checkpoint.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include <trace/events/f2fs.h>
  23. static struct kmem_cache *ino_entry_slab;
  24. static struct kmem_cache *inode_entry_slab;
  25. /*
  26. * We guarantee no failure on the returned page.
  27. */
  28. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  29. {
  30. struct address_space *mapping = META_MAPPING(sbi);
  31. struct page *page = NULL;
  32. repeat:
  33. page = grab_cache_page(mapping, index);
  34. if (!page) {
  35. cond_resched();
  36. goto repeat;
  37. }
  38. f2fs_wait_on_page_writeback(page, META);
  39. SetPageUptodate(page);
  40. return page;
  41. }
  42. /*
  43. * We guarantee no failure on the returned page.
  44. */
  45. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  46. {
  47. struct address_space *mapping = META_MAPPING(sbi);
  48. struct page *page;
  49. repeat:
  50. page = grab_cache_page(mapping, index);
  51. if (!page) {
  52. cond_resched();
  53. goto repeat;
  54. }
  55. if (PageUptodate(page))
  56. goto out;
  57. if (f2fs_submit_page_bio(sbi, page, index,
  58. READ_SYNC | REQ_META | REQ_PRIO))
  59. goto repeat;
  60. lock_page(page);
  61. if (unlikely(page->mapping != mapping)) {
  62. f2fs_put_page(page, 1);
  63. goto repeat;
  64. }
  65. out:
  66. return page;
  67. }
  68. struct page *get_meta_page_ra(struct f2fs_sb_info *sbi, pgoff_t index)
  69. {
  70. bool readahead = false;
  71. struct page *page;
  72. page = find_get_page(META_MAPPING(sbi), index);
  73. if (!page || (page && !PageUptodate(page)))
  74. readahead = true;
  75. f2fs_put_page(page, 0);
  76. if (readahead)
  77. ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
  78. return get_meta_page(sbi, index);
  79. }
  80. static inline block_t get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
  81. {
  82. switch (type) {
  83. case META_NAT:
  84. return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
  85. case META_SIT:
  86. return SIT_BLK_CNT(sbi);
  87. case META_SSA:
  88. case META_CP:
  89. return 0;
  90. case META_POR:
  91. return MAX_BLKADDR(sbi);
  92. default:
  93. BUG();
  94. }
  95. }
  96. /*
  97. * Readahead CP/NAT/SIT/SSA pages
  98. */
  99. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
  100. {
  101. block_t prev_blk_addr = 0;
  102. struct page *page;
  103. block_t blkno = start;
  104. block_t max_blks = get_max_meta_blks(sbi, type);
  105. struct f2fs_io_info fio = {
  106. .type = META,
  107. .rw = READ_SYNC | REQ_META | REQ_PRIO
  108. };
  109. for (; nrpages-- > 0; blkno++) {
  110. block_t blk_addr;
  111. switch (type) {
  112. case META_NAT:
  113. /* get nat block addr */
  114. if (unlikely(blkno >= max_blks))
  115. blkno = 0;
  116. blk_addr = current_nat_addr(sbi,
  117. blkno * NAT_ENTRY_PER_BLOCK);
  118. break;
  119. case META_SIT:
  120. /* get sit block addr */
  121. if (unlikely(blkno >= max_blks))
  122. goto out;
  123. blk_addr = current_sit_addr(sbi,
  124. blkno * SIT_ENTRY_PER_BLOCK);
  125. if (blkno != start && prev_blk_addr + 1 != blk_addr)
  126. goto out;
  127. prev_blk_addr = blk_addr;
  128. break;
  129. case META_SSA:
  130. case META_CP:
  131. case META_POR:
  132. if (unlikely(blkno >= max_blks))
  133. goto out;
  134. if (unlikely(blkno < SEG0_BLKADDR(sbi)))
  135. goto out;
  136. blk_addr = blkno;
  137. break;
  138. default:
  139. BUG();
  140. }
  141. page = grab_cache_page(META_MAPPING(sbi), blk_addr);
  142. if (!page)
  143. continue;
  144. if (PageUptodate(page)) {
  145. f2fs_put_page(page, 1);
  146. continue;
  147. }
  148. f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
  149. f2fs_put_page(page, 0);
  150. }
