i915_debugfs.c 152 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
  42. {
  43. return to_i915(node->minor->dev);
  44. }
  45. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  46. * allocated we need to hook into the minor for release. */
  47. static int
  48. drm_add_fake_info_node(struct drm_minor *minor,
  49. struct dentry *ent,
  50. const void *key)
  51. {
  52. struct drm_info_node *node;
  53. node = kmalloc(sizeof(*node), GFP_KERNEL);
  54. if (node == NULL) {
  55. debugfs_remove(ent);
  56. return -ENOMEM;
  57. }
  58. node->minor = minor;
  59. node->dent = ent;
  60. node->info_ent = (void *)key;
  61. mutex_lock(&minor->debugfs_lock);
  62. list_add(&node->list, &minor->debugfs_list);
  63. mutex_unlock(&minor->debugfs_lock);
  64. return 0;
  65. }
  66. static int i915_capabilities(struct seq_file *m, void *data)
  67. {
  68. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  69. const struct intel_device_info *info = INTEL_INFO(dev_priv);
  70. seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
  71. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
  72. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  73. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
  74. #undef PRINT_FLAG
  75. return 0;
  76. }
  77. static char get_active_flag(struct drm_i915_gem_object *obj)
  78. {
  79. return i915_gem_object_is_active(obj) ? '*' : ' ';
  80. }
  81. static char get_pin_flag(struct drm_i915_gem_object *obj)
  82. {
  83. return obj->pin_display ? 'p' : ' ';
  84. }
  85. static char get_tiling_flag(struct drm_i915_gem_object *obj)
  86. {
  87. switch (i915_gem_object_get_tiling(obj)) {
  88. default:
  89. case I915_TILING_NONE: return ' ';
  90. case I915_TILING_X: return 'X';
  91. case I915_TILING_Y: return 'Y';
  92. }
  93. }
  94. static char get_global_flag(struct drm_i915_gem_object *obj)
  95. {
  96. return !list_empty(&obj->userfault_link) ? 'g' : ' ';
  97. }
  98. static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
  99. {
  100. return obj->mm.mapping ? 'M' : ' ';
  101. }
  102. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  103. {
  104. u64 size = 0;
  105. struct i915_vma *vma;
  106. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  107. if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
  108. size += vma->node.size;
  109. }
  110. return size;
  111. }
  112. static void
  113. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  114. {
  115. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  116. struct intel_engine_cs *engine;
  117. struct i915_vma *vma;
  118. unsigned int frontbuffer_bits;
  119. int pin_count = 0;
  120. lockdep_assert_held(&obj->base.dev->struct_mutex);
  121. seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
  122. &obj->base,
  123. get_active_flag(obj),
  124. get_pin_flag(obj),
  125. get_tiling_flag(obj),
  126. get_global_flag(obj),
  127. get_pin_mapped_flag(obj),
  128. obj->base.size / 1024,
  129. obj->base.read_domains,
  130. obj->base.write_domain,
  131. i915_cache_level_str(dev_priv, obj->cache_level),
  132. obj->mm.dirty ? " dirty" : "",
  133. obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
  134. if (obj->base.name)
  135. seq_printf(m, " (name: %d)", obj->base.name);
  136. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  137. if (i915_vma_is_pinned(vma))
  138. pin_count++;
  139. }
  140. seq_printf(m, " (pinned x %d)", pin_count);
  141. if (obj->pin_display)
  142. seq_printf(m, " (display)");
  143. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  144. if (!drm_mm_node_allocated(&vma->node))
  145. continue;
  146. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  147. i915_vma_is_ggtt(vma) ? "g" : "pp",
  148. vma->node.start, vma->node.size);
  149. if (i915_vma_is_ggtt(vma))
  150. seq_printf(m, ", type: %u", vma->ggtt_view.type);
  151. if (vma->fence)
  152. seq_printf(m, " , fence: %d%s",
  153. vma->fence->id,
  154. i915_gem_active_isset(&vma->last_fence) ? "*" : "");
  155. seq_puts(m, ")");
  156. }
  157. if (obj->stolen)
  158. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  159. engine = i915_gem_object_last_write_engine(obj);
  160. if (engine)
  161. seq_printf(m, " (%s)", engine->name);
  162. frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
  163. if (frontbuffer_bits)
  164. seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
  165. }
  166. static int obj_rank_by_stolen(void *priv,
  167. struct list_head *A, struct list_head *B)
  168. {
  169. struct drm_i915_gem_object *a =
  170. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  171. struct drm_i915_gem_object *b =
  172. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  173. if (a->stolen->start < b->stolen->start)
  174. return -1;
  175. if (a->stolen->start > b->stolen->start)
  176. return 1;
  177. return 0;
  178. }
  179. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  180. {
  181. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  182. struct drm_device *dev = &dev_priv->drm;
  183. struct drm_i915_gem_object *obj;
  184. u64 total_obj_size, total_gtt_size;
  185. LIST_HEAD(stolen);
  186. int count, ret;
  187. ret = mutex_lock_interruptible(&dev->struct_mutex);
  188. if (ret)
  189. return ret;
  190. total_obj_size = total_gtt_size = count = 0;
  191. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  192. if (obj->stolen == NULL)
  193. continue;
  194. list_add(&obj->obj_exec_link, &stolen);
  195. total_obj_size += obj->base.size;
  196. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  197. count++;
  198. }
  199. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  200. if (obj->stolen == NULL)
  201. continue;
  202. list_add(&obj->obj_exec_link, &stolen);
  203. total_obj_size += obj->base.size;
  204. count++;
  205. }
  206. list_sort(NULL, &stolen, obj_rank_by_stolen);
  207. seq_puts(m, "Stolen:\n");
  208. while (!list_empty(&stolen)) {
  209. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  210. seq_puts(m, " ");
  211. describe_obj(m, obj);
  212. seq_putc(m, '\n');
  213. list_del_init(&obj->obj_exec_link);
  214. }
  215. mutex_unlock(&dev->struct_mutex);
  216. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  217. count, total_obj_size, total_gtt_size);
  218. return 0;
  219. }
  220. struct file_stats {
  221. struct drm_i915_file_private *file_priv;
  222. unsigned long count;
  223. u64 total, unbound;
  224. u64 global, shared;
  225. u64 active, inactive;
  226. };
  227. static int per_file_stats(int id, void *ptr, void *data)
  228. {
  229. struct drm_i915_gem_object *obj = ptr;
  230. struct file_stats *stats = data;
  231. struct i915_vma *vma;
  232. stats->count++;
  233. stats->total += obj->base.size;
  234. if (!obj->bind_count)
  235. stats->unbound += obj->base.size;
  236. if (obj->base.name || obj->base.dma_buf)
  237. stats->shared += obj->base.size;
  238. list_for_each_entry(vma, &obj->vma_list, obj_link) {
  239. if (!drm_mm_node_allocated(&vma->node))
  240. continue;
  241. if (i915_vma_is_ggtt(vma)) {
  242. stats->global += vma->node.size;
  243. } else {
  244. struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
  245. if (ppgtt->base.file != stats->file_priv)
  246. continue;
  247. }
  248. if (i915_vma_is_active(vma))
  249. stats->active += vma->node.size;
  250. else
  251. stats->inactive += vma->node.size;
  252. }
  253. return 0;
  254. }
  255. #define print_file_stats(m, name, stats) do { \
  256. if (stats.count) \
  257. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  258. name, \
  259. stats.count, \
  260. stats.total, \
  261. stats.active, \
  262. stats.inactive, \
  263. stats.global, \
  264. stats.shared, \
  265. stats.unbound); \
  266. } while (0)
  267. static void print_batch_pool_stats(struct seq_file *m,
  268. struct drm_i915_private *dev_priv)
  269. {
  270. struct drm_i915_gem_object *obj;
  271. struct file_stats stats;
  272. struct intel_engine_cs *engine;
  273. enum intel_engine_id id;
  274. int j;
  275. memset(&stats, 0, sizeof(stats));
  276. for_each_engine(engine, dev_priv, id) {
  277. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  278. list_for_each_entry(obj,
  279. &engine->batch_pool.cache_list[j],
  280. batch_pool_link)
  281. per_file_stats(0, obj, &stats);
  282. }
  283. }
  284. print_file_stats(m, "[k]batch pool", stats);
  285. }
  286. static int per_file_ctx_stats(int id, void *ptr, void *data)
  287. {
  288. struct i915_gem_context *ctx = ptr;
  289. int n;
  290. for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
  291. if (ctx->engine[n].state)
  292. per_file_stats(0, ctx->engine[n].state->obj, data);
  293. if (ctx->engine[n].ring)
  294. per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
  295. }
  296. return 0;
  297. }
  298. static void print_context_stats(struct seq_file *m,
  299. struct drm_i915_private *dev_priv)
  300. {
  301. struct drm_device *dev = &dev_priv->drm;
  302. struct file_stats stats;
  303. struct drm_file *file;
  304. memset(&stats, 0, sizeof(stats));
  305. mutex_lock(&dev->struct_mutex);
  306. if (dev_priv->kernel_context)
  307. per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
  308. list_for_each_entry(file, &dev->filelist, lhead) {
  309. struct drm_i915_file_private *fpriv = file->driver_priv;
  310. idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
  311. }
  312. mutex_unlock(&dev->struct_mutex);
  313. print_file_stats(m, "[k]contexts", stats);
  314. }
  315. static int i915_gem_object_info(struct seq_file *m, void *data)
  316. {
  317. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  318. struct drm_device *dev = &dev_priv->drm;
  319. struct i915_ggtt *ggtt = &dev_priv->ggtt;
  320. u32 count, mapped_count, purgeable_count, dpy_count;
  321. u64 size, mapped_size, purgeable_size, dpy_size;
  322. struct drm_i915_gem_object *obj;
  323. struct drm_file *file;
  324. int ret;
  325. ret = mutex_lock_interruptible(&dev->struct_mutex);
  326. if (ret)
  327. return ret;
  328. seq_printf(m, "%u objects, %llu bytes\n",
  329. dev_priv->mm.object_count,
  330. dev_priv->mm.object_memory);
  331. size = count = 0;
  332. mapped_size = mapped_count = 0;
  333. purgeable_size = purgeable_count = 0;
  334. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  335. size += obj->base.size;
  336. ++count;
  337. if (obj->mm.madv == I915_MADV_DONTNEED) {
  338. purgeable_size += obj->base.size;
  339. ++purgeable_count;
  340. }
  341. if (obj->mm.mapping) {
  342. mapped_count++;
  343. mapped_size += obj->base.size;
  344. }
  345. }
  346. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  347. size = count = dpy_size = dpy_count = 0;
  348. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  349. size += obj->base.size;
  350. ++count;
  351. if (obj->pin_display) {
  352. dpy_size += obj->base.size;
  353. ++dpy_count;
  354. }
  355. if (obj->mm.madv == I915_MADV_DONTNEED) {
  356. purgeable_size += obj->base.size;
  357. ++purgeable_count;
  358. }
  359. if (obj->mm.mapping) {
  360. mapped_count++;
  361. mapped_size += obj->base.size;
  362. }
  363. }
  364. seq_printf(m, "%u bound objects, %llu bytes\n",
  365. count, size);
  366. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  367. purgeable_count, purgeable_size);
  368. seq_printf(m, "%u mapped objects, %llu bytes\n",
  369. mapped_count, mapped_size);
  370. seq_printf(m, "%u display objects (pinned), %llu bytes\n",
  371. dpy_count, dpy_size);
  372. seq_printf(m, "%llu [%llu] gtt total\n",
  373. ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
  374. seq_putc(m, '\n');
  375. print_batch_pool_stats(m, dev_priv);
  376. mutex_unlock(&dev->struct_mutex);
  377. mutex_lock(&dev->filelist_mutex);
  378. print_context_stats(m, dev_priv);
  379. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  380. struct file_stats stats;
  381. struct drm_i915_file_private *file_priv = file->driver_priv;
  382. struct drm_i915_gem_request *request;
  383. struct task_struct *task;
  384. memset(&stats, 0, sizeof(stats));
  385. stats.file_priv = file->driver_priv;
  386. spin_lock(&file->table_lock);
  387. idr_for_each(&file->object_idr, per_file_stats, &stats);
  388. spin_unlock(&file->table_lock);
  389. /*
  390. * Although we have a valid reference on file->pid, that does
  391. * not guarantee that the task_struct who called get_pid() is
  392. * still alive (e.g. get_pid(current) => fork() => exit()).
  393. * Therefore, we need to protect this ->comm access using RCU.
  394. */
  395. mutex_lock(&dev->struct_mutex);
  396. request = list_first_entry_or_null(&file_priv->mm.request_list,
  397. struct drm_i915_gem_request,
  398. client_list);
  399. rcu_read_lock();
  400. task = pid_task(request && request->ctx->pid ?
  401. request->ctx->pid : file->pid,
  402. PIDTYPE_PID);
  403. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  404. rcu_read_unlock();
  405. mutex_unlock(&dev->struct_mutex);
  406. }
  407. mutex_unlock(&dev->filelist_mutex);
  408. return 0;
  409. }
  410. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  411. {
  412. struct drm_info_node *node = m->private;
  413. struct drm_i915_private *dev_priv = node_to_i915(node);
  414. struct drm_device *dev = &dev_priv->drm;
  415. bool show_pin_display_only = !!node->info_ent->data;
  416. struct drm_i915_gem_object *obj;
  417. u64 total_obj_size, total_gtt_size;
  418. int count, ret;
  419. ret = mutex_lock_interruptible(&dev->struct_mutex);
  420. if (ret)
  421. return ret;
  422. total_obj_size = total_gtt_size = count = 0;
  423. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  424. if (show_pin_display_only && !obj->pin_display)
  425. continue;
  426. seq_puts(m, " ");
  427. describe_obj(m, obj);
  428. seq_putc(m, '\n');
  429. total_obj_size += obj->base.size;
  430. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  431. count++;
  432. }
  433. mutex_unlock(&dev->struct_mutex);
  434. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  435. count, total_obj_size, total_gtt_size);
  436. return 0;
  437. }
  438. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  439. {
  440. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  441. struct drm_device *dev = &dev_priv->drm;
  442. struct intel_crtc *crtc;
  443. int ret;
  444. ret = mutex_lock_interruptible(&dev->struct_mutex);
  445. if (ret)
  446. return ret;
  447. for_each_intel_crtc(dev, crtc) {
  448. const char pipe = pipe_name(crtc->pipe);
  449. const char plane = plane_name(crtc->plane);
  450. struct intel_flip_work *work;
  451. spin_lock_irq(&dev->event_lock);
  452. work = crtc->flip_work;
  453. if (work == NULL) {
  454. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  455. pipe, plane);
  456. } else {
  457. u32 pending;
  458. u32 addr;
  459. pending = atomic_read(&work->pending);
  460. if (pending) {
  461. seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
  462. pipe, plane);
  463. } else {
  464. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  465. pipe, plane);
  466. }
  467. if (work->flip_queued_req) {
  468. struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
  469. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  470. engine->name,
  471. i915_gem_request_get_seqno(work->flip_queued_req),
  472. dev_priv->gt.global_timeline.next_seqno,
  473. intel_engine_get_seqno(engine),
  474. i915_gem_request_completed(work->flip_queued_req));
  475. } else
  476. seq_printf(m, "Flip not associated with any ring\n");
  477. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  478. work->flip_queued_vblank,
  479. work->flip_ready_vblank,
  480. intel_crtc_get_vblank_counter(crtc));
  481. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  482. if (INTEL_GEN(dev_priv) >= 4)
  483. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  484. else
  485. addr = I915_READ(DSPADDR(crtc->plane));
  486. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  487. if (work->pending_flip_obj) {
  488. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  489. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  490. }
  491. }
  492. spin_unlock_irq(&dev->event_lock);
  493. }
  494. mutex_unlock(&dev->struct_mutex);
  495. return 0;
  496. }
  497. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  498. {
  499. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  500. struct drm_device *dev = &dev_priv->drm;
  501. struct drm_i915_gem_object *obj;
  502. struct intel_engine_cs *engine;
  503. enum intel_engine_id id;
  504. int total = 0;
  505. int ret, j;
  506. ret = mutex_lock_interruptible(&dev->struct_mutex);
  507. if (ret)
  508. return ret;
  509. for_each_engine(engine, dev_priv, id) {
  510. for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
  511. int count;
  512. count = 0;
  513. list_for_each_entry(obj,
  514. &engine->batch_pool.cache_list[j],
  515. batch_pool_link)
  516. count++;
  517. seq_printf(m, "%s cache[%d]: %d objects\n",
  518. engine->name, j, count);
  519. list_for_each_entry(obj,
  520. &engine->batch_pool.cache_list[j],
  521. batch_pool_link) {
  522. seq_puts(m, " ");
  523. describe_obj(m, obj);
  524. seq_putc(m, '\n');
  525. }
  526. total += count;
  527. }
  528. }
  529. seq_printf(m, "total: %d\n", total);
  530. mutex_unlock(&dev->struct_mutex);
  531. return 0;
  532. }
  533. static void print_request(struct seq_file *m,
  534. struct drm_i915_gem_request *rq,
  535. const char *prefix)
  536. {
  537. struct pid *pid = rq->ctx->pid;
  538. struct task_struct *task;
  539. rcu_read_lock();
  540. task = pid ? pid_task(pid, PIDTYPE_PID) : NULL;
  541. seq_printf(m, "%s%x [%x:%x] @ %d: %s [%d]\n", prefix,
  542. rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
  543. jiffies_to_msecs(jiffies - rq->emitted_jiffies),
  544. task ? task->comm : "<unknown>",
  545. task ? task->pid : -1);
  546. rcu_read_unlock();
  547. }
  548. static int i915_gem_request_info(struct seq_file *m, void *data)
  549. {
  550. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  551. struct drm_device *dev = &dev_priv->drm;
  552. struct drm_i915_gem_request *req;
  553. struct intel_engine_cs *engine;
  554. enum intel_engine_id id;
  555. int ret, any;
  556. ret = mutex_lock_interruptible(&dev->struct_mutex);
  557. if (ret)
  558. return ret;
  559. any = 0;
  560. for_each_engine(engine, dev_priv, id) {
  561. int count;
  562. count = 0;
  563. list_for_each_entry(req, &engine->timeline->requests, link)
  564. count++;
  565. if (count == 0)
  566. continue;
  567. seq_printf(m, "%s requests: %d\n", engine->name, count);
  568. list_for_each_entry(req, &engine->timeline->requests, link)
  569. print_request(m, req, " ");
  570. any++;
  571. }
  572. mutex_unlock(&dev->struct_mutex);
  573. if (any == 0)
  574. seq_puts(m, "No requests\n");
  575. return 0;
  576. }
  577. static void i915_ring_seqno_info(struct seq_file *m,
  578. struct intel_engine_cs *engine)
  579. {
  580. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  581. struct rb_node *rb;
  582. seq_printf(m, "Current sequence (%s): %x\n",
  583. engine->name, intel_engine_get_seqno(engine));
  584. spin_lock(&b->lock);
  585. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  586. struct intel_wait *w = container_of(rb, typeof(*w), node);
  587. seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
  588. engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
  589. }
  590. spin_unlock(&b->lock);
  591. }
  592. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  593. {
  594. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  595. struct intel_engine_cs *engine;
  596. enum intel_engine_id id;
  597. for_each_engine(engine, dev_priv, id)
  598. i915_ring_seqno_info(m, engine);
  599. return 0;
  600. }
  601. static int i915_interrupt_info(struct seq_file *m, void *data)
  602. {
  603. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  604. struct intel_engine_cs *engine;
  605. enum intel_engine_id id;
  606. int i, pipe;
  607. intel_runtime_pm_get(dev_priv);
  608. if (IS_CHERRYVIEW(dev_priv)) {
  609. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  610. I915_READ(GEN8_MASTER_IRQ));
  611. seq_printf(m, "Display IER:\t%08x\n",
  612. I915_READ(VLV_IER));
  613. seq_printf(m, "Display IIR:\t%08x\n",
  614. I915_READ(VLV_IIR));
  615. seq_printf(m, "Display IIR_RW:\t%08x\n",
  616. I915_READ(VLV_IIR_RW));
  617. seq_printf(m, "Display IMR:\t%08x\n",
  618. I915_READ(VLV_IMR));
  619. for_each_pipe(dev_priv, pipe) {
  620. enum intel_display_power_domain power_domain;
  621. power_domain = POWER_DOMAIN_PIPE(pipe);
  622. if (!intel_display_power_get_if_enabled(dev_priv,
  623. power_domain)) {
  624. seq_printf(m, "Pipe %c power disabled\n",
  625. pipe_name(pipe));
  626. continue;
  627. }
  628. seq_printf(m, "Pipe %c stat:\t%08x\n",
  629. pipe_name(pipe),
  630. I915_READ(PIPESTAT(pipe)));
  631. intel_display_power_put(dev_priv, power_domain);
  632. }
  633. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  634. seq_printf(m, "Port hotplug:\t%08x\n",
  635. I915_READ(PORT_HOTPLUG_EN));
  636. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  637. I915_READ(VLV_DPFLIPSTAT));
  638. seq_printf(m, "DPINVGTT:\t%08x\n",
  639. I915_READ(DPINVGTT));
  640. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  641. for (i = 0; i < 4; i++) {
  642. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  643. i, I915_READ(GEN8_GT_IMR(i)));
  644. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  645. i, I915_READ(GEN8_GT_IIR(i)));
  646. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  647. i, I915_READ(GEN8_GT_IER(i)));
  648. }
  649. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  650. I915_READ(GEN8_PCU_IMR));
  651. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  652. I915_READ(GEN8_PCU_IIR));
  653. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  654. I915_READ(GEN8_PCU_IER));
  655. } else if (INTEL_GEN(dev_priv) >= 8) {
  656. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  657. I915_READ(GEN8_MASTER_IRQ));
  658. for (i = 0; i < 4; i++) {
  659. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  660. i, I915_READ(GEN8_GT_IMR(i)));
  661. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  662. i, I915_READ(GEN8_GT_IIR(i)));
  663. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  664. i, I915_READ(GEN8_GT_IER(i)));
  665. }
  666. for_each_pipe(dev_priv, pipe) {
  667. enum intel_display_power_domain power_domain;
  668. power_domain = POWER_DOMAIN_PIPE(pipe);
  669. if (!intel_display_power_get_if_enabled(dev_priv,
  670. power_domain)) {
  671. seq_printf(m, "Pipe %c power disabled\n",
  672. pipe_name(pipe));
  673. continue;
  674. }
  675. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  676. pipe_name(pipe),
  677. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  678. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  679. pipe_name(pipe),
  680. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  681. seq_printf(m, "Pipe %c IER:\t%08x\n",
  682. pipe_name(pipe),
  683. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  684. intel_display_power_put(dev_priv, power_domain);
  685. }
  686. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  687. I915_READ(GEN8_DE_PORT_IMR));
  688. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  689. I915_READ(GEN8_DE_PORT_IIR));
  690. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  691. I915_READ(GEN8_DE_PORT_IER));
  692. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  693. I915_READ(GEN8_DE_MISC_IMR));
  694. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  695. I915_READ(GEN8_DE_MISC_IIR));
  696. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  697. I915_READ(GEN8_DE_MISC_IER));
  698. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  699. I915_READ(GEN8_PCU_IMR));
