intel_ringbuffer.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #include "i915_gem_request.h"
  6. #include "i915_gem_timeline.h"
  7. #define I915_CMD_HASH_ORDER 9
  8. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  9. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  10. * to give some inclination as to some of the magic values used in the various
  11. * workarounds!
  12. */
  13. #define CACHELINE_BYTES 64
  14. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  15. /*
  16. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  17. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  18. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  19. *
  20. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  21. * cacheline, the Head Pointer must not be greater than the Tail
  22. * Pointer."
  23. */
  24. #define I915_RING_FREE_SPACE 64
  25. struct intel_hw_status_page {
  26. struct i915_vma *vma;
  27. u32 *page_addr;
  28. u32 ggtt_offset;
  29. };
  30. #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  31. #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  32. #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  33. #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  34. #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
  35. #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  36. #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  37. #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  38. #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  39. #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  40. #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  41. #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  42. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  43. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  44. */
  45. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  46. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  47. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  48. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  49. (dev_priv->semaphore->node.start + \
  50. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  51. #define GEN8_WAIT_OFFSET(__ring, from) \
  52. (dev_priv->semaphore->node.start + \
  53. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  54. enum intel_engine_hangcheck_action {
  55. HANGCHECK_IDLE = 0,
  56. HANGCHECK_WAIT,
  57. HANGCHECK_ACTIVE,
  58. HANGCHECK_KICK,
  59. HANGCHECK_HUNG,
  60. };
  61. #define HANGCHECK_SCORE_RING_HUNG 31
  62. #define I915_MAX_SLICES 3
  63. #define I915_MAX_SUBSLICES 3
  64. #define instdone_slice_mask(dev_priv__) \
  65. (INTEL_GEN(dev_priv__) == 7 ? \
  66. 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  67. #define instdone_subslice_mask(dev_priv__) \
  68. (INTEL_GEN(dev_priv__) == 7 ? \
  69. 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
  70. #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
  71. for ((slice__) = 0, (subslice__) = 0; \
  72. (slice__) < I915_MAX_SLICES; \
  73. (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
  74. (slice__) += ((subslice__) == 0)) \
  75. for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
  76. (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
  77. struct intel_instdone {
  78. u32 instdone;
  79. /* The following exist only in the RCS engine */
  80. u32 slice_common;
  81. u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  82. u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  83. };
  84. struct intel_engine_hangcheck {
  85. u64 acthd;
  86. u32 seqno;
  87. int score;
  88. enum intel_engine_hangcheck_action action;
  89. int deadlock;
  90. struct intel_instdone instdone;
  91. };
  92. struct intel_ring {
  93. struct i915_vma *vma;
  94. void *vaddr;
  95. struct intel_engine_cs *engine;
  96. struct list_head request_list;
  97. u32 head;
  98. u32 tail;
  99. int space;
  100. int size;
  101. int effective_size;
  102. /** We track the position of the requests in the ring buffer, and
  103. * when each is retired we increment last_retired_head as the GPU
  104. * must have finished processing the request and so we know we
  105. * can advance the ringbuffer up to that position.
  106. *
  107. * last_retired_head is set to -1 after the value is consumed so
  108. * we can detect new retirements.
  109. */
  110. u32 last_retired_head;
  111. };
  112. struct i915_gem_context;
  113. struct drm_i915_reg_table;
  114. /*
  115. * we use a single page to load ctx workarounds so all of these
  116. * values are referred in terms of dwords
  117. *
  118. * struct i915_wa_ctx_bb:
  119. * offset: specifies batch starting position, also helpful in case
  120. * if we want to have multiple batches at different offsets based on
  121. * some criteria. It is not a requirement at the moment but provides
  122. * an option for future use.
