core.c 205 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. DEFINE_MUTEX(sched_domains_mutex);
  89. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  90. static void update_rq_clock_task(struct rq *rq, s64 delta);
  91. void update_rq_clock(struct rq *rq)
  92. {
  93. s64 delta;
  94. lockdep_assert_held(&rq->lock);
  95. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  96. return;
  97. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  98. if (delta < 0)
  99. return;
  100. rq->clock += delta;
  101. update_rq_clock_task(rq, delta);
  102. }
  103. /*
  104. * Debugging: various feature bits
  105. */
  106. #define SCHED_FEAT(name, enabled) \
  107. (1UL << __SCHED_FEAT_##name) * enabled |
  108. const_debug unsigned int sysctl_sched_features =
  109. #include "features.h"
  110. 0;
  111. #undef SCHED_FEAT
  112. #ifdef CONFIG_SCHED_DEBUG
  113. #define SCHED_FEAT(name, enabled) \
  114. #name ,
  115. static const char * const sched_feat_names[] = {
  116. #include "features.h"
  117. };
  118. #undef SCHED_FEAT
  119. static int sched_feat_show(struct seq_file *m, void *v)
  120. {
  121. int i;
  122. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  123. if (!(sysctl_sched_features & (1UL << i)))
  124. seq_puts(m, "NO_");
  125. seq_printf(m, "%s ", sched_feat_names[i]);
  126. }
  127. seq_puts(m, "\n");
  128. return 0;
  129. }
  130. #ifdef HAVE_JUMP_LABEL
  131. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  132. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  133. #define SCHED_FEAT(name, enabled) \
  134. jump_label_key__##enabled ,
  135. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  136. #include "features.h"
  137. };
  138. #undef SCHED_FEAT
  139. static void sched_feat_disable(int i)
  140. {
  141. static_key_disable(&sched_feat_keys[i]);
  142. }
  143. static void sched_feat_enable(int i)
  144. {
  145. static_key_enable(&sched_feat_keys[i]);
  146. }
  147. #else
  148. static void sched_feat_disable(int i) { };
  149. static void sched_feat_enable(int i) { };
  150. #endif /* HAVE_JUMP_LABEL */
  151. static int sched_feat_set(char *cmp)
  152. {
  153. int i;
  154. int neg = 0;
  155. if (strncmp(cmp, "NO_", 3) == 0) {
  156. neg = 1;
  157. cmp += 3;
  158. }
  159. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  160. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  161. if (neg) {
  162. sysctl_sched_features &= ~(1UL << i);
  163. sched_feat_disable(i);
  164. } else {
  165. sysctl_sched_features |= (1UL << i);
  166. sched_feat_enable(i);
  167. }
  168. break;
  169. }
  170. }
  171. return i;
  172. }
  173. static ssize_t
  174. sched_feat_write(struct file *filp, const char __user *ubuf,
  175. size_t cnt, loff_t *ppos)
  176. {
  177. char buf[64];
  178. char *cmp;
  179. int i;
  180. struct inode *inode;
  181. if (cnt > 63)
  182. cnt = 63;
  183. if (copy_from_user(&buf, ubuf, cnt))
  184. return -EFAULT;
  185. buf[cnt] = 0;
  186. cmp = strstrip(buf);
  187. /* Ensure the static_key remains in a consistent state */
  188. inode = file_inode(filp);
  189. mutex_lock(&inode->i_mutex);
  190. i = sched_feat_set(cmp);
  191. mutex_unlock(&inode->i_mutex);
  192. if (i == __SCHED_FEAT_NR)
  193. return -EINVAL;
  194. *ppos += cnt;
  195. return cnt;
  196. }
  197. static int sched_feat_open(struct inode *inode, struct file *filp)
  198. {
  199. return single_open(filp, sched_feat_show, NULL);
  200. }
  201. static const struct file_operations sched_feat_fops = {
  202. .open = sched_feat_open,
  203. .write = sched_feat_write,
  204. .read = seq_read,
  205. .llseek = seq_lseek,
  206. .release = single_release,
  207. };
  208. static __init int sched_init_debug(void)
  209. {
  210. debugfs_create_file("sched_features", 0644, NULL, NULL,
  211. &sched_feat_fops);
  212. return 0;
  213. }
  214. late_initcall(sched_init_debug);
  215. #endif /* CONFIG_SCHED_DEBUG */
  216. /*
  217. * Number of tasks to iterate in a single balance run.
  218. * Limited because this is done with IRQs disabled.
  219. */
  220. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  221. /*
  222. * period over which we average the RT time consumption, measured
  223. * in ms.
  224. *
  225. * default: 1s
  226. */
  227. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  228. /*
  229. * period over which we measure -rt task cpu usage in us.
  230. * default: 1s
  231. */
  232. unsigned int sysctl_sched_rt_period = 1000000;
  233. __read_mostly int scheduler_running;
  234. /*
  235. * part of the period that we allow rt tasks to run in us.
  236. * default: 0.95s
  237. */
  238. int sysctl_sched_rt_runtime = 950000;
  239. /* cpus with isolated domains */
  240. cpumask_var_t cpu_isolated_map;
  241. /*
  242. * this_rq_lock - lock this runqueue and disable interrupts.
  243. */
  244. static struct rq *this_rq_lock(void)
  245. __acquires(rq->lock)
  246. {
  247. struct rq *rq;
  248. local_irq_disable();
  249. rq = this_rq();
  250. raw_spin_lock(&rq->lock);
  251. return rq;
  252. }
  253. #ifdef CONFIG_SCHED_HRTICK
  254. /*
  255. * Use HR-timers to deliver accurate preemption points.
  256. */
  257. static void hrtick_clear(struct rq *rq)
  258. {
  259. if (hrtimer_active(&rq->hrtick_timer))
  260. hrtimer_cancel(&rq->hrtick_timer);
  261. }
  262. /*
  263. * High-resolution timer tick.
  264. * Runs from hardirq context with interrupts disabled.
  265. */
  266. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  267. {
  268. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  269. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  270. raw_spin_lock(&rq->lock);
  271. update_rq_clock(rq);
  272. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  273. raw_spin_unlock(&rq->lock);
  274. return HRTIMER_NORESTART;
  275. }
  276. #ifdef CONFIG_SMP
  277. static void __hrtick_restart(struct rq *rq)
  278. {
  279. struct hrtimer *timer = &rq->hrtick_timer;
  280. hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
  281. }
  282. /*
  283. * called from hardirq (IPI) context
  284. */
  285. static void __hrtick_start(void *arg)
  286. {
  287. struct rq *rq = arg;
  288. raw_spin_lock(&rq->lock);
  289. __hrtick_restart(rq);
  290. rq->hrtick_csd_pending = 0;
  291. raw_spin_unlock(&rq->lock);
  292. }
  293. /*
  294. * Called to set the hrtick timer state.
  295. *
  296. * called with rq->lock held and irqs disabled
  297. */
  298. void hrtick_start(struct rq *rq, u64 delay)
  299. {
  300. struct hrtimer *timer = &rq->hrtick_timer;
  301. ktime_t time;
  302. s64 delta;
  303. /*
  304. * Don't schedule slices shorter than 10000ns, that just
  305. * doesn't make sense and can cause timer DoS.
  306. */
  307. delta = max_t(s64, delay, 10000LL);
  308. time = ktime_add_ns(timer->base->get_time(), delta);
  309. hrtimer_set_expires(timer, time);
  310. if (rq == this_rq()) {
  311. __hrtick_restart(rq);
  312. } else if (!rq->hrtick_csd_pending) {
  313. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  314. rq->hrtick_csd_pending = 1;
  315. }
  316. }
  317. static int
  318. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  319. {
  320. int cpu = (int)(long)hcpu;
  321. switch (action) {
  322. case CPU_UP_CANCELED:
  323. case CPU_UP_CANCELED_FROZEN:
  324. case CPU_DOWN_PREPARE:
  325. case CPU_DOWN_PREPARE_FROZEN:
  326. case CPU_DEAD:
  327. case CPU_DEAD_FROZEN:
  328. hrtick_clear(cpu_rq(cpu));
  329. return NOTIFY_OK;
  330. }
  331. return NOTIFY_DONE;
  332. }
  333. static __init void init_hrtick(void)
  334. {
  335. hotcpu_notifier(hotplug_hrtick, 0);
  336. }
  337. #else
  338. /*
  339. * Called to set the hrtick timer state.
  340. *
  341. * called with rq->lock held and irqs disabled
  342. */
  343. void hrtick_start(struct rq *rq, u64 delay)
  344. {
  345. /*
  346. * Don't schedule slices shorter than 10000ns, that just
  347. * doesn't make sense. Rely on vruntime for fairness.
  348. */
  349. delay = max_t(u64, delay, 10000LL);
  350. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  351. HRTIMER_MODE_REL_PINNED);
  352. }
  353. static inline void init_hrtick(void)
  354. {
  355. }
  356. #endif /* CONFIG_SMP */
  357. static void init_rq_hrtick(struct rq *rq)
  358. {
  359. #ifdef CONFIG_SMP
  360. rq->hrtick_csd_pending = 0;
  361. rq->hrtick_csd.flags = 0;
  362. rq->hrtick_csd.func = __hrtick_start;
  363. rq->hrtick_csd.info = rq;
  364. #endif
  365. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  366. rq->hrtick_timer.function = hrtick;
  367. }
  368. #else /* CONFIG_SCHED_HRTICK */
  369. static inline void hrtick_clear(struct rq *rq)
  370. {
  371. }
  372. static inline void init_rq_hrtick(struct rq *rq)
  373. {
  374. }
  375. static inline void init_hrtick(void)
  376. {
  377. }
  378. #endif /* CONFIG_SCHED_HRTICK */
  379. /*
  380. * cmpxchg based fetch_or, macro so it works for different integer types
  381. */
  382. #define fetch_or(ptr, val) \
  383. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  384. for (;;) { \
  385. __old = cmpxchg((ptr), __val, __val | (val)); \
  386. if (__old == __val) \
  387. break; \
  388. __val = __old; \
  389. } \
  390. __old; \
  391. })
  392. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  393. /*
  394. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  395. * this avoids any races wrt polling state changes and thereby avoids
  396. * spurious IPIs.
  397. */
  398. static bool set_nr_and_not_polling(struct task_struct *p)
  399. {
  400. struct thread_info *ti = task_thread_info(p);
  401. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  402. }
  403. /*
  404. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  405. *
  406. * If this returns true, then the idle task promises to call
  407. * sched_ttwu_pending() and reschedule soon.
  408. */
  409. static bool set_nr_if_polling(struct task_struct *p)
  410. {
  411. struct thread_info *ti = task_thread_info(p);
  412. typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  413. for (;;) {
  414. if (!(val & _TIF_POLLING_NRFLAG))
  415. return false;
  416. if (val & _TIF_NEED_RESCHED)
  417. return true;
  418. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  419. if (old == val)
  420. break;
  421. val = old;
  422. }
  423. return true;
  424. }
  425. #else
  426. static bool set_nr_and_not_polling(struct task_struct *p)
  427. {
  428. set_tsk_need_resched(p);
  429. return true;
  430. }
  431. #ifdef CONFIG_SMP
  432. static bool set_nr_if_polling(struct task_struct *p)
  433. {
  434. return false;
  435. }
  436. #endif
  437. #endif
  438. void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  439. {
  440. struct wake_q_node *node = &task->wake_q;
  441. /*
  442. * Atomically grab the task, if ->wake_q is !nil already it means
  443. * its already queued (either by us or someone else) and will get the
  444. * wakeup due to that.
  445. *
  446. * This cmpxchg() implies a full barrier, which pairs with the write
  447. * barrier implied by the wakeup in wake_up_list().
  448. */
  449. if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
  450. return;
  451. get_task_struct(task);
  452. /*
  453. * The head is context local, there can be no concurrency.
  454. */
  455. *head->lastp = node;
  456. head->lastp = &node->next;
  457. }
  458. void wake_up_q(struct wake_q_head *head)
  459. {
  460. struct wake_q_node *node = head->first;
  461. while (node != WAKE_Q_TAIL) {
  462. struct task_struct *task;
  463. task = container_of(node, struct task_struct, wake_q);
  464. BUG_ON(!task);
  465. /* task can safely be re-inserted now */
  466. node = node->next;
  467. task->wake_q.next = NULL;
  468. /*
  469. * wake_up_process() implies a wmb() to pair with the queueing
  470. * in wake_q_add() so as not to miss wakeups.
  471. */
  472. wake_up_process(task);
  473. put_task_struct(task);
  474. }
  475. }
  476. /*
  477. * resched_curr - mark rq's current task 'to be rescheduled now'.
  478. *
  479. * On UP this means the setting of the need_resched flag, on SMP it
  480. * might also involve a cross-CPU call to trigger the scheduler on
  481. * the target CPU.
  482. */
  483. void resched_curr(struct rq *rq)
  484. {
  485. struct task_struct *curr = rq->curr;
  486. int cpu;
  487. lockdep_assert_held(&rq->lock);
  488. if (test_tsk_need_resched(curr))
  489. return;
  490. cpu = cpu_of(rq);
  491. if (cpu == smp_processor_id()) {
  492. set_tsk_need_resched(curr);
  493. set_preempt_need_resched();
  494. return;
  495. }
  496. if (set_nr_and_not_polling(curr))
  497. smp_send_reschedule(cpu);
  498. else
  499. trace_sched_wake_idle_without_ipi(cpu);
  500. }
  501. void resched_cpu(int cpu)
  502. {
  503. struct rq *rq = cpu_rq(cpu);
  504. unsigned long flags;
  505. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  506. return;
  507. resched_curr(rq);
  508. raw_spin_unlock_irqrestore(&rq->lock, flags);
  509. }
  510. #ifdef CONFIG_SMP
  511. #ifdef CONFIG_NO_HZ_COMMON
  512. /*
  513. * In the semi idle case, use the nearest busy cpu for migrating timers
  514. * from an idle cpu. This is good for power-savings.
  515. *
  516. * We don't do similar optimization for completely idle system, as
  517. * selecting an idle cpu will add more delays to the timers than intended
  518. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  519. */
  520. int get_nohz_timer_target(void)
  521. {
  522. int i, cpu = smp_processor_id();
  523. struct sched_domain *sd;
  524. if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
  525. return cpu;
  526. rcu_read_lock();
  527. for_each_domain(cpu, sd) {
  528. for_each_cpu(i, sched_domain_span(sd)) {
  529. if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
  530. cpu = i;
  531. goto unlock;
  532. }
  533. }
  534. }
  535. if (!is_housekeeping_cpu(cpu))
  536. cpu = housekeeping_any_cpu();
  537. unlock:
  538. rcu_read_unlock();
  539. return cpu;
  540. }
  541. /*
  542. * When add_timer_on() enqueues a timer into the timer wheel of an
  543. * idle CPU then this timer might expire before the next timer event
  544. * which is scheduled to wake up that CPU. In case of a completely
  545. * idle system the next event might even be infinite time into the
  546. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  547. * leaves the inner idle loop so the newly added timer is taken into
  548. * account when the CPU goes back to idle and evaluates the timer
  549. * wheel for the next timer event.
  550. */
  551. static void wake_up_idle_cpu(int cpu)
  552. {
  553. struct rq *rq = cpu_rq(cpu);
  554. if (cpu == smp_processor_id())
  555. return;
  556. if (set_nr_and_not_polling(rq->idle))
  557. smp_send_reschedule(cpu);
  558. else
  559. trace_sched_wake_idle_without_ipi(cpu);
  560. }
  561. static bool wake_up_full_nohz_cpu(int cpu)
  562. {
  563. /*
  564. * We just need the target to call irq_exit() and re-evaluate
  565. * the next tick. The nohz full kick at least implies that.