  700. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  701. I915_READ(GEN8_PCU_IIR));
  702. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  703. I915_READ(GEN8_PCU_IER));
  704. } else if (IS_VALLEYVIEW(dev_priv)) {
  705. seq_printf(m, "Display IER:\t%08x\n",
  706. I915_READ(VLV_IER));
  707. seq_printf(m, "Display IIR:\t%08x\n",
  708. I915_READ(VLV_IIR));
  709. seq_printf(m, "Display IIR_RW:\t%08x\n",
  710. I915_READ(VLV_IIR_RW));
  711. seq_printf(m, "Display IMR:\t%08x\n",
  712. I915_READ(VLV_IMR));
  713. for_each_pipe(dev_priv, pipe)
  714. seq_printf(m, "Pipe %c stat:\t%08x\n",
  715. pipe_name(pipe),
  716. I915_READ(PIPESTAT(pipe)));
  717. seq_printf(m, "Master IER:\t%08x\n",
  718. I915_READ(VLV_MASTER_IER));
  719. seq_printf(m, "Render IER:\t%08x\n",
  720. I915_READ(GTIER));
  721. seq_printf(m, "Render IIR:\t%08x\n",
  722. I915_READ(GTIIR));
  723. seq_printf(m, "Render IMR:\t%08x\n",
  724. I915_READ(GTIMR));
  725. seq_printf(m, "PM IER:\t\t%08x\n",
  726. I915_READ(GEN6_PMIER));
  727. seq_printf(m, "PM IIR:\t\t%08x\n",
  728. I915_READ(GEN6_PMIIR));
  729. seq_printf(m, "PM IMR:\t\t%08x\n",
  730. I915_READ(GEN6_PMIMR));
  731. seq_printf(m, "Port hotplug:\t%08x\n",
  732. I915_READ(PORT_HOTPLUG_EN));
  733. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  734. I915_READ(VLV_DPFLIPSTAT));
  735. seq_printf(m, "DPINVGTT:\t%08x\n",
  736. I915_READ(DPINVGTT));
  737. } else if (!HAS_PCH_SPLIT(dev_priv)) {
  738. seq_printf(m, "Interrupt enable: %08x\n",
  739. I915_READ(IER));
  740. seq_printf(m, "Interrupt identity: %08x\n",
  741. I915_READ(IIR));
  742. seq_printf(m, "Interrupt mask: %08x\n",
  743. I915_READ(IMR));
  744. for_each_pipe(dev_priv, pipe)
  745. seq_printf(m, "Pipe %c stat: %08x\n",
  746. pipe_name(pipe),
  747. I915_READ(PIPESTAT(pipe)));
  748. } else {
  749. seq_printf(m, "North Display Interrupt enable: %08x\n",
  750. I915_READ(DEIER));
  751. seq_printf(m, "North Display Interrupt identity: %08x\n",
  752. I915_READ(DEIIR));
  753. seq_printf(m, "North Display Interrupt mask: %08x\n",
  754. I915_READ(DEIMR));
  755. seq_printf(m, "South Display Interrupt enable: %08x\n",
  756. I915_READ(SDEIER));
  757. seq_printf(m, "South Display Interrupt identity: %08x\n",
  758. I915_READ(SDEIIR));
  759. seq_printf(m, "South Display Interrupt mask: %08x\n",
  760. I915_READ(SDEIMR));
  761. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  762. I915_READ(GTIER));
  763. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  764. I915_READ(GTIIR));
  765. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  766. I915_READ(GTIMR));
  767. }
  768. for_each_engine(engine, dev_priv, id) {
  769. if (INTEL_GEN(dev_priv) >= 6) {
  770. seq_printf(m,
  771. "Graphics Interrupt mask (%s): %08x\n",
  772. engine->name, I915_READ_IMR(engine));
  773. }
  774. i915_ring_seqno_info(m, engine);
  775. }
  776. intel_runtime_pm_put(dev_priv);
  777. return 0;
  778. }
  779. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  780. {
  781. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  782. struct drm_device *dev = &dev_priv->drm;
  783. int i, ret;
  784. ret = mutex_lock_interruptible(&dev->struct_mutex);
  785. if (ret)
  786. return ret;
  787. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  788. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  789. struct i915_vma *vma = dev_priv->fence_regs[i].vma;
  790. seq_printf(m, "Fence %d, pin count = %d, object = ",
  791. i, dev_priv->fence_regs[i].pin_count);
  792. if (!vma)
  793. seq_puts(m, "unused");
  794. else
  795. describe_obj(m, vma->obj);
  796. seq_putc(m, '\n');
  797. }
  798. mutex_unlock(&dev->struct_mutex);
  799. return 0;
  800. }
  801. static int i915_hws_info(struct seq_file *m, void *data)
  802. {
  803. struct drm_info_node *node = m->private;
  804. struct drm_i915_private *dev_priv = node_to_i915(node);
  805. struct intel_engine_cs *engine;
  806. const u32 *hws;
  807. int i;
  808. engine = dev_priv->engine[(uintptr_t)node->info_ent->data];
  809. hws = engine->status_page.page_addr;
  810. if (hws == NULL)
  811. return 0;
  812. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  813. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  814. i * 4,
  815. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  816. }
  817. return 0;
  818. }
  819. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  820. static ssize_t
  821. i915_error_state_write(struct file *filp,
  822. const char __user *ubuf,
  823. size_t cnt,
  824. loff_t *ppos)
  825. {
  826. struct i915_error_state_file_priv *error_priv = filp->private_data;
  827. DRM_DEBUG_DRIVER("Resetting error state\n");
  828. i915_destroy_error_state(error_priv->dev);
  829. return cnt;
  830. }
  831. static int i915_error_state_open(struct inode *inode, struct file *file)
  832. {
  833. struct drm_i915_private *dev_priv = inode->i_private;
  834. struct i915_error_state_file_priv *error_priv;
  835. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  836. if (!error_priv)
  837. return -ENOMEM;
  838. error_priv->dev = &dev_priv->drm;
  839. i915_error_state_get(&dev_priv->drm, error_priv);
  840. file->private_data = error_priv;
  841. return 0;
  842. }
  843. static int i915_error_state_release(struct inode *inode, struct file *file)
  844. {
  845. struct i915_error_state_file_priv *error_priv = file->private_data;
  846. i915_error_state_put(error_priv);
  847. kfree(error_priv);
  848. return 0;
  849. }
  850. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  851. size_t count, loff_t *pos)
  852. {
  853. struct i915_error_state_file_priv *error_priv = file->private_data;
  854. struct drm_i915_error_state_buf error_str;
  855. loff_t tmp_pos = 0;
  856. ssize_t ret_count = 0;
  857. int ret;
  858. ret = i915_error_state_buf_init(&error_str,
  859. to_i915(error_priv->dev), count, *pos);
  860. if (ret)
  861. return ret;
  862. ret = i915_error_state_to_str(&error_str, error_priv);
  863. if (ret)
  864. goto out;
  865. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  866. error_str.buf,
  867. error_str.bytes);
  868. if (ret_count < 0)
  869. ret = ret_count;
  870. else
  871. *pos = error_str.start + ret_count;
  872. out:
  873. i915_error_state_buf_release(&error_str);
  874. return ret ?: ret_count;
  875. }
  876. static const struct file_operations i915_error_state_fops = {
  877. .owner = THIS_MODULE,
  878. .open = i915_error_state_open,
  879. .read = i915_error_state_read,
  880. .write = i915_error_state_write,
  881. .llseek = default_llseek,
  882. .release = i915_error_state_release,
  883. };
  884. #endif
  885. static int
  886. i915_next_seqno_get(void *data, u64 *val)
  887. {
  888. struct drm_i915_private *dev_priv = data;
  889. *val = READ_ONCE(dev_priv->gt.global_timeline.next_seqno);
  890. return 0;
  891. }
  892. static int
  893. i915_next_seqno_set(void *data, u64 val)
  894. {
  895. struct drm_i915_private *dev_priv = data;
  896. struct drm_device *dev = &dev_priv->drm;
  897. int ret;
  898. ret = mutex_lock_interruptible(&dev->struct_mutex);
  899. if (ret)
  900. return ret;
  901. ret = i915_gem_set_global_seqno(dev, val);
  902. mutex_unlock(&dev->struct_mutex);
  903. return ret;
  904. }
  905. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  906. i915_next_seqno_get, i915_next_seqno_set,
  907. "0x%llx\n");
  908. static int i915_frequency_info(struct seq_file *m, void *unused)
  909. {
  910. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  911. struct drm_device *dev = &dev_priv->drm;
  912. int ret = 0;
  913. intel_runtime_pm_get(dev_priv);
  914. if (IS_GEN5(dev_priv)) {
  915. u16 rgvswctl = I915_READ16(MEMSWCTL);
  916. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  917. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  918. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  919. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  920. MEMSTAT_VID_SHIFT);
  921. seq_printf(m, "Current P-state: %d\n",
  922. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  923. } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
  924. u32 freq_sts;
  925. mutex_lock(&dev_priv->rps.hw_lock);
  926. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  927. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  928. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  929. seq_printf(m, "actual GPU freq: %d MHz\n",
  930. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  931. seq_printf(m, "current GPU freq: %d MHz\n",
  932. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  933. seq_printf(m, "max GPU freq: %d MHz\n",
  934. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  935. seq_printf(m, "min GPU freq: %d MHz\n",
  936. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  937. seq_printf(m, "idle GPU freq: %d MHz\n",
  938. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  939. seq_printf(m,
  940. "efficient (RPe) frequency: %d MHz\n",
  941. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  942. mutex_unlock(&dev_priv->rps.hw_lock);
  943. } else if (INTEL_GEN(dev_priv) >= 6) {
  944. u32 rp_state_limits;
  945. u32 gt_perf_status;
  946. u32 rp_state_cap;
  947. u32 rpmodectl, rpinclimit, rpdeclimit;
  948. u32 rpstat, cagf, reqf;
  949. u32 rpupei, rpcurup, rpprevup;
  950. u32 rpdownei, rpcurdown, rpprevdown;
  951. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  952. int max_freq;
  953. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  954. if (IS_BROXTON(dev_priv)) {
  955. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  956. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  957. } else {
  958. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  959. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  960. }
  961. /* RPSTAT1 is in the GT power well */
  962. ret = mutex_lock_interruptible(&dev->struct_mutex);
  963. if (ret)
  964. goto out;
  965. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  966. reqf = I915_READ(GEN6_RPNSWREQ);
  967. if (IS_GEN9(dev_priv))
  968. reqf >>= 23;
  969. else {
  970. reqf &= ~GEN6_TURBO_DISABLE;
  971. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  972. reqf >>= 24;
  973. else
  974. reqf >>= 25;
  975. }
  976. reqf = intel_gpu_freq(dev_priv, reqf);
  977. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  978. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  979. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  980. rpstat = I915_READ(GEN6_RPSTAT1);
  981. rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
  982. rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
  983. rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
  984. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
  985. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
  986. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
  987. if (IS_GEN9(dev_priv))
  988. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  989. else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
  990. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  991. else
  992. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  993. cagf = intel_gpu_freq(dev_priv, cagf);
  994. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  995. mutex_unlock(&dev->struct_mutex);
  996. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  997. pm_ier = I915_READ(GEN6_PMIER);
  998. pm_imr = I915_READ(GEN6_PMIMR);
  999. pm_isr = I915_READ(GEN6_PMISR);
  1000. pm_iir = I915_READ(GEN6_PMIIR);
  1001. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1002. } else {
  1003. pm_ier = I915_READ(GEN8_GT_IER(2));
  1004. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1005. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1006. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1007. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1008. }
  1009. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1010. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1011. seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
  1012. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1013. seq_printf(m, "Render p-state ratio: %d\n",
  1014. (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
  1015. seq_printf(m, "Render p-state VID: %d\n",
  1016. gt_perf_status & 0xff);
  1017. seq_printf(m, "Render p-state limit: %d\n",
  1018. rp_state_limits & 0xff);
  1019. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1020. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1021. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1022. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1023. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1024. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1025. seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
  1026. rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
  1027. seq_printf(m, "RP CUR UP: %d (%dus)\n",
  1028. rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
  1029. seq_printf(m, "RP PREV UP: %d (%dus)\n",
  1030. rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
  1031. seq_printf(m, "Up threshold: %d%%\n",
  1032. dev_priv->rps.up_threshold);
  1033. seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
  1034. rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
  1035. seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
  1036. rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
  1037. seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
  1038. rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
  1039. seq_printf(m, "Down threshold: %d%%\n",
  1040. dev_priv->rps.down_threshold);
  1041. max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
  1042. rp_state_cap >> 16) & 0xff;
  1043. max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1044. GEN9_FREQ_SCALER : 1);
  1045. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1046. intel_gpu_freq(dev_priv, max_freq));
  1047. max_freq = (rp_state_cap & 0xff00) >> 8;
  1048. max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1049. GEN9_FREQ_SCALER : 1);
  1050. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1051. intel_gpu_freq(dev_priv, max_freq));
  1052. max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
  1053. rp_state_cap >> 0) & 0xff;
  1054. max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1055. GEN9_FREQ_SCALER : 1);
  1056. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1057. intel_gpu_freq(dev_priv, max_freq));
  1058. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1059. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1060. seq_printf(m, "Current freq: %d MHz\n",
  1061. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1062. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1063. seq_printf(m, "Idle freq: %d MHz\n",
  1064. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1065. seq_printf(m, "Min freq: %d MHz\n",
  1066. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1067. seq_printf(m, "Boost freq: %d MHz\n",
  1068. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1069. seq_printf(m, "Max freq: %d MHz\n",
  1070. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1071. seq_printf(m,
  1072. "efficient (RPe) frequency: %d MHz\n",
  1073. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1074. } else {
  1075. seq_puts(m, "no P-state info available\n");
  1076. }
  1077. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
  1078. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1079. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1080. out:
  1081. intel_runtime_pm_put(dev_priv);
  1082. return ret;
  1083. }
  1084. static void i915_instdone_info(struct drm_i915_private *dev_priv,
  1085. struct seq_file *m,
  1086. struct intel_instdone *instdone)
  1087. {
  1088. int slice;
  1089. int subslice;
  1090. seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
  1091. instdone->instdone);
  1092. if (INTEL_GEN(dev_priv) <= 3)
  1093. return;
  1094. seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
  1095. instdone->slice_common);
  1096. if (INTEL_GEN(dev_priv) <= 6)
  1097. return;
  1098. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1099. seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
  1100. slice, subslice, instdone->sampler[slice][subslice]);
  1101. for_each_instdone_slice_subslice(dev_priv, slice, subslice)
  1102. seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
  1103. slice, subslice, instdone->row[slice][subslice]);
  1104. }
  1105. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1106. {
  1107. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1108. struct intel_engine_cs *engine;
  1109. u64 acthd[I915_NUM_ENGINES];
  1110. u32 seqno[I915_NUM_ENGINES];
  1111. struct intel_instdone instdone;
  1112. enum intel_engine_id id;
  1113. if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
  1114. seq_printf(m, "Wedged\n");
  1115. if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
  1116. seq_printf(m, "Reset in progress\n");
  1117. if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
  1118. seq_printf(m, "Waiter holding struct mutex\n");
  1119. if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
  1120. seq_printf(m, "struct_mutex blocked for reset\n");
  1121. if (!i915.enable_hangcheck) {
  1122. seq_printf(m, "Hangcheck disabled\n");
  1123. return 0;
  1124. }
  1125. intel_runtime_pm_get(dev_priv);
  1126. for_each_engine(engine, dev_priv, id) {
  1127. acthd[id] = intel_engine_get_active_head(engine);
  1128. seqno[id] = intel_engine_get_seqno(engine);
  1129. }
  1130. intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
  1131. intel_runtime_pm_put(dev_priv);
  1132. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1133. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1134. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1135. jiffies));
  1136. } else
  1137. seq_printf(m, "Hangcheck inactive\n");
  1138. for_each_engine(engine, dev_priv, id) {
  1139. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  1140. struct rb_node *rb;
  1141. seq_printf(m, "%s:\n", engine->name);
  1142. seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
  1143. engine->hangcheck.seqno,
  1144. seqno[id],
  1145. engine->timeline->last_submitted_seqno);
  1146. seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
  1147. yesno(intel_engine_has_waiter(engine)),
  1148. yesno(test_bit(engine->id,
  1149. &dev_priv->gpu_error.missed_irq_rings)));
  1150. spin_lock(&b->lock);
  1151. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  1152. struct intel_wait *w = container_of(rb, typeof(*w), node);
  1153. seq_printf(m, "\t%s [%d] waiting for %x\n",
  1154. w->tsk->comm, w->tsk->pid, w->seqno);
  1155. }
  1156. spin_unlock(&b->lock);
  1157. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1158. (long long)engine->hangcheck.acthd,
  1159. (long long)acthd[id]);
  1160. seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
  1161. seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
  1162. if (engine->id == RCS) {
  1163. seq_puts(m, "\tinstdone read =\n");
  1164. i915_instdone_info(dev_priv, m, &instdone);
  1165. seq_puts(m, "\tinstdone accu =\n");
  1166. i915_instdone_info(dev_priv, m,
  1167. &engine->hangcheck.instdone);
  1168. }
  1169. }
  1170. return 0;
  1171. }
  1172. static int ironlake_drpc_info(struct seq_file *m)
  1173. {
  1174. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1175. u32 rgvmodectl, rstdbyctl;
  1176. u16 crstandvid;
  1177. intel_runtime_pm_get(dev_priv);
  1178. rgvmodectl = I915_READ(MEMMODECTL);
  1179. rstdbyctl = I915_READ(RSTDBYCTL);
  1180. crstandvid = I915_READ16(CRSTANDVID);
  1181. intel_runtime_pm_put(dev_priv);
  1182. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1183. seq_printf(m, "Boost freq: %d\n",
  1184. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1185. MEMMODE_BOOST_FREQ_SHIFT);
  1186. seq_printf(m, "HW control enabled: %s\n",
  1187. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1188. seq_printf(m, "SW control enabled: %s\n",
  1189. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1190. seq_printf(m, "Gated voltage change: %s\n",
  1191. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1192. seq_printf(m, "Starting frequency: P%d\n",
  1193. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1194. seq_printf(m, "Max P-state: P%d\n",
  1195. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1196. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1197. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1198. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1199. seq_printf(m, "Render standby enabled: %s\n",
  1200. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1201. seq_puts(m, "Current RS state: ");
  1202. switch (rstdbyctl & RSX_STATUS_MASK) {
  1203. case RSX_STATUS_ON:
  1204. seq_puts(m, "on\n");
  1205. break;
  1206. case RSX_STATUS_RC1:
  1207. seq_puts(m, "RC1\n");
  1208. break;
  1209. case RSX_STATUS_RC1E:
  1210. seq_puts(m, "RC1E\n");
  1211. break;
  1212. case RSX_STATUS_RS1:
  1213. seq_puts(m, "RS1\n");
  1214. break;
  1215. case RSX_STATUS_RS2:
  1216. seq_puts(m, "RS2 (RC6)\n");
  1217. break;
  1218. case RSX_STATUS_RS3:
  1219. seq_puts(m, "RC3 (RC6+)\n");
  1220. break;
  1221. default:
  1222. seq_puts(m, "unknown\n");
  1223. break;
  1224. }
  1225. return 0;
  1226. }
  1227. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1228. {
  1229. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1230. struct intel_uncore_forcewake_domain *fw_domain;
  1231. spin_lock_irq(&dev_priv->uncore.lock);
  1232. for_each_fw_domain(fw_domain, dev_priv) {
  1233. seq_printf(m, "%s.wake_count = %u\n",
  1234. intel_uncore_forcewake_domain_to_str(fw_domain->id),
  1235. fw_domain->wake_count);
  1236. }
  1237. spin_unlock_irq(&dev_priv->uncore.lock);
  1238. return 0;
  1239. }
  1240. static int vlv_drpc_info(struct seq_file *m)
  1241. {
  1242. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1243. u32 rpmodectl1, rcctl1, pw_status;
  1244. intel_runtime_pm_get(dev_priv);
  1245. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1246. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1247. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1248. intel_runtime_pm_put(dev_priv);
  1249. seq_printf(m, "Video Turbo Mode: %s\n",
  1250. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1251. seq_printf(m, "Turbo enabled: %s\n",
  1252. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1253. seq_printf(m, "HW control enabled: %s\n",
  1254. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1255. seq_printf(m, "SW control enabled: %s\n",
  1256. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1257. GEN6_RP_MEDIA_SW_MODE));
  1258. seq_printf(m, "RC6 Enabled: %s\n",
  1259. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1260. GEN6_RC_CTL_EI_MODE(1))));
  1261. seq_printf(m, "Render Power Well: %s\n",
  1262. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1263. seq_printf(m, "Media Power Well: %s\n",
  1264. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1265. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1266. I915_READ(VLV_GT_RENDER_RC6));
  1267. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1268. I915_READ(VLV_GT_MEDIA_RC6));
  1269. return i915_forcewake_domains(m, NULL);
  1270. }
  1271. static int gen6_drpc_info(struct seq_file *m)
  1272. {
  1273. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1274. struct drm_device *dev = &dev_priv->drm;
  1275. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1276. u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
  1277. unsigned forcewake_count;
  1278. int count = 0, ret;
  1279. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1280. if (ret)