  151. out:
  152. f2fs_submit_merged_bio(sbi, META, READ);
  153. return blkno - start;
  154. }
  155. static int f2fs_write_meta_page(struct page *page,
  156. struct writeback_control *wbc)
  157. {
  158. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  159. trace_f2fs_writepage(page, META);
  160. if (unlikely(sbi->por_doing))
  161. goto redirty_out;
  162. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  163. goto redirty_out;
  164. if (unlikely(f2fs_cp_error(sbi)))
  165. goto redirty_out;
  166. f2fs_wait_on_page_writeback(page, META);
  167. write_meta_page(sbi, page);
  168. dec_page_count(sbi, F2FS_DIRTY_META);
  169. unlock_page(page);
  170. if (wbc->for_reclaim)
  171. f2fs_submit_merged_bio(sbi, META, WRITE);
  172. return 0;
  173. redirty_out:
  174. redirty_page_for_writepage(wbc, page);
  175. return AOP_WRITEPAGE_ACTIVATE;
  176. }
  177. static int f2fs_write_meta_pages(struct address_space *mapping,
  178. struct writeback_control *wbc)
  179. {
  180. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  181. long diff, written;
  182. trace_f2fs_writepages(mapping->host, wbc, META);
  183. /* collect a number of dirty meta pages and write together */
  184. if (wbc->for_kupdate ||
  185. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  186. goto skip_write;
  187. /* if mounting is failed, skip writing node pages */
  188. mutex_lock(&sbi->cp_mutex);
  189. diff = nr_pages_to_write(sbi, META, wbc);
  190. written = sync_meta_pages(sbi, META, wbc->nr_to_write);
  191. mutex_unlock(&sbi->cp_mutex);
  192. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  193. return 0;
  194. skip_write:
  195. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  196. return 0;
  197. }
  198. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  199. long nr_to_write)
  200. {
  201. struct address_space *mapping = META_MAPPING(sbi);
  202. pgoff_t index = 0, end = LONG_MAX;
  203. struct pagevec pvec;
  204. long nwritten = 0;
  205. struct writeback_control wbc = {
  206. .for_reclaim = 0,
  207. };
  208. pagevec_init(&pvec, 0);
  209. while (index <= end) {
  210. int i, nr_pages;
  211. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  212. PAGECACHE_TAG_DIRTY,
  213. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  214. if (unlikely(nr_pages == 0))
  215. break;
  216. for (i = 0; i < nr_pages; i++) {
  217. struct page *page = pvec.pages[i];
  218. lock_page(page);
  219. if (unlikely(page->mapping != mapping)) {
  220. continue_unlock:
  221. unlock_page(page);
  222. continue;
  223. }
  224. if (!PageDirty(page)) {
  225. /* someone wrote it for us */
  226. goto continue_unlock;
  227. }
  228. if (!clear_page_dirty_for_io(page))
  229. goto continue_unlock;
  230. if (f2fs_write_meta_page(page, &wbc)) {
  231. unlock_page(page);
  232. break;
  233. }
  234. nwritten++;
  235. if (unlikely(nwritten >= nr_to_write))
  236. break;
  237. }
  238. pagevec_release(&pvec);
  239. cond_resched();
  240. }
  241. if (nwritten)
  242. f2fs_submit_merged_bio(sbi, type, WRITE);
  243. return nwritten;
  244. }
  245. static int f2fs_set_meta_page_dirty(struct page *page)
  246. {
  247. trace_f2fs_set_page_dirty(page, META);
  248. SetPageUptodate(page);
  249. if (!PageDirty(page)) {
  250. __set_page_dirty_nobuffers(page);
  251. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  252. return 1;
  253. }
  254. return 0;
  255. }
  256. const struct address_space_operations f2fs_meta_aops = {
  257. .writepage = f2fs_write_meta_page,
  258. .writepages = f2fs_write_meta_pages,
  259. .set_page_dirty = f2fs_set_meta_page_dirty,
  260. };
  261. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  262. {