  566. * If needed we can still optimize that later with an
  567. * empty IRQ.
  568. */
  569. if (tick_nohz_full_cpu(cpu)) {
  570. if (cpu != smp_processor_id() ||
  571. tick_nohz_tick_stopped())
  572. tick_nohz_full_kick_cpu(cpu);
  573. return true;
  574. }
  575. return false;
  576. }
  577. void wake_up_nohz_cpu(int cpu)
  578. {
  579. if (!wake_up_full_nohz_cpu(cpu))
  580. wake_up_idle_cpu(cpu);
  581. }
  582. static inline bool got_nohz_idle_kick(void)
  583. {
  584. int cpu = smp_processor_id();
  585. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  586. return false;
  587. if (idle_cpu(cpu) && !need_resched())
  588. return true;
  589. /*
  590. * We can't run Idle Load Balance on this CPU for this time so we
  591. * cancel it and clear NOHZ_BALANCE_KICK
  592. */
  593. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  594. return false;
  595. }
  596. #else /* CONFIG_NO_HZ_COMMON */
  597. static inline bool got_nohz_idle_kick(void)
  598. {
  599. return false;
  600. }
  601. #endif /* CONFIG_NO_HZ_COMMON */
  602. #ifdef CONFIG_NO_HZ_FULL
  603. bool sched_can_stop_tick(void)
  604. {
  605. /*
  606. * FIFO realtime policy runs the highest priority task. Other runnable
  607. * tasks are of a lower priority. The scheduler tick does nothing.
  608. */
  609. if (current->policy == SCHED_FIFO)
  610. return true;
  611. /*
  612. * Round-robin realtime tasks time slice with other tasks at the same
  613. * realtime priority. Is this task the only one at this priority?
  614. */
  615. if (current->policy == SCHED_RR) {
  616. struct sched_rt_entity *rt_se = &current->rt;
  617. return rt_se->run_list.prev == rt_se->run_list.next;
  618. }
  619. /*
  620. * More than one running task need preemption.
  621. * nr_running update is assumed to be visible
  622. * after IPI is sent from wakers.
  623. */
  624. if (this_rq()->nr_running > 1)
  625. return false;
  626. return true;
  627. }
  628. #endif /* CONFIG_NO_HZ_FULL */
  629. void sched_avg_update(struct rq *rq)
  630. {
  631. s64 period = sched_avg_period();
  632. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  633. /*
  634. * Inline assembly required to prevent the compiler
  635. * optimising this loop into a divmod call.
  636. * See __iter_div_u64_rem() for another example of this.
  637. */
  638. asm("" : "+rm" (rq->age_stamp));
  639. rq->age_stamp += period;
  640. rq->rt_avg /= 2;
  641. }
  642. }
  643. #endif /* CONFIG_SMP */
  644. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  645. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  646. /*
  647. * Iterate task_group tree rooted at *from, calling @down when first entering a
  648. * node and @up when leaving it for the final time.
  649. *
  650. * Caller must hold rcu_lock or sufficient equivalent.
  651. */
  652. int walk_tg_tree_from(struct task_group *from,
  653. tg_visitor down, tg_visitor up, void *data)
  654. {
  655. struct task_group *parent, *child;
  656. int ret;
  657. parent = from;
  658. down:
  659. ret = (*down)(parent, data);
  660. if (ret)
  661. goto out;
  662. list_for_each_entry_rcu(child, &parent->children, siblings) {
  663. parent = child;
  664. goto down;
  665. up:
  666. continue;
  667. }
  668. ret = (*up)(parent, data);
  669. if (ret || parent == from)
  670. goto out;
  671. child = parent;
  672. parent = parent->parent;
  673. if (parent)
  674. goto up;
  675. out:
  676. return ret;
  677. }
  678. int tg_nop(struct task_group *tg, void *data)
  679. {
  680. return 0;
  681. }
  682. #endif
  683. static void set_load_weight(struct task_struct *p)
  684. {
  685. int prio = p->static_prio - MAX_RT_PRIO;
  686. struct load_weight *load = &p->se.load;
  687. /*
  688. * SCHED_IDLE tasks get minimal weight:
  689. */
  690. if (p->policy == SCHED_IDLE) {
  691. load->weight = scale_load(WEIGHT_IDLEPRIO);
  692. load->inv_weight = WMULT_IDLEPRIO;
  693. return;
  694. }
  695. load->weight = scale_load(prio_to_weight[prio]);
  696. load->inv_weight = prio_to_wmult[prio];
  697. }
  698. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  699. {
  700. update_rq_clock(rq);
  701. sched_info_queued(rq, p);
  702. p->sched_class->enqueue_task(rq, p, flags);
  703. }
  704. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  705. {
  706. update_rq_clock(rq);
  707. sched_info_dequeued(rq, p);
  708. p->sched_class->dequeue_task(rq, p, flags);
  709. }
  710. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  711. {
  712. if (task_contributes_to_load(p))
  713. rq->nr_uninterruptible--;
  714. enqueue_task(rq, p, flags);
  715. }
  716. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  717. {
  718. if (task_contributes_to_load(p))
  719. rq->nr_uninterruptible++;
  720. dequeue_task(rq, p, flags);
  721. }
  722. static void update_rq_clock_task(struct rq *rq, s64 delta)
  723. {
  724. /*
  725. * In theory, the compile should just see 0 here, and optimize out the call
  726. * to sched_rt_avg_update. But I don't trust it...
  727. */
  728. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  729. s64 steal = 0, irq_delta = 0;
  730. #endif
  731. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  732. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  733. /*
  734. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  735. * this case when a previous update_rq_clock() happened inside a
  736. * {soft,}irq region.
  737. *
  738. * When this happens, we stop ->clock_task and only update the
  739. * prev_irq_time stamp to account for the part that fit, so that a next
  740. * update will consume the rest. This ensures ->clock_task is
  741. * monotonic.
  742. *
  743. * It does however cause some slight miss-attribution of {soft,}irq
  744. * time, a more accurate solution would be to update the irq_time using
  745. * the current rq->clock timestamp, except that would require using
  746. * atomic ops.
  747. */
  748. if (irq_delta > delta)
  749. irq_delta = delta;
  750. rq->prev_irq_time += irq_delta;
  751. delta -= irq_delta;
  752. #endif
  753. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  754. if (static_key_false((&paravirt_steal_rq_enabled))) {
  755. steal = paravirt_steal_clock(cpu_of(rq));
  756. steal -= rq->prev_steal_time_rq;
  757. if (unlikely(steal > delta))
  758. steal = delta;
  759. rq->prev_steal_time_rq += steal;
  760. delta -= steal;
  761. }
  762. #endif
  763. rq->clock_task += delta;
  764. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  765. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  766. sched_rt_avg_update(rq, irq_delta + steal);
  767. #endif
  768. }
  769. void sched_set_stop_task(int cpu, struct task_struct *stop)
  770. {
  771. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  772. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  773. if (stop) {
  774. /*
  775. * Make it appear like a SCHED_FIFO task, its something
  776. * userspace knows about and won't get confused about.
  777. *
  778. * Also, it will make PI more or less work without too
  779. * much confusion -- but then, stop work should not
  780. * rely on PI working anyway.
  781. */
  782. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  783. stop->sched_class = &stop_sched_class;
  784. }
  785. cpu_rq(cpu)->stop = stop;
  786. if (old_stop) {
  787. /*
  788. * Reset it back to a normal scheduling class so that
  789. * it can die in pieces.
  790. */
  791. old_stop->sched_class = &rt_sched_class;
  792. }
  793. }
  794. /*
  795. * __normal_prio - return the priority that is based on the static prio
  796. */
  797. static inline int __normal_prio(struct task_struct *p)
  798. {
  799. return p->static_prio;
  800. }
  801. /*
  802. * Calculate the expected normal priority: i.e. priority
  803. * without taking RT-inheritance into account. Might be
  804. * boosted by interactivity modifiers. Changes upon fork,
  805. * setprio syscalls, and whenever the interactivity
  806. * estimator recalculates.
  807. */
  808. static inline int normal_prio(struct task_struct *p)
  809. {
  810. int prio;
  811. if (task_has_dl_policy(p))
  812. prio = MAX_DL_PRIO-1;
  813. else if (task_has_rt_policy(p))
  814. prio = MAX_RT_PRIO-1 - p->rt_priority;
  815. else
  816. prio = __normal_prio(p);
  817. return prio;
  818. }
  819. /*
  820. * Calculate the current priority, i.e. the priority
  821. * taken into account by the scheduler. This value might
  822. * be boosted by RT tasks, or might be boosted by
  823. * interactivity modifiers. Will be RT if the task got
  824. * RT-boosted. If not then it returns p->normal_prio.
  825. */
  826. static int effective_prio(struct task_struct *p)
  827. {
  828. p->normal_prio = normal_prio(p);
  829. /*
  830. * If we are RT tasks or we were boosted to RT priority,
  831. * keep the priority unchanged. Otherwise, update priority
  832. * to the normal priority:
  833. */
  834. if (!rt_prio(p->prio))
  835. return p->normal_prio;
  836. return p->prio;
  837. }
  838. /**
  839. * task_curr - is this task currently executing on a CPU?
  840. * @p: the task in question.
  841. *
  842. * Return: 1 if the task is currently executing. 0 otherwise.
  843. */
  844. inline int task_curr(const struct task_struct *p)
  845. {
  846. return cpu_curr(task_cpu(p)) == p;
  847. }
  848. /*
  849. * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
  850. * use the balance_callback list if you want balancing.
  851. *
  852. * this means any call to check_class_changed() must be followed by a call to
  853. * balance_callback().
  854. */
  855. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  856. const struct sched_class *prev_class,
  857. int oldprio)
  858. {
  859. if (prev_class != p->sched_class) {
  860. if (prev_class->switched_from)
  861. prev_class->switched_from(rq, p);
  862. p->sched_class->switched_to(rq, p);
  863. } else if (oldprio != p->prio || dl_task(p))
  864. p->sched_class->prio_changed(rq, p, oldprio);
  865. }
  866. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  867. {
  868. const struct sched_class *class;
  869. if (p->sched_class == rq->curr->sched_class) {
  870. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  871. } else {
  872. for_each_class(class) {
  873. if (class == rq->curr->sched_class)
  874. break;
  875. if (class == p->sched_class) {
  876. resched_curr(rq);
  877. break;
  878. }
  879. }
  880. }
  881. /*
  882. * A queue event has occurred, and we're going to schedule. In
  883. * this case, we can save a useless back to back clock update.
  884. */
  885. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  886. rq_clock_skip_update(rq, true);
  887. }
  888. #ifdef CONFIG_SMP
  889. /*
  890. * This is how migration works:
  891. *
  892. * 1) we invoke migration_cpu_stop() on the target CPU using
  893. * stop_one_cpu().
  894. * 2) stopper starts to run (implicitly forcing the migrated thread
  895. * off the CPU)
  896. * 3) it checks whether the migrated task is still in the wrong runqueue.
  897. * 4) if it's in the wrong runqueue then the migration thread removes
  898. * it and puts it into the right queue.
  899. * 5) stopper completes and stop_one_cpu() returns and the migration
  900. * is done.
  901. */
  902. /*
  903. * move_queued_task - move a queued task to new rq.
  904. *
  905. * Returns (locked) new rq. Old rq's lock is released.
  906. */
  907. static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
  908. {
  909. lockdep_assert_held(&rq->lock);
  910. dequeue_task(rq, p, 0);
  911. p->on_rq = TASK_ON_RQ_MIGRATING;
  912. set_task_cpu(p, new_cpu);
  913. raw_spin_unlock(&rq->lock);
  914. rq = cpu_rq(new_cpu);
  915. raw_spin_lock(&rq->lock);
  916. BUG_ON(task_cpu(p) != new_cpu);
  917. p->on_rq = TASK_ON_RQ_QUEUED;
  918. enqueue_task(rq, p, 0);
  919. check_preempt_curr(rq, p, 0);
  920. return rq;
  921. }
  922. struct migration_arg {
  923. struct task_struct *task;
  924. int dest_cpu;
  925. };
  926. /*
  927. * Move (not current) task off this cpu, onto dest cpu. We're doing
  928. * this because either it can't run here any more (set_cpus_allowed()
  929. * away from this CPU, or CPU going down), or because we're
  930. * attempting to rebalance this task on exec (sched_exec).
  931. *
  932. * So we race with normal scheduler movements, but that's OK, as long
  933. * as the task is no longer on this CPU.
  934. */
  935. static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
  936. {
  937. if (unlikely(!cpu_active(dest_cpu)))
  938. return rq;
  939. /* Affinity changed (again). */
  940. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  941. return rq;
  942. rq = move_queued_task(rq, p, dest_cpu);
  943. return rq;
  944. }
  945. /*
  946. * migration_cpu_stop - this will be executed by a highprio stopper thread
  947. * and performs thread migration by bumping thread off CPU then
  948. * 'pushing' onto another runqueue.
  949. */
  950. static int migration_cpu_stop(void *data)
  951. {
  952. struct migration_arg *arg = data;
  953. struct task_struct *p = arg->task;
  954. struct rq *rq = this_rq();
  955. /*
  956. * The original target cpu might have gone down and we might
  957. * be on another cpu but it doesn't matter.
  958. */
  959. local_irq_disable();
  960. /*
  961. * We need to explicitly wake pending tasks before running
  962. * __migrate_task() such that we will not miss enforcing cpus_allowed
  963. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  964. */
  965. sched_ttwu_pending();
  966. raw_spin_lock(&p->pi_lock);
  967. raw_spin_lock(&rq->lock);
  968. /*
  969. * If task_rq(p) != rq, it cannot be migrated here, because we're
  970. * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
  971. * we're holding p->pi_lock.
  972. */
  973. if (task_rq(p) == rq && task_on_rq_queued(p))
  974. rq = __migrate_task(rq, p, arg->dest_cpu);
  975. raw_spin_unlock(&rq->lock);
  976. raw_spin_unlock(&p->pi_lock);
  977. local_irq_enable();
  978. return 0;
  979. }
  980. /*
  981. * sched_class::set_cpus_allowed must do the below, but is not required to
  982. * actually call this function.
  983. */
  984. void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
  985. {
  986. cpumask_copy(&p->cpus_allowed, new_mask);
  987. p->nr_cpus_allowed = cpumask_weight(new_mask);
  988. }
  989. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  990. {
  991. struct rq *rq = task_rq(p);
  992. bool queued, running;
  993. lockdep_assert_held(&p->pi_lock);
  994. queued = task_on_rq_queued(p);
  995. running = task_current(rq, p);
  996. if (queued) {
  997. /*
  998. * Because __kthread_bind() calls this on blocked tasks without
  999. * holding rq->lock.
  1000. */
  1001. lockdep_assert_held(&rq->lock);
  1002. dequeue_task(rq, p, 0);
  1003. }
  1004. if (running)
  1005. put_prev_task(rq, p);
  1006. p->sched_class->set_cpus_allowed(p, new_mask);
  1007. if (running)
  1008. p->sched_class->set_curr_task(rq);
  1009. if (queued)
  1010. enqueue_task(rq, p, 0);
  1011. }
  1012. /*
  1013. * Change a given task's CPU affinity. Migrate the thread to a
  1014. * proper CPU and schedule it away if the CPU it's executing on
  1015. * is removed from the allowed bitmask.