  1281. return ret;
  1282. intel_runtime_pm_get(dev_priv);
  1283. spin_lock_irq(&dev_priv->uncore.lock);
  1284. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1285. spin_unlock_irq(&dev_priv->uncore.lock);
  1286. if (forcewake_count) {
  1287. seq_puts(m, "RC information inaccurate because somebody "
  1288. "holds a forcewake reference \n");
  1289. } else {
  1290. /* NB: we cannot use forcewake, else we read the wrong values */
  1291. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1292. udelay(10);
  1293. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1294. }
  1295. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1296. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1297. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1298. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1299. if (INTEL_GEN(dev_priv) >= 9) {
  1300. gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
  1301. gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
  1302. }
  1303. mutex_unlock(&dev->struct_mutex);
  1304. mutex_lock(&dev_priv->rps.hw_lock);
  1305. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1306. mutex_unlock(&dev_priv->rps.hw_lock);
  1307. intel_runtime_pm_put(dev_priv);
  1308. seq_printf(m, "Video Turbo Mode: %s\n",
  1309. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1310. seq_printf(m, "HW control enabled: %s\n",
  1311. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1312. seq_printf(m, "SW control enabled: %s\n",
  1313. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1314. GEN6_RP_MEDIA_SW_MODE));
  1315. seq_printf(m, "RC1e Enabled: %s\n",
  1316. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1317. seq_printf(m, "RC6 Enabled: %s\n",
  1318. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1319. if (INTEL_GEN(dev_priv) >= 9) {
  1320. seq_printf(m, "Render Well Gating Enabled: %s\n",
  1321. yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
  1322. seq_printf(m, "Media Well Gating Enabled: %s\n",
  1323. yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
  1324. }
  1325. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1326. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1327. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1328. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1329. seq_puts(m, "Current RC state: ");
  1330. switch (gt_core_status & GEN6_RCn_MASK) {
  1331. case GEN6_RC0:
  1332. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1333. seq_puts(m, "Core Power Down\n");
  1334. else
  1335. seq_puts(m, "on\n");
  1336. break;
  1337. case GEN6_RC3:
  1338. seq_puts(m, "RC3\n");
  1339. break;
  1340. case GEN6_RC6:
  1341. seq_puts(m, "RC6\n");
  1342. break;
  1343. case GEN6_RC7:
  1344. seq_puts(m, "RC7\n");
  1345. break;
  1346. default:
  1347. seq_puts(m, "Unknown\n");
  1348. break;
  1349. }
  1350. seq_printf(m, "Core Power Down: %s\n",
  1351. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1352. if (INTEL_GEN(dev_priv) >= 9) {
  1353. seq_printf(m, "Render Power Well: %s\n",
  1354. (gen9_powergate_status &
  1355. GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
  1356. seq_printf(m, "Media Power Well: %s\n",
  1357. (gen9_powergate_status &
  1358. GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1359. }
  1360. /* Not exactly sure what this is */
  1361. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1362. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1363. seq_printf(m, "RC6 residency since boot: %u\n",
  1364. I915_READ(GEN6_GT_GFX_RC6));
  1365. seq_printf(m, "RC6+ residency since boot: %u\n",
  1366. I915_READ(GEN6_GT_GFX_RC6p));
  1367. seq_printf(m, "RC6++ residency since boot: %u\n",
  1368. I915_READ(GEN6_GT_GFX_RC6pp));
  1369. seq_printf(m, "RC6 voltage: %dmV\n",
  1370. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1371. seq_printf(m, "RC6+ voltage: %dmV\n",
  1372. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1373. seq_printf(m, "RC6++ voltage: %dmV\n",
  1374. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1375. return i915_forcewake_domains(m, NULL);
  1376. }
  1377. static int i915_drpc_info(struct seq_file *m, void *unused)
  1378. {
  1379. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1380. if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1381. return vlv_drpc_info(m);
  1382. else if (INTEL_GEN(dev_priv) >= 6)
  1383. return gen6_drpc_info(m);
  1384. else
  1385. return ironlake_drpc_info(m);
  1386. }
  1387. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1388. {
  1389. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1390. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1391. dev_priv->fb_tracking.busy_bits);
  1392. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1393. dev_priv->fb_tracking.flip_bits);
  1394. return 0;
  1395. }
  1396. static int i915_fbc_status(struct seq_file *m, void *unused)
  1397. {
  1398. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1399. if (!HAS_FBC(dev_priv)) {
  1400. seq_puts(m, "FBC unsupported on this chipset\n");
  1401. return 0;
  1402. }
  1403. intel_runtime_pm_get(dev_priv);
  1404. mutex_lock(&dev_priv->fbc.lock);
  1405. if (intel_fbc_is_active(dev_priv))
  1406. seq_puts(m, "FBC enabled\n");
  1407. else
  1408. seq_printf(m, "FBC disabled: %s\n",
  1409. dev_priv->fbc.no_fbc_reason);
  1410. if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
  1411. uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
  1412. BDW_FBC_COMPRESSION_MASK :
  1413. IVB_FBC_COMPRESSION_MASK;
  1414. seq_printf(m, "Compressing: %s\n",
  1415. yesno(I915_READ(FBC_STATUS2) & mask));
  1416. }
  1417. mutex_unlock(&dev_priv->fbc.lock);
  1418. intel_runtime_pm_put(dev_priv);
  1419. return 0;
  1420. }
  1421. static int i915_fbc_fc_get(void *data, u64 *val)
  1422. {
  1423. struct drm_i915_private *dev_priv = data;
  1424. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1425. return -ENODEV;
  1426. *val = dev_priv->fbc.false_color;
  1427. return 0;
  1428. }
  1429. static int i915_fbc_fc_set(void *data, u64 val)
  1430. {
  1431. struct drm_i915_private *dev_priv = data;
  1432. u32 reg;
  1433. if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
  1434. return -ENODEV;
  1435. mutex_lock(&dev_priv->fbc.lock);
  1436. reg = I915_READ(ILK_DPFC_CONTROL);
  1437. dev_priv->fbc.false_color = val;
  1438. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1439. (reg | FBC_CTL_FALSE_COLOR) :
  1440. (reg & ~FBC_CTL_FALSE_COLOR));
  1441. mutex_unlock(&dev_priv->fbc.lock);
  1442. return 0;
  1443. }
  1444. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1445. i915_fbc_fc_get, i915_fbc_fc_set,
  1446. "%llu\n");
  1447. static int i915_ips_status(struct seq_file *m, void *unused)
  1448. {
  1449. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1450. if (!HAS_IPS(dev_priv)) {
  1451. seq_puts(m, "not supported\n");
  1452. return 0;
  1453. }
  1454. intel_runtime_pm_get(dev_priv);
  1455. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1456. yesno(i915.enable_ips));
  1457. if (INTEL_GEN(dev_priv) >= 8) {
  1458. seq_puts(m, "Currently: unknown\n");
  1459. } else {
  1460. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1461. seq_puts(m, "Currently: enabled\n");
  1462. else
  1463. seq_puts(m, "Currently: disabled\n");
  1464. }
  1465. intel_runtime_pm_put(dev_priv);
  1466. return 0;
  1467. }
  1468. static int i915_sr_status(struct seq_file *m, void *unused)
  1469. {
  1470. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1471. bool sr_enabled = false;
  1472. intel_runtime_pm_get(dev_priv);
  1473. intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
  1474. if (HAS_PCH_SPLIT(dev_priv))
  1475. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1476. else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
  1477. IS_I945G(dev_priv) || IS_I945GM(dev_priv))
  1478. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1479. else if (IS_I915GM(dev_priv))
  1480. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1481. else if (IS_PINEVIEW(dev_priv))
  1482. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1483. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  1484. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1485. intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
  1486. intel_runtime_pm_put(dev_priv);
  1487. seq_printf(m, "self-refresh: %s\n",
  1488. sr_enabled ? "enabled" : "disabled");
  1489. return 0;
  1490. }
  1491. static int i915_emon_status(struct seq_file *m, void *unused)
  1492. {
  1493. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1494. struct drm_device *dev = &dev_priv->drm;
  1495. unsigned long temp, chipset, gfx;
  1496. int ret;
  1497. if (!IS_GEN5(dev_priv))
  1498. return -ENODEV;
  1499. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1500. if (ret)
  1501. return ret;
  1502. temp = i915_mch_val(dev_priv);
  1503. chipset = i915_chipset_val(dev_priv);
  1504. gfx = i915_gfx_val(dev_priv);
  1505. mutex_unlock(&dev->struct_mutex);
  1506. seq_printf(m, "GMCH temp: %ld\n", temp);
  1507. seq_printf(m, "Chipset power: %ld\n", chipset);
  1508. seq_printf(m, "GFX power: %ld\n", gfx);
  1509. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1510. return 0;
  1511. }
  1512. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1513. {
  1514. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1515. int ret = 0;
  1516. int gpu_freq, ia_freq;
  1517. unsigned int max_gpu_freq, min_gpu_freq;
  1518. if (!HAS_LLC(dev_priv)) {
  1519. seq_puts(m, "unsupported on this chipset\n");
  1520. return 0;
  1521. }
  1522. intel_runtime_pm_get(dev_priv);
  1523. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1524. if (ret)
  1525. goto out;
  1526. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  1527. /* Convert GT frequency to 50 HZ units */
  1528. min_gpu_freq =
  1529. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1530. max_gpu_freq =
  1531. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1532. } else {
  1533. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1534. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1535. }
  1536. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1537. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1538. ia_freq = gpu_freq;
  1539. sandybridge_pcode_read(dev_priv,
  1540. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1541. &ia_freq);
  1542. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1543. intel_gpu_freq(dev_priv, (gpu_freq *
  1544. (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
  1545. GEN9_FREQ_SCALER : 1))),
  1546. ((ia_freq >> 0) & 0xff) * 100,
  1547. ((ia_freq >> 8) & 0xff) * 100);
  1548. }
  1549. mutex_unlock(&dev_priv->rps.hw_lock);
  1550. out:
  1551. intel_runtime_pm_put(dev_priv);
  1552. return ret;
  1553. }
  1554. static int i915_opregion(struct seq_file *m, void *unused)
  1555. {
  1556. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1557. struct drm_device *dev = &dev_priv->drm;
  1558. struct intel_opregion *opregion = &dev_priv->opregion;
  1559. int ret;
  1560. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1561. if (ret)
  1562. goto out;
  1563. if (opregion->header)
  1564. seq_write(m, opregion->header, OPREGION_SIZE);
  1565. mutex_unlock(&dev->struct_mutex);
  1566. out:
  1567. return 0;
  1568. }
  1569. static int i915_vbt(struct seq_file *m, void *unused)
  1570. {
  1571. struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
  1572. if (opregion->vbt)
  1573. seq_write(m, opregion->vbt, opregion->vbt_size);
  1574. return 0;
  1575. }
  1576. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1577. {
  1578. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1579. struct drm_device *dev = &dev_priv->drm;
  1580. struct intel_framebuffer *fbdev_fb = NULL;
  1581. struct drm_framebuffer *drm_fb;
  1582. int ret;
  1583. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1584. if (ret)
  1585. return ret;
  1586. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1587. if (dev_priv->fbdev) {
  1588. fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
  1589. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1590. fbdev_fb->base.width,
  1591. fbdev_fb->base.height,
  1592. fbdev_fb->base.depth,
  1593. fbdev_fb->base.bits_per_pixel,
  1594. fbdev_fb->base.modifier[0],
  1595. drm_framebuffer_read_refcount(&fbdev_fb->base));
  1596. describe_obj(m, fbdev_fb->obj);
  1597. seq_putc(m, '\n');
  1598. }
  1599. #endif
  1600. mutex_lock(&dev->mode_config.fb_lock);
  1601. drm_for_each_fb(drm_fb, dev) {
  1602. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1603. if (fb == fbdev_fb)
  1604. continue;
  1605. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1606. fb->base.width,
  1607. fb->base.height,
  1608. fb->base.depth,
  1609. fb->base.bits_per_pixel,
  1610. fb->base.modifier[0],
  1611. drm_framebuffer_read_refcount(&fb->base));
  1612. describe_obj(m, fb->obj);
  1613. seq_putc(m, '\n');
  1614. }
  1615. mutex_unlock(&dev->mode_config.fb_lock);
  1616. mutex_unlock(&dev->struct_mutex);
  1617. return 0;
  1618. }
  1619. static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
  1620. {
  1621. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1622. ring->space, ring->head, ring->tail,
  1623. ring->last_retired_head);
  1624. }
  1625. static int i915_context_status(struct seq_file *m, void *unused)
  1626. {
  1627. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1628. struct drm_device *dev = &dev_priv->drm;
  1629. struct intel_engine_cs *engine;
  1630. struct i915_gem_context *ctx;
  1631. enum intel_engine_id id;
  1632. int ret;
  1633. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1634. if (ret)
  1635. return ret;
  1636. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1637. seq_printf(m, "HW context %u ", ctx->hw_id);
  1638. if (ctx->pid) {
  1639. struct task_struct *task;
  1640. task = get_pid_task(ctx->pid, PIDTYPE_PID);
  1641. if (task) {
  1642. seq_printf(m, "(%s [%d]) ",
  1643. task->comm, task->pid);
  1644. put_task_struct(task);
  1645. }
  1646. } else if (IS_ERR(ctx->file_priv)) {
  1647. seq_puts(m, "(deleted) ");
  1648. } else {
  1649. seq_puts(m, "(kernel) ");
  1650. }
  1651. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  1652. seq_putc(m, '\n');
  1653. for_each_engine(engine, dev_priv, id) {
  1654. struct intel_context *ce = &ctx->engine[engine->id];
  1655. seq_printf(m, "%s: ", engine->name);
  1656. seq_putc(m, ce->initialised ? 'I' : 'i');
  1657. if (ce->state)
  1658. describe_obj(m, ce->state->obj);
  1659. if (ce->ring)
  1660. describe_ctx_ring(m, ce->ring);
  1661. seq_putc(m, '\n');
  1662. }
  1663. seq_putc(m, '\n');
  1664. }
  1665. mutex_unlock(&dev->struct_mutex);
  1666. return 0;
  1667. }
  1668. static void i915_dump_lrc_obj(struct seq_file *m,
  1669. struct i915_gem_context *ctx,
  1670. struct intel_engine_cs *engine)
  1671. {
  1672. struct i915_vma *vma = ctx->engine[engine->id].state;
  1673. struct page *page;
  1674. int j;
  1675. seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
  1676. if (!vma) {
  1677. seq_puts(m, "\tFake context\n");
  1678. return;
  1679. }
  1680. if (vma->flags & I915_VMA_GLOBAL_BIND)
  1681. seq_printf(m, "\tBound in GGTT at 0x%08x\n",
  1682. i915_ggtt_offset(vma));
  1683. if (i915_gem_object_pin_pages(vma->obj)) {
  1684. seq_puts(m, "\tFailed to get pages for context object\n\n");
  1685. return;
  1686. }
  1687. page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
  1688. if (page) {
  1689. u32 *reg_state = kmap_atomic(page);
  1690. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1691. seq_printf(m,
  1692. "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1693. j * 4,
  1694. reg_state[j], reg_state[j + 1],
  1695. reg_state[j + 2], reg_state[j + 3]);
  1696. }
  1697. kunmap_atomic(reg_state);
  1698. }
  1699. i915_gem_object_unpin_pages(vma->obj);
  1700. seq_putc(m, '\n');
  1701. }
  1702. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1703. {
  1704. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1705. struct drm_device *dev = &dev_priv->drm;
  1706. struct intel_engine_cs *engine;
  1707. struct i915_gem_context *ctx;
  1708. enum intel_engine_id id;
  1709. int ret;
  1710. if (!i915.enable_execlists) {
  1711. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1712. return 0;
  1713. }
  1714. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1715. if (ret)
  1716. return ret;
  1717. list_for_each_entry(ctx, &dev_priv->context_list, link)
  1718. for_each_engine(engine, dev_priv, id)
  1719. i915_dump_lrc_obj(m, ctx, engine);
  1720. mutex_unlock(&dev->struct_mutex);
  1721. return 0;
  1722. }
  1723. static const char *swizzle_string(unsigned swizzle)
  1724. {
  1725. switch (swizzle) {
  1726. case I915_BIT_6_SWIZZLE_NONE:
  1727. return "none";
  1728. case I915_BIT_6_SWIZZLE_9:
  1729. return "bit9";
  1730. case I915_BIT_6_SWIZZLE_9_10:
  1731. return "bit9/bit10";
  1732. case I915_BIT_6_SWIZZLE_9_11:
  1733. return "bit9/bit11";
  1734. case I915_BIT_6_SWIZZLE_9_10_11:
  1735. return "bit9/bit10/bit11";
  1736. case I915_BIT_6_SWIZZLE_9_17:
  1737. return "bit9/bit17";
  1738. case I915_BIT_6_SWIZZLE_9_10_17:
  1739. return "bit9/bit10/bit17";
  1740. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1741. return "unknown";
  1742. }
  1743. return "bug";
  1744. }
  1745. static int i915_swizzle_info(struct seq_file *m, void *data)
  1746. {
  1747. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1748. intel_runtime_pm_get(dev_priv);
  1749. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1750. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1751. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1752. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1753. if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
  1754. seq_printf(m, "DDC = 0x%08x\n",
  1755. I915_READ(DCC));
  1756. seq_printf(m, "DDC2 = 0x%08x\n",
  1757. I915_READ(DCC2));
  1758. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1759. I915_READ16(C0DRB3));
  1760. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1761. I915_READ16(C1DRB3));
  1762. } else if (INTEL_GEN(dev_priv) >= 6) {
  1763. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1764. I915_READ(MAD_DIMM_C0));
  1765. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1766. I915_READ(MAD_DIMM_C1));
  1767. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1768. I915_READ(MAD_DIMM_C2));
  1769. seq_printf(m, "TILECTL = 0x%08x\n",
  1770. I915_READ(TILECTL));
  1771. if (INTEL_GEN(dev_priv) >= 8)
  1772. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1773. I915_READ(GAMTARBMODE));
  1774. else
  1775. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1776. I915_READ(ARB_MODE));
  1777. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1778. I915_READ(DISP_ARB_CTL));
  1779. }
  1780. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1781. seq_puts(m, "L-shaped memory detected\n");
  1782. intel_runtime_pm_put(dev_priv);
  1783. return 0;
  1784. }
  1785. static int per_file_ctx(int id, void *ptr, void *data)
  1786. {
  1787. struct i915_gem_context *ctx = ptr;
  1788. struct seq_file *m = data;
  1789. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1790. if (!ppgtt) {
  1791. seq_printf(m, " no ppgtt for context %d\n",
  1792. ctx->user_handle);
  1793. return 0;
  1794. }
  1795. if (i915_gem_context_is_default(ctx))
  1796. seq_puts(m, " default context:\n");
  1797. else
  1798. seq_printf(m, " context %d:\n", ctx->user_handle);
  1799. ppgtt->debug_dump(ppgtt, m);
  1800. return 0;
  1801. }
  1802. static void gen8_ppgtt_info(struct seq_file *m,
  1803. struct drm_i915_private *dev_priv)
  1804. {
  1805. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1806. struct intel_engine_cs *engine;
  1807. enum intel_engine_id id;
  1808. int i;
  1809. if (!ppgtt)
  1810. return;
  1811. for_each_engine(engine, dev_priv, id) {
  1812. seq_printf(m, "%s\n", engine->name);
  1813. for (i = 0; i < 4; i++) {
  1814. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
  1815. pdp <<= 32;
  1816. pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
  1817. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1818. }
  1819. }
  1820. }
  1821. static void gen6_ppgtt_info(struct seq_file *m,
  1822. struct drm_i915_private *dev_priv)
  1823. {
  1824. struct intel_engine_cs *engine;
  1825. enum intel_engine_id id;
  1826. if (IS_GEN6(dev_priv))
  1827. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1828. for_each_engine(engine, dev_priv, id) {
  1829. seq_printf(m, "%s\n", engine->name);
  1830. if (IS_GEN7(dev_priv))
  1831. seq_printf(m, "GFX_MODE: 0x%08x\n",
  1832. I915_READ(RING_MODE_GEN7(engine)));
  1833. seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
  1834. I915_READ(RING_PP_DIR_BASE(engine)));
  1835. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
  1836. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  1837. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
  1838. I915_READ(RING_PP_DIR_DCLV(engine)));
  1839. }
  1840. if (dev_priv->mm.aliasing_ppgtt) {
  1841. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1842. seq_puts(m, "aliasing PPGTT:\n");
  1843. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1844. ppgtt->debug_dump(ppgtt, m);
  1845. }
  1846. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1847. }
  1848. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1849. {
  1850. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1851. struct drm_device *dev = &dev_priv->drm;
  1852. struct drm_file *file;
  1853. int ret;
  1854. mutex_lock(&dev->filelist_mutex);
  1855. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1856. if (ret)
  1857. goto out_unlock;
  1858. intel_runtime_pm_get(dev_priv);
  1859. if (INTEL_GEN(dev_priv) >= 8)
  1860. gen8_ppgtt_info(m, dev_priv);
  1861. else if (INTEL_GEN(dev_priv) >= 6)
  1862. gen6_ppgtt_info(m, dev_priv);
  1863. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1864. struct drm_i915_file_private *file_priv = file->driver_priv;
  1865. struct task_struct *task;
  1866. task = get_pid_task(file->pid, PIDTYPE_PID);
  1867. if (!task) {
  1868. ret = -ESRCH;
  1869. goto out_rpm;
  1870. }
  1871. seq_printf(m, "\nproc: %s\n", task->comm);
  1872. put_task_struct(task);
  1873. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1874. (void *)(unsigned long)m);
  1875. }
  1876. out_rpm:
  1877. intel_runtime_pm_put(dev_priv);
  1878. mutex_unlock(&dev->struct_mutex);
  1879. out_unlock:
  1880. mutex_unlock(&dev->filelist_mutex);
  1881. return ret;
  1882. }
  1883. static int count_irq_waiters(struct drm_i915_private *i915)
  1884. {
  1885. struct intel_engine_cs *engine;
  1886. enum intel_engine_id id;
  1887. int count = 0;
  1888. for_each_engine(engine, i915, id)
  1889. count += intel_engine_has_waiter(engine);
  1890. return count;
  1891. }
  1892. static const char *rps_power_to_str(unsigned int power)
  1893. {
  1894. static const char * const strings[] = {
  1895. [LOW_POWER] = "low power",
  1896. [BETWEEN] = "mixed",
  1897. [HIGH_POWER] = "high power",
  1898. };
  1899. if (power >= ARRAY_SIZE(strings) || !strings[power])
  1900. return "unknown";
  1901. return strings[power];
  1902. }
  1903. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1904. {
  1905. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1906. struct drm_device *dev = &dev_priv->drm;
  1907. struct drm_file *file;
  1908. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1909. seq_printf(m, "GPU busy? %s [%x]\n",
  1910. yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
  1911. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1912. seq_printf(m, "Frequency requested %d\n",