  263. struct inode_management *im = &sbi->im[type];
  264. struct ino_entry *e;
  265. retry:
  266. spin_lock(&im->ino_lock);
  267. e = radix_tree_lookup(&im->ino_root, ino);
  268. if (!e) {
  269. e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
  270. if (!e) {
  271. spin_unlock(&im->ino_lock);
  272. goto retry;
  273. }
  274. if (radix_tree_insert(&im->ino_root, ino, e)) {
  275. spin_unlock(&im->ino_lock);
  276. kmem_cache_free(ino_entry_slab, e);
  277. goto retry;
  278. }
  279. memset(e, 0, sizeof(struct ino_entry));
  280. e->ino = ino;
  281. list_add_tail(&e->list, &im->ino_list);
  282. if (type != ORPHAN_INO)
  283. im->ino_num++;
  284. }
  285. spin_unlock(&im->ino_lock);
  286. }
  287. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  288. {
  289. struct inode_management *im = &sbi->im[type];
  290. struct ino_entry *e;
  291. spin_lock(&im->ino_lock);
  292. e = radix_tree_lookup(&im->ino_root, ino);
  293. if (e) {
  294. list_del(&e->list);
  295. radix_tree_delete(&im->ino_root, ino);
  296. im->ino_num--;
  297. spin_unlock(&im->ino_lock);
  298. kmem_cache_free(ino_entry_slab, e);
  299. return;
  300. }
  301. spin_unlock(&im->ino_lock);
  302. }
  303. void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  304. {
  305. /* add new dirty ino entry into list */
  306. __add_ino_entry(sbi, ino, type);
  307. }
  308. void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
  309. {
  310. /* remove dirty ino entry from list */
  311. __remove_ino_entry(sbi, ino, type);
  312. }
  313. /* mode should be APPEND_INO or UPDATE_INO */
  314. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  315. {
  316. struct inode_management *im = &sbi->im[mode];
  317. struct ino_entry *e;
  318. spin_lock(&im->ino_lock);
  319. e = radix_tree_lookup(&im->ino_root, ino);
  320. spin_unlock(&im->ino_lock);
  321. return e ? true : false;
  322. }
  323. void release_dirty_inode(struct f2fs_sb_info *sbi)
  324. {
  325. struct ino_entry *e, *tmp;
  326. int i;
  327. for (i = APPEND_INO; i <= UPDATE_INO; i++) {
  328. struct inode_management *im = &sbi->im[i];
  329. spin_lock(&im->ino_lock);
  330. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  331. list_del(&e->list);
  332. radix_tree_delete(&im->ino_root, e->ino);
  333. kmem_cache_free(ino_entry_slab, e);
  334. im->ino_num--;
  335. }
  336. spin_unlock(&im->ino_lock);
  337. }
  338. }
  339. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  340. {
  341. struct inode_management *im = &sbi->im[ORPHAN_INO];
  342. int err = 0;
  343. spin_lock(&im->ino_lock);
  344. if (unlikely(im->ino_num >= sbi->max_orphans))
  345. err = -ENOSPC;
  346. else
  347. im->ino_num++;
  348. spin_unlock(&im->ino_lock);
  349. return err;
  350. }
  351. void release_orphan_inode(struct f2fs_sb_info *sbi)
  352. {
  353. struct inode_management *im = &sbi->im[ORPHAN_INO];
  354. spin_lock(&im->ino_lock);
  355. f2fs_bug_on(sbi, im->ino_num == 0);
  356. im->ino_num--;
  357. spin_unlock(&im->ino_lock);
  358. }
  359. void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  360. {
  361. /* add new orphan ino entry into list */
  362. __add_ino_entry(sbi, ino, ORPHAN_INO);
  363. }
  364. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  365. {
  366. /* remove orphan entry from orphan list */
  367. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  368. }
  369. static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  370. {
  371. struct inode *inode = f2fs_iget(sbi->sb, ino);
  372. f2fs_bug_on(sbi, IS_ERR(inode));
  373. clear_nlink(inode);
  374. /* truncate all the data during iput */
  375. iput(inode);
