sched_clock.c 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. /*
  2. * sched_clock.c: support for extending counters to full 64-bit ns counter
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clocksource.h>
  9. #include <linux/init.h>
  10. #include <linux/jiffies.h>
  11. #include <linux/kernel.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/sched.h>
  14. #include <linux/syscore_ops.h>
  15. #include <linux/timer.h>
  16. #include <linux/sched_clock.h>
  17. #include <linux/seqlock.h>
  18. struct clock_data {
  19. u64 epoch_ns;
  20. u32 epoch_cyc;
  21. seqcount_t seq;
  22. unsigned long rate;
  23. u32 mult;
  24. u32 shift;
  25. bool suspended;
  26. };
  27. static void sched_clock_poll(unsigned long wrap_ticks);
  28. static DEFINE_TIMER(sched_clock_timer, sched_clock_poll, 0, 0);
  29. static int irqtime = -1;
  30. core_param(irqtime, irqtime, int, 0400);
  31. static struct clock_data cd = {
  32. .mult = NSEC_PER_SEC / HZ,
  33. };
  34. static u32 __read_mostly sched_clock_mask = 0xffffffff;
  35. static u32 notrace jiffy_sched_clock_read(void)
  36. {
  37. return (u32)(jiffies - INITIAL_JIFFIES);
  38. }
  39. static u32 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
  40. static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
  41. {
  42. return (cyc * mult) >> shift;
  43. }
  44. static unsigned long long notrace sched_clock_32(void)
  45. {
  46. u64 epoch_ns;
  47. u32 epoch_cyc;
  48. u32 cyc;
  49. unsigned long seq;
  50. if (cd.suspended)
  51. return cd.epoch_ns;
  52. do {
  53. seq = read_seqcount_begin(&cd.seq);
  54. epoch_cyc = cd.epoch_cyc;
  55. epoch_ns = cd.epoch_ns;
  56. } while (read_seqcount_retry(&cd.seq, seq));
  57. cyc = read_sched_clock();
  58. cyc = (cyc - epoch_cyc) & sched_clock_mask;
  59. return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift);
  60. }
  61. /*
  62. * Atomically update the sched_clock epoch.
  63. */
  64. static void notrace update_sched_clock(void)
  65. {
  66. unsigned long flags;
  67. u32 cyc;
  68. u64 ns;
  69. cyc = read_sched_clock();
  70. ns = cd.epoch_ns +
  71. cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
  72. cd.mult, cd.shift);
  73. raw_local_irq_save(flags);
  74. write_seqcount_begin(&cd.seq);
  75. cd.epoch_ns = ns;
  76. cd.epoch_cyc = cyc;
  77. write_seqcount_end(&cd.seq);
  78. raw_local_irq_restore(flags);
  79. }
  80. static void sched_clock_poll(unsigned long wrap_ticks)
  81. {
  82. mod_timer(&sched_clock_timer, round_jiffies(jiffies + wrap_ticks));
  83. update_sched_clock();
  84. }
  85. void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
  86. {
  87. unsigned long r, w;
  88. u64 res, wrap;
  89. char r_unit;
  90. if (cd.rate > rate)
  91. return;
  92. BUG_ON(bits > 32);
  93. WARN_ON(!irqs_disabled());
  94. read_sched_clock = read;
  95. sched_clock_mask = (1 << bits) - 1;
  96. cd.rate = rate;
  97. /* calculate the mult/shift to convert counter ticks to ns. */
  98. clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 0);
  99. r = rate;
  100. if (r >= 4000000) {
  101. r /= 1000000;
  102. r_unit = 'M';
  103. } else if (r >= 1000) {
  104. r /= 1000;
  105. r_unit = 'k';
  106. } else
  107. r_unit = ' ';
  108. /* calculate how many ns until we wrap */
  109. wrap = cyc_to_ns((1ULL << bits) - 1, cd.mult, cd.shift);
  110. do_div(wrap, NSEC_PER_MSEC);
  111. w = wrap;
  112. /* calculate the ns resolution of this counter */
  113. res = cyc_to_ns(1ULL, cd.mult, cd.shift);
  114. pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lums\n",
  115. bits, r, r_unit, res, w);
  116. /*
  117. * Start the timer to keep sched_clock() properly updated and
  118. * sets the initial epoch.
  119. */
  120. sched_clock_timer.data = msecs_to_jiffies(w - (w / 10));
  121. update_sched_clock();
  122. /*
  123. * Ensure that sched_clock() starts off at 0ns
  124. */
  125. cd.epoch_ns = 0;
  126. /* Enable IRQ time accounting if we have a fast enough sched_clock */
  127. if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
  128. enable_sched_clock_irqtime();
  129. pr_debug("Registered %pF as sched_clock source\n", read);
  130. }
  131. unsigned long long __read_mostly (*sched_clock_func)(void) = sched_clock_32;
  132. unsigned long long notrace sched_clock(void)
  133. {
  134. return sched_clock_func();
  135. }
  136. void __init sched_clock_postinit(void)
  137. {
  138. /*
  139. * If no sched_clock function has been provided at that point,
  140. * make it the final one one.
  141. */
  142. if (read_sched_clock == jiffy_sched_clock_read)
  143. setup_sched_clock(jiffy_sched_clock_read, 32, HZ);
  144. sched_clock_poll(sched_clock_timer.data);
  145. }
  146. static int sched_clock_suspend(void)
  147. {
  148. sched_clock_poll(sched_clock_timer.data);
  149. cd.suspended = true;
  150. return 0;
  151. }
  152. static void sched_clock_resume(void)
  153. {
  154. cd.epoch_cyc = read_sched_clock();
  155. cd.suspended = false;
  156. }
  157. static struct syscore_ops sched_clock_ops = {
  158. .suspend = sched_clock_suspend,
  159. .resume = sched_clock_resume,
  160. };
  161. static int __init sched_clock_syscore_init(void)
  162. {
  163. register_syscore_ops(&sched_clock_ops);
  164. return 0;
  165. }
  166. device_initcall(sched_clock_syscore_init);