  1913. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1914. seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1915. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1916. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1917. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1918. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1919. seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
  1920. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
  1921. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  1922. intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
  1923. mutex_lock(&dev->filelist_mutex);
  1924. spin_lock(&dev_priv->rps.client_lock);
  1925. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1926. struct drm_i915_file_private *file_priv = file->driver_priv;
  1927. struct task_struct *task;
  1928. rcu_read_lock();
  1929. task = pid_task(file->pid, PIDTYPE_PID);
  1930. seq_printf(m, "%s [%d]: %d boosts%s\n",
  1931. task ? task->comm : "<unknown>",
  1932. task ? task->pid : -1,
  1933. file_priv->rps.boosts,
  1934. list_empty(&file_priv->rps.link) ? "" : ", active");
  1935. rcu_read_unlock();
  1936. }
  1937. seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
  1938. spin_unlock(&dev_priv->rps.client_lock);
  1939. mutex_unlock(&dev->filelist_mutex);
  1940. if (INTEL_GEN(dev_priv) >= 6 &&
  1941. dev_priv->rps.enabled &&
  1942. dev_priv->gt.active_engines) {
  1943. u32 rpup, rpupei;
  1944. u32 rpdown, rpdownei;
  1945. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1946. rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
  1947. rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
  1948. rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
  1949. rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
  1950. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1951. seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
  1952. rps_power_to_str(dev_priv->rps.power));
  1953. seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
  1954. 100 * rpup / rpupei,
  1955. dev_priv->rps.up_threshold);
  1956. seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
  1957. 100 * rpdown / rpdownei,
  1958. dev_priv->rps.down_threshold);
  1959. } else {
  1960. seq_puts(m, "\nRPS Autotuning inactive\n");
  1961. }
  1962. return 0;
  1963. }
  1964. static int i915_llc(struct seq_file *m, void *data)
  1965. {
  1966. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1967. const bool edram = INTEL_GEN(dev_priv) > 8;
  1968. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
  1969. seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
  1970. intel_uncore_edram_size(dev_priv)/1024/1024);
  1971. return 0;
  1972. }
  1973. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  1974. {
  1975. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  1976. struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
  1977. u32 tmp, i;
  1978. if (!HAS_GUC_UCODE(dev_priv))
  1979. return 0;
  1980. seq_printf(m, "GuC firmware status:\n");
  1981. seq_printf(m, "\tpath: %s\n",
  1982. guc_fw->guc_fw_path);
  1983. seq_printf(m, "\tfetch: %s\n",
  1984. intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
  1985. seq_printf(m, "\tload: %s\n",
  1986. intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
  1987. seq_printf(m, "\tversion wanted: %d.%d\n",
  1988. guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
  1989. seq_printf(m, "\tversion found: %d.%d\n",
  1990. guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
  1991. seq_printf(m, "\theader: offset is %d; size = %d\n",
  1992. guc_fw->header_offset, guc_fw->header_size);
  1993. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  1994. guc_fw->ucode_offset, guc_fw->ucode_size);
  1995. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  1996. guc_fw->rsa_offset, guc_fw->rsa_size);
  1997. tmp = I915_READ(GUC_STATUS);
  1998. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  1999. seq_printf(m, "\tBootrom status = 0x%x\n",
  2000. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2001. seq_printf(m, "\tuKernel status = 0x%x\n",
  2002. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2003. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2004. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2005. seq_puts(m, "\nScratch registers:\n");
  2006. for (i = 0; i < 16; i++)
  2007. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2008. return 0;
  2009. }
  2010. static void i915_guc_log_info(struct seq_file *m,
  2011. struct drm_i915_private *dev_priv)
  2012. {
  2013. struct intel_guc *guc = &dev_priv->guc;
  2014. seq_puts(m, "\nGuC logging stats:\n");
  2015. seq_printf(m, "\tISR: flush count %10u, overflow count %10u\n",
  2016. guc->log.flush_count[GUC_ISR_LOG_BUFFER],
  2017. guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
  2018. seq_printf(m, "\tDPC: flush count %10u, overflow count %10u\n",
  2019. guc->log.flush_count[GUC_DPC_LOG_BUFFER],
  2020. guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
  2021. seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
  2022. guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
  2023. guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
  2024. seq_printf(m, "\tTotal flush interrupt count: %u\n",
  2025. guc->log.flush_interrupt_count);
  2026. seq_printf(m, "\tCapture miss count: %u\n",
  2027. guc->log.capture_miss_count);
  2028. }
  2029. static void i915_guc_client_info(struct seq_file *m,
  2030. struct drm_i915_private *dev_priv,
  2031. struct i915_guc_client *client)
  2032. {
  2033. struct intel_engine_cs *engine;
  2034. enum intel_engine_id id;
  2035. uint64_t tot = 0;
  2036. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2037. client->priority, client->ctx_index, client->proc_desc_offset);
  2038. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2039. client->doorbell_id, client->doorbell_offset, client->cookie);
  2040. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2041. client->wq_size, client->wq_offset, client->wq_tail);
  2042. seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
  2043. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2044. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2045. for_each_engine(engine, dev_priv, id) {
  2046. u64 submissions = client->submissions[id];
  2047. tot += submissions;
  2048. seq_printf(m, "\tSubmissions: %llu %s\n",
  2049. submissions, engine->name);
  2050. }
  2051. seq_printf(m, "\tTotal: %llu\n", tot);
  2052. }
  2053. static int i915_guc_info(struct seq_file *m, void *data)
  2054. {
  2055. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2056. struct drm_device *dev = &dev_priv->drm;
  2057. struct intel_guc guc;
  2058. struct i915_guc_client client = {};
  2059. struct intel_engine_cs *engine;
  2060. enum intel_engine_id id;
  2061. u64 total = 0;
  2062. if (!HAS_GUC_SCHED(dev_priv))
  2063. return 0;
  2064. if (mutex_lock_interruptible(&dev->struct_mutex))
  2065. return 0;
  2066. /* Take a local copy of the GuC data, so we can dump it at leisure */
  2067. guc = dev_priv->guc;
  2068. if (guc.execbuf_client)
  2069. client = *guc.execbuf_client;
  2070. mutex_unlock(&dev->struct_mutex);
  2071. seq_printf(m, "Doorbell map:\n");
  2072. seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
  2073. seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
  2074. seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
  2075. seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
  2076. seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
  2077. seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
  2078. seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
  2079. seq_printf(m, "\nGuC submissions:\n");
  2080. for_each_engine(engine, dev_priv, id) {
  2081. u64 submissions = guc.submissions[id];
  2082. total += submissions;
  2083. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
  2084. engine->name, submissions, guc.last_seqno[id]);
  2085. }
  2086. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2087. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
  2088. i915_guc_client_info(m, dev_priv, &client);
  2089. i915_guc_log_info(m, dev_priv);
  2090. /* Add more as required ... */
  2091. return 0;
  2092. }
  2093. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2094. {
  2095. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2096. struct drm_i915_gem_object *obj;
  2097. int i = 0, pg;
  2098. if (!dev_priv->guc.log.vma)
  2099. return 0;
  2100. obj = dev_priv->guc.log.vma->obj;
  2101. for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
  2102. u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
  2103. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2104. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2105. *(log + i), *(log + i + 1),
  2106. *(log + i + 2), *(log + i + 3));
  2107. kunmap_atomic(log);
  2108. }
  2109. seq_putc(m, '\n');
  2110. return 0;
  2111. }
  2112. static int i915_guc_log_control_get(void *data, u64 *val)
  2113. {
  2114. struct drm_device *dev = data;
  2115. struct drm_i915_private *dev_priv = to_i915(dev);
  2116. if (!dev_priv->guc.log.vma)
  2117. return -EINVAL;
  2118. *val = i915.guc_log_level;
  2119. return 0;
  2120. }
  2121. static int i915_guc_log_control_set(void *data, u64 val)
  2122. {
  2123. struct drm_device *dev = data;
  2124. struct drm_i915_private *dev_priv = to_i915(dev);
  2125. int ret;
  2126. if (!dev_priv->guc.log.vma)
  2127. return -EINVAL;
  2128. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2129. if (ret)
  2130. return ret;
  2131. intel_runtime_pm_get(dev_priv);
  2132. ret = i915_guc_log_control(dev_priv, val);
  2133. intel_runtime_pm_put(dev_priv);
  2134. mutex_unlock(&dev->struct_mutex);
  2135. return ret;
  2136. }
  2137. DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
  2138. i915_guc_log_control_get, i915_guc_log_control_set,
  2139. "%lld\n");
  2140. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2141. {
  2142. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2143. u32 psrperf = 0;
  2144. u32 stat[3];
  2145. enum pipe pipe;
  2146. bool enabled = false;
  2147. if (!HAS_PSR(dev_priv)) {
  2148. seq_puts(m, "PSR not supported\n");
  2149. return 0;
  2150. }
  2151. intel_runtime_pm_get(dev_priv);
  2152. mutex_lock(&dev_priv->psr.lock);
  2153. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2154. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2155. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2156. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2157. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2158. dev_priv->psr.busy_frontbuffer_bits);
  2159. seq_printf(m, "Re-enable work scheduled: %s\n",
  2160. yesno(work_busy(&dev_priv->psr.work.work)));
  2161. if (HAS_DDI(dev_priv))
  2162. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2163. else {
  2164. for_each_pipe(dev_priv, pipe) {
  2165. enum transcoder cpu_transcoder =
  2166. intel_pipe_to_cpu_transcoder(dev_priv, pipe);
  2167. enum intel_display_power_domain power_domain;
  2168. power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
  2169. if (!intel_display_power_get_if_enabled(dev_priv,
  2170. power_domain))
  2171. continue;
  2172. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2173. VLV_EDP_PSR_CURR_STATE_MASK;
  2174. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2175. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2176. enabled = true;
  2177. intel_display_power_put(dev_priv, power_domain);
  2178. }
  2179. }
  2180. seq_printf(m, "Main link in standby mode: %s\n",
  2181. yesno(dev_priv->psr.link_standby));
  2182. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2183. if (!HAS_DDI(dev_priv))
  2184. for_each_pipe(dev_priv, pipe) {
  2185. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2186. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2187. seq_printf(m, " pipe %c", pipe_name(pipe));
  2188. }
  2189. seq_puts(m, "\n");
  2190. /*
  2191. * VLV/CHV PSR has no kind of performance counter
  2192. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2193. */
  2194. if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
  2195. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2196. EDP_PSR_PERF_CNT_MASK;
  2197. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2198. }
  2199. mutex_unlock(&dev_priv->psr.lock);
  2200. intel_runtime_pm_put(dev_priv);
  2201. return 0;
  2202. }
  2203. static int i915_sink_crc(struct seq_file *m, void *data)
  2204. {
  2205. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2206. struct drm_device *dev = &dev_priv->drm;
  2207. struct intel_connector *connector;
  2208. struct intel_dp *intel_dp = NULL;
  2209. int ret;
  2210. u8 crc[6];
  2211. drm_modeset_lock_all(dev);
  2212. for_each_intel_connector(dev, connector) {
  2213. struct drm_crtc *crtc;
  2214. if (!connector->base.state->best_encoder)
  2215. continue;
  2216. crtc = connector->base.state->crtc;
  2217. if (!crtc->state->active)
  2218. continue;
  2219. if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
  2220. continue;
  2221. intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
  2222. ret = intel_dp_sink_crc(intel_dp, crc);
  2223. if (ret)
  2224. goto out;
  2225. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2226. crc[0], crc[1], crc[2],
  2227. crc[3], crc[4], crc[5]);
  2228. goto out;
  2229. }
  2230. ret = -ENODEV;
  2231. out:
  2232. drm_modeset_unlock_all(dev);
  2233. return ret;
  2234. }
  2235. static int i915_energy_uJ(struct seq_file *m, void *data)
  2236. {
  2237. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2238. u64 power;
  2239. u32 units;
  2240. if (INTEL_GEN(dev_priv) < 6)
  2241. return -ENODEV;
  2242. intel_runtime_pm_get(dev_priv);
  2243. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2244. power = (power & 0x1f00) >> 8;
  2245. units = 1000000 / (1 << power); /* convert to uJ */
  2246. power = I915_READ(MCH_SECP_NRG_STTS);
  2247. power *= units;
  2248. intel_runtime_pm_put(dev_priv);
  2249. seq_printf(m, "%llu", (long long unsigned)power);
  2250. return 0;
  2251. }
  2252. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2253. {
  2254. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2255. struct pci_dev *pdev = dev_priv->drm.pdev;
  2256. if (!HAS_RUNTIME_PM(dev_priv))
  2257. seq_puts(m, "Runtime power management not supported\n");
  2258. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
  2259. seq_printf(m, "IRQs disabled: %s\n",
  2260. yesno(!intel_irqs_enabled(dev_priv)));
  2261. #ifdef CONFIG_PM
  2262. seq_printf(m, "Usage count: %d\n",
  2263. atomic_read(&dev_priv->drm.dev->power.usage_count));
  2264. #else
  2265. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2266. #endif
  2267. seq_printf(m, "PCI device power state: %s [%d]\n",
  2268. pci_power_name(pdev->current_state),
  2269. pdev->current_state);
  2270. return 0;
  2271. }
  2272. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2273. {
  2274. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2275. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2276. int i;
  2277. mutex_lock(&power_domains->lock);
  2278. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2279. for (i = 0; i < power_domains->power_well_count; i++) {
  2280. struct i915_power_well *power_well;
  2281. enum intel_display_power_domain power_domain;
  2282. power_well = &power_domains->power_wells[i];
  2283. seq_printf(m, "%-25s %d\n", power_well->name,
  2284. power_well->count);
  2285. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2286. power_domain++) {
  2287. if (!(BIT(power_domain) & power_well->domains))
  2288. continue;
  2289. seq_printf(m, " %-23s %d\n",
  2290. intel_display_power_domain_str(power_domain),
  2291. power_domains->domain_use_count[power_domain]);
  2292. }
  2293. }
  2294. mutex_unlock(&power_domains->lock);
  2295. return 0;
  2296. }
  2297. static int i915_dmc_info(struct seq_file *m, void *unused)
  2298. {
  2299. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2300. struct intel_csr *csr;
  2301. if (!HAS_CSR(dev_priv)) {
  2302. seq_puts(m, "not supported\n");
  2303. return 0;
  2304. }
  2305. csr = &dev_priv->csr;
  2306. intel_runtime_pm_get(dev_priv);
  2307. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2308. seq_printf(m, "path: %s\n", csr->fw_path);
  2309. if (!csr->dmc_payload)
  2310. goto out;
  2311. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2312. CSR_VERSION_MINOR(csr->version));
  2313. if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
  2314. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2315. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2316. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2317. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2318. } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
  2319. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2320. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2321. }
  2322. out:
  2323. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2324. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2325. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2326. intel_runtime_pm_put(dev_priv);
  2327. return 0;
  2328. }
  2329. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2330. struct drm_display_mode *mode)
  2331. {
  2332. int i;
  2333. for (i = 0; i < tabs; i++)
  2334. seq_putc(m, '\t');
  2335. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2336. mode->base.id, mode->name,
  2337. mode->vrefresh, mode->clock,
  2338. mode->hdisplay, mode->hsync_start,
  2339. mode->hsync_end, mode->htotal,
  2340. mode->vdisplay, mode->vsync_start,
  2341. mode->vsync_end, mode->vtotal,
  2342. mode->type, mode->flags);
  2343. }
  2344. static void intel_encoder_info(struct seq_file *m,
  2345. struct intel_crtc *intel_crtc,
  2346. struct intel_encoder *intel_encoder)
  2347. {
  2348. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2349. struct drm_device *dev = &dev_priv->drm;
  2350. struct drm_crtc *crtc = &intel_crtc->base;
  2351. struct intel_connector *intel_connector;
  2352. struct drm_encoder *encoder;
  2353. encoder = &intel_encoder->base;
  2354. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2355. encoder->base.id, encoder->name);
  2356. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2357. struct drm_connector *connector = &intel_connector->base;
  2358. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2359. connector->base.id,
  2360. connector->name,
  2361. drm_get_connector_status_name(connector->status));
  2362. if (connector->status == connector_status_connected) {
  2363. struct drm_display_mode *mode = &crtc->mode;
  2364. seq_printf(m, ", mode:\n");
  2365. intel_seq_print_mode(m, 2, mode);
  2366. } else {
  2367. seq_putc(m, '\n');
  2368. }
  2369. }
  2370. }
  2371. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2372. {
  2373. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2374. struct drm_device *dev = &dev_priv->drm;
  2375. struct drm_crtc *crtc = &intel_crtc->base;
  2376. struct intel_encoder *intel_encoder;
  2377. struct drm_plane_state *plane_state = crtc->primary->state;
  2378. struct drm_framebuffer *fb = plane_state->fb;
  2379. if (fb)
  2380. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2381. fb->base.id, plane_state->src_x >> 16,
  2382. plane_state->src_y >> 16, fb->width, fb->height);
  2383. else
  2384. seq_puts(m, "\tprimary plane disabled\n");
  2385. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2386. intel_encoder_info(m, intel_crtc, intel_encoder);
  2387. }
  2388. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2389. {
  2390. struct drm_display_mode *mode = panel->fixed_mode;
  2391. seq_printf(m, "\tfixed mode:\n");
  2392. intel_seq_print_mode(m, 2, mode);
  2393. }
  2394. static void intel_dp_info(struct seq_file *m,
  2395. struct intel_connector *intel_connector)
  2396. {
  2397. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2398. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2399. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2400. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2401. if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
  2402. intel_panel_info(m, &intel_connector->panel);
  2403. drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
  2404. &intel_dp->aux);
  2405. }
  2406. static void intel_hdmi_info(struct seq_file *m,
  2407. struct intel_connector *intel_connector)
  2408. {
  2409. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2410. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2411. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2412. }
  2413. static void intel_lvds_info(struct seq_file *m,
  2414. struct intel_connector *intel_connector)
  2415. {
  2416. intel_panel_info(m, &intel_connector->panel);
  2417. }
  2418. static void intel_connector_info(struct seq_file *m,
  2419. struct drm_connector *connector)
  2420. {
  2421. struct intel_connector *intel_connector = to_intel_connector(connector);
  2422. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2423. struct drm_display_mode *mode;
  2424. seq_printf(m, "connector %d: type %s, status: %s\n",
  2425. connector->base.id, connector->name,
  2426. drm_get_connector_status_name(connector->status));
  2427. if (connector->status == connector_status_connected) {
  2428. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2429. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2430. connector->display_info.width_mm,
  2431. connector->display_info.height_mm);
  2432. seq_printf(m, "\tsubpixel order: %s\n",
  2433. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2434. seq_printf(m, "\tCEA rev: %d\n",
  2435. connector->display_info.cea_rev);
  2436. }
  2437. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2438. return;
  2439. switch (connector->connector_type) {
  2440. case DRM_MODE_CONNECTOR_DisplayPort:
  2441. case DRM_MODE_CONNECTOR_eDP:
  2442. intel_dp_info(m, intel_connector);
  2443. break;
  2444. case DRM_MODE_CONNECTOR_LVDS:
  2445. if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2446. intel_lvds_info(m, intel_connector);
  2447. break;
  2448. case DRM_MODE_CONNECTOR_HDMIA:
  2449. if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
  2450. intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
  2451. intel_hdmi_info(m, intel_connector);
  2452. break;
  2453. default:
  2454. break;
  2455. }
  2456. seq_printf(m, "\tmodes:\n");
  2457. list_for_each_entry(mode, &connector->modes, head)
  2458. intel_seq_print_mode(m, 2, mode);
  2459. }
  2460. static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
  2461. {
  2462. u32 state;
  2463. if (IS_845G(dev_priv) || IS_I865G(dev_priv))
  2464. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2465. else
  2466. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2467. return state;
  2468. }
  2469. static bool cursor_position(struct drm_i915_private *dev_priv,
  2470. int pipe, int *x, int *y)
  2471. {
  2472. u32 pos;
  2473. pos = I915_READ(CURPOS(pipe));
  2474. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2475. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2476. *x = -*x;
  2477. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2478. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2479. *y = -*y;
  2480. return cursor_active(dev_priv, pipe);
  2481. }
  2482. static const char *plane_type(enum drm_plane_type type)
  2483. {
  2484. switch (type) {
  2485. case DRM_PLANE_TYPE_OVERLAY:
  2486. return "OVL";
  2487. case DRM_PLANE_TYPE_PRIMARY:
  2488. return "PRI";
  2489. case DRM_PLANE_TYPE_CURSOR:
  2490. return "CUR";
  2491. /*
  2492. * Deliberately omitting default: to generate compiler warnings
  2493. * when a new drm_plane_type gets added.