  123. * size: size of the batch in DWORDS
  124. */
  125. struct i915_ctx_workarounds {
  126. struct i915_wa_ctx_bb {
  127. u32 offset;
  128. u32 size;
  129. } indirect_ctx, per_ctx;
  130. struct i915_vma *vma;
  131. };
  132. struct drm_i915_gem_request;
  133. struct intel_render_state;
  134. struct intel_engine_cs {
  135. struct drm_i915_private *i915;
  136. const char *name;
  137. enum intel_engine_id {
  138. RCS = 0,
  139. BCS,
  140. VCS,
  141. VCS2, /* Keep instances of the same type engine together. */
  142. VECS
  143. } id;
  144. #define _VCS(n) (VCS + (n))
  145. unsigned int exec_id;
  146. enum intel_engine_hw_id {
  147. RCS_HW = 0,
  148. VCS_HW,
  149. BCS_HW,
  150. VECS_HW,
  151. VCS2_HW
  152. } hw_id;
  153. enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
  154. u32 mmio_base;
  155. unsigned int irq_shift;
  156. struct intel_ring *buffer;
  157. struct intel_timeline *timeline;
  158. struct intel_render_state *render_state;
  159. /* Rather than have every client wait upon all user interrupts,
  160. * with the herd waking after every interrupt and each doing the
  161. * heavyweight seqno dance, we delegate the task (of being the
  162. * bottom-half of the user interrupt) to the first client. After
  163. * every interrupt, we wake up one client, who does the heavyweight
  164. * coherent seqno read and either goes back to sleep (if incomplete),
  165. * or wakes up all the completed clients in parallel, before then
  166. * transferring the bottom-half status to the next client in the queue.
  167. *
  168. * Compared to walking the entire list of waiters in a single dedicated
  169. * bottom-half, we reduce the latency of the first waiter by avoiding
  170. * a context switch, but incur additional coherent seqno reads when
  171. * following the chain of request breadcrumbs. Since it is most likely
  172. * that we have a single client waiting on each seqno, then reducing
  173. * the overhead of waking that client is much preferred.
  174. */
  175. struct intel_breadcrumbs {
  176. struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
  177. bool irq_posted;
  178. spinlock_t lock; /* protects the lists of requests */
  179. struct rb_root waiters; /* sorted by retirement, priority */
  180. struct rb_root signals; /* sorted by retirement */
  181. struct intel_wait *first_wait; /* oldest waiter by retirement */
  182. struct task_struct *signaler; /* used for fence signalling */
  183. struct drm_i915_gem_request *first_signal;
  184. struct timer_list fake_irq; /* used after a missed interrupt */
  185. struct timer_list hangcheck; /* detect missed interrupts */
  186. unsigned long timeout;
  187. bool irq_enabled : 1;
  188. bool rpm_wakelock : 1;
  189. } breadcrumbs;
  190. /*
  191. * A pool of objects to use as shadow copies of client batch buffers
  192. * when the command parser is enabled. Prevents the client from
  193. * modifying the batch contents after software parsing.
  194. */
  195. struct i915_gem_batch_pool batch_pool;
  196. struct intel_hw_status_page status_page;
  197. struct i915_ctx_workarounds wa_ctx;
  198. struct i915_vma *scratch;
  199. u32 irq_keep_mask; /* always keep these interrupts */
  200. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  201. void (*irq_enable)(struct intel_engine_cs *engine);
  202. void (*irq_disable)(struct intel_engine_cs *engine);
  203. int (*init_hw)(struct intel_engine_cs *engine);
  204. void (*reset_hw)(struct intel_engine_cs *engine,
  205. struct drm_i915_gem_request *req);
  206. int (*init_context)(struct drm_i915_gem_request *req);
  207. int (*emit_flush)(struct drm_i915_gem_request *request,
  208. u32 mode);
  209. #define EMIT_INVALIDATE BIT(0)
  210. #define EMIT_FLUSH BIT(1)
  211. #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
  212. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  213. u64 offset, u32 length,
  214. unsigned int dispatch_flags);
  215. #define I915_DISPATCH_SECURE BIT(0)
  216. #define I915_DISPATCH_PINNED BIT(1)
  217. #define I915_DISPATCH_RS BIT(2)
  218. void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
  219. u32 *out);
  220. int emit_breadcrumb_sz;
  221. /* Pass the request to the hardware queue (e.g. directly into
  222. * the legacy ringbuffer or to the end of an execlist).
  223. *
  224. * This is called from an atomic context with irqs disabled; must
  225. * be irq safe.
  226. */
  227. void (*submit_request)(struct drm_i915_gem_request *req);
  228. /* Some chipsets are not quite as coherent as advertised and need
  229. * an expensive kick to force a true read of the up-to-date seqno.
  230. * However, the up-to-date seqno is not always required and the last
  231. * seen value is good enough. Note that the seqno will always be
  232. * monotonic, even if not coherent.
  233. */
  234. void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
  235. void (*cleanup)(struct intel_engine_cs *engine);
  236. /* GEN8 signal/wait table - never trust comments!
