;
  5229. /* pg_data_t should be reset to zero when it's allocated */
  5230. WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
  5231. reset_deferred_meminit(pgdat);
  5232. pgdat->node_id = nid;
  5233. pgdat->node_start_pfn = node_start_pfn;
  5234. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5235. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  5236. pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
  5237. (u64)start_pfn << PAGE_SHIFT,
  5238. end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
  5239. #else
  5240. start_pfn = node_start_pfn;
  5241. #endif
  5242. calculate_node_totalpages(pgdat, start_pfn, end_pfn,
  5243. zones_size, zholes_size);
  5244. alloc_node_mem_map(pgdat);
  5245. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  5246. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  5247. nid, (unsigned long)pgdat,
  5248. (unsigned long)pgdat->node_mem_map);
  5249. #endif
  5250. free_area_init_core(pgdat);
  5251. }
  5252. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  5253. #if MAX_NUMNODES > 1
  5254. /*
  5255. * Figure out the number of possible node ids.
  5256. */
  5257. void __init setup_nr_node_ids(void)
  5258. {
  5259. unsigned int highest;
  5260. highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
  5261. nr_node_ids = highest + 1;
  5262. }
  5263. #endif
  5264. /**
  5265. * node_map_pfn_alignment - determine the maximum internode alignment
  5266. *
  5267. * This function should be called after node map is populated and sorted.
  5268. * It calculates the maximum power of two alignment which can distinguish
  5269. * all the nodes.
  5270. *
  5271. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  5272. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  5273. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  5274. * shifted, 1GiB is enough and this function will indicate so.
  5275. *
  5276. * This is used to test whether pfn -> nid mapping of the chosen memory
  5277. * model has fine enough granularity to avoid incorrect mapping for the
  5278. * populated node map.
  5279. *
  5280. * Returns the determined alignment in pfn's. 0 if there is no alignment
  5281. * requirement (single node).
  5282. */
  5283. unsigned long __init node_map_pfn_alignment(void)
  5284. {
  5285. unsigned long accl_mask = 0, last_end = 0;
  5286. unsigned long start, end, mask;
  5287. int last_nid = -1;
  5288. int i, nid;
  5289. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  5290. if (!start || last_nid < 0 || last_nid == nid) {
  5291. last_nid = nid;
  5292. last_end = end;
  5293. continue;
  5294. }
  5295. /*
  5296. * Start with a mask granular enough to pin-point to the
  5297. * start pfn and tick off bits one-by-one until it becomes
  5298. * too coarse to separate the current node from the last.
  5299. */
  5300. mask = ~((1 << __ffs(start)) - 1);
  5301. while (mask && last_end <= (start & (mask << 1)))
  5302. mask <<= 1;
  5303. /* accumulate all internode masks */
  5304. accl_mask |= mask;
  5305. }
  5306. /* convert mask to number of pages */
  5307. return ~accl_mask + 1;
  5308. }
  5309. /* Find the lowest pfn for a node */
  5310. static unsigned long __init find_min_pfn_for_node(int nid)
  5311. {
  5312. unsigned long min_pfn = ULONG_MAX;
  5313. unsigned long start_pfn;
  5314. int i;
  5315. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  5316. min_pfn = min(min_pfn, start_pfn);
  5317. if (min_pfn == ULONG_MAX) {
  5318. pr_warn("Could not find start_pfn for node %d\n", nid);
  5319. return 0;
  5320. }
  5321. return min_pfn;
  5322. }
  5323. /**
  5324. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  5325. *
  5326. * It returns the minimum PFN based on information provided via
  5327. * memblock_set_node().
  5328. */
  5329. unsigned long __init find_min_pfn_with_active_regions(void)
  5330. {
  5331. return find_min_pfn_for_node(MAX_NUMNODES);
  5332. }
  5333. /*
  5334. * early_calculate_totalpages()
  5335. * Sum pages in active regions for movable zone.
  5336. * Populate N_MEMORY for calculating usable_nodes.
  5337. */
  5338. static unsigned long __init early_calculate_totalpages(void)
  5339. {
  5340. unsigned long totalpages = 0;
  5341. unsigned long start_pfn, end_pfn;
  5342. int i, nid;
  5343. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  5344. unsigned long pages = end_pfn - start_pfn;
  5345. totalpages += pages;
  5346. if (pages)
  5347. node_set_state(nid, N_MEMORY);
  5348. }
  5349. return totalpages;
  5350. }
  5351. /*
  5352. * Find the PFN the Movable zone begins in each node. Kernel memory
  5353. * is spread evenly between nodes as long as the nodes have enough
  5354. * memory. When they don't, some nodes will have more kernelcore than
  5355. * others
  5356. */
  5357. static void __init find_zone_movable_pfns_for_nodes(void)
  5358. {
  5359. int i, nid;
  5360. unsigned long usable_startpfn;
  5361. unsigned long kernelcore_node, kernelcore_remaining;
  5362. /* save the state before borrow the nodemask */
  5363. nodemask_t saved_node_state = node_states[N_MEMORY];
  5364. unsigned long totalpages = early_calculate_totalpages();
  5365. int usable_nodes = nodes_weight(node_states[N_MEMORY]);
  5366. struct memblock_region *r;
  5367. /* Need to find movable_zone earlier when movable_node is specified. */
  5368. find_usable_zone_for_movable();
  5369. /*
  5370. * If movable_node is specified, ignore kernelcore and movablecore
  5371. * options.
  5372. */
  5373. if (movable_node_is_enabled()) {
  5374. for_each_memblock(memory, r) {
  5375. if (!memblock_is_hotpluggable(r))
  5376. continue;
  5377. nid = r->nid;
  5378. usable_startpfn = PFN_DOWN(r->base);
  5379. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5380. min(usable_startpfn, zone_movable_pfn[nid]) :
  5381. usable_startpfn;
  5382. }
  5383. goto out2;
  5384. }
  5385. /*
  5386. * If kernelcore=mirror is specified, ignore movablecore option
  5387. */
  5388. if (mirrored_kernelcore) {
  5389. bool mem_below_4gb_not_mirrored = false;
  5390. for_each_memblock(memory, r) {
  5391. if (memblock_is_mirror(r))
  5392. continue;
  5393. nid = r->nid;
  5394. usable_startpfn = memblock_region_memory_base_pfn(r);
  5395. if (usable_startpfn < 0x100000) {
  5396. mem_below_4gb_not_mirrored = true;
  5397. continue;
  5398. }
  5399. zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
  5400. min(usable_startpfn, zone_movable_pfn[nid]) :
  5401. usable_startpfn;
  5402. }
  5403. if (mem_below_4gb_not_mirrored)
  5404. pr_warn("This configuration results in unmirrored kernel memory.");
  5405. goto out2;
  5406. }
  5407. /*
  5408. * If movablecore=nn[KMG] was specified, calculate what size of
  5409. * kernelcore that corresponds so that memory usable for
  5410. * any allocation type is evenly spread. If both kernelcore
  5411. * and movablecore are specified, then the value of kernelcore
  5412. * will be used for required_kernelcore if it's greater than
  5413. * what movablecore would have allowed.