  2494. */
  2495. }
  2496. return "unknown";
  2497. }
  2498. static const char *plane_rotation(unsigned int rotation)
  2499. {
  2500. static char buf[48];
  2501. /*
  2502. * According to doc only one DRM_ROTATE_ is allowed but this
  2503. * will print them all to visualize if the values are misused
  2504. */
  2505. snprintf(buf, sizeof(buf),
  2506. "%s%s%s%s%s%s(0x%08x)",
  2507. (rotation & DRM_ROTATE_0) ? "0 " : "",
  2508. (rotation & DRM_ROTATE_90) ? "90 " : "",
  2509. (rotation & DRM_ROTATE_180) ? "180 " : "",
  2510. (rotation & DRM_ROTATE_270) ? "270 " : "",
  2511. (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
  2512. (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
  2513. rotation);
  2514. return buf;
  2515. }
  2516. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2517. {
  2518. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2519. struct drm_device *dev = &dev_priv->drm;
  2520. struct intel_plane *intel_plane;
  2521. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2522. struct drm_plane_state *state;
  2523. struct drm_plane *plane = &intel_plane->base;
  2524. char *format_name;
  2525. if (!plane->state) {
  2526. seq_puts(m, "plane->state is NULL!\n");
  2527. continue;
  2528. }
  2529. state = plane->state;
  2530. if (state->fb) {
  2531. format_name = drm_get_format_name(state->fb->pixel_format);
  2532. } else {
  2533. format_name = kstrdup("N/A", GFP_KERNEL);
  2534. }
  2535. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2536. plane->base.id,
  2537. plane_type(intel_plane->base.type),
  2538. state->crtc_x, state->crtc_y,
  2539. state->crtc_w, state->crtc_h,
  2540. (state->src_x >> 16),
  2541. ((state->src_x & 0xffff) * 15625) >> 10,
  2542. (state->src_y >> 16),
  2543. ((state->src_y & 0xffff) * 15625) >> 10,
  2544. (state->src_w >> 16),
  2545. ((state->src_w & 0xffff) * 15625) >> 10,
  2546. (state->src_h >> 16),
  2547. ((state->src_h & 0xffff) * 15625) >> 10,
  2548. format_name,
  2549. plane_rotation(state->rotation));
  2550. kfree(format_name);
  2551. }
  2552. }
  2553. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2554. {
  2555. struct intel_crtc_state *pipe_config;
  2556. int num_scalers = intel_crtc->num_scalers;
  2557. int i;
  2558. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2559. /* Not all platformas have a scaler */
  2560. if (num_scalers) {
  2561. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2562. num_scalers,
  2563. pipe_config->scaler_state.scaler_users,
  2564. pipe_config->scaler_state.scaler_id);
  2565. for (i = 0; i < SKL_NUM_SCALERS; i++) {
  2566. struct intel_scaler *sc =
  2567. &pipe_config->scaler_state.scalers[i];
  2568. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2569. i, yesno(sc->in_use), sc->mode);
  2570. }
  2571. seq_puts(m, "\n");
  2572. } else {
  2573. seq_puts(m, "\tNo scalers available on this platform\n");
  2574. }
  2575. }
  2576. static int i915_display_info(struct seq_file *m, void *unused)
  2577. {
  2578. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2579. struct drm_device *dev = &dev_priv->drm;
  2580. struct intel_crtc *crtc;
  2581. struct drm_connector *connector;
  2582. intel_runtime_pm_get(dev_priv);
  2583. drm_modeset_lock_all(dev);
  2584. seq_printf(m, "CRTC info\n");
  2585. seq_printf(m, "---------\n");
  2586. for_each_intel_crtc(dev, crtc) {
  2587. bool active;
  2588. struct intel_crtc_state *pipe_config;
  2589. int x, y;
  2590. pipe_config = to_intel_crtc_state(crtc->base.state);
  2591. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2592. crtc->base.base.id, pipe_name(crtc->pipe),
  2593. yesno(pipe_config->base.active),
  2594. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2595. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2596. if (pipe_config->base.active) {
  2597. intel_crtc_info(m, crtc);
  2598. active = cursor_position(dev_priv, crtc->pipe, &x, &y);
  2599. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2600. yesno(crtc->cursor_base),
  2601. x, y, crtc->base.cursor->state->crtc_w,
  2602. crtc->base.cursor->state->crtc_h,
  2603. crtc->cursor_addr, yesno(active));
  2604. intel_scaler_info(m, crtc);
  2605. intel_plane_info(m, crtc);
  2606. }
  2607. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2608. yesno(!crtc->cpu_fifo_underrun_disabled),
  2609. yesno(!crtc->pch_fifo_underrun_disabled));
  2610. }
  2611. seq_printf(m, "\n");
  2612. seq_printf(m, "Connector info\n");
  2613. seq_printf(m, "--------------\n");
  2614. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2615. intel_connector_info(m, connector);
  2616. }
  2617. drm_modeset_unlock_all(dev);
  2618. intel_runtime_pm_put(dev_priv);
  2619. return 0;
  2620. }
  2621. static int i915_engine_info(struct seq_file *m, void *unused)
  2622. {
  2623. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2624. struct intel_engine_cs *engine;
  2625. enum intel_engine_id id;
  2626. intel_runtime_pm_get(dev_priv);
  2627. for_each_engine(engine, dev_priv, id) {
  2628. struct intel_breadcrumbs *b = &engine->breadcrumbs;
  2629. struct drm_i915_gem_request *rq;
  2630. struct rb_node *rb;
  2631. u64 addr;
  2632. seq_printf(m, "%s\n", engine->name);
  2633. seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [score %d]\n",
  2634. intel_engine_get_seqno(engine),
  2635. engine->timeline->last_submitted_seqno,
  2636. engine->hangcheck.seqno,
  2637. engine->hangcheck.score);
  2638. rcu_read_lock();
  2639. seq_printf(m, "\tRequests:\n");
  2640. rq = list_first_entry(&engine->timeline->requests,
  2641. struct drm_i915_gem_request, link);
  2642. if (&rq->link != &engine->timeline->requests)
  2643. print_request(m, rq, "\t\tfirst ");
  2644. rq = list_last_entry(&engine->timeline->requests,
  2645. struct drm_i915_gem_request, link);
  2646. if (&rq->link != &engine->timeline->requests)
  2647. print_request(m, rq, "\t\tlast ");
  2648. rq = i915_gem_find_active_request(engine);
  2649. if (rq) {
  2650. print_request(m, rq, "\t\tactive ");
  2651. seq_printf(m,
  2652. "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
  2653. rq->head, rq->postfix, rq->tail,
  2654. rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
  2655. rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
  2656. }
  2657. seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
  2658. I915_READ(RING_START(engine->mmio_base)),
  2659. rq ? i915_ggtt_offset(rq->ring->vma) : 0);
  2660. seq_printf(m, "\tRING_HEAD: 0x%08x [0x%08x]\n",
  2661. I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
  2662. rq ? rq->ring->head : 0);
  2663. seq_printf(m, "\tRING_TAIL: 0x%08x [0x%08x]\n",
  2664. I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
  2665. rq ? rq->ring->tail : 0);
  2666. seq_printf(m, "\tRING_CTL: 0x%08x [%s]\n",
  2667. I915_READ(RING_CTL(engine->mmio_base)),
  2668. I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
  2669. rcu_read_unlock();
  2670. addr = intel_engine_get_active_head(engine);
  2671. seq_printf(m, "\tACTHD: 0x%08x_%08x\n",
  2672. upper_32_bits(addr), lower_32_bits(addr));
  2673. addr = intel_engine_get_last_batch_head(engine);
  2674. seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
  2675. upper_32_bits(addr), lower_32_bits(addr));
  2676. if (i915.enable_execlists) {
  2677. u32 ptr, read, write;
  2678. seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
  2679. I915_READ(RING_EXECLIST_STATUS_LO(engine)),
  2680. I915_READ(RING_EXECLIST_STATUS_HI(engine)));
  2681. ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
  2682. read = GEN8_CSB_READ_PTR(ptr);
  2683. write = GEN8_CSB_WRITE_PTR(ptr);
  2684. seq_printf(m, "\tExeclist CSB read %d, write %d\n",
  2685. read, write);
  2686. if (read >= GEN8_CSB_ENTRIES)
  2687. read = 0;
  2688. if (write >= GEN8_CSB_ENTRIES)
  2689. write = 0;
  2690. if (read > write)
  2691. write += GEN8_CSB_ENTRIES;
  2692. while (read < write) {
  2693. unsigned int idx = ++read % GEN8_CSB_ENTRIES;
  2694. seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
  2695. idx,
  2696. I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
  2697. I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
  2698. }
  2699. rcu_read_lock();
  2700. rq = READ_ONCE(engine->execlist_port[0].request);
  2701. if (rq)
  2702. print_request(m, rq, "\t\tELSP[0] ");
  2703. else
  2704. seq_printf(m, "\t\tELSP[0] idle\n");
  2705. rq = READ_ONCE(engine->execlist_port[1].request);
  2706. if (rq)
  2707. print_request(m, rq, "\t\tELSP[1] ");
  2708. else
  2709. seq_printf(m, "\t\tELSP[1] idle\n");
  2710. rcu_read_unlock();
  2711. } else if (INTEL_GEN(dev_priv) > 6) {
  2712. seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
  2713. I915_READ(RING_PP_DIR_BASE(engine)));
  2714. seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
  2715. I915_READ(RING_PP_DIR_BASE_READ(engine)));
  2716. seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
  2717. I915_READ(RING_PP_DIR_DCLV(engine)));
  2718. }
  2719. spin_lock(&b->lock);
  2720. for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
  2721. struct intel_wait *w = container_of(rb, typeof(*w), node);
  2722. seq_printf(m, "\t%s [%d] waiting for %x\n",
  2723. w->tsk->comm, w->tsk->pid, w->seqno);
  2724. }
  2725. spin_unlock(&b->lock);
  2726. seq_puts(m, "\n");
  2727. }
  2728. intel_runtime_pm_put(dev_priv);
  2729. return 0;
  2730. }
  2731. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2732. {
  2733. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2734. struct drm_device *dev = &dev_priv->drm;
  2735. struct intel_engine_cs *engine;
  2736. int num_rings = INTEL_INFO(dev_priv)->num_rings;
  2737. enum intel_engine_id id;
  2738. int j, ret;
  2739. if (!i915.semaphores) {
  2740. seq_puts(m, "Semaphores are disabled\n");
  2741. return 0;
  2742. }
  2743. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2744. if (ret)
  2745. return ret;
  2746. intel_runtime_pm_get(dev_priv);
  2747. if (IS_BROADWELL(dev_priv)) {
  2748. struct page *page;
  2749. uint64_t *seqno;
  2750. page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
  2751. seqno = (uint64_t *)kmap_atomic(page);
  2752. for_each_engine(engine, dev_priv, id) {
  2753. uint64_t offset;
  2754. seq_printf(m, "%s\n", engine->name);
  2755. seq_puts(m, " Last signal:");
  2756. for (j = 0; j < num_rings; j++) {
  2757. offset = id * I915_NUM_ENGINES + j;
  2758. seq_printf(m, "0x%08llx (0x%02llx) ",
  2759. seqno[offset], offset * 8);
  2760. }
  2761. seq_putc(m, '\n');
  2762. seq_puts(m, " Last wait: ");
  2763. for (j = 0; j < num_rings; j++) {
  2764. offset = id + (j * I915_NUM_ENGINES);
  2765. seq_printf(m, "0x%08llx (0x%02llx) ",
  2766. seqno[offset], offset * 8);
  2767. }
  2768. seq_putc(m, '\n');
  2769. }
  2770. kunmap_atomic(seqno);
  2771. } else {
  2772. seq_puts(m, " Last signal:");
  2773. for_each_engine(engine, dev_priv, id)
  2774. for (j = 0; j < num_rings; j++)
  2775. seq_printf(m, "0x%08x\n",
  2776. I915_READ(engine->semaphore.mbox.signal[j]));
  2777. seq_putc(m, '\n');
  2778. }
  2779. intel_runtime_pm_put(dev_priv);
  2780. mutex_unlock(&dev->struct_mutex);
  2781. return 0;
  2782. }
  2783. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2784. {
  2785. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2786. struct drm_device *dev = &dev_priv->drm;
  2787. int i;
  2788. drm_modeset_lock_all(dev);
  2789. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2790. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2791. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2792. seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
  2793. pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
  2794. seq_printf(m, " tracked hardware state:\n");
  2795. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2796. seq_printf(m, " dpll_md: 0x%08x\n",
  2797. pll->config.hw_state.dpll_md);
  2798. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2799. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2800. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2801. }
  2802. drm_modeset_unlock_all(dev);
  2803. return 0;
  2804. }
  2805. static int i915_wa_registers(struct seq_file *m, void *unused)
  2806. {
  2807. int i;
  2808. int ret;
  2809. struct intel_engine_cs *engine;
  2810. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2811. struct drm_device *dev = &dev_priv->drm;
  2812. struct i915_workarounds *workarounds = &dev_priv->workarounds;
  2813. enum intel_engine_id id;
  2814. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2815. if (ret)
  2816. return ret;
  2817. intel_runtime_pm_get(dev_priv);
  2818. seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
  2819. for_each_engine(engine, dev_priv, id)
  2820. seq_printf(m, "HW whitelist count for %s: %d\n",
  2821. engine->name, workarounds->hw_whitelist_count[id]);
  2822. for (i = 0; i < workarounds->count; ++i) {
  2823. i915_reg_t addr;
  2824. u32 mask, value, read;
  2825. bool ok;
  2826. addr = workarounds->reg[i].addr;
  2827. mask = workarounds->reg[i].mask;
  2828. value = workarounds->reg[i].value;
  2829. read = I915_READ(addr);
  2830. ok = (value & mask) == (read & mask);
  2831. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2832. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2833. }
  2834. intel_runtime_pm_put(dev_priv);
  2835. mutex_unlock(&dev->struct_mutex);
  2836. return 0;
  2837. }
  2838. static int i915_ddb_info(struct seq_file *m, void *unused)
  2839. {
  2840. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2841. struct drm_device *dev = &dev_priv->drm;
  2842. struct skl_ddb_allocation *ddb;
  2843. struct skl_ddb_entry *entry;
  2844. enum pipe pipe;
  2845. int plane;
  2846. if (INTEL_GEN(dev_priv) < 9)
  2847. return 0;
  2848. drm_modeset_lock_all(dev);
  2849. ddb = &dev_priv->wm.skl_hw.ddb;
  2850. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2851. for_each_pipe(dev_priv, pipe) {
  2852. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2853. for_each_universal_plane(dev_priv, pipe, plane) {
  2854. entry = &ddb->plane[pipe][plane];
  2855. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2856. entry->start, entry->end,
  2857. skl_ddb_entry_size(entry));
  2858. }
  2859. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2860. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2861. entry->end, skl_ddb_entry_size(entry));
  2862. }
  2863. drm_modeset_unlock_all(dev);
  2864. return 0;
  2865. }
  2866. static void drrs_status_per_crtc(struct seq_file *m,
  2867. struct drm_device *dev,
  2868. struct intel_crtc *intel_crtc)
  2869. {
  2870. struct drm_i915_private *dev_priv = to_i915(dev);
  2871. struct i915_drrs *drrs = &dev_priv->drrs;
  2872. int vrefresh = 0;
  2873. struct drm_connector *connector;
  2874. drm_for_each_connector(connector, dev) {
  2875. if (connector->state->crtc != &intel_crtc->base)
  2876. continue;
  2877. seq_printf(m, "%s:\n", connector->name);
  2878. }
  2879. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2880. seq_puts(m, "\tVBT: DRRS_type: Static");
  2881. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2882. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2883. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2884. seq_puts(m, "\tVBT: DRRS_type: None");
  2885. else
  2886. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2887. seq_puts(m, "\n\n");
  2888. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2889. struct intel_panel *panel;
  2890. mutex_lock(&drrs->mutex);
  2891. /* DRRS Supported */
  2892. seq_puts(m, "\tDRRS Supported: Yes\n");
  2893. /* disable_drrs() will make drrs->dp NULL */
  2894. if (!drrs->dp) {
  2895. seq_puts(m, "Idleness DRRS: Disabled");
  2896. mutex_unlock(&drrs->mutex);
  2897. return;
  2898. }
  2899. panel = &drrs->dp->attached_connector->panel;
  2900. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2901. drrs->busy_frontbuffer_bits);
  2902. seq_puts(m, "\n\t\t");
  2903. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2904. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2905. vrefresh = panel->fixed_mode->vrefresh;
  2906. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2907. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2908. vrefresh = panel->downclock_mode->vrefresh;
  2909. } else {
  2910. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2911. drrs->refresh_rate_type);
  2912. mutex_unlock(&drrs->mutex);
  2913. return;
  2914. }
  2915. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2916. seq_puts(m, "\n\t\t");
  2917. mutex_unlock(&drrs->mutex);
  2918. } else {
  2919. /* DRRS not supported. Print the VBT parameter*/
  2920. seq_puts(m, "\tDRRS Supported : No");
  2921. }
  2922. seq_puts(m, "\n");
  2923. }
  2924. static int i915_drrs_status(struct seq_file *m, void *unused)
  2925. {
  2926. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2927. struct drm_device *dev = &dev_priv->drm;
  2928. struct intel_crtc *intel_crtc;
  2929. int active_crtc_cnt = 0;
  2930. drm_modeset_lock_all(dev);
  2931. for_each_intel_crtc(dev, intel_crtc) {
  2932. if (intel_crtc->base.state->active) {
  2933. active_crtc_cnt++;
  2934. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2935. drrs_status_per_crtc(m, dev, intel_crtc);
  2936. }
  2937. }
  2938. drm_modeset_unlock_all(dev);
  2939. if (!active_crtc_cnt)
  2940. seq_puts(m, "No active crtc found\n");
  2941. return 0;
  2942. }
  2943. struct pipe_crc_info {
  2944. const char *name;
  2945. struct drm_i915_private *dev_priv;
  2946. enum pipe pipe;
  2947. };
  2948. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2949. {
  2950. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  2951. struct drm_device *dev = &dev_priv->drm;
  2952. struct intel_encoder *intel_encoder;
  2953. struct intel_digital_port *intel_dig_port;
  2954. struct drm_connector *connector;
  2955. drm_modeset_lock_all(dev);
  2956. drm_for_each_connector(connector, dev) {
  2957. if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
  2958. continue;
  2959. intel_encoder = intel_attached_encoder(connector);
  2960. if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2961. continue;
  2962. intel_dig_port = enc_to_dig_port(&intel_encoder->base);
  2963. if (!intel_dig_port->dp.can_mst)
  2964. continue;
  2965. seq_printf(m, "MST Source Port %c\n",
  2966. port_name(intel_dig_port->port));
  2967. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2968. }
  2969. drm_modeset_unlock_all(dev);
  2970. return 0;
  2971. }
  2972. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2973. {
  2974. struct pipe_crc_info *info = inode->i_private;
  2975. struct drm_i915_private *dev_priv = info->dev_priv;
  2976. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2977. if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
  2978. return -ENODEV;
  2979. spin_lock_irq(&pipe_crc->lock);
  2980. if (pipe_crc->opened) {
  2981. spin_unlock_irq(&pipe_crc->lock);
  2982. return -EBUSY; /* already open */
  2983. }
  2984. pipe_crc->opened = true;
  2985. filep->private_data = inode->i_private;
  2986. spin_unlock_irq(&pipe_crc->lock);
  2987. return 0;
  2988. }
  2989. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2990. {
  2991. struct pipe_crc_info *info = inode->i_private;
  2992. struct drm_i915_private *dev_priv = info->dev_priv;
  2993. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2994. spin_lock_irq(&pipe_crc->lock);
  2995. pipe_crc->opened = false;
  2996. spin_unlock_irq(&pipe_crc->lock);
  2997. return 0;
  2998. }
  2999. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  3000. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  3001. /* account for \'0' */
  3002. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  3003. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  3004. {
  3005. assert_spin_locked(&pipe_crc->lock);
  3006. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  3007. INTEL_PIPE_CRC_ENTRIES_NR);
  3008. }
  3009. static ssize_t
  3010. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  3011. loff_t *pos)
  3012. {
  3013. struct pipe_crc_info *info = filep->private_data;
  3014. struct drm_i915_private *dev_priv = info->dev_priv;
  3015. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  3016. char buf[PIPE_CRC_BUFFER_LEN];
  3017. int n_entries;
  3018. ssize_t bytes_read;
  3019. /*
  3020. * Don't allow user space to provide buffers not big enough to hold
  3021. * a line of data.