  376. }
  377. void recover_orphan_inodes(struct f2fs_sb_info *sbi)
  378. {
  379. block_t start_blk, orphan_blkaddr, i, j;
  380. if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
  381. return;
  382. sbi->por_doing = true;
  383. start_blk = __start_cp_addr(sbi) + 1 +
  384. le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  385. orphan_blkaddr = __start_sum_addr(sbi) - 1;
  386. ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
  387. for (i = 0; i < orphan_blkaddr; i++) {
  388. struct page *page = get_meta_page(sbi, start_blk + i);
  389. struct f2fs_orphan_block *orphan_blk;
  390. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  391. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  392. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  393. recover_orphan_inode(sbi, ino);
  394. }
  395. f2fs_put_page(page, 1);
  396. }
  397. /* clear Orphan Flag */
  398. clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
  399. sbi->por_doing = false;
  400. return;
  401. }
  402. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  403. {
  404. struct list_head *head;
  405. struct f2fs_orphan_block *orphan_blk = NULL;
  406. unsigned int nentries = 0;
  407. unsigned short index;
  408. unsigned short orphan_blocks;
  409. struct page *page = NULL;
  410. struct ino_entry *orphan = NULL;
  411. struct inode_management *im = &sbi->im[ORPHAN_INO];
  412. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  413. for (index = 0; index < orphan_blocks; index++)
  414. grab_meta_page(sbi, start_blk + index);
  415. index = 1;
  416. spin_lock(&im->ino_lock);
  417. head = &im->ino_list;
  418. /* loop for each orphan inode entry and write them in Jornal block */
  419. list_for_each_entry(orphan, head, list) {
  420. if (!page) {
  421. page = find_get_page(META_MAPPING(sbi), start_blk++);
  422. f2fs_bug_on(sbi, !page);
  423. orphan_blk =
  424. (struct f2fs_orphan_block *)page_address(page);
  425. memset(orphan_blk, 0, sizeof(*orphan_blk));
  426. f2fs_put_page(page, 0);
  427. }
  428. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  429. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  430. /*
  431. * an orphan block is full of 1020 entries,
  432. * then we need to flush current orphan blocks
  433. * and bring another one in memory
  434. */
  435. orphan_blk->blk_addr = cpu_to_le16(index);
  436. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  437. orphan_blk->entry_count = cpu_to_le32(nentries);
  438. set_page_dirty(page);
  439. f2fs_put_page(page, 1);
  440. index++;
  441. nentries = 0;
  442. page = NULL;
  443. }
  444. }
  445. if (page) {
  446. orphan_blk->blk_addr = cpu_to_le16(index);
  447. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  448. orphan_blk->entry_count = cpu_to_le32(nentries);
  449. set_page_dirty(page);
  450. f2fs_put_page(page, 1);
  451. }
  452. spin_unlock(&im->ino_lock);
  453. }
  454. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  455. block_t cp_addr, unsigned long long *version)
  456. {
  457. struct page *cp_page_1, *cp_page_2 = NULL;
  458. unsigned long blk_size = sbi->blocksize;
  459. struct f2fs_checkpoint *cp_block;
  460. unsigned long long cur_version = 0, pre_version = 0;
  461. size_t crc_offset;
  462. __u32 crc = 0;
  463. /* Read the 1st cp block in this CP pack */
  464. cp_page_1 = get_meta_page(sbi, cp_addr);
  465. /* get the version number */
  466. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
  467. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  468. if (crc_offset >= blk_size)
  469. goto invalid_cp1;