  1016. *
  1017. * NOTE: the caller must have a valid reference to the task, the
  1018. * task must not exit() & deallocate itself prematurely. The
  1019. * call is not atomic; no spinlocks may be held.
  1020. */
  1021. static int __set_cpus_allowed_ptr(struct task_struct *p,
  1022. const struct cpumask *new_mask, bool check)
  1023. {
  1024. unsigned long flags;
  1025. struct rq *rq;
  1026. unsigned int dest_cpu;
  1027. int ret = 0;
  1028. rq = task_rq_lock(p, &flags);
  1029. /*
  1030. * Must re-check here, to close a race against __kthread_bind(),
  1031. * sched_setaffinity() is not guaranteed to observe the flag.
  1032. */
  1033. if (check && (p->flags & PF_NO_SETAFFINITY)) {
  1034. ret = -EINVAL;
  1035. goto out;
  1036. }
  1037. if (cpumask_equal(&p->cpus_allowed, new_mask))
  1038. goto out;
  1039. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  1040. ret = -EINVAL;
  1041. goto out;
  1042. }
  1043. do_set_cpus_allowed(p, new_mask);
  1044. /* Can the task run on the task's current CPU? If so, we're done */
  1045. if (cpumask_test_cpu(task_cpu(p), new_mask))
  1046. goto out;
  1047. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  1048. if (task_running(rq, p) || p->state == TASK_WAKING) {
  1049. struct migration_arg arg = { p, dest_cpu };
  1050. /* Need help from migration thread: drop lock and wait. */
  1051. task_rq_unlock(rq, p, &flags);
  1052. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  1053. tlb_migrate_finish(p->mm);
  1054. return 0;
  1055. } else if (task_on_rq_queued(p)) {
  1056. /*
  1057. * OK, since we're going to drop the lock immediately
  1058. * afterwards anyway.
  1059. */
  1060. lockdep_unpin_lock(&rq->lock);
  1061. rq = move_queued_task(rq, p, dest_cpu);
  1062. lockdep_pin_lock(&rq->lock);
  1063. }
  1064. out:
  1065. task_rq_unlock(rq, p, &flags);
  1066. return ret;
  1067. }
  1068. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  1069. {
  1070. return __set_cpus_allowed_ptr(p, new_mask, false);
  1071. }
  1072. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  1073. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1074. {
  1075. #ifdef CONFIG_SCHED_DEBUG
  1076. /*
  1077. * We should never call set_task_cpu() on a blocked task,
  1078. * ttwu() will sort out the placement.
  1079. */
  1080. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1081. !p->on_rq);
  1082. #ifdef CONFIG_LOCKDEP
  1083. /*
  1084. * The caller should hold either p->pi_lock or rq->lock, when changing
  1085. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1086. *
  1087. * sched_move_task() holds both and thus holding either pins the cgroup,
  1088. * see task_group().
  1089. *
  1090. * Furthermore, all task_rq users should acquire both locks, see
  1091. * task_rq_lock().
  1092. */
  1093. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1094. lockdep_is_held(&task_rq(p)->lock)));
  1095. #endif
  1096. #endif
  1097. trace_sched_migrate_task(p, new_cpu);
  1098. if (task_cpu(p) != new_cpu) {
  1099. if (p->sched_class->migrate_task_rq)
  1100. p->sched_class->migrate_task_rq(p, new_cpu);
  1101. p->se.nr_migrations++;
  1102. perf_event_task_migrate(p);
  1103. }
  1104. __set_task_cpu(p, new_cpu);
  1105. }
  1106. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1107. {
  1108. if (task_on_rq_queued(p)) {
  1109. struct rq *src_rq, *dst_rq;
  1110. src_rq = task_rq(p);
  1111. dst_rq = cpu_rq(cpu);
  1112. deactivate_task(src_rq, p, 0);
  1113. set_task_cpu(p, cpu);
  1114. activate_task(dst_rq, p, 0);
  1115. check_preempt_curr(dst_rq, p, 0);
  1116. } else {
  1117. /*
  1118. * Task isn't running anymore; make it appear like we migrated
  1119. * it before it went to sleep. This means on wakeup we make the
  1120. * previous cpu our targer instead of where it really is.
  1121. */
  1122. p->wake_cpu = cpu;
  1123. }
  1124. }
  1125. struct migration_swap_arg {
  1126. struct task_struct *src_task, *dst_task;
  1127. int src_cpu, dst_cpu;
  1128. };
  1129. static int migrate_swap_stop(void *data)
  1130. {
  1131. struct migration_swap_arg *arg = data;
  1132. struct rq *src_rq, *dst_rq;
  1133. int ret = -EAGAIN;
  1134. src_rq = cpu_rq(arg->src_cpu);
  1135. dst_rq = cpu_rq(arg->dst_cpu);
  1136. double_raw_lock(&arg->src_task->pi_lock,
  1137. &arg->dst_task->pi_lock);
  1138. double_rq_lock(src_rq, dst_rq);
  1139. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1140. goto unlock;
  1141. if (task_cpu(arg->src_task) != arg->src_cpu)
  1142. goto unlock;
  1143. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  1144. goto unlock;
  1145. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  1146. goto unlock;
  1147. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1148. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1149. ret = 0;
  1150. unlock:
  1151. double_rq_unlock(src_rq, dst_rq);
  1152. raw_spin_unlock(&arg->dst_task->pi_lock);
  1153. raw_spin_unlock(&arg->src_task->pi_lock);
  1154. return ret;
  1155. }
  1156. /*
  1157. * Cross migrate two tasks
  1158. */
  1159. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1160. {
  1161. struct migration_swap_arg arg;
  1162. int ret = -EINVAL;
  1163. arg = (struct migration_swap_arg){
  1164. .src_task = cur,
  1165. .src_cpu = task_cpu(cur),
  1166. .dst_task = p,
  1167. .dst_cpu = task_cpu(p),
  1168. };
  1169. if (arg.src_cpu == arg.dst_cpu)
  1170. goto out;
  1171. /*
  1172. * These three tests are all lockless; this is OK since all of them
  1173. * will be re-checked with proper locks held further down the line.
  1174. */
  1175. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1176. goto out;
  1177. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  1178. goto out;
  1179. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  1180. goto out;
  1181. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1182. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1183. out:
  1184. return ret;
  1185. }
  1186. /*
  1187. * wait_task_inactive - wait for a thread to unschedule.
  1188. *
  1189. * If @match_state is nonzero, it's the @p->state value just checked and
  1190. * not expected to change. If it changes, i.e. @p might have woken up,
  1191. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1192. * we return a positive number (its total switch count). If a second call
  1193. * a short while later returns the same number, the caller can be sure that
  1194. * @p has remained unscheduled the whole time.
  1195. *
  1196. * The caller must ensure that the task *will* unschedule sometime soon,
  1197. * else this function might spin for a *long* time. This function can't
  1198. * be called with interrupts off, or it may introduce deadlock with
  1199. * smp_call_function() if an IPI is sent by the same process we are
  1200. * waiting to become inactive.
  1201. */
  1202. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1203. {
  1204. unsigned long flags;
  1205. int running, queued;
  1206. unsigned long ncsw;
  1207. struct rq *rq;
  1208. for (;;) {
  1209. /*
  1210. * We do the initial early heuristics without holding
  1211. * any task-queue locks at all. We'll only try to get
  1212. * the runqueue lock when things look like they will
  1213. * work out!
  1214. */
  1215. rq = task_rq(p);
  1216. /*
  1217. * If the task is actively running on another CPU
  1218. * still, just relax and busy-wait without holding
  1219. * any locks.
  1220. *
  1221. * NOTE! Since we don't hold any locks, it's not
  1222. * even sure that "rq" stays as the right runqueue!
  1223. * But we don't care, since "task_running()" will
  1224. * return false if the runqueue has changed and p
  1225. * is actually now running somewhere else!
  1226. */
  1227. while (task_running(rq, p)) {
  1228. if (match_state && unlikely(p->state != match_state))
  1229. return 0;
  1230. cpu_relax();
  1231. }
  1232. /*
  1233. * Ok, time to look more closely! We need the rq
  1234. * lock now, to be *sure*. If we're wrong, we'll
  1235. * just go back and repeat.
  1236. */
  1237. rq = task_rq_lock(p, &flags);
  1238. trace_sched_wait_task(p);
  1239. running = task_running(rq, p);
  1240. queued = task_on_rq_queued(p);
  1241. ncsw = 0;
  1242. if (!match_state || p->state == match_state)
  1243. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1244. task_rq_unlock(rq, p, &flags);
  1245. /*
  1246. * If it changed from the expected state, bail out now.
  1247. */
  1248. if (unlikely(!ncsw))
  1249. break;
  1250. /*
  1251. * Was it really running after all now that we
  1252. * checked with the proper locks actually held?
  1253. *
  1254. * Oops. Go back and try again..
  1255. */
  1256. if (unlikely(running)) {
  1257. cpu_relax();
  1258. continue;
  1259. }
  1260. /*
  1261. * It's not enough that it's not actively running,
  1262. * it must be off the runqueue _entirely_, and not
  1263. * preempted!
  1264. *
  1265. * So if it was still runnable (but just not actively
  1266. * running right now), it's preempted, and we should
  1267. * yield - it could be a while.
  1268. */
  1269. if (unlikely(queued)) {
  1270. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1271. set_current_state(TASK_UNINTERRUPTIBLE);
  1272. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1273. continue;
  1274. }
  1275. /*
  1276. * Ahh, all good. It wasn't running, and it wasn't
  1277. * runnable, which means that it will never become
  1278. * running in the future either. We're all done!
  1279. */
  1280. break;
  1281. }
  1282. return ncsw;
  1283. }
  1284. /***
  1285. * kick_process - kick a running thread to enter/exit the kernel
  1286. * @p: the to-be-kicked thread
  1287. *
  1288. * Cause a process which is running on another CPU to enter
  1289. * kernel-mode, without any delay. (to get signals handled.)
  1290. *
  1291. * NOTE: this function doesn't have to take the runqueue lock,
  1292. * because all it wants to ensure is that the remote task enters
  1293. * the kernel. If the IPI races and the task has been migrated
  1294. * to another CPU then no harm is done and the purpose has been
  1295. * achieved as well.
  1296. */
  1297. void kick_process(struct task_struct *p)
  1298. {
  1299. int cpu;
  1300. preempt_disable();
  1301. cpu = task_cpu(p);
  1302. if ((cpu != smp_processor_id()) && task_curr(p))
  1303. smp_send_reschedule(cpu);
  1304. preempt_enable();
  1305. }
  1306. EXPORT_SYMBOL_GPL(kick_process);
  1307. /*
  1308. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1309. */
  1310. static int select_fallback_rq(int cpu, struct task_struct *p)
  1311. {
  1312. int nid = cpu_to_node(cpu);
  1313. const struct cpumask *nodemask = NULL;
  1314. enum { cpuset, possible, fail } state = cpuset;
  1315. int dest_cpu;
  1316. /*
  1317. * If the node that the cpu is on has been offlined, cpu_to_node()
  1318. * will return -1. There is no cpu on the node, and we should
  1319. * select the cpu on the other node.
  1320. */
  1321. if (nid != -1) {
  1322. nodemask = cpumask_of_node(nid);
  1323. /* Look for allowed, online CPU in same node. */
  1324. for_each_cpu(dest_cpu, nodemask) {
  1325. if (!cpu_online(dest_cpu))
  1326. continue;
  1327. if (!cpu_active(dest_cpu))
  1328. continue;
  1329. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1330. return dest_cpu;
  1331. }
  1332. }
  1333. for (;;) {
  1334. /* Any allowed, online CPU? */
  1335. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1336. if (!cpu_online(dest_cpu))
  1337. continue;
  1338. if (!cpu_active(dest_cpu))
  1339. continue;
  1340. goto out;
  1341. }
  1342. switch (state) {
  1343. case cpuset:
  1344. /* No more Mr. Nice Guy. */
  1345. cpuset_cpus_allowed_fallback(p);
  1346. state = possible;
  1347. break;
  1348. case possible:
  1349. do_set_cpus_allowed(p, cpu_possible_mask);
  1350. state = fail;
  1351. break;
  1352. case fail:
  1353. BUG();
  1354. break;
  1355. }
  1356. }
  1357. out:
  1358. if (state != cpuset) {
  1359. /*
  1360. * Don't tell them about moving exiting tasks or
  1361. * kernel threads (both mm NULL), since they never
  1362. * leave kernel.
  1363. */
  1364. if (p->mm && printk_ratelimit()) {
  1365. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1366. task_pid_nr(p), p->comm, cpu);
  1367. }
  1368. }
  1369. return dest_cpu;
  1370. }
  1371. /*
  1372. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1373. */
  1374. static inline
  1375. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1376. {
  1377. lockdep_assert_held(&p->pi_lock);
  1378. if (p->nr_cpus_allowed > 1)
  1379. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1380. /*
  1381. * In order not to call set_task_cpu() on a blocking task we need
  1382. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1383. * cpu.
  1384. *
  1385. * Since this is common to all placement strategies, this lives here.
  1386. *
  1387. * [ this allows ->select_task() to simply return task_cpu(p) and
  1388. * not worry about this generic constraint ]
  1389. */
  1390. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1391. !cpu_online(cpu)))
  1392. cpu = select_fallback_rq(task_cpu(p), p);
  1393. return cpu;
  1394. }
  1395. static void update_avg(u64 *avg, u64 sample)
  1396. {
  1397. s64 diff = sample - *avg;
  1398. *avg += diff >> 3;
  1399. }
  1400. #else
  1401. static inline int __set_cpus_allowed_ptr(struct task_struct *p,
  1402. const struct cpumask *new_mask, bool check)
  1403. {
  1404. return set_cpus_allowed_ptr(p, new_mask);
  1405. }
  1406. #endif /* CONFIG_SMP */
  1407. static void
  1408. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1409. {
  1410. #ifdef CONFIG_SCHEDSTATS
  1411. struct rq *rq = this_rq();
  1412. #ifdef CONFIG_SMP
  1413. int this_cpu = smp_processor_id();
  1414. if (cpu == this_cpu) {
  1415. schedstat_inc(rq, ttwu_local);
  1416. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1417. } else {
  1418. struct sched_domain *sd;
  1419. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1420. rcu_read_lock();
  1421. for_each_domain(this_cpu, sd) {
  1422. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1423. schedstat_inc(sd, ttwu_wake_remote);
  1424. break;
  1425. }
  1426. }
  1427. rcu_read_unlock();
  1428. }
  1429. if (wake_flags & WF_MIGRATED)
  1430. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1431. #endif /* CONFIG_SMP */
  1432. schedstat_inc(rq, ttwu_count);
  1433. schedstat_inc(p, se.statistics.nr_wakeups);
  1434. if (wake_flags & WF_SYNC)
  1435. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1436. #endif /* CONFIG_SCHEDSTATS */
  1437. }
  1438. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1439. {
  1440. activate_task(rq, p, en_flags);
  1441. p->on_rq = TASK_ON_RQ_QUEUED;
  1442. /* if a worker is waking up, notify workqueue */
  1443. if (p->flags & PF_WQ_WORKER)
  1444. wq_worker_waking_up(p, cpu_of(rq));
  1445. }
  1446. /*
  1447. * Mark the task runnable and perform wakeup-preemption.
  1448. */
  1449. static void
  1450. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1451. {
  1452. check_preempt_curr(rq, p, wake_flags);
  1453. p->state = TASK_RUNNING;
  1454. trace_sched_wakeup(p);
  1455. #ifdef CONFIG_SMP
  1456. if (p->sched_class->task_woken) {
  1457. /*
  1458. * Our task @p is fully woken up and running; so its safe to
  1459. * drop the rq->lock, hereafter rq is only used for statistics.