  237. * signal to signal to signal to signal to signal to
  238. * RCS VCS BCS VECS VCS2
  239. * --------------------------------------------------------------------
  240. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  241. * |-------------------------------------------------------------------
  242. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  243. * |-------------------------------------------------------------------
  244. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  245. * |-------------------------------------------------------------------
  246. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  247. * |-------------------------------------------------------------------
  248. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  249. * |-------------------------------------------------------------------
  250. *
  251. * Generalization:
  252. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  253. * ie. transpose of g(x, y)
  254. *
  255. * sync from sync from sync from sync from sync from
  256. * RCS VCS BCS VECS VCS2
  257. * --------------------------------------------------------------------
  258. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  259. * |-------------------------------------------------------------------
  260. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  261. * |-------------------------------------------------------------------
  262. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  263. * |-------------------------------------------------------------------
  264. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  265. * |-------------------------------------------------------------------
  266. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  267. * |-------------------------------------------------------------------
  268. *
  269. * Generalization:
  270. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  271. * ie. transpose of f(x, y)
  272. */
  273. struct {
  274. union {
  275. #define GEN6_SEMAPHORE_LAST VECS_HW
  276. #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
  277. #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
  278. struct {
  279. /* our mbox written by others */
  280. u32 wait[GEN6_NUM_SEMAPHORES];
  281. /* mboxes this ring signals to */
  282. i915_reg_t signal[GEN6_NUM_SEMAPHORES];
  283. } mbox;
  284. u64 signal_ggtt[I915_NUM_ENGINES];
  285. };
  286. /* AKA wait() */
  287. int (*sync_to)(struct drm_i915_gem_request *req,
  288. struct drm_i915_gem_request *signal);
  289. u32 *(*signal)(struct drm_i915_gem_request *req, u32 *out);
  290. } semaphore;
  291. /* Execlists */
  292. struct tasklet_struct irq_tasklet;
  293. spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
  294. struct execlist_port {
  295. struct drm_i915_gem_request *request;
  296. unsigned int count;
  297. } execlist_port[2];
  298. struct list_head execlist_queue;
  299. unsigned int fw_domains;
  300. bool disable_lite_restore_wa;
  301. bool preempt_wa;
  302. u32 ctx_desc_template;
  303. struct i915_gem_context *last_context;
  304. struct intel_engine_hangcheck hangcheck;
  305. bool needs_cmd_parser;
  306. /*
  307. * Table of commands the command parser needs to know about
  308. * for this engine.
  309. */
  310. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  311. /*
  312. * Table of registers allowed in commands that read/write registers.
  313. */
  314. const struct drm_i915_reg_table *reg_tables;
  315. int reg_table_count;
  316. /*
  317. * Returns the bitmask for the length field of the specified command.
  318. * Return 0 for an unrecognized/invalid command.
  319. *
  320. * If the command parser finds an entry for a command in the engine's
  321. * cmd_tables, it gets the command's length based on the table entry.
  322. * If not, it calls this function to determine the per-engine length
  323. * field encoding for the command (i.e. different opcode ranges use
  324. * certain bits to encode the command length in the header).
  325. */
  326. u32 (*get_cmd_length_mask)(u32 cmd_header);
  327. };
  328. static inline unsigned
  329. intel_engine_flag(const struct intel_engine_cs *engine)
  330. {
  331. return 1 << engine->id;
  332. }
  333. static inline void
  334. intel_flush_status_page(struct intel_engine_cs *engine, int reg)
  335. {
  336. mb();
  337. clflush(&engine->status_page.page_addr[reg]);
  338. mb();
  339. }
  340. static inline u32
  341. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  342. {
  343. /* Ensure that the compiler doesn't optimize away the load. */
  344. return READ_ONCE(engine->status_page.page_addr[reg]);
  345. }
  346. static inline void
  347. intel_write_status_page(struct intel_engine_cs *engine,
  348. int reg, u32 value)
  349. {
  350. engine->status_page.page_addr[reg] = value;
  351. }
  352. /*
  353. * Reads a dword out of the status page, which is written to from the command
  354. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  355. * MI_STORE_DATA_IMM.
  356. *
  357. * The following dwords have a reserved meaning:
  358. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  359. * 0x04: ring 0 head pointer
  360. * 0x05: ring 1 head pointer (915-class)
  361. * 0x06: ring 2 head pointer (915-class)
  362. * 0x10-0x1b: Context status DWords (GM45)
  363. * 0x1f: Last written status offset. (GM45)
  364. * 0x20-0x2f: Reserved (Gen6+)
  365. *
  366. * The area from dword 0x30 to 0x3ff is available for driver usage.