  470. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  471. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  472. goto invalid_cp1;
  473. pre_version = cur_cp_version(cp_block);
  474. /* Read the 2nd cp block in this CP pack */
  475. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  476. cp_page_2 = get_meta_page(sbi, cp_addr);
  477. cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
  478. crc_offset = le32_to_cpu(cp_block->checksum_offset);
  479. if (crc_offset >= blk_size)
  480. goto invalid_cp2;
  481. crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
  482. if (!f2fs_crc_valid(crc, cp_block, crc_offset))
  483. goto invalid_cp2;
  484. cur_version = cur_cp_version(cp_block);
  485. if (cur_version == pre_version) {
  486. *version = cur_version;
  487. f2fs_put_page(cp_page_2, 1);
  488. return cp_page_1;
  489. }
  490. invalid_cp2:
  491. f2fs_put_page(cp_page_2, 1);
  492. invalid_cp1:
  493. f2fs_put_page(cp_page_1, 1);
  494. return NULL;
  495. }
  496. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  497. {
  498. struct f2fs_checkpoint *cp_block;
  499. struct f2fs_super_block *fsb = sbi->raw_super;
  500. struct page *cp1, *cp2, *cur_page;
  501. unsigned long blk_size = sbi->blocksize;
  502. unsigned long long cp1_version = 0, cp2_version = 0;
  503. unsigned long long cp_start_blk_no;
  504. unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  505. block_t cp_blk_no;
  506. int i;
  507. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  508. if (!sbi->ckpt)
  509. return -ENOMEM;
  510. /*
  511. * Finding out valid cp block involves read both
  512. * sets( cp pack1 and cp pack 2)
  513. */
  514. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  515. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  516. /* The second checkpoint pack should start at the next segment */
  517. cp_start_blk_no += ((unsigned long long)1) <<
  518. le32_to_cpu(fsb->log_blocks_per_seg);
  519. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  520. if (cp1 && cp2) {
  521. if (ver_after(cp2_version, cp1_version))
  522. cur_page = cp2;
  523. else
  524. cur_page = cp1;
  525. } else if (cp1) {
  526. cur_page = cp1;
  527. } else if (cp2) {
  528. cur_page = cp2;
  529. } else {
  530. goto fail_no_cp;
  531. }
  532. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  533. memcpy(sbi->ckpt, cp_block, blk_size);
  534. if (cp_blks <= 1)
  535. goto done;
  536. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  537. if (cur_page == cp2)
  538. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  539. for (i = 1; i < cp_blks; i++) {
  540. void *sit_bitmap_ptr;
  541. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  542. cur_page = get_meta_page(sbi, cp_blk_no + i);
  543. sit_bitmap_ptr = page_address(cur_page);
  544. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  545. f2fs_put_page(cur_page, 1);
  546. }
  547. done:
  548. f2fs_put_page(cp1, 1);
  549. f2fs_put_page(cp2, 1);
  550. return 0;
  551. fail_no_cp:
  552. kfree(sbi->ckpt);
  553. return -EINVAL;
  554. }
  555. static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
  556. {
  557. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  558. if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
  559. return -EEXIST;
  560. set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  561. F2FS_I(inode)->dirty_dir = new;
  562. list_add_tail(&new->list, &sbi->dir_inode_list);
  563. stat_inc_dirty_dir(sbi);
  564. return 0;
  565. }
  566. void update_dirty_page(struct inode *inode, struct page *page)
  567. {
  568. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  569. struct dir_inode_entry *new;
  570. int ret = 0;