  3022. */
  3023. if (count < PIPE_CRC_LINE_LEN)
  3024. return -EINVAL;
  3025. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  3026. return 0;
  3027. /* nothing to read */
  3028. spin_lock_irq(&pipe_crc->lock);
  3029. while (pipe_crc_data_count(pipe_crc) == 0) {
  3030. int ret;
  3031. if (filep->f_flags & O_NONBLOCK) {
  3032. spin_unlock_irq(&pipe_crc->lock);
  3033. return -EAGAIN;
  3034. }
  3035. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  3036. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  3037. if (ret) {
  3038. spin_unlock_irq(&pipe_crc->lock);
  3039. return ret;
  3040. }
  3041. }
  3042. /* We now have one or more entries to read */
  3043. n_entries = count / PIPE_CRC_LINE_LEN;
  3044. bytes_read = 0;
  3045. while (n_entries > 0) {
  3046. struct intel_pipe_crc_entry *entry =
  3047. &pipe_crc->entries[pipe_crc->tail];
  3048. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  3049. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  3050. break;
  3051. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  3052. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  3053. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  3054. "%8u %8x %8x %8x %8x %8x\n",
  3055. entry->frame, entry->crc[0],
  3056. entry->crc[1], entry->crc[2],
  3057. entry->crc[3], entry->crc[4]);
  3058. spin_unlock_irq(&pipe_crc->lock);
  3059. if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
  3060. return -EFAULT;
  3061. user_buf += PIPE_CRC_LINE_LEN;
  3062. n_entries--;
  3063. spin_lock_irq(&pipe_crc->lock);
  3064. }
  3065. spin_unlock_irq(&pipe_crc->lock);
  3066. return bytes_read;
  3067. }
  3068. static const struct file_operations i915_pipe_crc_fops = {
  3069. .owner = THIS_MODULE,
  3070. .open = i915_pipe_crc_open,
  3071. .read = i915_pipe_crc_read,
  3072. .release = i915_pipe_crc_release,
  3073. };
  3074. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  3075. {
  3076. .name = "i915_pipe_A_crc",
  3077. .pipe = PIPE_A,
  3078. },
  3079. {
  3080. .name = "i915_pipe_B_crc",
  3081. .pipe = PIPE_B,
  3082. },
  3083. {
  3084. .name = "i915_pipe_C_crc",
  3085. .pipe = PIPE_C,
  3086. },
  3087. };
  3088. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  3089. enum pipe pipe)
  3090. {
  3091. struct drm_i915_private *dev_priv = to_i915(minor->dev);
  3092. struct dentry *ent;
  3093. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  3094. info->dev_priv = dev_priv;
  3095. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  3096. &i915_pipe_crc_fops);
  3097. if (!ent)
  3098. return -ENOMEM;
  3099. return drm_add_fake_info_node(minor, ent, info);
  3100. }
  3101. static const char * const pipe_crc_sources[] = {
  3102. "none",
  3103. "plane1",
  3104. "plane2",
  3105. "pf",
  3106. "pipe",
  3107. "TV",
  3108. "DP-B",
  3109. "DP-C",
  3110. "DP-D",
  3111. "auto",
  3112. };
  3113. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  3114. {
  3115. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  3116. return pipe_crc_sources[source];
  3117. }
  3118. static int display_crc_ctl_show(struct seq_file *m, void *data)
  3119. {
  3120. struct drm_i915_private *dev_priv = m->private;
  3121. int i;
  3122. for (i = 0; i < I915_MAX_PIPES; i++)
  3123. seq_printf(m, "%c %s\n", pipe_name(i),
  3124. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  3125. return 0;
  3126. }
  3127. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  3128. {
  3129. return single_open(file, display_crc_ctl_show, inode->i_private);
  3130. }
  3131. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3132. uint32_t *val)
  3133. {
  3134. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3135. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3136. switch (*source) {
  3137. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3138. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  3139. break;
  3140. case INTEL_PIPE_CRC_SOURCE_NONE:
  3141. *val = 0;
  3142. break;
  3143. default:
  3144. return -EINVAL;
  3145. }
  3146. return 0;
  3147. }
  3148. static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
  3149. enum pipe pipe,
  3150. enum intel_pipe_crc_source *source)
  3151. {
  3152. struct drm_device *dev = &dev_priv->drm;
  3153. struct intel_encoder *encoder;
  3154. struct intel_crtc *crtc;
  3155. struct intel_digital_port *dig_port;
  3156. int ret = 0;
  3157. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3158. drm_modeset_lock_all(dev);
  3159. for_each_intel_encoder(dev, encoder) {
  3160. if (!encoder->base.crtc)
  3161. continue;
  3162. crtc = to_intel_crtc(encoder->base.crtc);
  3163. if (crtc->pipe != pipe)
  3164. continue;
  3165. switch (encoder->type) {
  3166. case INTEL_OUTPUT_TVOUT:
  3167. *source = INTEL_PIPE_CRC_SOURCE_TV;
  3168. break;
  3169. case INTEL_OUTPUT_DP:
  3170. case INTEL_OUTPUT_EDP:
  3171. dig_port = enc_to_dig_port(&encoder->base);
  3172. switch (dig_port->port) {
  3173. case PORT_B:
  3174. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  3175. break;
  3176. case PORT_C:
  3177. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  3178. break;
  3179. case PORT_D:
  3180. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  3181. break;
  3182. default:
  3183. WARN(1, "nonexisting DP port %c\n",
  3184. port_name(dig_port->port));
  3185. break;
  3186. }
  3187. break;
  3188. default:
  3189. break;
  3190. }
  3191. }
  3192. drm_modeset_unlock_all(dev);
  3193. return ret;
  3194. }
  3195. static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
  3196. enum pipe pipe,
  3197. enum intel_pipe_crc_source *source,
  3198. uint32_t *val)
  3199. {
  3200. bool need_stable_symbols = false;
  3201. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3202. int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
  3203. if (ret)
  3204. return ret;
  3205. }
  3206. switch (*source) {
  3207. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3208. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  3209. break;
  3210. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3211. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  3212. need_stable_symbols = true;
  3213. break;
  3214. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3215. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  3216. need_stable_symbols = true;
  3217. break;
  3218. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3219. if (!IS_CHERRYVIEW(dev_priv))
  3220. return -EINVAL;
  3221. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  3222. need_stable_symbols = true;
  3223. break;
  3224. case INTEL_PIPE_CRC_SOURCE_NONE:
  3225. *val = 0;
  3226. break;
  3227. default:
  3228. return -EINVAL;
  3229. }
  3230. /*
  3231. * When the pipe CRC tap point is after the transcoders we need
  3232. * to tweak symbol-level features to produce a deterministic series of
  3233. * symbols for a given frame. We need to reset those features only once
  3234. * a frame (instead of every nth symbol):
  3235. * - DC-balance: used to ensure a better clock recovery from the data
  3236. * link (SDVO)
  3237. * - DisplayPort scrambling: used for EMI reduction
  3238. */
  3239. if (need_stable_symbols) {
  3240. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3241. tmp |= DC_BALANCE_RESET_VLV;
  3242. switch (pipe) {
  3243. case PIPE_A:
  3244. tmp |= PIPE_A_SCRAMBLE_RESET;
  3245. break;
  3246. case PIPE_B:
  3247. tmp |= PIPE_B_SCRAMBLE_RESET;
  3248. break;
  3249. case PIPE_C:
  3250. tmp |= PIPE_C_SCRAMBLE_RESET;
  3251. break;
  3252. default:
  3253. return -EINVAL;
  3254. }
  3255. I915_WRITE(PORT_DFT2_G4X, tmp);
  3256. }
  3257. return 0;
  3258. }
  3259. static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
  3260. enum pipe pipe,
  3261. enum intel_pipe_crc_source *source,
  3262. uint32_t *val)
  3263. {
  3264. bool need_stable_symbols = false;
  3265. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3266. int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
  3267. if (ret)
  3268. return ret;
  3269. }
  3270. switch (*source) {
  3271. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3272. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  3273. break;
  3274. case INTEL_PIPE_CRC_SOURCE_TV:
  3275. if (!SUPPORTS_TV(dev_priv))
  3276. return -EINVAL;
  3277. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  3278. break;
  3279. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3280. if (!IS_G4X(dev_priv))
  3281. return -EINVAL;
  3282. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  3283. need_stable_symbols = true;
  3284. break;
  3285. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3286. if (!IS_G4X(dev_priv))
  3287. return -EINVAL;
  3288. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  3289. need_stable_symbols = true;
  3290. break;
  3291. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3292. if (!IS_G4X(dev_priv))
  3293. return -EINVAL;
  3294. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  3295. need_stable_symbols = true;
  3296. break;
  3297. case INTEL_PIPE_CRC_SOURCE_NONE:
  3298. *val = 0;
  3299. break;
  3300. default:
  3301. return -EINVAL;
  3302. }
  3303. /*
  3304. * When the pipe CRC tap point is after the transcoders we need
  3305. * to tweak symbol-level features to produce a deterministic series of
  3306. * symbols for a given frame. We need to reset those features only once
  3307. * a frame (instead of every nth symbol):
  3308. * - DC-balance: used to ensure a better clock recovery from the data
  3309. * link (SDVO)
  3310. * - DisplayPort scrambling: used for EMI reduction
  3311. */
  3312. if (need_stable_symbols) {
  3313. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3314. WARN_ON(!IS_G4X(dev_priv));
  3315. I915_WRITE(PORT_DFT_I9XX,
  3316. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  3317. if (pipe == PIPE_A)
  3318. tmp |= PIPE_A_SCRAMBLE_RESET;
  3319. else
  3320. tmp |= PIPE_B_SCRAMBLE_RESET;
  3321. I915_WRITE(PORT_DFT2_G4X, tmp);
  3322. }
  3323. return 0;
  3324. }
  3325. static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
  3326. enum pipe pipe)
  3327. {
  3328. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3329. switch (pipe) {
  3330. case PIPE_A:
  3331. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3332. break;
  3333. case PIPE_B:
  3334. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3335. break;
  3336. case PIPE_C:
  3337. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  3338. break;
  3339. default:
  3340. return;
  3341. }
  3342. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  3343. tmp &= ~DC_BALANCE_RESET_VLV;
  3344. I915_WRITE(PORT_DFT2_G4X, tmp);
  3345. }
  3346. static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
  3347. enum pipe pipe)
  3348. {
  3349. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3350. if (pipe == PIPE_A)
  3351. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3352. else
  3353. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3354. I915_WRITE(PORT_DFT2_G4X, tmp);
  3355. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  3356. I915_WRITE(PORT_DFT_I9XX,
  3357. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  3358. }
  3359. }
  3360. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3361. uint32_t *val)
  3362. {
  3363. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3364. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3365. switch (*source) {
  3366. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3367. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  3368. break;
  3369. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3370. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  3371. break;
  3372. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3373. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  3374. break;
  3375. case INTEL_PIPE_CRC_SOURCE_NONE:
  3376. *val = 0;
  3377. break;
  3378. default:
  3379. return -EINVAL;
  3380. }
  3381. return 0;
  3382. }
  3383. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
  3384. bool enable)
  3385. {
  3386. struct drm_device *dev = &dev_priv->drm;
  3387. struct intel_crtc *crtc =
  3388. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  3389. struct intel_crtc_state *pipe_config;
  3390. struct drm_atomic_state *state;
  3391. int ret = 0;
  3392. drm_modeset_lock_all(dev);
  3393. state = drm_atomic_state_alloc(dev);
  3394. if (!state) {
  3395. ret = -ENOMEM;
  3396. goto out;
  3397. }
  3398. state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
  3399. pipe_config = intel_atomic_get_crtc_state(state, crtc);
  3400. if (IS_ERR(pipe_config)) {
  3401. ret = PTR_ERR(pipe_config);
  3402. goto out;
  3403. }
  3404. pipe_config->pch_pfit.force_thru = enable;
  3405. if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
  3406. pipe_config->pch_pfit.enabled != enable)
  3407. pipe_config->base.connectors_changed = true;
  3408. ret = drm_atomic_commit(state);
  3409. out:
  3410. WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
  3411. drm_modeset_unlock_all(dev);
  3412. drm_atomic_state_put(state);
  3413. }
  3414. static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
  3415. enum pipe pipe,
  3416. enum intel_pipe_crc_source *source,
  3417. uint32_t *val)
  3418. {
  3419. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3420. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3421. switch (*source) {
  3422. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3423. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3424. break;
  3425. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3426. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3427. break;
  3428. case INTEL_PIPE_CRC_SOURCE_PF:
  3429. if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
  3430. hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
  3431. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3432. break;
  3433. case INTEL_PIPE_CRC_SOURCE_NONE:
  3434. *val = 0;
  3435. break;
  3436. default:
  3437. return -EINVAL;
  3438. }
  3439. return 0;
  3440. }
  3441. static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
  3442. enum pipe pipe,
  3443. enum intel_pipe_crc_source source)
  3444. {
  3445. struct drm_device *dev = &dev_priv->drm;
  3446. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3447. struct intel_crtc *crtc =
  3448. to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
  3449. enum intel_display_power_domain power_domain;
  3450. u32 val = 0; /* shut up gcc */
  3451. int ret;
  3452. if (pipe_crc->source == source)
  3453. return 0;
  3454. /* forbid changing the source without going back to 'none' */
  3455. if (pipe_crc->source && source)
  3456. return -EINVAL;
  3457. power_domain = POWER_DOMAIN_PIPE(pipe);
  3458. if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
  3459. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3460. return -EIO;
  3461. }
  3462. if (IS_GEN2(dev_priv))
  3463. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3464. else if (INTEL_GEN(dev_priv) < 5)
  3465. ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
  3466. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  3467. ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
  3468. else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
  3469. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3470. else
  3471. ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
  3472. if (ret != 0)
  3473. goto out;
  3474. /* none -> real source transition */
  3475. if (source) {
  3476. struct intel_pipe_crc_entry *entries;
  3477. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3478. pipe_name(pipe), pipe_crc_source_name(source));
  3479. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3480. sizeof(pipe_crc->entries[0]),
  3481. GFP_KERNEL);
  3482. if (!entries) {
  3483. ret = -ENOMEM;
  3484. goto out;
  3485. }
  3486. /*
  3487. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3488. * enabled and disabled dynamically based on package C states,
  3489. * user space can't make reliable use of the CRCs, so let's just
  3490. * completely disable it.