  5414. */
  5415. if (required_movablecore) {
  5416. unsigned long corepages;
  5417. /*
  5418. * Round-up so that ZONE_MOVABLE is at least as large as what
  5419. * was requested by the user
  5420. */
  5421. required_movablecore =
  5422. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  5423. required_movablecore = min(totalpages, required_movablecore);
  5424. corepages = totalpages - required_movablecore;
  5425. required_kernelcore = max(required_kernelcore, corepages);
  5426. }
  5427. /*
  5428. * If kernelcore was not specified or kernelcore size is larger
  5429. * than totalpages, there is no ZONE_MOVABLE.
  5430. */
  5431. if (!required_kernelcore || required_kernelcore >= totalpages)
  5432. goto out;
  5433. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  5434. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  5435. restart:
  5436. /* Spread kernelcore memory as evenly as possible throughout nodes */
  5437. kernelcore_node = required_kernelcore / usable_nodes;
  5438. for_each_node_state(nid, N_MEMORY) {
  5439. unsigned long start_pfn, end_pfn;
  5440. /*
  5441. * Recalculate kernelcore_node if the division per node
  5442. * now exceeds what is necessary to satisfy the requested
  5443. * amount of memory for the kernel
  5444. */
  5445. if (required_kernelcore < kernelcore_node)
  5446. kernelcore_node = required_kernelcore / usable_nodes;
  5447. /*
  5448. * As the map is walked, we track how much memory is usable
  5449. * by the kernel using kernelcore_remaining. When it is
  5450. * 0, the rest of the node is usable by ZONE_MOVABLE
  5451. */
  5452. kernelcore_remaining = kernelcore_node;
  5453. /* Go through each range of PFNs within this node */
  5454. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  5455. unsigned long size_pages;
  5456. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  5457. if (start_pfn >= end_pfn)
  5458. continue;
  5459. /* Account for what is only usable for kernelcore */
  5460. if (start_pfn < usable_startpfn) {
  5461. unsigned long kernel_pages;
  5462. kernel_pages = min(end_pfn, usable_startpfn)
  5463. - start_pfn;
  5464. kernelcore_remaining -= min(kernel_pages,
  5465. kernelcore_remaining);
  5466. required_kernelcore -= min(kernel_pages,
  5467. required_kernelcore);
  5468. /* Continue if range is now fully accounted */
  5469. if (end_pfn <= usable_startpfn) {
  5470. /*
  5471. * Push zone_movable_pfn to the end so
  5472. * that if we have to rebalance
  5473. * kernelcore across nodes, we will
  5474. * not double account here
  5475. */
  5476. zone_movable_pfn[nid] = end_pfn;
  5477. continue;
  5478. }
  5479. start_pfn = usable_startpfn;
  5480. }
  5481. /*
  5482. * The usable PFN range for ZONE_MOVABLE is from
  5483. * start_pfn->end_pfn. Calculate size_pages as the
  5484. * number of pages used as kernelcore
  5485. */
  5486. size_pages = end_pfn - start_pfn;
  5487. if (size_pages > kernelcore_remaining)
  5488. size_pages = kernelcore_remaining;
  5489. zone_movable_pfn[nid] = start_pfn + size_pages;
  5490. /*
  5491. * Some kernelcore has been met, update counts and
  5492. * break if the kernelcore for this node has been
  5493. * satisfied
  5494. */
  5495. required_kernelcore -= min(required_kernelcore,
  5496. size_pages);
  5497. kernelcore_remaining -= size_pages;
  5498. if (!kernelcore_remaining)
  5499. break;
  5500. }
  5501. }
  5502. /*
  5503. * If there is still required_kernelcore, we do another pass with one
  5504. * less node in the count. This will push zone_movable_pfn[nid] further
  5505. * along on the nodes that still have memory until kernelcore is
  5506. * satisfied
  5507. */
  5508. usable_nodes--;
  5509. if (usable_nodes && required_kernelcore > usable_nodes)
  5510. goto restart;
  5511. out2:
  5512. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  5513. for (nid = 0; nid < MAX_NUMNODES; nid++)
  5514. zone_movable_pfn[nid] =
  5515. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  5516. out:
  5517. /* restore the node_state */
  5518. node_states[N_MEMORY] = saved_node_state;
  5519. }
  5520. /* Any regular or high memory on that node ? */
  5521. static void check_for_memory(pg_data_t *pgdat, int nid)
  5522. {
  5523. enum zone_type zone_type;
  5524. if (N_MEMORY == N_NORMAL_MEMORY)
  5525. return;
  5526. for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
  5527. struct zone *zone = &pgdat->node_zones[zone_type];
  5528. if (populated_zone(zone)) {
  5529. node_set_state(nid, N_HIGH_MEMORY);
  5530. if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
  5531. zone_type <= ZONE_NORMAL)
  5532. node_set_state(nid, N_NORMAL_MEMORY);
  5533. break;
  5534. }
  5535. }
  5536. }
  5537. /**
  5538. * free_area_init_nodes - Initialise all pg_data_t and zone data
  5539. * @max_zone_pfn: an array of max PFNs for each zone
  5540. *
  5541. * This will call free_area_init_node() for each active node in the system.
  5542. * Using the page ranges provided by memblock_set_node(), the size of each
  5543. * zone in each node and their holes is calculated. If the maximum PFN
  5544. * between two adjacent zones match, it is assumed that the zone is empty.
  5545. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  5546. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  5547. * starts where the previous one ended. For example, ZONE_DMA32 starts
  5548. * at arch_max_dma_pfn.