  1460. */
  1461. lockdep_unpin_lock(&rq->lock);
  1462. p->sched_class->task_woken(rq, p);
  1463. lockdep_pin_lock(&rq->lock);
  1464. }
  1465. if (rq->idle_stamp) {
  1466. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1467. u64 max = 2*rq->max_idle_balance_cost;
  1468. update_avg(&rq->avg_idle, delta);
  1469. if (rq->avg_idle > max)
  1470. rq->avg_idle = max;
  1471. rq->idle_stamp = 0;
  1472. }
  1473. #endif
  1474. }
  1475. static void
  1476. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1477. {
  1478. lockdep_assert_held(&rq->lock);
  1479. #ifdef CONFIG_SMP
  1480. if (p->sched_contributes_to_load)
  1481. rq->nr_uninterruptible--;
  1482. #endif
  1483. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1484. ttwu_do_wakeup(rq, p, wake_flags);
  1485. }
  1486. /*
  1487. * Called in case the task @p isn't fully descheduled from its runqueue,
  1488. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1489. * since all we need to do is flip p->state to TASK_RUNNING, since
  1490. * the task is still ->on_rq.
  1491. */
  1492. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1493. {
  1494. struct rq *rq;
  1495. int ret = 0;
  1496. rq = __task_rq_lock(p);
  1497. if (task_on_rq_queued(p)) {
  1498. /* check_preempt_curr() may use rq clock */
  1499. update_rq_clock(rq);
  1500. ttwu_do_wakeup(rq, p, wake_flags);
  1501. ret = 1;
  1502. }
  1503. __task_rq_unlock(rq);
  1504. return ret;
  1505. }
  1506. #ifdef CONFIG_SMP
  1507. void sched_ttwu_pending(void)
  1508. {
  1509. struct rq *rq = this_rq();
  1510. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1511. struct task_struct *p;
  1512. unsigned long flags;
  1513. if (!llist)
  1514. return;
  1515. raw_spin_lock_irqsave(&rq->lock, flags);
  1516. lockdep_pin_lock(&rq->lock);
  1517. while (llist) {
  1518. p = llist_entry(llist, struct task_struct, wake_entry);
  1519. llist = llist_next(llist);
  1520. ttwu_do_activate(rq, p, 0);
  1521. }
  1522. lockdep_unpin_lock(&rq->lock);
  1523. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1524. }
  1525. void scheduler_ipi(void)
  1526. {
  1527. /*
  1528. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1529. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1530. * this IPI.
  1531. */
  1532. preempt_fold_need_resched();
  1533. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1534. return;
  1535. /*
  1536. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1537. * traditionally all their work was done from the interrupt return
  1538. * path. Now that we actually do some work, we need to make sure
  1539. * we do call them.
  1540. *
  1541. * Some archs already do call them, luckily irq_enter/exit nest
  1542. * properly.
  1543. *
  1544. * Arguably we should visit all archs and update all handlers,
  1545. * however a fair share of IPIs are still resched only so this would
  1546. * somewhat pessimize the simple resched case.
  1547. */
  1548. irq_enter();
  1549. sched_ttwu_pending();
  1550. /*
  1551. * Check if someone kicked us for doing the nohz idle load balance.
  1552. */
  1553. if (unlikely(got_nohz_idle_kick())) {
  1554. this_rq()->idle_balance = 1;
  1555. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1556. }
  1557. irq_exit();
  1558. }
  1559. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1560. {
  1561. struct rq *rq = cpu_rq(cpu);
  1562. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1563. if (!set_nr_if_polling(rq->idle))
  1564. smp_send_reschedule(cpu);
  1565. else
  1566. trace_sched_wake_idle_without_ipi(cpu);
  1567. }
  1568. }
  1569. void wake_up_if_idle(int cpu)
  1570. {
  1571. struct rq *rq = cpu_rq(cpu);
  1572. unsigned long flags;
  1573. rcu_read_lock();
  1574. if (!is_idle_task(rcu_dereference(rq->curr)))
  1575. goto out;
  1576. if (set_nr_if_polling(rq->idle)) {
  1577. trace_sched_wake_idle_without_ipi(cpu);
  1578. } else {
  1579. raw_spin_lock_irqsave(&rq->lock, flags);
  1580. if (is_idle_task(rq->curr))
  1581. smp_send_reschedule(cpu);
  1582. /* Else cpu is not in idle, do nothing here */
  1583. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1584. }
  1585. out:
  1586. rcu_read_unlock();
  1587. }
  1588. bool cpus_share_cache(int this_cpu, int that_cpu)
  1589. {
  1590. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1591. }
  1592. #endif /* CONFIG_SMP */
  1593. static void ttwu_queue(struct task_struct *p, int cpu)
  1594. {
  1595. struct rq *rq = cpu_rq(cpu);
  1596. #if defined(CONFIG_SMP)
  1597. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1598. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1599. ttwu_queue_remote(p, cpu);
  1600. return;
  1601. }
  1602. #endif
  1603. raw_spin_lock(&rq->lock);
  1604. lockdep_pin_lock(&rq->lock);
  1605. ttwu_do_activate(rq, p, 0);
  1606. lockdep_unpin_lock(&rq->lock);
  1607. raw_spin_unlock(&rq->lock);
  1608. }
  1609. /**
  1610. * try_to_wake_up - wake up a thread
  1611. * @p: the thread to be awakened
  1612. * @state: the mask of task states that can be woken
  1613. * @wake_flags: wake modifier flags (WF_*)
  1614. *
  1615. * Put it on the run-queue if it's not already there. The "current"
  1616. * thread is always on the run-queue (except when the actual
  1617. * re-schedule is in progress), and as such you're allowed to do
  1618. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1619. * runnable without the overhead of this.
  1620. *
  1621. * Return: %true if @p was woken up, %false if it was already running.
  1622. * or @state didn't match @p's state.
  1623. */
  1624. static int
  1625. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1626. {
  1627. unsigned long flags;
  1628. int cpu, success = 0;
  1629. /*
  1630. * If we are going to wake up a thread waiting for CONDITION we
  1631. * need to ensure that CONDITION=1 done by the caller can not be
  1632. * reordered with p->state check below. This pairs with mb() in
  1633. * set_current_state() the waiting thread does.
  1634. */
  1635. smp_mb__before_spinlock();
  1636. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1637. if (!(p->state & state))
  1638. goto out;
  1639. trace_sched_waking(p);
  1640. success = 1; /* we're going to change ->state */
  1641. cpu = task_cpu(p);
  1642. if (p->on_rq && ttwu_remote(p, wake_flags))
  1643. goto stat;
  1644. #ifdef CONFIG_SMP
  1645. /*
  1646. * If the owning (remote) cpu is still in the middle of schedule() with
  1647. * this task as prev, wait until its done referencing the task.
  1648. */
  1649. while (p->on_cpu)
  1650. cpu_relax();
  1651. /*
  1652. * Pairs with the smp_wmb() in finish_lock_switch().
  1653. */
  1654. smp_rmb();
  1655. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1656. p->state = TASK_WAKING;
  1657. if (p->sched_class->task_waking)
  1658. p->sched_class->task_waking(p);
  1659. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1660. if (task_cpu(p) != cpu) {
  1661. wake_flags |= WF_MIGRATED;
  1662. set_task_cpu(p, cpu);
  1663. }
  1664. #endif /* CONFIG_SMP */
  1665. ttwu_queue(p, cpu);
  1666. stat:
  1667. ttwu_stat(p, cpu, wake_flags);
  1668. out:
  1669. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1670. return success;
  1671. }
  1672. /**
  1673. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1674. * @p: the thread to be awakened
  1675. *
  1676. * Put @p on the run-queue if it's not already there. The caller must
  1677. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1678. * the current task.
  1679. */
  1680. static void try_to_wake_up_local(struct task_struct *p)
  1681. {
  1682. struct rq *rq = task_rq(p);
  1683. if (WARN_ON_ONCE(rq != this_rq()) ||
  1684. WARN_ON_ONCE(p == current))
  1685. return;
  1686. lockdep_assert_held(&rq->lock);
  1687. if (!raw_spin_trylock(&p->pi_lock)) {
  1688. /*
  1689. * This is OK, because current is on_cpu, which avoids it being
  1690. * picked for load-balance and preemption/IRQs are still
  1691. * disabled avoiding further scheduler activity on it and we've
  1692. * not yet picked a replacement task.
  1693. */
  1694. lockdep_unpin_lock(&rq->lock);
  1695. raw_spin_unlock(&rq->lock);
  1696. raw_spin_lock(&p->pi_lock);
  1697. raw_spin_lock(&rq->lock);
  1698. lockdep_pin_lock(&rq->lock);
  1699. }
  1700. if (!(p->state & TASK_NORMAL))
  1701. goto out;
  1702. trace_sched_waking(p);
  1703. if (!task_on_rq_queued(p))
  1704. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1705. ttwu_do_wakeup(rq, p, 0);
  1706. ttwu_stat(p, smp_processor_id(), 0);
  1707. out:
  1708. raw_spin_unlock(&p->pi_lock);
  1709. }
  1710. /**
  1711. * wake_up_process - Wake up a specific process
  1712. * @p: The process to be woken up.
  1713. *
  1714. * Attempt to wake up the nominated process and move it to the set of runnable
  1715. * processes.
  1716. *
  1717. * Return: 1 if the process was woken up, 0 if it was already running.
  1718. *
  1719. * It may be assumed that this function implies a write memory barrier before
  1720. * changing the task state if and only if any tasks are woken up.
  1721. */
  1722. int wake_up_process(struct task_struct *p)
  1723. {
  1724. WARN_ON(task_is_stopped_or_traced(p));
  1725. return try_to_wake_up(p, TASK_NORMAL, 0);
  1726. }
  1727. EXPORT_SYMBOL(wake_up_process);
  1728. int wake_up_state(struct task_struct *p, unsigned int state)
  1729. {
  1730. return try_to_wake_up(p, state, 0);
  1731. }
  1732. /*
  1733. * This function clears the sched_dl_entity static params.
  1734. */
  1735. void __dl_clear_params(struct task_struct *p)
  1736. {
  1737. struct sched_dl_entity *dl_se = &p->dl;
  1738. dl_se->dl_runtime = 0;
  1739. dl_se->dl_deadline = 0;
  1740. dl_se->dl_period = 0;
  1741. dl_se->flags = 0;
  1742. dl_se->dl_bw = 0;
  1743. dl_se->dl_throttled = 0;
  1744. dl_se->dl_new = 1;
  1745. dl_se->dl_yielded = 0;
  1746. }
  1747. /*
  1748. * Perform scheduler related setup for a newly forked process p.
  1749. * p is forked by current.
  1750. *
  1751. * __sched_fork() is basic setup used by init_idle() too:
  1752. */
  1753. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1754. {
  1755. p->on_rq = 0;
  1756. p->se.on_rq = 0;
  1757. p->se.exec_start = 0;
  1758. p->se.sum_exec_runtime = 0;
  1759. p->se.prev_sum_exec_runtime = 0;
  1760. p->se.nr_migrations = 0;
  1761. p->se.vruntime = 0;
  1762. INIT_LIST_HEAD(&p->se.group_node);
  1763. #ifdef CONFIG_SCHEDSTATS
  1764. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1765. #endif
  1766. RB_CLEAR_NODE(&p->dl.rb_node);
  1767. init_dl_task_timer(&p->dl);
  1768. __dl_clear_params(p);
  1769. INIT_LIST_HEAD(&p->rt.run_list);
  1770. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1771. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1772. #endif
  1773. #ifdef CONFIG_NUMA_BALANCING
  1774. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1775. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1776. p->mm->numa_scan_seq = 0;
  1777. }
  1778. if (clone_flags & CLONE_VM)
  1779. p->numa_preferred_nid = current->numa_preferred_nid;
  1780. else
  1781. p->numa_preferred_nid = -1;
  1782. p->node_stamp = 0ULL;
  1783. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1784. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1785. p->numa_work.next = &p->numa_work;
  1786. p->numa_faults = NULL;
  1787. p->last_task_numa_placement = 0;
  1788. p->last_sum_exec_runtime = 0;
  1789. p->numa_group = NULL;
  1790. #endif /* CONFIG_NUMA_BALANCING */
  1791. }
  1792. #ifdef CONFIG_NUMA_BALANCING
  1793. #ifdef CONFIG_SCHED_DEBUG
  1794. void set_numabalancing_state(bool enabled)
  1795. {
  1796. if (enabled)
  1797. sched_feat_set("NUMA");
  1798. else
  1799. sched_feat_set("NO_NUMA");
  1800. }
  1801. #else
  1802. __read_mostly bool numabalancing_enabled;
  1803. void set_numabalancing_state(bool enabled)
  1804. {
  1805. numabalancing_enabled = enabled;
  1806. }
  1807. #endif /* CONFIG_SCHED_DEBUG */
  1808. #ifdef CONFIG_PROC_SYSCTL
  1809. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1810. void __user *buffer, size_t *lenp, loff_t *ppos)
  1811. {
  1812. struct ctl_table t;
  1813. int err;
  1814. int state = numabalancing_enabled;
  1815. if (write && !capable(CAP_SYS_ADMIN))
  1816. return -EPERM;
  1817. t = *table;
  1818. t.data = &state;
  1819. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1820. if (err < 0)
  1821. return err;
  1822. if (write)
  1823. set_numabalancing_state(state);
  1824. return err;
  1825. }
  1826. #endif
  1827. #endif
  1828. /*
  1829. * fork()/clone()-time setup:
  1830. */
  1831. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1832. {
  1833. unsigned long flags;
  1834. int cpu = get_cpu();
  1835. __sched_fork(clone_flags, p);
  1836. /*
  1837. * We mark the process as running here. This guarantees that
  1838. * nobody will actually run it, and a signal or other external
  1839. * event cannot wake it up and insert it on the runqueue either.
  1840. */
  1841. p->state = TASK_RUNNING;
  1842. /*
  1843. * Make sure we do not leak PI boosting priority to the child.
  1844. */
  1845. p->prio = current->normal_prio;
  1846. /*
  1847. * Revert to default priority/policy on fork if requested.
  1848. */
  1849. if (unlikely(p->sched_reset_on_fork)) {
  1850. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1851. p->policy = SCHED_NORMAL;
  1852. p->static_prio = NICE_TO_PRIO(0);
  1853. p->rt_priority = 0;
  1854. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1855. p->static_prio = NICE_TO_PRIO(0);
  1856. p->prio = p->normal_prio = __normal_prio(p);
  1857. set_load_weight(p);
  1858. /*
  1859. * We don't need the reset flag anymore after the fork. It has
  1860. * fulfilled its duty:
  1861. */
  1862. p->sched_reset_on_fork = 0;
  1863. }
  1864. if (dl_prio(p->prio)) {
  1865. put_cpu();
  1866. return -EAGAIN;
  1867. } else if (rt_prio(p->prio)) {
  1868. p->sched_class = &rt_sched_class;
  1869. } else {
  1870. p->sched_class = &fair_sched_class;
  1871. }
  1872. if (p->sched_class->task_fork)
  1873. p->sched_class->task_fork(p);
  1874. /*
  1875. * The child is not yet in the pid-hash so no cgroup attach races,
  1876. * and the cgroup is pinned to this child due to cgroup_fork()
  1877. * is ran before sched_fork().
  1878. *
  1879. * Silence PROVE_RCU.