  571. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
  572. return;
  573. if (!S_ISDIR(inode->i_mode)) {
  574. inode_inc_dirty_pages(inode);
  575. goto out;
  576. }
  577. new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  578. new->inode = inode;
  579. INIT_LIST_HEAD(&new->list);
  580. spin_lock(&sbi->dir_inode_lock);
  581. ret = __add_dirty_inode(inode, new);
  582. inode_inc_dirty_pages(inode);
  583. spin_unlock(&sbi->dir_inode_lock);
  584. if (ret)
  585. kmem_cache_free(inode_entry_slab, new);
  586. out:
  587. SetPagePrivate(page);
  588. }
  589. void add_dirty_dir_inode(struct inode *inode)
  590. {
  591. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  592. struct dir_inode_entry *new =
  593. f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
  594. int ret = 0;
  595. new->inode = inode;
  596. INIT_LIST_HEAD(&new->list);
  597. spin_lock(&sbi->dir_inode_lock);
  598. ret = __add_dirty_inode(inode, new);
  599. spin_unlock(&sbi->dir_inode_lock);
  600. if (ret)
  601. kmem_cache_free(inode_entry_slab, new);
  602. }
  603. void remove_dirty_dir_inode(struct inode *inode)
  604. {
  605. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  606. struct dir_inode_entry *entry;
  607. if (!S_ISDIR(inode->i_mode))
  608. return;
  609. spin_lock(&sbi->dir_inode_lock);
  610. if (get_dirty_pages(inode) ||
  611. !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
  612. spin_unlock(&sbi->dir_inode_lock);
  613. return;
  614. }
  615. entry = F2FS_I(inode)->dirty_dir;
  616. list_del(&entry->list);
  617. F2FS_I(inode)->dirty_dir = NULL;
  618. clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
  619. stat_dec_dirty_dir(sbi);
  620. spin_unlock(&sbi->dir_inode_lock);
  621. kmem_cache_free(inode_entry_slab, entry);
  622. /* Only from the recovery routine */
  623. if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
  624. clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
  625. iput(inode);
  626. }
  627. }
  628. void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
  629. {
  630. struct list_head *head;
  631. struct dir_inode_entry *entry;
  632. struct inode *inode;
  633. retry:
  634. if (unlikely(f2fs_cp_error(sbi)))
  635. return;
  636. spin_lock(&sbi->dir_inode_lock);
  637. head = &sbi->dir_inode_list;
  638. if (list_empty(head)) {
  639. spin_unlock(&sbi->dir_inode_lock);
  640. return;
  641. }
  642. entry = list_entry(head->next, struct dir_inode_entry, list);
  643. inode = igrab(entry->inode);
  644. spin_unlock(&sbi->dir_inode_lock);
  645. if (inode) {
  646. filemap_fdatawrite(inode->i_mapping);
  647. iput(inode);
  648. } else {
  649. /*
  650. * We should submit bio, since it exists several
  651. * wribacking dentry pages in the freeing inode.
  652. */
  653. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  654. }
  655. goto retry;
  656. }
  657. /*
  658. * Freeze all the FS-operations for checkpoint.
  659. */
  660. static int block_operations(struct f2fs_sb_info *sbi)
  661. {
  662. struct writeback_control wbc = {
  663. .sync_mode = WB_SYNC_ALL,
  664. .nr_to_write = LONG_MAX,
  665. .for_reclaim = 0,
  666. };
  667. struct blk_plug plug;
  668. int err = 0;
  669. blk_start_plug(&plug);
  670. retry_flush_dents:
  671. f2fs_lock_all(sbi);
  672. /* write all the dirty dentry pages */
  673. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  674. f2fs_unlock_all(sbi);
  675. sync_dirty_dir_inodes(sbi);
  676. if (unlikely(f2fs_cp_error(sbi))) {
  677. err = -EIO;
  678. goto out;
  679. }
  680. goto retry_flush_dents;
  681. }
  682. /*
  683. * POR: we should ensure that there are no dirty node pages
  684. * until finishing nat/sit flush.