  5549. */
  5550. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  5551. {
  5552. unsigned long start_pfn, end_pfn;
  5553. int i, nid;
  5554. /* Record where the zone boundaries are */
  5555. memset(arch_zone_lowest_possible_pfn, 0,
  5556. sizeof(arch_zone_lowest_possible_pfn));
  5557. memset(arch_zone_highest_possible_pfn, 0,
  5558. sizeof(arch_zone_highest_possible_pfn));
  5559. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  5560. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  5561. for (i = 1; i < MAX_NR_ZONES; i++) {
  5562. if (i == ZONE_MOVABLE)
  5563. continue;
  5564. arch_zone_lowest_possible_pfn[i] =
  5565. arch_zone_highest_possible_pfn[i-1];
  5566. arch_zone_highest_possible_pfn[i] =
  5567. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  5568. }
  5569. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  5570. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  5571. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  5572. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  5573. find_zone_movable_pfns_for_nodes();
  5574. /* Print out the zone ranges */
  5575. pr_info("Zone ranges:\n");
  5576. for (i = 0; i < MAX_NR_ZONES; i++) {
  5577. if (i == ZONE_MOVABLE)
  5578. continue;
  5579. pr_info(" %-8s ", zone_names[i]);
  5580. if (arch_zone_lowest_possible_pfn[i] ==
  5581. arch_zone_highest_possible_pfn[i])
  5582. pr_cont("empty\n");
  5583. else
  5584. pr_cont("[mem %#018Lx-%#018Lx]\n",
  5585. (u64)arch_zone_lowest_possible_pfn[i]
  5586. << PAGE_SHIFT,
  5587. ((u64)arch_zone_highest_possible_pfn[i]
  5588. << PAGE_SHIFT) - 1);
  5589. }
  5590. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  5591. pr_info("Movable zone start for each node\n");
  5592. for (i = 0; i < MAX_NUMNODES; i++) {
  5593. if (zone_movable_pfn[i])
  5594. pr_info(" Node %d: %#018Lx\n", i,
  5595. (u64)zone_movable_pfn[i] << PAGE_SHIFT);
  5596. }
  5597. /* Print out the early node map */
  5598. pr_info("Early memory node ranges\n");
  5599. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  5600. pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
  5601. (u64)start_pfn << PAGE_SHIFT,
  5602. ((u64)end_pfn << PAGE_SHIFT) - 1);
  5603. /* Initialise every node */
  5604. mminit_verify_pageflags_layout();
  5605. setup_nr_node_ids();
  5606. for_each_online_node(nid) {
  5607. pg_data_t *pgdat = NODE_DATA(nid);
  5608. free_area_init_node(nid, NULL,
  5609. find_min_pfn_for_node(nid), NULL);
  5610. /* Any memory on that node */
  5611. if (pgdat->node_present_pages)
  5612. node_set_state(nid, N_MEMORY);
  5613. check_for_memory(pgdat, nid);
  5614. }
  5615. }
  5616. static int __init cmdline_parse_core(char *p, unsigned long *core)
  5617. {
  5618. unsigned long long coremem;
  5619. if (!p)
  5620. return -EINVAL;
  5621. coremem = memparse(p, &p);
  5622. *core = coremem >> PAGE_SHIFT;
  5623. /* Paranoid check that UL is enough for the coremem value */
  5624. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  5625. return 0;
  5626. }
  5627. /*
  5628. * kernelcore=size sets the amount of memory for use for allocations that
  5629. * cannot be reclaimed or migrated.
  5630. */
  5631. static int __init cmdline_parse_kernelcore(char *p)
  5632. {
  5633. /* parse kernelcore=mirror */
  5634. if (parse_option_str(p, "mirror")) {
  5635. mirrored_kernelcore = true;
  5636. return 0;
  5637. }
  5638. return cmdline_parse_core(p, &required_kernelcore);
  5639. }
  5640. /*
  5641. * movablecore=size sets the amount of memory for use for allocations that
  5642. * can be reclaimed or migrated.
  5643. */
  5644. static int __init cmdline_parse_movablecore(char *p)
  5645. {
  5646. return cmdline_parse_core(p, &required_movablecore);
  5647. }
  5648. early_param("kernelcore", cmdline_parse_kernelcore);
  5649. early_param("movablecore", cmdline_parse_movablecore);
  5650. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  5651. void adjust_managed_page_count(struct page *page, long count)
  5652. {
  5653. spin_lock(&managed_page_count_lock);
  5654. page_zone(page)->managed_pages += count;
  5655. totalram_pages += count;
  5656. #ifdef CONFIG_HIGHMEM
  5657. if (PageHighMem(page))
  5658. totalhigh_pages += count;
  5659. #endif
  5660. spin_unlock(&managed_page_count_lock);
  5661. }
  5662. EXPORT_SYMBOL(adjust_managed_page_count);
  5663. unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
  5664. {
  5665. void *pos;
  5666. unsigned long pages = 0;
  5667. start = (void *)PAGE_ALIGN((unsigned long)start);
  5668. end = (void *)((unsigned long)end & PAGE_MASK);
  5669. for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
  5670. if ((unsigned int)poison <= 0xFF)
  5671. memset(pos, poison, PAGE_SIZE);
  5672. free_reserved_page(virt_to_page(pos));
  5673. }
  5674. if (pages && s)
  5675. pr_info("Freeing %s memory: %ldK (%p - %p)\n",
  5676. s, pages << (PAGE_SHIFT - 10), start, end);
  5677. return pages;
  5678. }
  5679. EXPORT_SYMBOL(free_reserved_area);
  5680. #ifdef CONFIG_HIGHMEM
  5681. void free_highmem_page(struct page *page)
  5682. {
  5683. __free_reserved_page(page);
  5684. totalram_pages++;
  5685. page_zone(page)->managed_pages++;
  5686. totalhigh_pages++;
  5687. }
  5688. #endif
  5689. void __init mem_init_print_info(const char *str)
  5690. {
  5691. unsigned long physpages, codesize, datasize, rosize, bss_size;
  5692. unsigned long init_code_size, init_data_size;
  5693. physpages = get_num_physpages();
  5694. codesize = _etext - _stext;
  5695. datasize = _edata - _sdata;
  5696. rosize = __end_rodata - __start_rodata;
  5697. bss_size = __bss_stop - __bss_start;
  5698. init_data_size = __init_end - __init_begin;
  5699. init_code_size = _einittext - _sinittext;
  5700. /*
  5701. * Detect special cases and adjust section sizes accordingly:
  5702. * 1) .init.* may be embedded into .data sections
  5703. * 2) .init.text.* may be out of [__init_begin, __init_end],
  5704. * please refer to arch/tile/kernel/vmlinux.lds.S.
  5705. * 3) .rodata.* may be embedded into .text or .data sections.