  1880. */
  1881. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1882. set_task_cpu(p, cpu);
  1883. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1884. #ifdef CONFIG_SCHED_INFO
  1885. if (likely(sched_info_on()))
  1886. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1887. #endif
  1888. #if defined(CONFIG_SMP)
  1889. p->on_cpu = 0;
  1890. #endif
  1891. init_task_preempt_count(p);
  1892. #ifdef CONFIG_SMP
  1893. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1894. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1895. #endif
  1896. put_cpu();
  1897. return 0;
  1898. }
  1899. unsigned long to_ratio(u64 period, u64 runtime)
  1900. {
  1901. if (runtime == RUNTIME_INF)
  1902. return 1ULL << 20;
  1903. /*
  1904. * Doing this here saves a lot of checks in all
  1905. * the calling paths, and returning zero seems
  1906. * safe for them anyway.
  1907. */
  1908. if (period == 0)
  1909. return 0;
  1910. return div64_u64(runtime << 20, period);
  1911. }
  1912. #ifdef CONFIG_SMP
  1913. inline struct dl_bw *dl_bw_of(int i)
  1914. {
  1915. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  1916. "sched RCU must be held");
  1917. return &cpu_rq(i)->rd->dl_bw;
  1918. }
  1919. static inline int dl_bw_cpus(int i)
  1920. {
  1921. struct root_domain *rd = cpu_rq(i)->rd;
  1922. int cpus = 0;
  1923. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  1924. "sched RCU must be held");
  1925. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1926. cpus++;
  1927. return cpus;
  1928. }
  1929. #else
  1930. inline struct dl_bw *dl_bw_of(int i)
  1931. {
  1932. return &cpu_rq(i)->dl.dl_bw;
  1933. }
  1934. static inline int dl_bw_cpus(int i)
  1935. {
  1936. return 1;
  1937. }
  1938. #endif
  1939. /*
  1940. * We must be sure that accepting a new task (or allowing changing the
  1941. * parameters of an existing one) is consistent with the bandwidth
  1942. * constraints. If yes, this function also accordingly updates the currently
  1943. * allocated bandwidth to reflect the new situation.
  1944. *
  1945. * This function is called while holding p's rq->lock.
  1946. *
  1947. * XXX we should delay bw change until the task's 0-lag point, see
  1948. * __setparam_dl().
  1949. */
  1950. static int dl_overflow(struct task_struct *p, int policy,
  1951. const struct sched_attr *attr)
  1952. {
  1953. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1954. u64 period = attr->sched_period ?: attr->sched_deadline;
  1955. u64 runtime = attr->sched_runtime;
  1956. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1957. int cpus, err = -1;
  1958. if (new_bw == p->dl.dl_bw)
  1959. return 0;
  1960. /*
  1961. * Either if a task, enters, leave, or stays -deadline but changes
  1962. * its parameters, we may need to update accordingly the total
  1963. * allocated bandwidth of the container.
  1964. */
  1965. raw_spin_lock(&dl_b->lock);
  1966. cpus = dl_bw_cpus(task_cpu(p));
  1967. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1968. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1969. __dl_add(dl_b, new_bw);
  1970. err = 0;
  1971. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1972. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1973. __dl_clear(dl_b, p->dl.dl_bw);
  1974. __dl_add(dl_b, new_bw);
  1975. err = 0;
  1976. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1977. __dl_clear(dl_b, p->dl.dl_bw);
  1978. err = 0;
  1979. }
  1980. raw_spin_unlock(&dl_b->lock);
  1981. return err;
  1982. }
  1983. extern void init_dl_bw(struct dl_bw *dl_b);
  1984. /*
  1985. * wake_up_new_task - wake up a newly created task for the first time.
  1986. *
  1987. * This function will do some initial scheduler statistics housekeeping
  1988. * that must be done for every newly created context, then puts the task
  1989. * on the runqueue and wakes it.
  1990. */
  1991. void wake_up_new_task(struct task_struct *p)
  1992. {
  1993. unsigned long flags;
  1994. struct rq *rq;
  1995. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1996. #ifdef CONFIG_SMP
  1997. /*
  1998. * Fork balancing, do it here and not earlier because:
  1999. * - cpus_allowed can change in the fork path
  2000. * - any previously selected cpu might disappear through hotplug
  2001. */
  2002. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  2003. #endif
  2004. /* Initialize new task's runnable average */
  2005. init_entity_runnable_average(&p->se);
  2006. rq = __task_rq_lock(p);
  2007. activate_task(rq, p, 0);
  2008. p->on_rq = TASK_ON_RQ_QUEUED;
  2009. trace_sched_wakeup_new(p);
  2010. check_preempt_curr(rq, p, WF_FORK);
  2011. #ifdef CONFIG_SMP
  2012. if (p->sched_class->task_woken)
  2013. p->sched_class->task_woken(rq, p);
  2014. #endif
  2015. task_rq_unlock(rq, p, &flags);
  2016. }
  2017. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2018. static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
  2019. void preempt_notifier_inc(void)
  2020. {
  2021. static_key_slow_inc(&preempt_notifier_key);
  2022. }
  2023. EXPORT_SYMBOL_GPL(preempt_notifier_inc);
  2024. void preempt_notifier_dec(void)
  2025. {
  2026. static_key_slow_dec(&preempt_notifier_key);
  2027. }
  2028. EXPORT_SYMBOL_GPL(preempt_notifier_dec);
  2029. /**
  2030. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2031. * @notifier: notifier struct to register
  2032. */
  2033. void preempt_notifier_register(struct preempt_notifier *notifier)
  2034. {
  2035. if (!static_key_false(&preempt_notifier_key))
  2036. WARN(1, "registering preempt_notifier while notifiers disabled\n");
  2037. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2038. }
  2039. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2040. /**
  2041. * preempt_notifier_unregister - no longer interested in preemption notifications
  2042. * @notifier: notifier struct to unregister
  2043. *
  2044. * This is *not* safe to call from within a preemption notifier.
  2045. */
  2046. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2047. {
  2048. hlist_del(&notifier->link);
  2049. }
  2050. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2051. static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2052. {
  2053. struct preempt_notifier *notifier;
  2054. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2055. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2056. }
  2057. static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2058. {
  2059. if (static_key_false(&preempt_notifier_key))
  2060. __fire_sched_in_preempt_notifiers(curr);
  2061. }
  2062. static void
  2063. __fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2064. struct task_struct *next)
  2065. {
  2066. struct preempt_notifier *notifier;
  2067. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2068. notifier->ops->sched_out(notifier, next);
  2069. }
  2070. static __always_inline void
  2071. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2072. struct task_struct *next)
  2073. {
  2074. if (static_key_false(&preempt_notifier_key))
  2075. __fire_sched_out_preempt_notifiers(curr, next);
  2076. }
  2077. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2078. static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2079. {
  2080. }
  2081. static inline void
  2082. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2083. struct task_struct *next)
  2084. {
  2085. }
  2086. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2087. /**
  2088. * prepare_task_switch - prepare to switch tasks
  2089. * @rq: the runqueue preparing to switch
  2090. * @prev: the current task that is being switched out
  2091. * @next: the task we are going to switch to.
  2092. *
  2093. * This is called with the rq lock held and interrupts off. It must
  2094. * be paired with a subsequent finish_task_switch after the context
  2095. * switch.
  2096. *
  2097. * prepare_task_switch sets up locking and calls architecture specific
  2098. * hooks.
  2099. */
  2100. static inline void
  2101. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2102. struct task_struct *next)
  2103. {
  2104. trace_sched_switch(prev, next);
  2105. sched_info_switch(rq, prev, next);
  2106. perf_event_task_sched_out(prev, next);
  2107. fire_sched_out_preempt_notifiers(prev, next);
  2108. prepare_lock_switch(rq, next);
  2109. prepare_arch_switch(next);
  2110. }
  2111. /**
  2112. * finish_task_switch - clean up after a task-switch
  2113. * @prev: the thread we just switched away from.
  2114. *
  2115. * finish_task_switch must be called after the context switch, paired
  2116. * with a prepare_task_switch call before the context switch.
  2117. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2118. * and do any other architecture-specific cleanup actions.
  2119. *
  2120. * Note that we may have delayed dropping an mm in context_switch(). If
  2121. * so, we finish that here outside of the runqueue lock. (Doing it
  2122. * with the lock held can cause deadlocks; see schedule() for
  2123. * details.)
  2124. *
  2125. * The context switch have flipped the stack from under us and restored the
  2126. * local variables which were saved when this task called schedule() in the
  2127. * past. prev == current is still correct but we need to recalculate this_rq
  2128. * because prev may have moved to another CPU.
  2129. */
  2130. static struct rq *finish_task_switch(struct task_struct *prev)
  2131. __releases(rq->lock)
  2132. {
  2133. struct rq *rq = this_rq();
  2134. struct mm_struct *mm = rq->prev_mm;
  2135. long prev_state;
  2136. rq->prev_mm = NULL;
  2137. /*
  2138. * A task struct has one reference for the use as "current".
  2139. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2140. * schedule one last time. The schedule call will never return, and
  2141. * the scheduled task must drop that reference.
  2142. * The test for TASK_DEAD must occur while the runqueue locks are
  2143. * still held, otherwise prev could be scheduled on another cpu, die
  2144. * there before we look at prev->state, and then the reference would
  2145. * be dropped twice.
  2146. * Manfred Spraul <manfred@colorfullife.com>
  2147. */
  2148. prev_state = prev->state;
  2149. vtime_task_switch(prev);
  2150. perf_event_task_sched_in(prev, current);
  2151. finish_lock_switch(rq, prev);
  2152. finish_arch_post_lock_switch();
  2153. fire_sched_in_preempt_notifiers(current);
  2154. if (mm)
  2155. mmdrop(mm);
  2156. if (unlikely(prev_state == TASK_DEAD)) {
  2157. if (prev->sched_class->task_dead)
  2158. prev->sched_class->task_dead(prev);
  2159. /*
  2160. * Remove function-return probe instances associated with this
  2161. * task and put them back on the free list.
  2162. */
  2163. kprobe_flush_task(prev);
  2164. put_task_struct(prev);
  2165. }
  2166. tick_nohz_task_switch();
  2167. return rq;
  2168. }
  2169. #ifdef CONFIG_SMP
  2170. /* rq->lock is NOT held, but preemption is disabled */
  2171. static void __balance_callback(struct rq *rq)
  2172. {
  2173. struct callback_head *head, *next;
  2174. void (*func)(struct rq *rq);
  2175. unsigned long flags;
  2176. raw_spin_lock_irqsave(&rq->lock, flags);
  2177. head = rq->balance_callback;
  2178. rq->balance_callback = NULL;
  2179. while (head) {
  2180. func = (void (*)(struct rq *))head->func;
  2181. next = head->next;
  2182. head->next = NULL;
  2183. head = next;
  2184. func(rq);
  2185. }
  2186. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2187. }
  2188. static inline void balance_callback(struct rq *rq)
  2189. {
  2190. if (unlikely(rq->balance_callback))
  2191. __balance_callback(rq);
  2192. }
  2193. #else
  2194. static inline void balance_callback(struct rq *rq)
  2195. {
  2196. }
  2197. #endif
  2198. /**
  2199. * schedule_tail - first thing a freshly forked thread must call.
  2200. * @prev: the thread we just switched away from.
  2201. */
  2202. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2203. __releases(rq->lock)
  2204. {
  2205. struct rq *rq;
  2206. /* finish_task_switch() drops rq->lock and enables preemtion */
  2207. preempt_disable();
  2208. rq = finish_task_switch(prev);
  2209. balance_callback(rq);
  2210. preempt_enable();
  2211. if (current->set_child_tid)
  2212. put_user(task_pid_vnr(current), current->set_child_tid);
  2213. }
  2214. /*
  2215. * context_switch - switch to the new MM and the new thread's register state.
  2216. */
  2217. static inline struct rq *
  2218. context_switch(struct rq *rq, struct task_struct *prev,
  2219. struct task_struct *next)
  2220. {
  2221. struct mm_struct *mm, *oldmm;
  2222. prepare_task_switch(rq, prev, next);
  2223. mm = next->mm;
  2224. oldmm = prev->active_mm;
  2225. /*
  2226. * For paravirt, this is coupled with an exit in switch_to to
  2227. * combine the page table reload and the switch backend into
  2228. * one hypercall.
  2229. */
  2230. arch_start_context_switch(prev);
  2231. if (!mm) {
  2232. next->active_mm = oldmm;
  2233. atomic_inc(&oldmm->mm_count);
  2234. enter_lazy_tlb(oldmm, next);
  2235. } else
  2236. switch_mm(oldmm, mm, next);
  2237. if (!prev->mm) {
  2238. prev->active_mm = NULL;
  2239. rq->prev_mm = oldmm;
  2240. }
  2241. /*
  2242. * Since the runqueue lock will be released by the next
  2243. * task (which is an invalid locking op but in the case
  2244. * of the scheduler it's an obvious special-case), so we
  2245. * do an early lockdep release here:
  2246. */
  2247. lockdep_unpin_lock(&rq->lock);
  2248. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2249. /* Here we just switch the register state and the stack. */
  2250. switch_to(prev, next, prev);
  2251. barrier();
  2252. return finish_task_switch(prev);
  2253. }
  2254. /*
  2255. * nr_running and nr_context_switches:
  2256. *
  2257. * externally visible scheduler statistics: current number of runnable
  2258. * threads, total number of context switches performed since bootup.
  2259. */
  2260. unsigned long nr_running(void)
  2261. {
  2262. unsigned long i, sum = 0;
  2263. for_each_online_cpu(i)
  2264. sum += cpu_rq(i)->nr_running;
  2265. return sum;
  2266. }
  2267. /*
  2268. * Check if only the current task is running on the cpu.
  2269. *
  2270. * Caution: this function does not check that the caller has disabled
  2271. * preemption, thus the result might have a time-of-check-to-time-of-use
  2272. * race. The caller is responsible to use it correctly, for example:
  2273. *
  2274. * - from a non-preemptable section (of course)
  2275. *
  2276. * - from a thread that is bound to a single CPU
  2277. *
  2278. * - in a loop with very short iterations (e.g. a polling loop)
  2279. */
  2280. bool single_task_running(void)
  2281. {
  2282. return raw_rq()->nr_running == 1;
  2283. }
  2284. EXPORT_SYMBOL(single_task_running);
  2285. unsigned long long nr_context_switches(void)
  2286. {
  2287. int i;
  2288. unsigned long long sum = 0;
  2289. for_each_possible_cpu(i)
  2290. sum += cpu_rq(i)->nr_switches;
  2291. return sum;
  2292. }
  2293. unsigned long nr_iowait(void)
  2294. {
  2295. unsigned long i, sum = 0;
  2296. for_each_possible_cpu(i)
  2297. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2298. return sum;
  2299. }
  2300. unsigned long nr_iowait_cpu(int cpu)
  2301. {
  2302. struct rq *this = cpu_rq(cpu);
  2303. return atomic_read(&this->nr_iowait);
  2304. }
  2305. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2306. {
  2307. struct rq *rq = this_rq();
  2308. *nr_waiters = atomic_read(&rq->nr_iowait);
  2309. *load = rq->load.weight;
  2310. }
  2311. #ifdef CONFIG_SMP
  2312. /*
  2313. * sched_exec - execve() is a valuable balancing opportunity, because at
  2314. * this point the task has the smallest effective memory and cache footprint.