  685. */
  686. retry_flush_nodes:
  687. down_write(&sbi->node_write);
  688. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  689. up_write(&sbi->node_write);
  690. sync_node_pages(sbi, 0, &wbc);
  691. if (unlikely(f2fs_cp_error(sbi))) {
  692. f2fs_unlock_all(sbi);
  693. err = -EIO;
  694. goto out;
  695. }
  696. goto retry_flush_nodes;
  697. }
  698. out:
  699. blk_finish_plug(&plug);
  700. return err;
  701. }
  702. static void unblock_operations(struct f2fs_sb_info *sbi)
  703. {
  704. up_write(&sbi->node_write);
  705. f2fs_unlock_all(sbi);
  706. }
  707. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  708. {
  709. DEFINE_WAIT(wait);
  710. for (;;) {
  711. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  712. if (!get_pages(sbi, F2FS_WRITEBACK))
  713. break;
  714. io_schedule();
  715. }
  716. finish_wait(&sbi->cp_wait, &wait);
  717. }
  718. static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  719. {
  720. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  721. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  722. struct f2fs_nm_info *nm_i = NM_I(sbi);
  723. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  724. nid_t last_nid = nm_i->next_scan_nid;
  725. block_t start_blk;
  726. struct page *cp_page;
  727. unsigned int data_sum_blocks, orphan_blocks;
  728. __u32 crc32 = 0;
  729. void *kaddr;
  730. int i;
  731. int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
  732. /*
  733. * This avoids to conduct wrong roll-forward operations and uses
  734. * metapages, so should be called prior to sync_meta_pages below.
  735. */
  736. discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
  737. /* Flush all the NAT/SIT pages */
  738. while (get_pages(sbi, F2FS_DIRTY_META)) {
  739. sync_meta_pages(sbi, META, LONG_MAX);
  740. if (unlikely(f2fs_cp_error(sbi)))
  741. return;
  742. }
  743. next_free_nid(sbi, &last_nid);
  744. /*
  745. * modify checkpoint
  746. * version number is already updated
  747. */
  748. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  749. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  750. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  751. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  752. ckpt->cur_node_segno[i] =
  753. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  754. ckpt->cur_node_blkoff[i] =
  755. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  756. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  757. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  758. }
  759. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  760. ckpt->cur_data_segno[i] =
  761. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  762. ckpt->cur_data_blkoff[i] =
  763. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  764. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  765. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  766. }
  767. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  768. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  769. ckpt->next_free_nid = cpu_to_le32(last_nid);
  770. /* 2 cp + n data seg summary + orphan inode blocks */
  771. data_sum_blocks = npages_for_summary_flush(sbi);
  772. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  773. set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  774. else
  775. clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  776. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  777. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  778. orphan_blocks);
  779. if (cpc->reason == CP_UMOUNT) {
  780. set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  781. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  782. cp_payload_blks + data_sum_blocks +
  783. orphan_blocks + NR_CURSEG_NODE_TYPE);
  784. } else {
  785. clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  786. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  787. cp_payload_blks + data_sum_blocks +
  788. orphan_blocks);
  789. }
  790. if (orphan_num)
  791. set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  792. else
  793. clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  794. if (sbi->need_fsck)
  795. set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  796. /* update SIT/NAT bitmap */
  797. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  798. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  799. crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
  800. *((__le32 *)((unsigned char *)ckpt +
  801. le32_to_cpu(ckpt->checksum_offset)))
  802. = cpu_to_le32(crc32);
  803. start_blk = __start_cp_addr(sbi);
  804. /* write out checkpoint buffer at block 0 */