  5706. */
  5707. #define adj_init_size(start, end, size, pos, adj) \
  5708. do { \
  5709. if (start <= pos && pos < end && size > adj) \
  5710. size -= adj; \
  5711. } while (0)
  5712. adj_init_size(__init_begin, __init_end, init_data_size,
  5713. _sinittext, init_code_size);
  5714. adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
  5715. adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
  5716. adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
  5717. adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
  5718. #undef adj_init_size
  5719. pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
  5720. #ifdef CONFIG_HIGHMEM
  5721. ", %luK highmem"
  5722. #endif
  5723. "%s%s)\n",
  5724. nr_free_pages() << (PAGE_SHIFT - 10),
  5725. physpages << (PAGE_SHIFT - 10),
  5726. codesize >> 10, datasize >> 10, rosize >> 10,
  5727. (init_data_size + init_code_size) >> 10, bss_size >> 10,
  5728. (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
  5729. totalcma_pages << (PAGE_SHIFT - 10),
  5730. #ifdef CONFIG_HIGHMEM
  5731. totalhigh_pages << (PAGE_SHIFT - 10),
  5732. #endif
  5733. str ? ", " : "", str ? str : "");
  5734. }
  5735. /**
  5736. * set_dma_reserve - set the specified number of pages reserved in the first zone
  5737. * @new_dma_reserve: The number of pages to mark reserved
  5738. *
  5739. * The per-cpu batchsize and zone watermarks are determined by managed_pages.
  5740. * In the DMA zone, a significant percentage may be consumed by kernel image
  5741. * and other unfreeable allocations which can skew the watermarks badly. This
  5742. * function may optionally be used to account for unfreeable pages in the
  5743. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  5744. * smaller per-cpu batchsize.
  5745. */
  5746. void __init set_dma_reserve(unsigned long new_dma_reserve)
  5747. {
  5748. dma_reserve = new_dma_reserve;
  5749. }
  5750. void __init free_area_init(unsigned long *zones_size)
  5751. {
  5752. free_area_init_node(0, zones_size,
  5753. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  5754. }
  5755. static int page_alloc_cpu_notify(struct notifier_block *self,
  5756. unsigned long action, void *hcpu)
  5757. {
  5758. int cpu = (unsigned long)hcpu;
  5759. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  5760. lru_add_drain_cpu(cpu);
  5761. drain_pages(cpu);
  5762. /*
  5763. * Spill the event counters of the dead processor
  5764. * into the current processors event counters.
  5765. * This artificially elevates the count of the current
  5766. * processor.
  5767. */
  5768. vm_events_fold_cpu(cpu);
  5769. /*
  5770. * Zero the differential counters of the dead processor
  5771. * so that the vm statistics are consistent.
  5772. *
  5773. * This is only okay since the processor is dead and cannot
  5774. * race with what we are doing.
  5775. */
  5776. cpu_vm_stats_fold(cpu);
  5777. }
  5778. return NOTIFY_OK;
  5779. }
  5780. void __init page_alloc_init(void)
  5781. {
  5782. hotcpu_notifier(page_alloc_cpu_notify, 0);
  5783. }
  5784. /*
  5785. * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
  5786. * or min_free_kbytes changes.
  5787. */
  5788. static void calculate_totalreserve_pages(void)
  5789. {
  5790. struct pglist_data *pgdat;
  5791. unsigned long reserve_pages = 0;
  5792. enum zone_type i, j;
  5793. for_each_online_pgdat(pgdat) {
  5794. for (i = 0; i < MAX_NR_ZONES; i++) {
  5795. struct zone *zone = pgdat->node_zones + i;
  5796. long max = 0;
  5797. /* Find valid and maximum lowmem_reserve in the zone */
  5798. for (j = i; j < MAX_NR_ZONES; j++) {
  5799. if (zone->lowmem_reserve[j] > max)
  5800. max = zone->lowmem_reserve[j];
  5801. }
  5802. /* we treat the high watermark as reserved pages. */
  5803. max += high_wmark_pages(zone);
  5804. if (max > zone->managed_pages)
  5805. max = zone->managed_pages;
  5806. zone->totalreserve_pages = max;
  5807. reserve_pages += max;
  5808. }
  5809. }
  5810. totalreserve_pages = reserve_pages;
  5811. }
  5812. /*
  5813. * setup_per_zone_lowmem_reserve - called whenever
  5814. * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
  5815. * has a correct pages reserved value, so an adequate number of
  5816. * pages are left in the zone after a successful __alloc_pages().
  5817. */
  5818. static void setup_per_zone_lowmem_reserve(void)
  5819. {
  5820. struct pglist_data *pgdat;
  5821. enum zone_type j, idx;
  5822. for_each_online_pgdat(pgdat) {
  5823. for (j = 0; j < MAX_NR_ZONES; j++) {
  5824. struct zone *zone = pgdat->node_zones + j;
  5825. unsigned long managed_pages = zone->managed_pages;
  5826. zone->lowmem_reserve[j] = 0;
  5827. idx = j;
  5828. while (idx) {
  5829. struct zone *lower_zone;
  5830. idx--;
  5831. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  5832. sysctl_lowmem_reserve_ratio[idx] = 1;
  5833. lower_zone = pgdat->node_zones + idx;
  5834. lower_zone->lowmem_reserve[j] = managed_pages /
  5835. sysctl_lowmem_reserve_ratio[idx];
  5836. managed_pages += lower_zone->managed_pages;
  5837. }
  5838. }
  5839. }
  5840. /* update totalreserve_pages */
  5841. calculate_totalreserve_pages();
  5842. }
  5843. static void __setup_per_zone_wmarks(void)
  5844. {
  5845. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  5846. unsigned long lowmem_pages = 0;
  5847. struct zone *zone;
  5848. unsigned long flags;
  5849. /* Calculate total number of !ZONE_HIGHMEM pages */
  5850. for_each_zone(zone) {
  5851. if (!is_highmem(zone))
  5852. lowmem_pages += zone->managed_pages;
  5853. }
  5854. for_each_zone(zone) {
  5855. u64 tmp;
  5856. spin_lock_irqsave(&zone->lock, flags);
  5857. tmp = (u64)pages_min * zone->managed_pages;
  5858. do_div(tmp, lowmem_pages);
  5859. if (is_highmem(zone)) {
  5860. /*
  5861. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  5862. * need highmem pages, so cap pages_min to a small
  5863. * value here.
  5864. *
  5865. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  5866. * deltas control asynch page reclaim, and so should
  5867. * not be capped for highmem.