  2315. */
  2316. void sched_exec(void)
  2317. {
  2318. struct task_struct *p = current;
  2319. unsigned long flags;
  2320. int dest_cpu;
  2321. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2322. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2323. if (dest_cpu == smp_processor_id())
  2324. goto unlock;
  2325. if (likely(cpu_active(dest_cpu))) {
  2326. struct migration_arg arg = { p, dest_cpu };
  2327. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2328. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2329. return;
  2330. }
  2331. unlock:
  2332. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2333. }
  2334. #endif
  2335. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2336. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2337. EXPORT_PER_CPU_SYMBOL(kstat);
  2338. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2339. /*
  2340. * Return accounted runtime for the task.
  2341. * In case the task is currently running, return the runtime plus current's
  2342. * pending runtime that have not been accounted yet.
  2343. */
  2344. unsigned long long task_sched_runtime(struct task_struct *p)
  2345. {
  2346. unsigned long flags;
  2347. struct rq *rq;
  2348. u64 ns;
  2349. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2350. /*
  2351. * 64-bit doesn't need locks to atomically read a 64bit value.
  2352. * So we have a optimization chance when the task's delta_exec is 0.
  2353. * Reading ->on_cpu is racy, but this is ok.
  2354. *
  2355. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2356. * If we race with it entering cpu, unaccounted time is 0. This is
  2357. * indistinguishable from the read occurring a few cycles earlier.
  2358. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2359. * been accounted, so we're correct here as well.
  2360. */
  2361. if (!p->on_cpu || !task_on_rq_queued(p))
  2362. return p->se.sum_exec_runtime;
  2363. #endif
  2364. rq = task_rq_lock(p, &flags);
  2365. /*
  2366. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2367. * project cycles that may never be accounted to this
  2368. * thread, breaking clock_gettime().
  2369. */
  2370. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2371. update_rq_clock(rq);
  2372. p->sched_class->update_curr(rq);
  2373. }
  2374. ns = p->se.sum_exec_runtime;
  2375. task_rq_unlock(rq, p, &flags);
  2376. return ns;
  2377. }
  2378. /*
  2379. * This function gets called by the timer code, with HZ frequency.
  2380. * We call it with interrupts disabled.
  2381. */
  2382. void scheduler_tick(void)
  2383. {
  2384. int cpu = smp_processor_id();
  2385. struct rq *rq = cpu_rq(cpu);
  2386. struct task_struct *curr = rq->curr;
  2387. sched_clock_tick();
  2388. raw_spin_lock(&rq->lock);
  2389. update_rq_clock(rq);
  2390. curr->sched_class->task_tick(rq, curr, 0);
  2391. update_cpu_load_active(rq);
  2392. calc_global_load_tick(rq);
  2393. raw_spin_unlock(&rq->lock);
  2394. perf_event_task_tick();
  2395. #ifdef CONFIG_SMP
  2396. rq->idle_balance = idle_cpu(cpu);
  2397. trigger_load_balance(rq);
  2398. #endif
  2399. rq_last_tick_reset(rq);
  2400. }
  2401. #ifdef CONFIG_NO_HZ_FULL
  2402. /**
  2403. * scheduler_tick_max_deferment
  2404. *
  2405. * Keep at least one tick per second when a single
  2406. * active task is running because the scheduler doesn't
  2407. * yet completely support full dynticks environment.
  2408. *
  2409. * This makes sure that uptime, CFS vruntime, load
  2410. * balancing, etc... continue to move forward, even
  2411. * with a very low granularity.
  2412. *
  2413. * Return: Maximum deferment in nanoseconds.
  2414. */
  2415. u64 scheduler_tick_max_deferment(void)
  2416. {
  2417. struct rq *rq = this_rq();
  2418. unsigned long next, now = READ_ONCE(jiffies);
  2419. next = rq->last_sched_tick + HZ;
  2420. if (time_before_eq(next, now))
  2421. return 0;
  2422. return jiffies_to_nsecs(next - now);
  2423. }
  2424. #endif
  2425. notrace unsigned long get_parent_ip(unsigned long addr)
  2426. {
  2427. if (in_lock_functions(addr)) {
  2428. addr = CALLER_ADDR2;
  2429. if (in_lock_functions(addr))
  2430. addr = CALLER_ADDR3;
  2431. }
  2432. return addr;
  2433. }
  2434. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2435. defined(CONFIG_PREEMPT_TRACER))
  2436. void preempt_count_add(int val)
  2437. {
  2438. #ifdef CONFIG_DEBUG_PREEMPT
  2439. /*
  2440. * Underflow?
  2441. */
  2442. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2443. return;
  2444. #endif
  2445. __preempt_count_add(val);
  2446. #ifdef CONFIG_DEBUG_PREEMPT
  2447. /*
  2448. * Spinlock count overflowing soon?
  2449. */
  2450. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2451. PREEMPT_MASK - 10);
  2452. #endif
  2453. if (preempt_count() == val) {
  2454. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2455. #ifdef CONFIG_DEBUG_PREEMPT
  2456. current->preempt_disable_ip = ip;
  2457. #endif
  2458. trace_preempt_off(CALLER_ADDR0, ip);
  2459. }
  2460. }
  2461. EXPORT_SYMBOL(preempt_count_add);
  2462. NOKPROBE_SYMBOL(preempt_count_add);
  2463. void preempt_count_sub(int val)
  2464. {
  2465. #ifdef CONFIG_DEBUG_PREEMPT
  2466. /*
  2467. * Underflow?
  2468. */
  2469. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2470. return;
  2471. /*
  2472. * Is the spinlock portion underflowing?
  2473. */
  2474. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2475. !(preempt_count() & PREEMPT_MASK)))
  2476. return;
  2477. #endif
  2478. if (preempt_count() == val)
  2479. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2480. __preempt_count_sub(val);
  2481. }
  2482. EXPORT_SYMBOL(preempt_count_sub);
  2483. NOKPROBE_SYMBOL(preempt_count_sub);
  2484. #endif
  2485. /*
  2486. * Print scheduling while atomic bug:
  2487. */
  2488. static noinline void __schedule_bug(struct task_struct *prev)
  2489. {
  2490. if (oops_in_progress)
  2491. return;
  2492. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2493. prev->comm, prev->pid, preempt_count());
  2494. debug_show_held_locks(prev);
  2495. print_modules();
  2496. if (irqs_disabled())
  2497. print_irqtrace_events(prev);
  2498. #ifdef CONFIG_DEBUG_PREEMPT
  2499. if (in_atomic_preempt_off()) {
  2500. pr_err("Preemption disabled at:");
  2501. print_ip_sym(current->preempt_disable_ip);
  2502. pr_cont("\n");
  2503. }
  2504. #endif
  2505. dump_stack();
  2506. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2507. }
  2508. /*
  2509. * Various schedule()-time debugging checks and statistics:
  2510. */
  2511. static inline void schedule_debug(struct task_struct *prev)
  2512. {
  2513. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2514. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2515. #endif
  2516. /*
  2517. * Test if we are atomic. Since do_exit() needs to call into
  2518. * schedule() atomically, we ignore that path. Otherwise whine
  2519. * if we are scheduling when we should not.
  2520. */
  2521. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2522. __schedule_bug(prev);
  2523. rcu_sleep_check();
  2524. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2525. schedstat_inc(this_rq(), sched_count);
  2526. }
  2527. /*
  2528. * Pick up the highest-prio task:
  2529. */
  2530. static inline struct task_struct *
  2531. pick_next_task(struct rq *rq, struct task_struct *prev)
  2532. {
  2533. const struct sched_class *class = &fair_sched_class;
  2534. struct task_struct *p;
  2535. /*
  2536. * Optimization: we know that if all tasks are in
  2537. * the fair class we can call that function directly:
  2538. */
  2539. if (likely(prev->sched_class == class &&
  2540. rq->nr_running == rq->cfs.h_nr_running)) {
  2541. p = fair_sched_class.pick_next_task(rq, prev);
  2542. if (unlikely(p == RETRY_TASK))
  2543. goto again;
  2544. /* assumes fair_sched_class->next == idle_sched_class */
  2545. if (unlikely(!p))
  2546. p = idle_sched_class.pick_next_task(rq, prev);
  2547. return p;
  2548. }
  2549. again:
  2550. for_each_class(class) {
  2551. p = class->pick_next_task(rq, prev);
  2552. if (p) {
  2553. if (unlikely(p == RETRY_TASK))
  2554. goto again;
  2555. return p;
  2556. }
  2557. }
  2558. BUG(); /* the idle class will always have a runnable task */
  2559. }
  2560. /*
  2561. * __schedule() is the main scheduler function.
  2562. *
  2563. * The main means of driving the scheduler and thus entering this function are:
  2564. *
  2565. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2566. *
  2567. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2568. * paths. For example, see arch/x86/entry_64.S.
  2569. *
  2570. * To drive preemption between tasks, the scheduler sets the flag in timer
  2571. * interrupt handler scheduler_tick().
  2572. *
  2573. * 3. Wakeups don't really cause entry into schedule(). They add a
  2574. * task to the run-queue and that's it.
  2575. *
  2576. * Now, if the new task added to the run-queue preempts the current
  2577. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2578. * called on the nearest possible occasion:
  2579. *
  2580. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2581. *
  2582. * - in syscall or exception context, at the next outmost
  2583. * preempt_enable(). (this might be as soon as the wake_up()'s
  2584. * spin_unlock()!)
  2585. *
  2586. * - in IRQ context, return from interrupt-handler to
  2587. * preemptible context
  2588. *
  2589. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2590. * then at the next:
  2591. *
  2592. * - cond_resched() call
  2593. * - explicit schedule() call
  2594. * - return from syscall or exception to user-space
  2595. * - return from interrupt-handler to user-space
  2596. *
  2597. * WARNING: must be called with preemption disabled!
  2598. */
  2599. static void __sched __schedule(void)
  2600. {
  2601. struct task_struct *prev, *next;
  2602. unsigned long *switch_count;
  2603. struct rq *rq;
  2604. int cpu;
  2605. cpu = smp_processor_id();
  2606. rq = cpu_rq(cpu);
  2607. rcu_note_context_switch();
  2608. prev = rq->curr;
  2609. schedule_debug(prev);
  2610. if (sched_feat(HRTICK))
  2611. hrtick_clear(rq);
  2612. /*
  2613. * Make sure that signal_pending_state()->signal_pending() below
  2614. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2615. * done by the caller to avoid the race with signal_wake_up().
  2616. */
  2617. smp_mb__before_spinlock();
  2618. raw_spin_lock_irq(&rq->lock);
  2619. lockdep_pin_lock(&rq->lock);
  2620. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2621. switch_count = &prev->nivcsw;
  2622. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2623. if (unlikely(signal_pending_state(prev->state, prev))) {
  2624. prev->state = TASK_RUNNING;
  2625. } else {
  2626. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2627. prev->on_rq = 0;
  2628. /*
  2629. * If a worker went to sleep, notify and ask workqueue
  2630. * whether it wants to wake up a task to maintain
  2631. * concurrency.
  2632. */
  2633. if (prev->flags & PF_WQ_WORKER) {
  2634. struct task_struct *to_wakeup;
  2635. to_wakeup = wq_worker_sleeping(prev, cpu);
  2636. if (to_wakeup)
  2637. try_to_wake_up_local(to_wakeup);
  2638. }
  2639. }
  2640. switch_count = &prev->nvcsw;
  2641. }
  2642. if (task_on_rq_queued(prev))
  2643. update_rq_clock(rq);
  2644. next = pick_next_task(rq, prev);
  2645. clear_tsk_need_resched(prev);
  2646. clear_preempt_need_resched();
  2647. rq->clock_skip_update = 0;
  2648. if (likely(prev != next)) {
  2649. rq->nr_switches++;
  2650. rq->curr = next;
  2651. ++*switch_count;
  2652. rq = context_switch(rq, prev, next); /* unlocks the rq */
  2653. cpu = cpu_of(rq);
  2654. } else {
  2655. lockdep_unpin_lock(&rq->lock);
  2656. raw_spin_unlock_irq(&rq->lock);
  2657. }
  2658. balance_callback(rq);
  2659. }
  2660. static inline void sched_submit_work(struct task_struct *tsk)
  2661. {
  2662. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2663. return;
  2664. /*
  2665. * If we are going to sleep and we have plugged IO queued,
  2666. * make sure to submit it to avoid deadlocks.
  2667. */
  2668. if (blk_needs_flush_plug(tsk))
  2669. blk_schedule_flush_plug(tsk);
  2670. }
  2671. asmlinkage __visible void __sched schedule(void)
  2672. {
  2673. struct task_struct *tsk = current;
  2674. sched_submit_work(tsk);
  2675. do {
  2676. preempt_disable();
  2677. __schedule();
  2678. sched_preempt_enable_no_resched();
  2679. } while (need_resched());
  2680. }
  2681. EXPORT_SYMBOL(schedule);
  2682. #ifdef CONFIG_CONTEXT_TRACKING
  2683. asmlinkage __visible void __sched schedule_user(void)
  2684. {
  2685. /*
  2686. * If we come here after a random call to set_need_resched(),
  2687. * or we have been woken up remotely but the IPI has not yet arrived,
  2688. * we haven't yet exited the RCU idle mode. Do it here manually until
  2689. * we find a better solution.
  2690. *
  2691. * NB: There are buggy callers of this function. Ideally we
  2692. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2693. * too frequently to make sense yet.
  2694. */
  2695. enum ctx_state prev_state = exception_enter();
  2696. schedule();
  2697. exception_exit(prev_state);
  2698. }
  2699. #endif
  2700. /**
  2701. * schedule_preempt_disabled - called with preemption disabled
  2702. *
  2703. * Returns with preemption disabled. Note: preempt_count must be 1
  2704. */
  2705. void __sched schedule_preempt_disabled(void)
  2706. {
  2707. sched_preempt_enable_no_resched();
  2708. schedule();
  2709. preempt_disable();
  2710. }
  2711. static void __sched notrace preempt_schedule_common(void)
  2712. {
  2713. do {
  2714. preempt_active_enter();
  2715. __schedule();
  2716. preempt_active_exit();
  2717. /*
  2718. * Check again in case we missed a preemption opportunity
  2719. * between schedule and now.
  2720. */
  2721. } while (need_resched());
  2722. }
  2723. #ifdef CONFIG_PREEMPT
  2724. /*
  2725. * this is the entry point to schedule() from in-kernel preemption
  2726. * off of preempt_enable. Kernel preemptions off return from interrupt
  2727. * occur there and call schedule directly.
  2728. */
  2729. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2730. {
  2731. /*
  2732. * If there is a non-zero preempt_count or interrupts are disabled,
  2733. * we do not want to preempt the current task. Just return..
  2734. */
  2735. if (likely(!preemptible()))
  2736. return;
  2737. preempt_schedule_common();
  2738. }
  2739. NOKPROBE_SYMBOL(preempt_schedule);
  2740. EXPORT_SYMBOL(preempt_schedule);
  2741. /**
  2742. * preempt_schedule_notrace - preempt_schedule called by tracing
  2743. *
  2744. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2745. * recursion and tracing preempt enabling caused by the tracing
  2746. * infrastructure itself. But as tracing can happen in areas coming
  2747. * from userspace or just about to enter userspace, a preempt enable
  2748. * can occur before user_exit() is called. This will cause the scheduler
  2749. * to be called when the system is still in usermode.
  2750. *
  2751. * To prevent this, the preempt_enable_notrace will use this function
  2752. * instead of preempt_schedule() to exit user context if needed before
  2753. * calling the scheduler.
  2754. */
  2755. asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
  2756. {
  2757. enum ctx_state prev_ctx;
  2758. if (likely(!preemptible()))
  2759. return;
  2760. do {
  2761. /*
  2762. * Use raw __prempt_count() ops that don't call function.