  367. */
  368. #define I915_GEM_HWS_INDEX 0x30
  369. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  370. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  371. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  372. struct intel_ring *
  373. intel_engine_create_ring(struct intel_engine_cs *engine, int size);
  374. int intel_ring_pin(struct intel_ring *ring);
  375. void intel_ring_unpin(struct intel_ring *ring);
  376. void intel_ring_free(struct intel_ring *ring);
  377. void intel_engine_stop(struct intel_engine_cs *engine);
  378. void intel_engine_cleanup(struct intel_engine_cs *engine);
  379. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
  380. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
  381. int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
  382. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  383. static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
  384. {
  385. *(uint32_t *)(ring->vaddr + ring->tail) = data;
  386. ring->tail += 4;
  387. }
  388. static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
  389. {
  390. intel_ring_emit(ring, i915_mmio_reg_offset(reg));
  391. }
  392. static inline void intel_ring_advance(struct intel_ring *ring)
  393. {
  394. /* Dummy function.
  395. *
  396. * This serves as a placeholder in the code so that the reader
  397. * can compare against the preceding intel_ring_begin() and
  398. * check that the number of dwords emitted matches the space
  399. * reserved for the command packet (i.e. the value passed to
  400. * intel_ring_begin()).
  401. */
  402. }
  403. static inline u32 intel_ring_offset(struct intel_ring *ring, void *addr)
  404. {
  405. /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
  406. u32 offset = addr - ring->vaddr;
  407. return offset & (ring->size - 1);
  408. }
  409. int __intel_ring_space(int head, int tail, int size);
  410. void intel_ring_update_space(struct intel_ring *ring);
  411. void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
  412. void intel_engine_setup_common(struct intel_engine_cs *engine);
  413. int intel_engine_init_common(struct intel_engine_cs *engine);
  414. int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
  415. void intel_engine_cleanup_common(struct intel_engine_cs *engine);
  416. int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
  417. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
  418. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
  419. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
  420. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
  421. u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
  422. u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
  423. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  424. {
  425. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  426. }
  427. int init_workarounds_ring(struct intel_engine_cs *engine);
  428. void intel_engine_get_instdone(struct intel_engine_cs *engine,
  429. struct intel_instdone *instdone);
  430. /*
  431. * Arbitrary size for largest possible 'add request' sequence. The code paths
  432. * are complex and variable. Empirical measurement shows that the worst case
  433. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  434. * we need to allocate double the largest single packet within that emission
  435. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  436. */
  437. #define MIN_SPACE_FOR_ADD_REQUEST 336
  438. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  439. {
  440. return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
  441. }
  442. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  443. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  444. static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
  445. {
  446. wait->tsk = current;
  447. wait->seqno = seqno;
  448. }
  449. static inline bool intel_wait_complete(const struct intel_wait *wait)
  450. {
  451. return RB_EMPTY_NODE(&wait->node);
  452. }
  453. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  454. struct intel_wait *wait);
  455. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  456. struct intel_wait *wait);
  457. void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
  458. static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
  459. {
  460. return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
  461. }
  462. static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
  463. {
  464. bool wakeup = false;
  465. /* Note that for this not to dangerously chase a dangling pointer,
  466. * we must hold the rcu_read_lock here.
  467. *
  468. * Also note that tsk is likely to be in !TASK_RUNNING state so an
  469. * early test for tsk->state != TASK_RUNNING before wake_up_process()
  470. * is unlikely to be beneficial.
  471. */
  472. if (intel_engine_has_waiter(engine)) {
  473. struct task_struct *tsk;
  474. rcu_read_lock();
  475. tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
  476. if (tsk)
  477. wakeup = wake_up_process(tsk);
  478. rcu_read_unlock();
  479. }
  480. return wakeup;
  481. }
  482. void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
  483. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  484. unsigned int intel_kick_waiters(struct drm_i915_private *i915);
  485. unsigned int intel_kick_signalers(struct drm_i915_private *i915);
  486. static inline bool intel_engine_is_active(struct intel_engine_cs *engine)
  487. {
  488. return i915_gem_active_isset(&engine->timeline->last_request);
  489. }
  490. #endif /* _INTEL_RINGBUFFER_H_ */