  5868. */
  5869. unsigned long min_pages;
  5870. min_pages = zone->managed_pages / 1024;
  5871. min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
  5872. zone->watermark[WMARK_MIN] = min_pages;
  5873. } else {
  5874. /*
  5875. * If it's a lowmem zone, reserve a number of pages
  5876. * proportionate to the zone's size.
  5877. */
  5878. zone->watermark[WMARK_MIN] = tmp;
  5879. }
  5880. /*
  5881. * Set the kswapd watermarks distance according to the
  5882. * scale factor in proportion to available memory, but
  5883. * ensure a minimum size on small systems.
  5884. */
  5885. tmp = max_t(u64, tmp >> 2,
  5886. mult_frac(zone->managed_pages,
  5887. watermark_scale_factor, 10000));
  5888. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
  5889. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
  5890. __mod_zone_page_state(zone, NR_ALLOC_BATCH,
  5891. high_wmark_pages(zone) - low_wmark_pages(zone) -
  5892. atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
  5893. spin_unlock_irqrestore(&zone->lock, flags);
  5894. }
  5895. /* update totalreserve_pages */
  5896. calculate_totalreserve_pages();
  5897. }
  5898. /**
  5899. * setup_per_zone_wmarks - called when min_free_kbytes changes
  5900. * or when memory is hot-{added|removed}
  5901. *
  5902. * Ensures that the watermark[min,low,high] values for each zone are set
  5903. * correctly with respect to min_free_kbytes.
  5904. */
  5905. void setup_per_zone_wmarks(void)
  5906. {
  5907. mutex_lock(&zonelists_mutex);
  5908. __setup_per_zone_wmarks();
  5909. mutex_unlock(&zonelists_mutex);
  5910. }
  5911. /*
  5912. * Initialise min_free_kbytes.
  5913. *
  5914. * For small machines we want it small (128k min). For large machines
  5915. * we want it large (64MB max). But it is not linear, because network
  5916. * bandwidth does not increase linearly with machine size. We use
  5917. *
  5918. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  5919. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  5920. *
  5921. * which yields
  5922. *
  5923. * 16MB: 512k
  5924. * 32MB: 724k
  5925. * 64MB: 1024k
  5926. * 128MB: 1448k
  5927. * 256MB: 2048k
  5928. * 512MB: 2896k
  5929. * 1024MB: 4096k
  5930. * 2048MB: 5792k
  5931. * 4096MB: 8192k
  5932. * 8192MB: 11584k
  5933. * 16384MB: 16384k
  5934. */
  5935. int __meminit init_per_zone_wmark_min(void)
  5936. {
  5937. unsigned long lowmem_kbytes;
  5938. int new_min_free_kbytes;
  5939. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  5940. new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  5941. if (new_min_free_kbytes > user_min_free_kbytes) {
  5942. min_free_kbytes = new_min_free_kbytes;
  5943. if (min_free_kbytes < 128)
  5944. min_free_kbytes = 128;
  5945. if (min_free_kbytes > 65536)
  5946. min_free_kbytes = 65536;
  5947. } else {
  5948. pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
  5949. new_min_free_kbytes, user_min_free_kbytes);
  5950. }
  5951. setup_per_zone_wmarks();
  5952. refresh_zone_stat_thresholds();
  5953. setup_per_zone_lowmem_reserve();
  5954. return 0;
  5955. }
  5956. core_initcall(init_per_zone_wmark_min)
  5957. /*
  5958. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  5959. * that we can call two helper functions whenever min_free_kbytes
  5960. * changes.
  5961. */
  5962. int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
  5963. void __user *buffer, size_t *length, loff_t *ppos)
  5964. {
  5965. int rc;
  5966. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5967. if (rc)
  5968. return rc;
  5969. if (write) {
  5970. user_min_free_kbytes = min_free_kbytes;
  5971. setup_per_zone_wmarks();
  5972. }
  5973. return 0;
  5974. }
  5975. int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
  5976. void __user *buffer, size_t *length, loff_t *ppos)
  5977. {
  5978. int rc;
  5979. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5980. if (rc)
  5981. return rc;
  5982. if (write)
  5983. setup_per_zone_wmarks();
  5984. return 0;
  5985. }
  5986. #ifdef CONFIG_NUMA
  5987. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
  5988. void __user *buffer, size_t *length, loff_t *ppos)
  5989. {
  5990. struct zone *zone;
  5991. int rc;
  5992. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  5993. if (rc)
  5994. return rc;
  5995. for_each_zone(zone)
  5996. zone->min_unmapped_pages = (zone->managed_pages *
  5997. sysctl_min_unmapped_ratio) / 100;
  5998. return 0;
  5999. }
  6000. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
  6001. void __user *buffer, size_t *length, loff_t *ppos)
  6002. {
  6003. struct zone *zone;
  6004. int rc;
  6005. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6006. if (rc)
  6007. return rc;
  6008. for_each_zone(zone)
  6009. zone->min_slab_pages = (zone->managed_pages *
  6010. sysctl_min_slab_ratio) / 100;
  6011. return 0;
  6012. }
  6013. #endif
  6014. /*
  6015. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  6016. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  6017. * whenever sysctl_lowmem_reserve_ratio changes.
  6018. *
  6019. * The reserve ratio obviously has absolutely no relation with the
  6020. * minimum watermarks. The lowmem reserve ratio can only make sense
  6021. * if in function of the boot time zone sizes.
  6022. */
  6023. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
  6024. void __user *buffer, size_t *length, loff_t *ppos)
  6025. {
  6026. proc_dointvec_minmax(table, write, buffer, length, ppos);
  6027. setup_per_zone_lowmem_reserve();
  6028. return 0;
  6029. }
  6030. /*
  6031. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  6032. * cpu. It is the fraction of total pages in each zone that a hot per cpu
  6033. * pagelist can have before it gets flushed back to buddy allocator.