  2763. * We can't call functions before disabling preemption which
  2764. * disarm preemption tracing recursions.
  2765. */
  2766. __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
  2767. barrier();
  2768. /*
  2769. * Needs preempt disabled in case user_exit() is traced
  2770. * and the tracer calls preempt_enable_notrace() causing
  2771. * an infinite recursion.
  2772. */
  2773. prev_ctx = exception_enter();
  2774. __schedule();
  2775. exception_exit(prev_ctx);
  2776. barrier();
  2777. __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
  2778. } while (need_resched());
  2779. }
  2780. EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
  2781. #endif /* CONFIG_PREEMPT */
  2782. /*
  2783. * this is the entry point to schedule() from kernel preemption
  2784. * off of irq context.
  2785. * Note, that this is called and return with irqs disabled. This will
  2786. * protect us against recursive calling from irq.
  2787. */
  2788. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2789. {
  2790. enum ctx_state prev_state;
  2791. /* Catch callers which need to be fixed */
  2792. BUG_ON(preempt_count() || !irqs_disabled());
  2793. prev_state = exception_enter();
  2794. do {
  2795. preempt_active_enter();
  2796. local_irq_enable();
  2797. __schedule();
  2798. local_irq_disable();
  2799. preempt_active_exit();
  2800. } while (need_resched());
  2801. exception_exit(prev_state);
  2802. }
  2803. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2804. void *key)
  2805. {
  2806. return try_to_wake_up(curr->private, mode, wake_flags);
  2807. }
  2808. EXPORT_SYMBOL(default_wake_function);
  2809. #ifdef CONFIG_RT_MUTEXES
  2810. /*
  2811. * rt_mutex_setprio - set the current priority of a task
  2812. * @p: task
  2813. * @prio: prio value (kernel-internal form)
  2814. *
  2815. * This function changes the 'effective' priority of a task. It does
  2816. * not touch ->normal_prio like __setscheduler().
  2817. *
  2818. * Used by the rt_mutex code to implement priority inheritance
  2819. * logic. Call site only calls if the priority of the task changed.
  2820. */
  2821. void rt_mutex_setprio(struct task_struct *p, int prio)
  2822. {
  2823. int oldprio, queued, running, enqueue_flag = 0;
  2824. struct rq *rq;
  2825. const struct sched_class *prev_class;
  2826. BUG_ON(prio > MAX_PRIO);
  2827. rq = __task_rq_lock(p);
  2828. /*
  2829. * Idle task boosting is a nono in general. There is one
  2830. * exception, when PREEMPT_RT and NOHZ is active:
  2831. *
  2832. * The idle task calls get_next_timer_interrupt() and holds
  2833. * the timer wheel base->lock on the CPU and another CPU wants
  2834. * to access the timer (probably to cancel it). We can safely
  2835. * ignore the boosting request, as the idle CPU runs this code
  2836. * with interrupts disabled and will complete the lock
  2837. * protected section without being interrupted. So there is no
  2838. * real need to boost.
  2839. */
  2840. if (unlikely(p == rq->idle)) {
  2841. WARN_ON(p != rq->curr);
  2842. WARN_ON(p->pi_blocked_on);
  2843. goto out_unlock;
  2844. }
  2845. trace_sched_pi_setprio(p, prio);
  2846. oldprio = p->prio;
  2847. prev_class = p->sched_class;
  2848. queued = task_on_rq_queued(p);
  2849. running = task_current(rq, p);
  2850. if (queued)
  2851. dequeue_task(rq, p, 0);
  2852. if (running)
  2853. put_prev_task(rq, p);
  2854. /*
  2855. * Boosting condition are:
  2856. * 1. -rt task is running and holds mutex A
  2857. * --> -dl task blocks on mutex A
  2858. *
  2859. * 2. -dl task is running and holds mutex A
  2860. * --> -dl task blocks on mutex A and could preempt the
  2861. * running task
  2862. */
  2863. if (dl_prio(prio)) {
  2864. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2865. if (!dl_prio(p->normal_prio) ||
  2866. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2867. p->dl.dl_boosted = 1;
  2868. enqueue_flag = ENQUEUE_REPLENISH;
  2869. } else
  2870. p->dl.dl_boosted = 0;
  2871. p->sched_class = &dl_sched_class;
  2872. } else if (rt_prio(prio)) {
  2873. if (dl_prio(oldprio))
  2874. p->dl.dl_boosted = 0;
  2875. if (oldprio < prio)
  2876. enqueue_flag = ENQUEUE_HEAD;
  2877. p->sched_class = &rt_sched_class;
  2878. } else {
  2879. if (dl_prio(oldprio))
  2880. p->dl.dl_boosted = 0;
  2881. if (rt_prio(oldprio))
  2882. p->rt.timeout = 0;
  2883. p->sched_class = &fair_sched_class;
  2884. }
  2885. p->prio = prio;
  2886. if (running)
  2887. p->sched_class->set_curr_task(rq);
  2888. if (queued)
  2889. enqueue_task(rq, p, enqueue_flag);
  2890. check_class_changed(rq, p, prev_class, oldprio);
  2891. out_unlock:
  2892. preempt_disable(); /* avoid rq from going away on us */
  2893. __task_rq_unlock(rq);
  2894. balance_callback(rq);
  2895. preempt_enable();
  2896. }
  2897. #endif
  2898. void set_user_nice(struct task_struct *p, long nice)
  2899. {
  2900. int old_prio, delta, queued;
  2901. unsigned long flags;
  2902. struct rq *rq;
  2903. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2904. return;
  2905. /*
  2906. * We have to be careful, if called from sys_setpriority(),
  2907. * the task might be in the middle of scheduling on another CPU.
  2908. */
  2909. rq = task_rq_lock(p, &flags);
  2910. /*
  2911. * The RT priorities are set via sched_setscheduler(), but we still
  2912. * allow the 'normal' nice value to be set - but as expected
  2913. * it wont have any effect on scheduling until the task is
  2914. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2915. */
  2916. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2917. p->static_prio = NICE_TO_PRIO(nice);
  2918. goto out_unlock;
  2919. }
  2920. queued = task_on_rq_queued(p);
  2921. if (queued)
  2922. dequeue_task(rq, p, 0);
  2923. p->static_prio = NICE_TO_PRIO(nice);
  2924. set_load_weight(p);
  2925. old_prio = p->prio;
  2926. p->prio = effective_prio(p);
  2927. delta = p->prio - old_prio;
  2928. if (queued) {
  2929. enqueue_task(rq, p, 0);
  2930. /*
  2931. * If the task increased its priority or is running and
  2932. * lowered its priority, then reschedule its CPU:
  2933. */
  2934. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2935. resched_curr(rq);
  2936. }
  2937. out_unlock:
  2938. task_rq_unlock(rq, p, &flags);
  2939. }
  2940. EXPORT_SYMBOL(set_user_nice);
  2941. /*
  2942. * can_nice - check if a task can reduce its nice value
  2943. * @p: task
  2944. * @nice: nice value
  2945. */
  2946. int can_nice(const struct task_struct *p, const int nice)
  2947. {
  2948. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2949. int nice_rlim = nice_to_rlimit(nice);
  2950. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2951. capable(CAP_SYS_NICE));
  2952. }
  2953. #ifdef __ARCH_WANT_SYS_NICE
  2954. /*
  2955. * sys_nice - change the priority of the current process.
  2956. * @increment: priority increment
  2957. *
  2958. * sys_setpriority is a more generic, but much slower function that
  2959. * does similar things.
  2960. */
  2961. SYSCALL_DEFINE1(nice, int, increment)
  2962. {
  2963. long nice, retval;
  2964. /*
  2965. * Setpriority might change our priority at the same moment.
  2966. * We don't have to worry. Conceptually one call occurs first
  2967. * and we have a single winner.
  2968. */
  2969. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2970. nice = task_nice(current) + increment;
  2971. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2972. if (increment < 0 && !can_nice(current, nice))
  2973. return -EPERM;
  2974. retval = security_task_setnice(current, nice);
  2975. if (retval)
  2976. return retval;
  2977. set_user_nice(current, nice);
  2978. return 0;
  2979. }
  2980. #endif
  2981. /**
  2982. * task_prio - return the priority value of a given task.
  2983. * @p: the task in question.
  2984. *
  2985. * Return: The priority value as seen by users in /proc.
  2986. * RT tasks are offset by -200. Normal tasks are centered
  2987. * around 0, value goes from -16 to +15.
  2988. */
  2989. int task_prio(const struct task_struct *p)
  2990. {
  2991. return p->prio - MAX_RT_PRIO;
  2992. }
  2993. /**
  2994. * idle_cpu - is a given cpu idle currently?
  2995. * @cpu: the processor in question.
  2996. *
  2997. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2998. */
  2999. int idle_cpu(int cpu)
  3000. {
  3001. struct rq *rq = cpu_rq(cpu);
  3002. if (rq->curr != rq->idle)
  3003. return 0;
  3004. if (rq->nr_running)
  3005. return 0;
  3006. #ifdef CONFIG_SMP
  3007. if (!llist_empty(&rq->wake_list))
  3008. return 0;
  3009. #endif
  3010. return 1;
  3011. }
  3012. /**
  3013. * idle_task - return the idle task for a given cpu.
  3014. * @cpu: the processor in question.
  3015. *
  3016. * Return: The idle task for the cpu @cpu.
  3017. */
  3018. struct task_struct *idle_task(int cpu)
  3019. {
  3020. return cpu_rq(cpu)->idle;
  3021. }
  3022. /**
  3023. * find_process_by_pid - find a process with a matching PID value.
  3024. * @pid: the pid in question.
  3025. *
  3026. * The task of @pid, if found. %NULL otherwise.
  3027. */
  3028. static struct task_struct *find_process_by_pid(pid_t pid)
  3029. {
  3030. return pid ? find_task_by_vpid(pid) : current;
  3031. }
  3032. /*
  3033. * This function initializes the sched_dl_entity of a newly becoming
  3034. * SCHED_DEADLINE task.
  3035. *
  3036. * Only the static values are considered here, the actual runtime and the
  3037. * absolute deadline will be properly calculated when the task is enqueued
  3038. * for the first time with its new policy.
  3039. */
  3040. static void
  3041. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  3042. {
  3043. struct sched_dl_entity *dl_se = &p->dl;
  3044. dl_se->dl_runtime = attr->sched_runtime;
  3045. dl_se->dl_deadline = attr->sched_deadline;
  3046. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  3047. dl_se->flags = attr->sched_flags;
  3048. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  3049. /*
  3050. * Changing the parameters of a task is 'tricky' and we're not doing
  3051. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  3052. *
  3053. * What we SHOULD do is delay the bandwidth release until the 0-lag
  3054. * point. This would include retaining the task_struct until that time
  3055. * and change dl_overflow() to not immediately decrement the current
  3056. * amount.
  3057. *
  3058. * Instead we retain the current runtime/deadline and let the new
  3059. * parameters take effect after the current reservation period lapses.
  3060. * This is safe (albeit pessimistic) because the 0-lag point is always
  3061. * before the current scheduling deadline.
  3062. *
  3063. * We can still have temporary overloads because we do not delay the
  3064. * change in bandwidth until that time; so admission control is
  3065. * not on the safe side. It does however guarantee tasks will never
  3066. * consume more than promised.
  3067. */
  3068. }
  3069. /*
  3070. * sched_setparam() passes in -1 for its policy, to let the functions
  3071. * it calls know not to change it.
  3072. */
  3073. #define SETPARAM_POLICY -1
  3074. static void __setscheduler_params(struct task_struct *p,
  3075. const struct sched_attr *attr)
  3076. {
  3077. int policy = attr->sched_policy;
  3078. if (policy == SETPARAM_POLICY)
  3079. policy = p->policy;
  3080. p->policy = policy;
  3081. if (dl_policy(policy))
  3082. __setparam_dl(p, attr);
  3083. else if (fair_policy(policy))
  3084. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  3085. /*
  3086. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  3087. * !rt_policy. Always setting this ensures that things like
  3088. * getparam()/getattr() don't report silly values for !rt tasks.
  3089. */
  3090. p->rt_priority = attr->sched_priority;
  3091. p->normal_prio = normal_prio(p);
  3092. set_load_weight(p);
  3093. }
  3094. /* Actually do priority change: must hold pi & rq lock. */
  3095. static void __setscheduler(struct rq *rq, struct task_struct *p,
  3096. const struct sched_attr *attr, bool keep_boost)
  3097. {
  3098. __setscheduler_params(p, attr);
  3099. /*
  3100. * Keep a potential priority boosting if called from
  3101. * sched_setscheduler().
  3102. */
  3103. if (keep_boost)
  3104. p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
  3105. else
  3106. p->prio = normal_prio(p);
  3107. if (dl_prio(p->prio))
  3108. p->sched_class = &dl_sched_class;
  3109. else if (rt_prio(p->prio))
  3110. p->sched_class = &rt_sched_class;
  3111. else
  3112. p->sched_class = &fair_sched_class;
  3113. }
  3114. static void
  3115. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  3116. {
  3117. struct sched_dl_entity *dl_se = &p->dl;
  3118. attr->sched_priority = p->rt_priority;
  3119. attr->sched_runtime = dl_se->dl_runtime;
  3120. attr->sched_deadline = dl_se->dl_deadline;
  3121. attr->sched_period = dl_se->dl_period;
  3122. attr->sched_flags = dl_se->flags;
  3123. }
  3124. /*
  3125. * This function validates the new parameters of a -deadline task.
  3126. * We ask for the deadline not being zero, and greater or equal
  3127. * than the runtime, as well as the period of being zero or
  3128. * greater than deadline. Furthermore, we have to be sure that
  3129. * user parameters are above the internal resolution of 1us (we
  3130. * check sched_runtime only since it is always the smaller one) and
  3131. * below 2^63 ns (we have to check both sched_deadline and
  3132. * sched_period, as the latter can be zero).
  3133. */
  3134. static bool
  3135. __checkparam_dl(const struct sched_attr *attr)
  3136. {
  3137. /* deadline != 0 */
  3138. if (attr->sched_deadline == 0)
  3139. return false;
  3140. /*
  3141. * Since we truncate DL_SCALE bits, make sure we're at least
  3142. * that big.
  3143. */
  3144. if (attr->sched_runtime < (1ULL << DL_SCALE))
  3145. return false;
  3146. /*
  3147. * Since we use the MSB for wrap-around and sign issues, make
  3148. * sure it's not set (mind that period can be equal to zero).