  3491. */
  3492. hsw_disable_ips(crtc);
  3493. spin_lock_irq(&pipe_crc->lock);
  3494. kfree(pipe_crc->entries);
  3495. pipe_crc->entries = entries;
  3496. pipe_crc->head = 0;
  3497. pipe_crc->tail = 0;
  3498. spin_unlock_irq(&pipe_crc->lock);
  3499. }
  3500. pipe_crc->source = source;
  3501. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3502. POSTING_READ(PIPE_CRC_CTL(pipe));
  3503. /* real source -> none transition */
  3504. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3505. struct intel_pipe_crc_entry *entries;
  3506. struct intel_crtc *crtc =
  3507. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3508. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3509. pipe_name(pipe));
  3510. drm_modeset_lock(&crtc->base.mutex, NULL);
  3511. if (crtc->base.state->active)
  3512. intel_wait_for_vblank(dev, pipe);
  3513. drm_modeset_unlock(&crtc->base.mutex);
  3514. spin_lock_irq(&pipe_crc->lock);
  3515. entries = pipe_crc->entries;
  3516. pipe_crc->entries = NULL;
  3517. pipe_crc->head = 0;
  3518. pipe_crc->tail = 0;
  3519. spin_unlock_irq(&pipe_crc->lock);
  3520. kfree(entries);
  3521. if (IS_G4X(dev_priv))
  3522. g4x_undo_pipe_scramble_reset(dev_priv, pipe);
  3523. else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  3524. vlv_undo_pipe_scramble_reset(dev_priv, pipe);
  3525. else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
  3526. hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
  3527. hsw_enable_ips(crtc);
  3528. }
  3529. ret = 0;
  3530. out:
  3531. intel_display_power_put(dev_priv, power_domain);
  3532. return ret;
  3533. }
  3534. /*
  3535. * Parse pipe CRC command strings:
  3536. * command: wsp* object wsp+ name wsp+ source wsp*
  3537. * object: 'pipe'
  3538. * name: (A | B | C)
  3539. * source: (none | plane1 | plane2 | pf)
  3540. * wsp: (#0x20 | #0x9 | #0xA)+
  3541. *
  3542. * eg.:
  3543. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3544. * "pipe A none" -> Stop CRC
  3545. */
  3546. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3547. {
  3548. int n_words = 0;
  3549. while (*buf) {
  3550. char *end;
  3551. /* skip leading white space */
  3552. buf = skip_spaces(buf);
  3553. if (!*buf)
  3554. break; /* end of buffer */
  3555. /* find end of word */
  3556. for (end = buf; *end && !isspace(*end); end++)
  3557. ;
  3558. if (n_words == max_words) {
  3559. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3560. max_words);
  3561. return -EINVAL; /* ran out of words[] before bytes */
  3562. }
  3563. if (*end)
  3564. *end++ = '\0';
  3565. words[n_words++] = buf;
  3566. buf = end;
  3567. }
  3568. return n_words;
  3569. }
  3570. enum intel_pipe_crc_object {
  3571. PIPE_CRC_OBJECT_PIPE,
  3572. };
  3573. static const char * const pipe_crc_objects[] = {
  3574. "pipe",
  3575. };
  3576. static int
  3577. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3578. {
  3579. int i;
  3580. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3581. if (!strcmp(buf, pipe_crc_objects[i])) {
  3582. *o = i;
  3583. return 0;
  3584. }
  3585. return -EINVAL;
  3586. }
  3587. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3588. {
  3589. const char name = buf[0];
  3590. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3591. return -EINVAL;
  3592. *pipe = name - 'A';
  3593. return 0;
  3594. }
  3595. static int
  3596. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3597. {
  3598. int i;
  3599. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3600. if (!strcmp(buf, pipe_crc_sources[i])) {
  3601. *s = i;
  3602. return 0;
  3603. }
  3604. return -EINVAL;
  3605. }
  3606. static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
  3607. char *buf, size_t len)
  3608. {
  3609. #define N_WORDS 3
  3610. int n_words;
  3611. char *words[N_WORDS];
  3612. enum pipe pipe;
  3613. enum intel_pipe_crc_object object;
  3614. enum intel_pipe_crc_source source;
  3615. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3616. if (n_words != N_WORDS) {
  3617. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3618. N_WORDS);
  3619. return -EINVAL;
  3620. }
  3621. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3622. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3623. return -EINVAL;
  3624. }
  3625. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3626. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3627. return -EINVAL;
  3628. }
  3629. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3630. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3631. return -EINVAL;
  3632. }
  3633. return pipe_crc_set_source(dev_priv, pipe, source);
  3634. }
  3635. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3636. size_t len, loff_t *offp)
  3637. {
  3638. struct seq_file *m = file->private_data;
  3639. struct drm_i915_private *dev_priv = m->private;
  3640. char *tmpbuf;
  3641. int ret;
  3642. if (len == 0)
  3643. return 0;
  3644. if (len > PAGE_SIZE - 1) {
  3645. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3646. PAGE_SIZE);
  3647. return -E2BIG;
  3648. }
  3649. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3650. if (!tmpbuf)
  3651. return -ENOMEM;
  3652. if (copy_from_user(tmpbuf, ubuf, len)) {
  3653. ret = -EFAULT;
  3654. goto out;
  3655. }
  3656. tmpbuf[len] = '\0';
  3657. ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
  3658. out:
  3659. kfree(tmpbuf);
  3660. if (ret < 0)
  3661. return ret;
  3662. *offp += len;
  3663. return len;
  3664. }
  3665. static const struct file_operations i915_display_crc_ctl_fops = {
  3666. .owner = THIS_MODULE,
  3667. .open = display_crc_ctl_open,
  3668. .read = seq_read,
  3669. .llseek = seq_lseek,
  3670. .release = single_release,
  3671. .write = display_crc_ctl_write
  3672. };
  3673. static ssize_t i915_displayport_test_active_write(struct file *file,
  3674. const char __user *ubuf,
  3675. size_t len, loff_t *offp)
  3676. {
  3677. char *input_buffer;
  3678. int status = 0;
  3679. struct drm_device *dev;
  3680. struct drm_connector *connector;
  3681. struct list_head *connector_list;
  3682. struct intel_dp *intel_dp;
  3683. int val = 0;
  3684. dev = ((struct seq_file *)file->private_data)->private;
  3685. connector_list = &dev->mode_config.connector_list;
  3686. if (len == 0)
  3687. return 0;
  3688. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3689. if (!input_buffer)
  3690. return -ENOMEM;
  3691. if (copy_from_user(input_buffer, ubuf, len)) {
  3692. status = -EFAULT;
  3693. goto out;
  3694. }
  3695. input_buffer[len] = '\0';
  3696. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3697. list_for_each_entry(connector, connector_list, head) {
  3698. if (connector->connector_type !=
  3699. DRM_MODE_CONNECTOR_DisplayPort)
  3700. continue;
  3701. if (connector->status == connector_status_connected &&
  3702. connector->encoder != NULL) {
  3703. intel_dp = enc_to_intel_dp(connector->encoder);
  3704. status = kstrtoint(input_buffer, 10, &val);
  3705. if (status < 0)
  3706. goto out;
  3707. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3708. /* To prevent erroneous activation of the compliance
  3709. * testing code, only accept an actual value of 1 here
  3710. */
  3711. if (val == 1)
  3712. intel_dp->compliance_test_active = 1;
  3713. else
  3714. intel_dp->compliance_test_active = 0;
  3715. }
  3716. }
  3717. out:
  3718. kfree(input_buffer);
  3719. if (status < 0)
  3720. return status;
  3721. *offp += len;
  3722. return len;
  3723. }
  3724. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3725. {
  3726. struct drm_device *dev = m->private;
  3727. struct drm_connector *connector;
  3728. struct list_head *connector_list = &dev->mode_config.connector_list;
  3729. struct intel_dp *intel_dp;
  3730. list_for_each_entry(connector, connector_list, head) {
  3731. if (connector->connector_type !=
  3732. DRM_MODE_CONNECTOR_DisplayPort)
  3733. continue;
  3734. if (connector->status == connector_status_connected &&
  3735. connector->encoder != NULL) {
  3736. intel_dp = enc_to_intel_dp(connector->encoder);
  3737. if (intel_dp->compliance_test_active)
  3738. seq_puts(m, "1");
  3739. else
  3740. seq_puts(m, "0");
  3741. } else
  3742. seq_puts(m, "0");
  3743. }
  3744. return 0;
  3745. }
  3746. static int i915_displayport_test_active_open(struct inode *inode,
  3747. struct file *file)
  3748. {
  3749. struct drm_i915_private *dev_priv = inode->i_private;
  3750. return single_open(file, i915_displayport_test_active_show,
  3751. &dev_priv->drm);
  3752. }
  3753. static const struct file_operations i915_displayport_test_active_fops = {
  3754. .owner = THIS_MODULE,
  3755. .open = i915_displayport_test_active_open,
  3756. .read = seq_read,
  3757. .llseek = seq_lseek,
  3758. .release = single_release,
  3759. .write = i915_displayport_test_active_write
  3760. };
  3761. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3762. {
  3763. struct drm_device *dev = m->private;
  3764. struct drm_connector *connector;
  3765. struct list_head *connector_list = &dev->mode_config.connector_list;
  3766. struct intel_dp *intel_dp;
  3767. list_for_each_entry(connector, connector_list, head) {
  3768. if (connector->connector_type !=
  3769. DRM_MODE_CONNECTOR_DisplayPort)
  3770. continue;
  3771. if (connector->status == connector_status_connected &&
  3772. connector->encoder != NULL) {
  3773. intel_dp = enc_to_intel_dp(connector->encoder);
  3774. seq_printf(m, "%lx", intel_dp->compliance_test_data);
  3775. } else
  3776. seq_puts(m, "0");
  3777. }
  3778. return 0;
  3779. }
  3780. static int i915_displayport_test_data_open(struct inode *inode,
  3781. struct file *file)
  3782. {
  3783. struct drm_i915_private *dev_priv = inode->i_private;
  3784. return single_open(file, i915_displayport_test_data_show,
  3785. &dev_priv->drm);
  3786. }
  3787. static const struct file_operations i915_displayport_test_data_fops = {
  3788. .owner = THIS_MODULE,
  3789. .open = i915_displayport_test_data_open,
  3790. .read = seq_read,
  3791. .llseek = seq_lseek,
  3792. .release = single_release
  3793. };
  3794. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3795. {
  3796. struct drm_device *dev = m->private;
  3797. struct drm_connector *connector;
  3798. struct list_head *connector_list = &dev->mode_config.connector_list;
  3799. struct intel_dp *intel_dp;
  3800. list_for_each_entry(connector, connector_list, head) {
  3801. if (connector->connector_type !=
  3802. DRM_MODE_CONNECTOR_DisplayPort)
  3803. continue;
  3804. if (connector->status == connector_status_connected &&
  3805. connector->encoder != NULL) {
  3806. intel_dp = enc_to_intel_dp(connector->encoder);
  3807. seq_printf(m, "%02lx", intel_dp->compliance_test_type);
  3808. } else
  3809. seq_puts(m, "0");
  3810. }
  3811. return 0;
  3812. }
  3813. static int i915_displayport_test_type_open(struct inode *inode,
  3814. struct file *file)
  3815. {
  3816. struct drm_i915_private *dev_priv = inode->i_private;
  3817. return single_open(file, i915_displayport_test_type_show,
  3818. &dev_priv->drm);
  3819. }
  3820. static const struct file_operations i915_displayport_test_type_fops = {
  3821. .owner = THIS_MODULE,
  3822. .open = i915_displayport_test_type_open,
  3823. .read = seq_read,
  3824. .llseek = seq_lseek,
  3825. .release = single_release
  3826. };
  3827. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3828. {
  3829. struct drm_i915_private *dev_priv = m->private;
  3830. struct drm_device *dev = &dev_priv->drm;
  3831. int level;
  3832. int num_levels;
  3833. if (IS_CHERRYVIEW(dev_priv))
  3834. num_levels = 3;
  3835. else if (IS_VALLEYVIEW(dev_priv))
  3836. num_levels = 1;
  3837. else
  3838. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3839. drm_modeset_lock_all(dev);
  3840. for (level = 0; level < num_levels; level++) {
  3841. unsigned int latency = wm[level];
  3842. /*
  3843. * - WM1+ latency values in 0.5us units
  3844. * - latencies are in us on gen9/vlv/chv
  3845. */
  3846. if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
  3847. IS_CHERRYVIEW(dev_priv))
  3848. latency *= 10;
  3849. else if (level > 0)
  3850. latency *= 5;
  3851. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3852. level, wm[level], latency / 10, latency % 10);
  3853. }
  3854. drm_modeset_unlock_all(dev);
  3855. }
  3856. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3857. {
  3858. struct drm_i915_private *dev_priv = m->private;
  3859. const uint16_t *latencies;
  3860. if (INTEL_GEN(dev_priv) >= 9)
  3861. latencies = dev_priv->wm.skl_latency;
  3862. else
  3863. latencies = dev_priv->wm.pri_latency;
  3864. wm_latency_show(m, latencies);
  3865. return 0;
  3866. }
  3867. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3868. {
  3869. struct drm_i915_private *dev_priv = m->private;
  3870. const uint16_t *latencies;
  3871. if (INTEL_GEN(dev_priv) >= 9)
  3872. latencies = dev_priv->wm.skl_latency;
  3873. else
  3874. latencies = dev_priv->wm.spr_latency;
  3875. wm_latency_show(m, latencies);
  3876. return 0;
  3877. }
  3878. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3879. {
  3880. struct drm_i915_private *dev_priv = m->private;
  3881. const uint16_t *latencies;
  3882. if (INTEL_GEN(dev_priv) >= 9)
  3883. latencies = dev_priv->wm.skl_latency;
  3884. else
  3885. latencies = dev_priv->wm.cur_latency;
  3886. wm_latency_show(m, latencies);
  3887. return 0;
  3888. }
  3889. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3890. {
  3891. struct drm_i915_private *dev_priv = inode->i_private;
  3892. if (INTEL_GEN(dev_priv) < 5)
  3893. return -ENODEV;
  3894. return single_open(file, pri_wm_latency_show, dev_priv);
  3895. }
  3896. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3897. {
  3898. struct drm_i915_private *dev_priv = inode->i_private;
  3899. if (HAS_GMCH_DISPLAY(dev_priv))
  3900. return -ENODEV;
  3901. return single_open(file, spr_wm_latency_show, dev_priv);
  3902. }
  3903. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3904. {
  3905. struct drm_i915_private *dev_priv = inode->i_private;
  3906. if (HAS_GMCH_DISPLAY(dev_priv))
  3907. return -ENODEV;
  3908. return single_open(file, cur_wm_latency_show, dev_priv);
  3909. }
  3910. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3911. size_t len, loff_t *offp, uint16_t wm[8])
  3912. {
  3913. struct seq_file *m = file->private_data;
  3914. struct drm_i915_private *dev_priv = m->private;
  3915. struct drm_device *dev = &dev_priv->drm;
  3916. uint16_t new[8] = { 0 };
  3917. int num_levels;
  3918. int level;
  3919. int ret;
  3920. char tmp[32];
  3921. if (IS_CHERRYVIEW(dev_priv))
  3922. num_levels = 3;
  3923. else if (IS_VALLEYVIEW(dev_priv))
  3924. num_levels = 1;
  3925. else
  3926. num_levels = ilk_wm_max_level(dev_priv) + 1;
  3927. if (len >= sizeof(tmp))
  3928. return -EINVAL;
  3929. if (copy_from_user(tmp, ubuf, len))
  3930. return -EFAULT;
  3931. tmp[len] = '\0';
  3932. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3933. &new[0], &new[1], &new[2], &new[3],
  3934. &new[4], &new[5], &new[6], &new[7]);
  3935. if (ret != num_levels)
  3936. return -EINVAL;
  3937. drm_modeset_lock_all(dev);
  3938. for (level = 0; level < num_levels; level++)
  3939. wm[level] = new[level];
  3940. drm_modeset_unlock_all(dev);
  3941. return len;
  3942. }
  3943. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3944. size_t len, loff_t *offp)
  3945. {
  3946. struct seq_file *m = file->private_data;
  3947. struct drm_i915_private *dev_priv = m->private;
  3948. uint16_t *latencies;
  3949. if (INTEL_GEN(dev_priv) >= 9)
  3950. latencies = dev_priv->wm.skl_latency;
  3951. else
  3952. latencies = dev_priv->wm.pri_latency;
  3953. return wm_latency_write(file, ubuf, len, offp, latencies);
  3954. }
  3955. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3956. size_t len, loff_t *offp)
  3957. {
  3958. struct seq_file *m = file->private_data;
  3959. struct drm_i915_private *dev_priv = m->private;
  3960. uint16_t *latencies;
  3961. if (INTEL_GEN(dev_priv) >= 9)
  3962. latencies = dev_priv->wm.skl_latency;
  3963. else
  3964. latencies = dev_priv->wm.spr_latency;
  3965. return wm_latency_write(file, ubuf, len, offp, latencies);
  3966. }
  3967. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3968. size_t len, loff_t *offp)
  3969. {
  3970. struct seq_file *m = file->private_data;
  3971. struct drm_i915_private *dev_priv = m->private;
  3972. uint16_t *latencies;
  3973. if (INTEL_GEN(dev_priv) >= 9)
  3974. latencies = dev_priv->wm.skl_latency;
  3975. else
  3976. latencies = dev_priv->wm.cur_latency;
  3977. return wm_latency_write(file, ubuf, len, offp, latencies);
  3978. }
  3979. static const struct file_operations i915_pri_wm_latency_fops = {
  3980. .owner = THIS_MODULE,
  3981. .open = pri_wm_latency_open,
  3982. .read = seq_read,
  3983. .llseek = seq_lseek,
  3984. .release = single_release,
  3985. .write = pri_wm_latency_write
  3986. };
  3987. static const struct file_operations i915_spr_wm_latency_fops = {
  3988. .owner = THIS_MODULE,
  3989. .open = spr_wm_latency_open,
  3990. .read = seq_read,
  3991. .llseek = seq_lseek,
  3992. .release = single_release,
  3993. .write = spr_wm_latency_write
  3994. };
  3995. static const struct file_operations i915_cur_wm_latency_fops = {
  3996. .owner = THIS_MODULE,
  3997. .open = cur_wm_latency_open,
  3998. .read = seq_read,
  3999. .llseek = seq_lseek,
  4000. .release = single_release,
  4001. .write = cur_wm_latency_write
  4002. };
  4003. static int
  4004. i915_wedged_get(void *data, u64 *val)
  4005. {
  4006. struct drm_i915_private *dev_priv = data;
  4007. *val = i915_terminally_wedged(&dev_priv->gpu_error);
  4008. return 0;
  4009. }
  4010. static int
  4011. i915_wedged_set(void *data, u64 val)
  4012. {
  4013. struct drm_i915_private *dev_priv = data;
  4014. /*
  4015. * There is no safeguard against this debugfs entry colliding
  4016. * with the hangcheck calling same i915_handle_error() in
  4017. * parallel, causing an explosion. For now we assume that the
  4018. * test harness is responsible enough not to inject gpu hangs
  4019. * while it is writing to 'i915_wedged'
  4020. */
  4021. if (i915_reset_in_progress(&dev_priv->gpu_error))
  4022. return -EAGAIN;
  4023. i915_handle_error(dev_priv, val,
  4024. "Manually setting wedged to %llu", val);
  4025. return 0;
  4026. }
  4027. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  4028. i915_wedged_get, i915_wedged_set,
  4029. "%llu\n");
  4030. static int
  4031. i915_ring_missed_irq_get(void *data, u64 *val)
  4032. {
  4033. struct drm_i915_private *dev_priv = data;
  4034. *val = dev_priv->gpu_error.missed_irq_rings;
  4035. return 0;
  4036. }
  4037. static int
  4038. i915_ring_missed_irq_set(void *data, u64 val)
  4039. {
  4040. struct drm_i915_private *dev_priv = data;
  4041. struct drm_device *dev = &dev_priv->drm;
  4042. int ret;
  4043. /* Lock against concurrent debugfs callers */
  4044. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4045. if (ret)
  4046. return ret;
  4047. dev_priv->gpu_error.missed_irq_rings = val;
  4048. mutex_unlock(&dev->struct_mutex);
  4049. return 0;
  4050. }
  4051. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  4052. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  4053. "0x%08llx\n");
  4054. static int
  4055. i915_ring_test_irq_get(void *data, u64 *val)
  4056. {
  4057. struct drm_i915_private *dev_priv = data;
  4058. *val = dev_priv->gpu_error.test_irq_rings;
  4059. return 0;
  4060. }
  4061. static int
  4062. i915_ring_test_irq_set(void *data, u64 val)
  4063. {
  4064. struct drm_i915_private *dev_priv = data;
  4065. val &= INTEL_INFO(dev_priv)->ring_mask;
  4066. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  4067. dev_priv->gpu_error.test_irq_rings = val;
  4068. return 0;
  4069. }
  4070. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  4071. i915_ring_test_irq_get, i915_ring_test_irq_set,
  4072. "0x%08llx\n");
  4073. #define DROP_UNBOUND 0x1
  4074. #define DROP_BOUND 0x2
  4075. #define DROP_RETIRE 0x4
  4076. #define DROP_ACTIVE 0x8
  4077. #define DROP_FREED 0x10
  4078. #define DROP_ALL (DROP_UNBOUND | \
  4079. DROP_BOUND | \
  4080. DROP_RETIRE | \
  4081. DROP_ACTIVE | \
  4082. DROP_FREED)
  4083. static int
  4084. i915_drop_caches_get(void *data, u64 *val)
  4085. {
  4086. *val = DROP_ALL;
  4087. return 0;
  4088. }
  4089. static int
  4090. i915_drop_caches_set(void *data, u64 val)
  4091. {
  4092. struct drm_i915_private *dev_priv = data;
  4093. struct drm_device *dev = &dev_priv->drm;
  4094. int ret;
  4095. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  4096. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  4097. * on ioctls on -EAGAIN. */
  4098. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4099. if (ret)
  4100. return ret;
  4101. if (val & DROP_ACTIVE) {
  4102. ret = i915_gem_wait_for_idle(dev_priv,
  4103. I915_WAIT_INTERRUPTIBLE |
  4104. I915_WAIT_LOCKED);
  4105. if (ret)
  4106. goto unlock;
  4107. }
  4108. if (val & (DROP_RETIRE | DROP_ACTIVE))
  4109. i915_gem_retire_requests(dev_priv);
  4110. if (val & DROP_BOUND)
  4111. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  4112. if (val & DROP_UNBOUND)
  4113. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  4114. unlock:
  4115. mutex_unlock(&dev->struct_mutex);
  4116. if (val & DROP_FREED) {
  4117. synchronize_rcu();
  4118. flush_work(&dev_priv->mm.free_work);
  4119. }
  4120. return ret;
  4121. }
  4122. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  4123. i915_drop_caches_get, i915_drop_caches_set,
  4124. "0x%08llx\n");
  4125. static int
  4126. i915_max_freq_get(void *data, u64 *val)
  4127. {
  4128. struct drm_i915_private *dev_priv = data;
  4129. if (INTEL_GEN(dev_priv) < 6)
  4130. return -ENODEV;
  4131. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  4132. return 0;
  4133. }
  4134. static int
  4135. i915_max_freq_set(void *data, u64 val)
  4136. {
  4137. struct drm_i915_private *dev_priv = data;
  4138. u32 hw_max, hw_min;
  4139. int ret;
  4140. if (INTEL_GEN(dev_priv) < 6)
  4141. return -ENODEV;
  4142. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  4143. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4144. if (ret)
  4145. return ret;
  4146. /*
  4147. * Turbo will still be enabled, but won't go above the set value.