  6034. */
  6035. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
  6036. void __user *buffer, size_t *length, loff_t *ppos)
  6037. {
  6038. struct zone *zone;
  6039. int old_percpu_pagelist_fraction;
  6040. int ret;
  6041. mutex_lock(&pcp_batch_high_lock);
  6042. old_percpu_pagelist_fraction = percpu_pagelist_fraction;
  6043. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  6044. if (!write || ret < 0)
  6045. goto out;
  6046. /* Sanity checking to avoid pcp imbalance */
  6047. if (percpu_pagelist_fraction &&
  6048. percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
  6049. percpu_pagelist_fraction = old_percpu_pagelist_fraction;
  6050. ret = -EINVAL;
  6051. goto out;
  6052. }
  6053. /* No change? */
  6054. if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
  6055. goto out;
  6056. for_each_populated_zone(zone) {
  6057. unsigned int cpu;
  6058. for_each_possible_cpu(cpu)
  6059. pageset_set_high_and_batch(zone,
  6060. per_cpu_ptr(zone->pageset, cpu));
  6061. }
  6062. out:
  6063. mutex_unlock(&pcp_batch_high_lock);
  6064. return ret;
  6065. }
  6066. #ifdef CONFIG_NUMA
  6067. int hashdist = HASHDIST_DEFAULT;
  6068. static int __init set_hashdist(char *str)
  6069. {
  6070. if (!str)
  6071. return 0;
  6072. hashdist = simple_strtoul(str, &str, 0);
  6073. return 1;
  6074. }
  6075. __setup("hashdist=", set_hashdist);
  6076. #endif
  6077. /*
  6078. * allocate a large system hash table from bootmem
  6079. * - it is assumed that the hash table must contain an exact power-of-2
  6080. * quantity of entries
  6081. * - limit is the number of hash buckets, not the total allocation size
  6082. */
  6083. void *__init alloc_large_system_hash(const char *tablename,
  6084. unsigned long bucketsize,
  6085. unsigned long numentries,
  6086. int scale,
  6087. int flags,
  6088. unsigned int *_hash_shift,
  6089. unsigned int *_hash_mask,
  6090. unsigned long low_limit,
  6091. unsigned long high_limit)
  6092. {
  6093. unsigned long long max = high_limit;
  6094. unsigned long log2qty, size;
  6095. void *table = NULL;
  6096. /* allow the kernel cmdline to have a say */
  6097. if (!numentries) {
  6098. /* round applicable memory size up to nearest megabyte */
  6099. numentries = nr_kernel_pages;
  6100. /* It isn't necessary when PAGE_SIZE >= 1MB */
  6101. if (PAGE_SHIFT < 20)
  6102. numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
  6103. /* limit to 1 bucket per 2^scale bytes of low memory */
  6104. if (scale > PAGE_SHIFT)
  6105. numentries >>= (scale - PAGE_SHIFT);
  6106. else
  6107. numentries <<= (PAGE_SHIFT - scale);
  6108. /* Make sure we've got at least a 0-order allocation.. */
  6109. if (unlikely(flags & HASH_SMALL)) {
  6110. /* Makes no sense without HASH_EARLY */
  6111. WARN_ON(!(flags & HASH_EARLY));
  6112. if (!(numentries >> *_hash_shift)) {
  6113. numentries = 1UL << *_hash_shift;
  6114. BUG_ON(!numentries);
  6115. }
  6116. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  6117. numentries = PAGE_SIZE / bucketsize;
  6118. }
  6119. numentries = roundup_pow_of_two(numentries);
  6120. /* limit allocation size to 1/16 total memory by default */
  6121. if (max == 0) {
  6122. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  6123. do_div(max, bucketsize);
  6124. }
  6125. max = min(max, 0x80000000ULL);
  6126. if (numentries < low_limit)
  6127. numentries = low_limit;
  6128. if (numentries > max)
  6129. numentries = max;
  6130. log2qty = ilog2(numentries);
  6131. do {
  6132. size = bucketsize << log2qty;
  6133. if (flags & HASH_EARLY)
  6134. table = memblock_virt_alloc_nopanic(size, 0);
  6135. else if (hashdist)
  6136. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  6137. else {
  6138. /*
  6139. * If bucketsize is not a power-of-two, we may free
  6140. * some pages at the end of hash table which
  6141. * alloc_pages_exact() automatically does
  6142. */
  6143. if (get_order(size) < MAX_ORDER) {
  6144. table = alloc_pages_exact(size, GFP_ATOMIC);
  6145. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  6146. }
  6147. }
  6148. } while (!table && size > PAGE_SIZE && --log2qty);
  6149. if (!table)
  6150. panic("Failed to allocate %s hash table\n", tablename);
  6151. pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
  6152. tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
  6153. if (_hash_shift)
  6154. *_hash_shift = log2qty;
  6155. if (_hash_mask)
  6156. *_hash_mask = (1 << log2qty) - 1;
  6157. return table;
  6158. }
  6159. /*
  6160. * This function checks whether pageblock includes unmovable pages or not.
  6161. * If @count is not zero, it is okay to include less @count unmovable pages
  6162. *
  6163. * PageLRU check without isolation or lru_lock could race so that
  6164. * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
  6165. * expect this function should be exact.
  6166. */
  6167. bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
  6168. bool skip_hwpoisoned_pages)
  6169. {
  6170. unsigned long pfn, iter, found;
  6171. int mt;
  6172. /*
  6173. * For avoiding noise data, lru_add_drain_all() should be called
  6174. * If ZONE_MOVABLE, the zone never contains unmovable pages
  6175. */
  6176. if (zone_idx(zone) == ZONE_MOVABLE)
  6177. return false;
  6178. mt = get_pageblock_migratetype(page);
  6179. if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
  6180. return false;
  6181. pfn = page_to_pfn(page);
  6182. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  6183. unsigned long check = pfn + iter;
  6184. if (!pfn_valid_within(check))
  6185. continue;
  6186. page = pfn_to_page(check);
  6187. /*
  6188. * Hugepages are not in LRU lists, but they're movable.
  6189. * We need not scan over tail pages bacause we don't
  6190. * handle each tail page individually in migration.
  6191. */
  6192. if (PageHuge(page)) {
  6193. iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
  6194. continue;
  6195. }
  6196. /*
  6197. * We can't use page_count without pin a page
  6198. * because another CPU can free compound page.
  6199. * This check already skips compound tails of THP
  6200. * because their page->_refcount is zero at all time.
  6201. */
  6202. if (!page_ref_count(page)) {
  6203. if (PageBuddy(page))
  6204. iter += (1 << page_order(page)) - 1;
  6205. continue;
  6206. }
  6207. /*
  6208. * The HWPoisoned page may be not in buddy system, and
  6209. * page_count() is not 0.
  6210. */
  6211. if (skip_hwpoisoned_pages && PageHWPoison(page))
  6212. continue;
  6213. if (!PageLRU(page))
  6214. found++;
  6215. /*
  6216. * If there are RECLAIMABLE pages, we need to check
  6217. * it. But now, memory offline itself doesn't call
  6218. * shrink_node_slabs() and it still to be fixed.