  805. cp_page = grab_meta_page(sbi, start_blk++);
  806. kaddr = page_address(cp_page);
  807. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  808. set_page_dirty(cp_page);
  809. f2fs_put_page(cp_page, 1);
  810. for (i = 1; i < 1 + cp_payload_blks; i++) {
  811. cp_page = grab_meta_page(sbi, start_blk++);
  812. kaddr = page_address(cp_page);
  813. memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
  814. (1 << sbi->log_blocksize));
  815. set_page_dirty(cp_page);
  816. f2fs_put_page(cp_page, 1);
  817. }
  818. if (orphan_num) {
  819. write_orphan_inodes(sbi, start_blk);
  820. start_blk += orphan_blocks;
  821. }
  822. write_data_summaries(sbi, start_blk);
  823. start_blk += data_sum_blocks;
  824. if (cpc->reason == CP_UMOUNT) {
  825. write_node_summaries(sbi, start_blk);
  826. start_blk += NR_CURSEG_NODE_TYPE;
  827. }
  828. /* writeout checkpoint block */
  829. cp_page = grab_meta_page(sbi, start_blk);
  830. kaddr = page_address(cp_page);
  831. memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
  832. set_page_dirty(cp_page);
  833. f2fs_put_page(cp_page, 1);
  834. /* wait for previous submitted node/meta pages writeback */
  835. wait_on_all_pages_writeback(sbi);
  836. if (unlikely(f2fs_cp_error(sbi)))
  837. return;
  838. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
  839. filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
  840. /* update user_block_counts */
  841. sbi->last_valid_block_count = sbi->total_valid_block_count;
  842. sbi->alloc_valid_block_count = 0;
  843. /* Here, we only have one bio having CP pack */
  844. sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
  845. /* wait for previous submitted meta pages writeback */
  846. wait_on_all_pages_writeback(sbi);
  847. release_dirty_inode(sbi);
  848. if (unlikely(f2fs_cp_error(sbi)))
  849. return;
  850. clear_prefree_segments(sbi);
  851. F2FS_RESET_SB_DIRT(sbi);
  852. }
  853. /*
  854. * We guarantee that this checkpoint procedure will not fail.
  855. */
  856. void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  857. {
  858. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  859. unsigned long long ckpt_ver;
  860. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  861. mutex_lock(&sbi->cp_mutex);
  862. if (!sbi->s_dirty && cpc->reason != CP_DISCARD)
  863. goto out;
  864. if (unlikely(f2fs_cp_error(sbi)))
  865. goto out;
  866. if (block_operations(sbi))
  867. goto out;
  868. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  869. f2fs_submit_merged_bio(sbi, DATA, WRITE);
  870. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  871. f2fs_submit_merged_bio(sbi, META, WRITE);
  872. /*
  873. * update checkpoint pack index
  874. * Increase the version number so that
  875. * SIT entries and seg summaries are written at correct place
  876. */
  877. ckpt_ver = cur_cp_version(ckpt);
  878. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  879. /* write cached NAT/SIT entries to NAT/SIT area */
  880. flush_nat_entries(sbi);
  881. flush_sit_entries(sbi, cpc);
  882. /* unlock all the fs_lock[] in do_checkpoint() */
  883. do_checkpoint(sbi, cpc);
  884. unblock_operations(sbi);
  885. stat_inc_cp_count(sbi->stat_info);
  886. out:
  887. mutex_unlock(&sbi->cp_mutex);
  888. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  889. }
  890. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  891. {
  892. int i;
  893. for (i = 0; i < MAX_INO_ENTRY; i++) {
  894. struct inode_management *im = &sbi->im[i];
  895. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  896. spin_lock_init(&im->ino_lock);
  897. INIT_LIST_HEAD(&im->ino_list);
  898. im->ino_num = 0;
  899. }
  900. /*
  901. * considering 512 blocks in a segment 8 blocks are needed for cp
  902. * and log segment summaries. Remaining blocks are used to keep
  903. * orphan entries with the limitation one reserved segment
  904. * for cp pack we can have max 1020*504 orphan entries
  905. */
  906. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  907. NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
  908. }
  909. int __init create_checkpoint_caches(void)
  910. {
  911. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  912. sizeof(struct ino_entry));
  913. if (!ino_entry_slab)
  914. return -ENOMEM;
  915. inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
  916. sizeof(struct dir_inode_entry));
  917. if (!inode_entry_slab) {
  918. kmem_cache_destroy(ino_entry_slab);
  919. return -ENOMEM;
  920. }
  921. return 0;
  922. }
  923. void destroy_checkpoint_caches(void)
  924. {
  925. kmem_cache_destroy(ino_entry_slab);
  926. kmem_cache_destroy(inode_entry_slab);
  927. }