  4148. */
  4149. val = intel_freq_opcode(dev_priv, val);
  4150. hw_max = dev_priv->rps.max_freq;
  4151. hw_min = dev_priv->rps.min_freq;
  4152. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  4153. mutex_unlock(&dev_priv->rps.hw_lock);
  4154. return -EINVAL;
  4155. }
  4156. dev_priv->rps.max_freq_softlimit = val;
  4157. intel_set_rps(dev_priv, val);
  4158. mutex_unlock(&dev_priv->rps.hw_lock);
  4159. return 0;
  4160. }
  4161. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  4162. i915_max_freq_get, i915_max_freq_set,
  4163. "%llu\n");
  4164. static int
  4165. i915_min_freq_get(void *data, u64 *val)
  4166. {
  4167. struct drm_i915_private *dev_priv = data;
  4168. if (INTEL_GEN(dev_priv) < 6)
  4169. return -ENODEV;
  4170. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  4171. return 0;
  4172. }
  4173. static int
  4174. i915_min_freq_set(void *data, u64 val)
  4175. {
  4176. struct drm_i915_private *dev_priv = data;
  4177. u32 hw_max, hw_min;
  4178. int ret;
  4179. if (INTEL_GEN(dev_priv) < 6)
  4180. return -ENODEV;
  4181. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  4182. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4183. if (ret)
  4184. return ret;
  4185. /*
  4186. * Turbo will still be enabled, but won't go below the set value.
  4187. */
  4188. val = intel_freq_opcode(dev_priv, val);
  4189. hw_max = dev_priv->rps.max_freq;
  4190. hw_min = dev_priv->rps.min_freq;
  4191. if (val < hw_min ||
  4192. val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  4193. mutex_unlock(&dev_priv->rps.hw_lock);
  4194. return -EINVAL;
  4195. }
  4196. dev_priv->rps.min_freq_softlimit = val;
  4197. intel_set_rps(dev_priv, val);
  4198. mutex_unlock(&dev_priv->rps.hw_lock);
  4199. return 0;
  4200. }
  4201. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  4202. i915_min_freq_get, i915_min_freq_set,
  4203. "%llu\n");
  4204. static int
  4205. i915_cache_sharing_get(void *data, u64 *val)
  4206. {
  4207. struct drm_i915_private *dev_priv = data;
  4208. u32 snpcr;
  4209. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  4210. return -ENODEV;
  4211. intel_runtime_pm_get(dev_priv);
  4212. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4213. intel_runtime_pm_put(dev_priv);
  4214. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  4215. return 0;
  4216. }
  4217. static int
  4218. i915_cache_sharing_set(void *data, u64 val)
  4219. {
  4220. struct drm_i915_private *dev_priv = data;
  4221. u32 snpcr;
  4222. if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
  4223. return -ENODEV;
  4224. if (val > 3)
  4225. return -EINVAL;
  4226. intel_runtime_pm_get(dev_priv);
  4227. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  4228. /* Update the cache sharing policy here as well */
  4229. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4230. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4231. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  4232. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4233. intel_runtime_pm_put(dev_priv);
  4234. return 0;
  4235. }
  4236. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  4237. i915_cache_sharing_get, i915_cache_sharing_set,
  4238. "%llu\n");
  4239. static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
  4240. struct sseu_dev_info *sseu)
  4241. {
  4242. int ss_max = 2;
  4243. int ss;
  4244. u32 sig1[ss_max], sig2[ss_max];
  4245. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  4246. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  4247. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  4248. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  4249. for (ss = 0; ss < ss_max; ss++) {
  4250. unsigned int eu_cnt;
  4251. if (sig1[ss] & CHV_SS_PG_ENABLE)
  4252. /* skip disabled subslice */
  4253. continue;
  4254. sseu->slice_mask = BIT(0);
  4255. sseu->subslice_mask |= BIT(ss);
  4256. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  4257. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  4258. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  4259. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  4260. sseu->eu_total += eu_cnt;
  4261. sseu->eu_per_subslice = max_t(unsigned int,
  4262. sseu->eu_per_subslice, eu_cnt);
  4263. }
  4264. }
  4265. static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
  4266. struct sseu_dev_info *sseu)
  4267. {
  4268. int s_max = 3, ss_max = 4;
  4269. int s, ss;
  4270. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  4271. /* BXT has a single slice and at most 3 subslices. */
  4272. if (IS_BROXTON(dev_priv)) {
  4273. s_max = 1;
  4274. ss_max = 3;
  4275. }
  4276. for (s = 0; s < s_max; s++) {
  4277. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  4278. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  4279. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  4280. }
  4281. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  4282. GEN9_PGCTL_SSA_EU19_ACK |
  4283. GEN9_PGCTL_SSA_EU210_ACK |
  4284. GEN9_PGCTL_SSA_EU311_ACK;
  4285. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  4286. GEN9_PGCTL_SSB_EU19_ACK |
  4287. GEN9_PGCTL_SSB_EU210_ACK |
  4288. GEN9_PGCTL_SSB_EU311_ACK;
  4289. for (s = 0; s < s_max; s++) {
  4290. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  4291. /* skip disabled slice */
  4292. continue;
  4293. sseu->slice_mask |= BIT(s);
  4294. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  4295. sseu->subslice_mask =
  4296. INTEL_INFO(dev_priv)->sseu.subslice_mask;
  4297. for (ss = 0; ss < ss_max; ss++) {
  4298. unsigned int eu_cnt;
  4299. if (IS_BROXTON(dev_priv)) {
  4300. if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  4301. /* skip disabled subslice */
  4302. continue;
  4303. sseu->subslice_mask |= BIT(ss);
  4304. }
  4305. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  4306. eu_mask[ss%2]);
  4307. sseu->eu_total += eu_cnt;
  4308. sseu->eu_per_subslice = max_t(unsigned int,
  4309. sseu->eu_per_subslice,
  4310. eu_cnt);
  4311. }
  4312. }
  4313. }
  4314. static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
  4315. struct sseu_dev_info *sseu)
  4316. {
  4317. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  4318. int s;
  4319. sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
  4320. if (sseu->slice_mask) {
  4321. sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
  4322. sseu->eu_per_subslice =
  4323. INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
  4324. sseu->eu_total = sseu->eu_per_subslice *
  4325. sseu_subslice_total(sseu);
  4326. /* subtract fused off EU(s) from enabled slice(s) */
  4327. for (s = 0; s < fls(sseu->slice_mask); s++) {
  4328. u8 subslice_7eu =
  4329. INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
  4330. sseu->eu_total -= hweight8(subslice_7eu);
  4331. }
  4332. }
  4333. }
  4334. static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
  4335. const struct sseu_dev_info *sseu)
  4336. {
  4337. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  4338. const char *type = is_available_info ? "Available" : "Enabled";
  4339. seq_printf(m, " %s Slice Mask: %04x\n", type,
  4340. sseu->slice_mask);
  4341. seq_printf(m, " %s Slice Total: %u\n", type,
  4342. hweight8(sseu->slice_mask));
  4343. seq_printf(m, " %s Subslice Total: %u\n", type,
  4344. sseu_subslice_total(sseu));
  4345. seq_printf(m, " %s Subslice Mask: %04x\n", type,
  4346. sseu->subslice_mask);
  4347. seq_printf(m, " %s Subslice Per Slice: %u\n", type,
  4348. hweight8(sseu->subslice_mask));
  4349. seq_printf(m, " %s EU Total: %u\n", type,
  4350. sseu->eu_total);
  4351. seq_printf(m, " %s EU Per Subslice: %u\n", type,
  4352. sseu->eu_per_subslice);
  4353. if (!is_available_info)
  4354. return;
  4355. seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
  4356. if (HAS_POOLED_EU(dev_priv))
  4357. seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
  4358. seq_printf(m, " Has Slice Power Gating: %s\n",
  4359. yesno(sseu->has_slice_pg));
  4360. seq_printf(m, " Has Subslice Power Gating: %s\n",
  4361. yesno(sseu->has_subslice_pg));
  4362. seq_printf(m, " Has EU Power Gating: %s\n",
  4363. yesno(sseu->has_eu_pg));
  4364. }
  4365. static int i915_sseu_status(struct seq_file *m, void *unused)
  4366. {
  4367. struct drm_i915_private *dev_priv = node_to_i915(m->private);
  4368. struct sseu_dev_info sseu;
  4369. if (INTEL_GEN(dev_priv) < 8)
  4370. return -ENODEV;
  4371. seq_puts(m, "SSEU Device Info\n");
  4372. i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
  4373. seq_puts(m, "SSEU Device Status\n");
  4374. memset(&sseu, 0, sizeof(sseu));
  4375. intel_runtime_pm_get(dev_priv);
  4376. if (IS_CHERRYVIEW(dev_priv)) {
  4377. cherryview_sseu_device_status(dev_priv, &sseu);
  4378. } else if (IS_BROADWELL(dev_priv)) {
  4379. broadwell_sseu_device_status(dev_priv, &sseu);
  4380. } else if (INTEL_GEN(dev_priv) >= 9) {
  4381. gen9_sseu_device_status(dev_priv, &sseu);
  4382. }
  4383. intel_runtime_pm_put(dev_priv);
  4384. i915_print_sseu_info(m, false, &sseu);
  4385. return 0;
  4386. }
  4387. static int i915_forcewake_open(struct inode *inode, struct file *file)
  4388. {
  4389. struct drm_i915_private *dev_priv = inode->i_private;
  4390. if (INTEL_GEN(dev_priv) < 6)
  4391. return 0;
  4392. intel_runtime_pm_get(dev_priv);
  4393. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4394. return 0;
  4395. }
  4396. static int i915_forcewake_release(struct inode *inode, struct file *file)
  4397. {
  4398. struct drm_i915_private *dev_priv = inode->i_private;
  4399. if (INTEL_GEN(dev_priv) < 6)
  4400. return 0;
  4401. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4402. intel_runtime_pm_put(dev_priv);
  4403. return 0;
  4404. }
  4405. static const struct file_operations i915_forcewake_fops = {
  4406. .owner = THIS_MODULE,
  4407. .open = i915_forcewake_open,
  4408. .release = i915_forcewake_release,
  4409. };
  4410. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  4411. {
  4412. struct dentry *ent;
  4413. ent = debugfs_create_file("i915_forcewake_user",
  4414. S_IRUSR,
  4415. root, to_i915(minor->dev),
  4416. &i915_forcewake_fops);
  4417. if (!ent)
  4418. return -ENOMEM;
  4419. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  4420. }
  4421. static int i915_debugfs_create(struct dentry *root,
  4422. struct drm_minor *minor,
  4423. const char *name,
  4424. const struct file_operations *fops)
  4425. {
  4426. struct dentry *ent;
  4427. ent = debugfs_create_file(name,
  4428. S_IRUGO | S_IWUSR,
  4429. root, to_i915(minor->dev),
  4430. fops);
  4431. if (!ent)
  4432. return -ENOMEM;
  4433. return drm_add_fake_info_node(minor, ent, fops);
  4434. }
  4435. static const struct drm_info_list i915_debugfs_list[] = {
  4436. {"i915_capabilities", i915_capabilities, 0},
  4437. {"i915_gem_objects", i915_gem_object_info, 0},
  4438. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  4439. {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
  4440. {"i915_gem_stolen", i915_gem_stolen_list_info },
  4441. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  4442. {"i915_gem_request", i915_gem_request_info, 0},
  4443. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  4444. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  4445. {"i915_gem_interrupt", i915_interrupt_info, 0},
  4446. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  4447. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  4448. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  4449. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  4450. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  4451. {"i915_guc_info", i915_guc_info, 0},
  4452. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  4453. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  4454. {"i915_frequency_info", i915_frequency_info, 0},
  4455. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  4456. {"i915_drpc_info", i915_drpc_info, 0},
  4457. {"i915_emon_status", i915_emon_status, 0},
  4458. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  4459. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  4460. {"i915_fbc_status", i915_fbc_status, 0},
  4461. {"i915_ips_status", i915_ips_status, 0},
  4462. {"i915_sr_status", i915_sr_status, 0},
  4463. {"i915_opregion", i915_opregion, 0},
  4464. {"i915_vbt", i915_vbt, 0},
  4465. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  4466. {"i915_context_status", i915_context_status, 0},
  4467. {"i915_dump_lrc", i915_dump_lrc, 0},
  4468. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  4469. {"i915_swizzle_info", i915_swizzle_info, 0},
  4470. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  4471. {"i915_llc", i915_llc, 0},
  4472. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  4473. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  4474. {"i915_energy_uJ", i915_energy_uJ, 0},
  4475. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  4476. {"i915_power_domain_info", i915_power_domain_info, 0},
  4477. {"i915_dmc_info", i915_dmc_info, 0},
  4478. {"i915_display_info", i915_display_info, 0},
  4479. {"i915_engine_info", i915_engine_info, 0},
  4480. {"i915_semaphore_status", i915_semaphore_status, 0},
  4481. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  4482. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  4483. {"i915_wa_registers", i915_wa_registers, 0},
  4484. {"i915_ddb_info", i915_ddb_info, 0},
  4485. {"i915_sseu_status", i915_sseu_status, 0},
  4486. {"i915_drrs_status", i915_drrs_status, 0},
  4487. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  4488. };
  4489. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  4490. static const struct i915_debugfs_files {
  4491. const char *name;
  4492. const struct file_operations *fops;
  4493. } i915_debugfs_files[] = {
  4494. {"i915_wedged", &i915_wedged_fops},
  4495. {"i915_max_freq", &i915_max_freq_fops},
  4496. {"i915_min_freq", &i915_min_freq_fops},
  4497. {"i915_cache_sharing", &i915_cache_sharing_fops},
  4498. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  4499. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  4500. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  4501. #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
  4502. {"i915_error_state", &i915_error_state_fops},
  4503. #endif
  4504. {"i915_next_seqno", &i915_next_seqno_fops},
  4505. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4506. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4507. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4508. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4509. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  4510. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4511. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4512. {"i915_dp_test_active", &i915_displayport_test_active_fops},
  4513. {"i915_guc_log_control", &i915_guc_log_control_fops}
  4514. };
  4515. void intel_display_crc_init(struct drm_i915_private *dev_priv)
  4516. {
  4517. enum pipe pipe;
  4518. for_each_pipe(dev_priv, pipe) {
  4519. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  4520. pipe_crc->opened = false;
  4521. spin_lock_init(&pipe_crc->lock);
  4522. init_waitqueue_head(&pipe_crc->wq);
  4523. }
  4524. }
  4525. int i915_debugfs_register(struct drm_i915_private *dev_priv)
  4526. {
  4527. struct drm_minor *minor = dev_priv->drm.primary;
  4528. int ret, i;
  4529. ret = i915_forcewake_create(minor->debugfs_root, minor);
  4530. if (ret)
  4531. return ret;
  4532. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4533. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  4534. if (ret)
  4535. return ret;
  4536. }
  4537. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4538. ret = i915_debugfs_create(minor->debugfs_root, minor,
  4539. i915_debugfs_files[i].name,
  4540. i915_debugfs_files[i].fops);
  4541. if (ret)
  4542. return ret;
  4543. }
  4544. return drm_debugfs_create_files(i915_debugfs_list,
  4545. I915_DEBUGFS_ENTRIES,
  4546. minor->debugfs_root, minor);
  4547. }
  4548. void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
  4549. {
  4550. struct drm_minor *minor = dev_priv->drm.primary;
  4551. int i;
  4552. drm_debugfs_remove_files(i915_debugfs_list,
  4553. I915_DEBUGFS_ENTRIES, minor);
  4554. drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
  4555. 1, minor);
  4556. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4557. struct drm_info_list *info_list =
  4558. (struct drm_info_list *)&i915_pipe_crc_data[i];
  4559. drm_debugfs_remove_files(info_list, 1, minor);
  4560. }
  4561. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4562. struct drm_info_list *info_list =
  4563. (struct drm_info_list *)i915_debugfs_files[i].fops;
  4564. drm_debugfs_remove_files(info_list, 1, minor);
  4565. }
  4566. }
  4567. struct dpcd_block {
  4568. /* DPCD dump start address. */
  4569. unsigned int offset;
  4570. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4571. unsigned int end;
  4572. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4573. size_t size;
  4574. /* Only valid for eDP. */
  4575. bool edp;
  4576. };
  4577. static const struct dpcd_block i915_dpcd_debug[] = {
  4578. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4579. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4580. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4581. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4582. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4583. { .offset = DP_SET_POWER },
  4584. { .offset = DP_EDP_DPCD_REV },
  4585. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4586. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4587. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4588. };
  4589. static int i915_dpcd_show(struct seq_file *m, void *data)
  4590. {
  4591. struct drm_connector *connector = m->private;
  4592. struct intel_dp *intel_dp =
  4593. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4594. uint8_t buf[16];
  4595. ssize_t err;
  4596. int i;
  4597. if (connector->status != connector_status_connected)
  4598. return -ENODEV;
  4599. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4600. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4601. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4602. if (b->edp &&
  4603. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4604. continue;
  4605. /* low tech for now */
  4606. if (WARN_ON(size > sizeof(buf)))
  4607. continue;
  4608. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4609. if (err <= 0) {
  4610. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4611. size, b->offset, err);
  4612. continue;
  4613. }
  4614. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4615. }
  4616. return 0;
  4617. }
  4618. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4619. {
  4620. return single_open(file, i915_dpcd_show, inode->i_private);
  4621. }
  4622. static const struct file_operations i915_dpcd_fops = {
  4623. .owner = THIS_MODULE,
  4624. .open = i915_dpcd_open,
  4625. .read = seq_read,
  4626. .llseek = seq_lseek,
  4627. .release = single_release,
  4628. };
  4629. static int i915_panel_show(struct seq_file *m, void *data)
  4630. {
  4631. struct drm_connector *connector = m->private;
  4632. struct intel_dp *intel_dp =
  4633. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4634. if (connector->status != connector_status_connected)
  4635. return -ENODEV;
  4636. seq_printf(m, "Panel power up delay: %d\n",
  4637. intel_dp->panel_power_up_delay);
  4638. seq_printf(m, "Panel power down delay: %d\n",
  4639. intel_dp->panel_power_down_delay);
  4640. seq_printf(m, "Backlight on delay: %d\n",
  4641. intel_dp->backlight_on_delay);
  4642. seq_printf(m, "Backlight off delay: %d\n",
  4643. intel_dp->backlight_off_delay);
  4644. return 0;
  4645. }
  4646. static int i915_panel_open(struct inode *inode, struct file *file)
  4647. {
  4648. return single_open(file, i915_panel_show, inode->i_private);
  4649. }
  4650. static const struct file_operations i915_panel_fops = {
  4651. .owner = THIS_MODULE,
  4652. .open = i915_panel_open,
  4653. .read = seq_read,
  4654. .llseek = seq_lseek,
  4655. .release = single_release,
  4656. };
  4657. /**
  4658. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4659. * @connector: pointer to a registered drm_connector
  4660. *
  4661. * Cleanup will be done by drm_connector_unregister() through a call to
  4662. * drm_debugfs_connector_remove().
  4663. *
  4664. * Returns 0 on success, negative error codes on error.
  4665. */
  4666. int i915_debugfs_connector_add(struct drm_connector *connector)
  4667. {
  4668. struct dentry *root = connector->debugfs_entry;
  4669. /* The connector must have been registered beforehands. */
  4670. if (!root)
  4671. return -ENODEV;
  4672. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4673. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4674. debugfs_create_file("i915_dpcd", S_IRUGO, root,
  4675. connector, &i915_dpcd_fops);
  4676. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4677. debugfs_create_file("i915_panel_timings", S_IRUGO, root,
  4678. connector, &i915_panel_fops);
  4679. return 0;
  4680. }