  6219. */
  6220. /*
  6221. * If the page is not RAM, page_count()should be 0.
  6222. * we don't need more check. This is an _used_ not-movable page.
  6223. *
  6224. * The problematic thing here is PG_reserved pages. PG_reserved
  6225. * is set to both of a memory hole page and a _used_ kernel
  6226. * page at boot.
  6227. */
  6228. if (found > count)
  6229. return true;
  6230. }
  6231. return false;
  6232. }
  6233. bool is_pageblock_removable_nolock(struct page *page)
  6234. {
  6235. struct zone *zone;
  6236. unsigned long pfn;
  6237. /*
  6238. * We have to be careful here because we are iterating over memory
  6239. * sections which are not zone aware so we might end up outside of
  6240. * the zone but still within the section.
  6241. * We have to take care about the node as well. If the node is offline
  6242. * its NODE_DATA will be NULL - see page_zone.
  6243. */
  6244. if (!node_online(page_to_nid(page)))
  6245. return false;
  6246. zone = page_zone(page);
  6247. pfn = page_to_pfn(page);
  6248. if (!zone_spans_pfn(zone, pfn))
  6249. return false;
  6250. return !has_unmovable_pages(zone, page, 0, true);
  6251. }
  6252. #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
  6253. static unsigned long pfn_max_align_down(unsigned long pfn)
  6254. {
  6255. return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6256. pageblock_nr_pages) - 1);
  6257. }
  6258. static unsigned long pfn_max_align_up(unsigned long pfn)
  6259. {
  6260. return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
  6261. pageblock_nr_pages));
  6262. }
  6263. /* [start, end) must belong to a single zone. */
  6264. static int __alloc_contig_migrate_range(struct compact_control *cc,
  6265. unsigned long start, unsigned long end)
  6266. {
  6267. /* This function is based on compact_zone() from compaction.c. */
  6268. unsigned long nr_reclaimed;
  6269. unsigned long pfn = start;
  6270. unsigned int tries = 0;
  6271. int ret = 0;
  6272. migrate_prep();
  6273. while (pfn < end || !list_empty(&cc->migratepages)) {
  6274. if (fatal_signal_pending(current)) {
  6275. ret = -EINTR;
  6276. break;
  6277. }
  6278. if (list_empty(&cc->migratepages)) {
  6279. cc->nr_migratepages = 0;
  6280. pfn = isolate_migratepages_range(cc, pfn, end);
  6281. if (!pfn) {
  6282. ret = -EINTR;
  6283. break;
  6284. }
  6285. tries = 0;
  6286. } else if (++tries == 5) {
  6287. ret = ret < 0 ? ret : -EBUSY;
  6288. break;
  6289. }
  6290. nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
  6291. &cc->migratepages);
  6292. cc->nr_migratepages -= nr_reclaimed;
  6293. ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
  6294. NULL, 0, cc->mode, MR_CMA);
  6295. }
  6296. if (ret < 0) {
  6297. putback_movable_pages(&cc->migratepages);
  6298. return ret;
  6299. }
  6300. return 0;
  6301. }
  6302. /**
  6303. * alloc_contig_range() -- tries to allocate given range of pages
  6304. * @start: start PFN to allocate
  6305. * @end: one-past-the-last PFN to allocate
  6306. * @migratetype: migratetype of the underlaying pageblocks (either
  6307. * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
  6308. * in range must have the same migratetype and it must
  6309. * be either of the two.
  6310. *
  6311. * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
  6312. * aligned, however it's the caller's responsibility to guarantee that
  6313. * we are the only thread that changes migrate type of pageblocks the
  6314. * pages fall in.
  6315. *
  6316. * The PFN range must belong to a single zone.
  6317. *
  6318. * Returns zero on success or negative error code. On success all
  6319. * pages which PFN is in [start, end) are allocated for the caller and
  6320. * need to be freed with free_contig_range().
  6321. */
  6322. int alloc_contig_range(unsigned long start, unsigned long end,
  6323. unsigned migratetype)
  6324. {
  6325. unsigned long outer_start, outer_end;
  6326. unsigned int order;
  6327. int ret = 0;
  6328. struct compact_control cc = {
  6329. .nr_migratepages = 0,
  6330. .order = -1,
  6331. .zone = page_zone(pfn_to_page(start)),
  6332. .mode = MIGRATE_SYNC,
  6333. .ignore_skip_hint = true,
  6334. };
  6335. INIT_LIST_HEAD(&cc.migratepages);
  6336. /*
  6337. * What we do here is we mark all pageblocks in range as
  6338. * MIGRATE_ISOLATE. Because pageblock and max order pages may
  6339. * have different sizes, and due to the way page allocator
  6340. * work, we align the range to biggest of the two pages so
  6341. * that page allocator won't try to merge buddies from
  6342. * different pageblocks and change MIGRATE_ISOLATE to some
  6343. * other migration type.
  6344. *
  6345. * Once the pageblocks are marked as MIGRATE_ISOLATE, we
  6346. * migrate the pages from an unaligned range (ie. pages that
  6347. * we are interested in). This will put all the pages in
  6348. * range back to page allocator as MIGRATE_ISOLATE.
  6349. *
  6350. * When this is done, we take the pages in range from page
  6351. * allocator removing them from the buddy system. This way
  6352. * page allocator will never consider using them.
  6353. *
  6354. * This lets us mark the pageblocks back as
  6355. * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
  6356. * aligned range but not in the unaligned, original range are
  6357. * put back to page allocator so that buddy can use them.
  6358. */
  6359. ret = start_isolate_page_range(pfn_max_align_down(start),
  6360. pfn_max_align_up(end), migratetype,
  6361. false);
  6362. if (ret)
  6363. return ret;
  6364. /*
  6365. * In case of -EBUSY, we'd like to know which page causes problem.
  6366. * So, just fall through. We will check it in test_pages_isolated().
  6367. */
  6368. ret = __alloc_contig_migrate_range(&cc, start, end);
  6369. if (ret && ret != -EBUSY)
  6370. goto done;
  6371. /*
  6372. * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
  6373. * aligned blocks that are marked as MIGRATE_ISOLATE. What's
  6374. * more, all pages in [start, end) are free in page allocator.
  6375. * What we are going to do is to allocate all pages from
  6376. * [start, end) (that is remove them from page allocator).
  6377. *
  6378. * The only problem is that pages at the beginning and at the
  6379. * end of interesting range may be not aligned with pages that
  6380. * page allocator holds, ie. they can be part of higher order
  6381. * pages. Because of this, we reserve the bigger range and
  6382. * once this is done free the pages we are not interested in.
  6383. *
  6384. * We don't have to hold zone->lock here because the pages are
  6385. * isolated thus they won't get removed from buddy.
  6386. */
  6387. lru_add_drain_all();
  6388. drain_all_pages(cc.zone);
  6389. order = 0;
  6390. outer_start = start;
  6391. while (!PageBuddy(pfn_to_page(outer_start))) {
  6392. if (++order >= MAX_ORDER) {
  6393. outer_start = start;
  6394. break;
  6395. }
  6396. outer_start &= ~0UL << order;
  6397. }
  6398. if (outer_start != start) {
  6399. order = page_order(pfn_to_page(outer_start));
  6400. /*
  6401. * outer_start page could be small order buddy page and
  6402. * it doesn't include start page. Adjust outer_start
  6403. * in this case to report failed page properly
  6404. * on tracepoint in test_pages_isolated()
  6405. */
  6406. if (outer_start + (1UL << order) <= start)
  6407. outer_start = start;
  6408. }
  6409. /* Make sure the range is really isolated. */
  6410. if (test_pages_isolated(outer_start, end, false)) {
  6411. pr_info("%s: [%lx, %lx) PFNs busy\n",
  6412. __func__, outer_start, end);
  6413. ret = -EBUSY;
  6414. goto done;
  6415. }
  6416. /* Grab isolated pages from freelists. */
  6417. outer_end = isolate_freepages_range(&cc, outer_start, end);
  6418. if (!outer_end) {
  6419. ret = -EBUSY;
  6420. goto done;
  6421. }
  6422. /* Free head and tail (if any) */
  6423. if (start != outer_start)
  6424. free_contig_range(outer_start, start - outer_start);
  6425. if (end != outer_end)
  6426. free_contig_range(end, outer_end - end);
  6427. done:
  6428. undo_isolate_page_range(pfn_max_align_down(start),
  6429. pfn_max_align_up(end), migratetype);
  6430. return ret;
  6431. }
  6432. void free_contig_range(unsigned long pfn, unsigned nr_pages)
  6433. {
  6434. unsigned int count = 0;
  6435. for (; nr_pages--; pfn++) {
  6436. struct page *page = pfn_to_page(pfn);
  6437. count += page_count(page) != 1;
  6438. __free_page(page);
  6439. }
  6440. WARN(count != 0, "%d pages are still in use!\n", count);
  6441. }
  6442. #endif
  6443. #ifdef CONFIG_MEMORY_HOTPLUG
  6444. /*
  6445. * The zone indicated has a new number of managed_pages; batch sizes and percpu
  6446. * page high values need to be recalulated.
  6447. */
  6448. void __meminit zone_pcp_update(struct zone *zone)
  6449. {
  6450. unsigned cpu;
  6451. mutex_lock(&pcp_batch_high_lock);
  6452. for_each_possible_cpu(cpu)
  6453. pageset_set_high_and_batch(zone,
  6454. per_cpu_ptr(zone->pageset, cpu));
  6455. mutex_unlock(&pcp_batch_high_lock);
  6456. }
  6457. #endif
  6458. void zone_pcp_reset(struct zone *zone)
  6459. {
  6460. unsigned long flags;
  6461. int cpu;
  6462. struct per_cpu_pageset *pset;
  6463. /* avoid races with drain_pages() */
  6464. local_irq_save(flags);
  6465. if (zone->pageset != &boot_pageset) {
  6466. for_each_online_cpu(cpu) {
  6467. pset = per_cpu_ptr(zone->pageset, cpu);
  6468. drain_zonestat(zone, pset);
  6469. }
  6470. free_percpu(zone->pageset);
  6471. zone->pageset = &boot_pageset;
  6472. }
  6473. local_irq_restore(flags);
  6474. }
  6475. #ifdef CONFIG_MEMORY_HOTREMOVE
  6476. /*
  6477. * All pages in the range must be in a single zone and isolated
  6478. * before calling this.
  6479. */
  6480. void
  6481. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  6482. {
  6483. struct page *page;
  6484. struct zone *zone;
  6485. unsigned int order, i;
  6486. unsigned long pfn;
  6487. unsigned long flags;
  6488. /* find the first valid pfn */
  6489. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  6490. if (pfn_valid(pfn))
  6491. break;
  6492. if (pfn == end_pfn)
  6493. return;
  6494. zone = page_zone(pfn_to_page(pfn));
  6495. spin_lock_irqsave(&zone->lock, flags);
  6496. pfn = start_pfn;
  6497. while (pfn < end_pfn) {
  6498. if (!pfn_valid(pfn)) {
  6499. pfn++;
  6500. continue;
  6501. }
  6502. page = pfn_to_page(pfn);
  6503. /*
  6504. * The HWPoisoned page may be not in buddy system, and
  6505. * page_count() is not 0.
  6506. */
  6507. if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
  6508. pfn++;
  6509. SetPageReserved(page);
  6510. continue;
  6511. }
  6512. BUG_ON(page_count(page));
  6513. BUG_ON(!PageBuddy(page));
  6514. order = page_order(page);
  6515. #ifdef CONFIG_DEBUG_VM
  6516. pr_info("remove from free list %lx %d %lx\n",
  6517. pfn, 1 << order, end_pfn);
  6518. #endif
  6519. list_del(&page->lru);
  6520. rmv_page_order(page);
  6521. zone->free_area[order].nr_free--;
  6522. for (i = 0; i < (1 << order); i++)
  6523. SetPageReserved((page+i));
  6524. pfn += (1 << order);
  6525. }
  6526. spin_unlock_irqrestore(&zone->lock, flags);
  6527. }
  6528. #endif
  6529. bool is_free_buddy_page(struct page *page)
  6530. {
  6531. struct zone *zone = page_zone(page);
  6532. unsigned long pfn = page_to_pfn(page);
  6533. unsigned long flags;
  6534. unsigned int order;
  6535. spin_lock_irqsave(&zone->lock, flags);
  6536. for (order = 0; order < MAX_ORDER; order++) {
  6537. struct page *page_head = page - (pfn & ((1 << order) - 1));
  6538. if (PageBuddy(page_head) && page_order(page_head) >= order)
  6539. break;
  6540. }
  6541. spin_unlock_irqrestore(&zone->lock, flags);
  6542. return order < MAX_ORDER;
  6543. }