  3149. */
  3150. if (attr->sched_deadline & (1ULL << 63) ||
  3151. attr->sched_period & (1ULL << 63))
  3152. return false;
  3153. /* runtime <= deadline <= period (if period != 0) */
  3154. if ((attr->sched_period != 0 &&
  3155. attr->sched_period < attr->sched_deadline) ||
  3156. attr->sched_deadline < attr->sched_runtime)
  3157. return false;
  3158. return true;
  3159. }
  3160. /*
  3161. * check the target process has a UID that matches the current process's
  3162. */
  3163. static bool check_same_owner(struct task_struct *p)
  3164. {
  3165. const struct cred *cred = current_cred(), *pcred;
  3166. bool match;
  3167. rcu_read_lock();
  3168. pcred = __task_cred(p);
  3169. match = (uid_eq(cred->euid, pcred->euid) ||
  3170. uid_eq(cred->euid, pcred->uid));
  3171. rcu_read_unlock();
  3172. return match;
  3173. }
  3174. static bool dl_param_changed(struct task_struct *p,
  3175. const struct sched_attr *attr)
  3176. {
  3177. struct sched_dl_entity *dl_se = &p->dl;
  3178. if (dl_se->dl_runtime != attr->sched_runtime ||
  3179. dl_se->dl_deadline != attr->sched_deadline ||
  3180. dl_se->dl_period != attr->sched_period ||
  3181. dl_se->flags != attr->sched_flags)
  3182. return true;
  3183. return false;
  3184. }
  3185. static int __sched_setscheduler(struct task_struct *p,
  3186. const struct sched_attr *attr,
  3187. bool user, bool pi)
  3188. {
  3189. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3190. MAX_RT_PRIO - 1 - attr->sched_priority;
  3191. int retval, oldprio, oldpolicy = -1, queued, running;
  3192. int new_effective_prio, policy = attr->sched_policy;
  3193. unsigned long flags;
  3194. const struct sched_class *prev_class;
  3195. struct rq *rq;
  3196. int reset_on_fork;
  3197. /* may grab non-irq protected spin_locks */
  3198. BUG_ON(in_interrupt());
  3199. recheck:
  3200. /* double check policy once rq lock held */
  3201. if (policy < 0) {
  3202. reset_on_fork = p->sched_reset_on_fork;
  3203. policy = oldpolicy = p->policy;
  3204. } else {
  3205. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3206. if (policy != SCHED_DEADLINE &&
  3207. policy != SCHED_FIFO && policy != SCHED_RR &&
  3208. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3209. policy != SCHED_IDLE)
  3210. return -EINVAL;
  3211. }
  3212. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  3213. return -EINVAL;
  3214. /*
  3215. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3216. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3217. * SCHED_BATCH and SCHED_IDLE is 0.
  3218. */
  3219. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3220. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  3221. return -EINVAL;
  3222. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3223. (rt_policy(policy) != (attr->sched_priority != 0)))
  3224. return -EINVAL;
  3225. /*
  3226. * Allow unprivileged RT tasks to decrease priority:
  3227. */
  3228. if (user && !capable(CAP_SYS_NICE)) {
  3229. if (fair_policy(policy)) {
  3230. if (attr->sched_nice < task_nice(p) &&
  3231. !can_nice(p, attr->sched_nice))
  3232. return -EPERM;
  3233. }
  3234. if (rt_policy(policy)) {
  3235. unsigned long rlim_rtprio =
  3236. task_rlimit(p, RLIMIT_RTPRIO);
  3237. /* can't set/change the rt policy */
  3238. if (policy != p->policy && !rlim_rtprio)
  3239. return -EPERM;
  3240. /* can't increase priority */
  3241. if (attr->sched_priority > p->rt_priority &&
  3242. attr->sched_priority > rlim_rtprio)
  3243. return -EPERM;
  3244. }
  3245. /*
  3246. * Can't set/change SCHED_DEADLINE policy at all for now
  3247. * (safest behavior); in the future we would like to allow
  3248. * unprivileged DL tasks to increase their relative deadline
  3249. * or reduce their runtime (both ways reducing utilization)
  3250. */
  3251. if (dl_policy(policy))
  3252. return -EPERM;
  3253. /*
  3254. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3255. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3256. */
  3257. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3258. if (!can_nice(p, task_nice(p)))
  3259. return -EPERM;
  3260. }
  3261. /* can't change other user's priorities */
  3262. if (!check_same_owner(p))
  3263. return -EPERM;
  3264. /* Normal users shall not reset the sched_reset_on_fork flag */
  3265. if (p->sched_reset_on_fork && !reset_on_fork)
  3266. return -EPERM;
  3267. }
  3268. if (user) {
  3269. retval = security_task_setscheduler(p);
  3270. if (retval)
  3271. return retval;
  3272. }
  3273. /*
  3274. * make sure no PI-waiters arrive (or leave) while we are
  3275. * changing the priority of the task:
  3276. *
  3277. * To be able to change p->policy safely, the appropriate
  3278. * runqueue lock must be held.
  3279. */
  3280. rq = task_rq_lock(p, &flags);
  3281. /*
  3282. * Changing the policy of the stop threads its a very bad idea
  3283. */
  3284. if (p == rq->stop) {
  3285. task_rq_unlock(rq, p, &flags);
  3286. return -EINVAL;
  3287. }
  3288. /*
  3289. * If not changing anything there's no need to proceed further,
  3290. * but store a possible modification of reset_on_fork.
  3291. */
  3292. if (unlikely(policy == p->policy)) {
  3293. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3294. goto change;
  3295. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3296. goto change;
  3297. if (dl_policy(policy) && dl_param_changed(p, attr))
  3298. goto change;
  3299. p->sched_reset_on_fork = reset_on_fork;
  3300. task_rq_unlock(rq, p, &flags);
  3301. return 0;
  3302. }
  3303. change:
  3304. if (user) {
  3305. #ifdef CONFIG_RT_GROUP_SCHED
  3306. /*
  3307. * Do not allow realtime tasks into groups that have no runtime
  3308. * assigned.
  3309. */
  3310. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3311. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3312. !task_group_is_autogroup(task_group(p))) {
  3313. task_rq_unlock(rq, p, &flags);
  3314. return -EPERM;
  3315. }
  3316. #endif
  3317. #ifdef CONFIG_SMP
  3318. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3319. cpumask_t *span = rq->rd->span;
  3320. /*
  3321. * Don't allow tasks with an affinity mask smaller than
  3322. * the entire root_domain to become SCHED_DEADLINE. We
  3323. * will also fail if there's no bandwidth available.
  3324. */
  3325. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3326. rq->rd->dl_bw.bw == 0) {
  3327. task_rq_unlock(rq, p, &flags);
  3328. return -EPERM;
  3329. }
  3330. }
  3331. #endif
  3332. }
  3333. /* recheck policy now with rq lock held */
  3334. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3335. policy = oldpolicy = -1;
  3336. task_rq_unlock(rq, p, &flags);
  3337. goto recheck;
  3338. }
  3339. /*
  3340. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3341. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3342. * is available.
  3343. */
  3344. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3345. task_rq_unlock(rq, p, &flags);
  3346. return -EBUSY;
  3347. }
  3348. p->sched_reset_on_fork = reset_on_fork;
  3349. oldprio = p->prio;
  3350. if (pi) {
  3351. /*
  3352. * Take priority boosted tasks into account. If the new
  3353. * effective priority is unchanged, we just store the new
  3354. * normal parameters and do not touch the scheduler class and
  3355. * the runqueue. This will be done when the task deboost
  3356. * itself.
  3357. */
  3358. new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
  3359. if (new_effective_prio == oldprio) {
  3360. __setscheduler_params(p, attr);
  3361. task_rq_unlock(rq, p, &flags);
  3362. return 0;
  3363. }
  3364. }
  3365. queued = task_on_rq_queued(p);
  3366. running = task_current(rq, p);
  3367. if (queued)
  3368. dequeue_task(rq, p, 0);
  3369. if (running)
  3370. put_prev_task(rq, p);
  3371. prev_class = p->sched_class;
  3372. __setscheduler(rq, p, attr, pi);
  3373. if (running)
  3374. p->sched_class->set_curr_task(rq);
  3375. if (queued) {
  3376. /*
  3377. * We enqueue to tail when the priority of a task is
  3378. * increased (user space view).
  3379. */
  3380. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3381. }
  3382. check_class_changed(rq, p, prev_class, oldprio);
  3383. preempt_disable(); /* avoid rq from going away on us */
  3384. task_rq_unlock(rq, p, &flags);
  3385. if (pi)
  3386. rt_mutex_adjust_pi(p);
  3387. /*
  3388. * Run balance callbacks after we've adjusted the PI chain.
  3389. */
  3390. balance_callback(rq);
  3391. preempt_enable();
  3392. return 0;
  3393. }
  3394. static int _sched_setscheduler(struct task_struct *p, int policy,
  3395. const struct sched_param *param, bool check)
  3396. {
  3397. struct sched_attr attr = {
  3398. .sched_policy = policy,
  3399. .sched_priority = param->sched_priority,
  3400. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3401. };
  3402. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3403. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3404. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3405. policy &= ~SCHED_RESET_ON_FORK;
  3406. attr.sched_policy = policy;
  3407. }
  3408. return __sched_setscheduler(p, &attr, check, true);
  3409. }
  3410. /**
  3411. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3412. * @p: the task in question.
  3413. * @policy: new policy.
  3414. * @param: structure containing the new RT priority.
  3415. *
  3416. * Return: 0 on success. An error code otherwise.
  3417. *
  3418. * NOTE that the task may be already dead.
  3419. */
  3420. int sched_setscheduler(struct task_struct *p, int policy,
  3421. const struct sched_param *param)
  3422. {
  3423. return _sched_setscheduler(p, policy, param, true);
  3424. }
  3425. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3426. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3427. {
  3428. return __sched_setscheduler(p, attr, true, true);
  3429. }
  3430. EXPORT_SYMBOL_GPL(sched_setattr);
  3431. /**
  3432. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3433. * @p: the task in question.
  3434. * @policy: new policy.
  3435. * @param: structure containing the new RT priority.
  3436. *
  3437. * Just like sched_setscheduler, only don't bother checking if the
  3438. * current context has permission. For example, this is needed in
  3439. * stop_machine(): we create temporary high priority worker threads,
  3440. * but our caller might not have that capability.
  3441. *
  3442. * Return: 0 on success. An error code otherwise.
  3443. */
  3444. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3445. const struct sched_param *param)
  3446. {
  3447. return _sched_setscheduler(p, policy, param, false);
  3448. }
  3449. EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
  3450. static int
  3451. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3452. {
  3453. struct sched_param lparam;
  3454. struct task_struct *p;
  3455. int retval;
  3456. if (!param || pid < 0)
  3457. return -EINVAL;
  3458. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3459. return -EFAULT;
  3460. rcu_read_lock();
  3461. retval = -ESRCH;
  3462. p = find_process_by_pid(pid);
  3463. if (p != NULL)
  3464. retval = sched_setscheduler(p, policy, &lparam);
  3465. rcu_read_unlock();
  3466. return retval;
  3467. }
  3468. /*
  3469. * Mimics kernel/events/core.c perf_copy_attr().
  3470. */
  3471. static int sched_copy_attr(struct sched_attr __user *uattr,
  3472. struct sched_attr *attr)
  3473. {
  3474. u32 size;
  3475. int ret;
  3476. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3477. return -EFAULT;
  3478. /*
  3479. * zero the full structure, so that a short copy will be nice.
  3480. */
  3481. memset(attr, 0, sizeof(*attr));
  3482. ret = get_user(size, &uattr->size);
  3483. if (ret)
  3484. return ret;
  3485. if (size > PAGE_SIZE) /* silly large */
  3486. goto err_size;
  3487. if (!size) /* abi compat */
  3488. size = SCHED_ATTR_SIZE_VER0;
  3489. if (size < SCHED_ATTR_SIZE_VER0)
  3490. goto err_size;
  3491. /*
  3492. * If we're handed a bigger struct than we know of,
  3493. * ensure all the unknown bits are 0 - i.e. new
  3494. * user-space does not rely on any kernel feature
  3495. * extensions we dont know about yet.
  3496. */
  3497. if (size > sizeof(*attr)) {
  3498. unsigned char __user *addr;
  3499. unsigned char __user *end;
  3500. unsigned char val;
  3501. addr = (void __user *)uattr + sizeof(*attr);
  3502. end = (void __user *)uattr + size;
  3503. for (; addr < end; addr++) {
  3504. ret = get_user(val, addr);
  3505. if (ret)
  3506. return ret;
  3507. if (val)
  3508. goto err_size;
  3509. }
  3510. size = sizeof(*attr);
  3511. }
  3512. ret = copy_from_user(attr, uattr, size);
  3513. if (ret)
  3514. return -EFAULT;
  3515. /*
  3516. * XXX: do we want to be lenient like existing syscalls; or do we want
  3517. * to be strict and return an error on out-of-bounds values?
  3518. */
  3519. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3520. return 0;
  3521. err_size:
  3522. put_user(sizeof(*attr), &uattr->size);
  3523. return -E2BIG;
  3524. }
  3525. /**
  3526. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3527. * @pid: the pid in question.
  3528. * @policy: new policy.
  3529. * @param: structure containing the new RT priority.
  3530. *
  3531. * Return: 0 on success. An error code otherwise.
  3532. */
  3533. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3534. struct sched_param __user *, param)
  3535. {
  3536. /* negative values for policy are not valid */
  3537. if (policy < 0)
  3538. return -EINVAL;
  3539. return do_sched_setscheduler(pid, policy, param);
  3540. }
  3541. /**
  3542. * sys_sched_setparam - set/change the RT priority of a thread
  3543. * @pid: the pid in question.
  3544. * @param: structure containing the new RT priority.
  3545. *
  3546. * Return: 0 on success. An error code otherwise.
  3547. */
  3548. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3549. {
  3550. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3551. }
  3552. /**
  3553. * sys_sched_setattr - same as above, but with extended sched_attr
  3554. * @pid: the pid in question.
  3555. * @uattr: structure containing the extended parameters.
  3556. * @flags: for future extension.
  3557. */
  3558. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3559. unsigned int, flags)
  3560. {
  3561. struct sched_attr attr;
  3562. struct task_struct *p;
  3563. int retval;
  3564. if (!uattr || pid < 0 || flags)
  3565. return -EINVAL;
  3566. retval = sched_copy_attr(uattr, &attr);
  3567. if (retval)
  3568. return retval;
  3569. if ((int)attr.sched_policy < 0)
  3570. return -EINVAL;
  3571. rcu_read_lock();
  3572. retval = -ESRCH;
  3573. p = find_process_by_pid(pid);
  3574. if (p != NULL)
  3575. retval = sched_setattr(p, &attr);
  3576. rcu_read_unlock();
  3577. return retval;
  3578. }
  3579. /**
  3580. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3581. * @pid: the pid in question.
  3582. *
  3583. * Return: On success, the policy of the thread. Otherwise, a negative error
  3584. * code.
  3585. */
  3586. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3587. {
  3588. struct task_struct *p;
  3589. int retval;
  3590. if (pid < 0)
  3591. return -EINVAL;
  3592. retval = -ESRCH;
  3593. rcu_read_lock();
  3594. p = find_process_by_pid(pid);
  3595. if (p) {
  3596. retval = security_task_getscheduler(p);
  3597. if (!retval)
  3598. retval = p->policy
  3599. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3600. }
  3601. rcu_read_unlock();
  3602. return retval;
  3603. }
  3604. /**
  3605. * sys_sched_getparam - get the RT priority of a thread
  3606. * @pid: the pid in question.
  3607. * @param: structure containing the RT priority.
  3608. *
  3609. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3610. * code.
  3611. */
  3612. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3613. {
  3614. struct sched_param lp = { .sched_priority = 0 };
  3615. struct task_struct *p;
  3616. int retval;
  3617. if (!param || pid < 0)
  3618. return -EINVAL;
  3619. rcu_read_lock();
  3620. p = find_process_by_pid(pid);
  3621. retval = -ESRCH;
  3622. if (!p)
  3623. goto out_unlock;
  3624. retval = security_task_getscheduler(p);
  3625. if (retval)
  3626. goto out_unlock;
  3627. if (task_has_rt_policy(p))
  3628. lp.sched_priority = p->rt_priority;
  3629. rcu_read_unlock();
  3630. /*
  3631. * This one might sleep, we cannot do it with a spinlock held ...
  3632. */
  3633. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3634. return retval;
  3635. out_unlock:
  3636. rcu_read_unlock();
  3637. return retval;
  3638. }
  3639. static int sched_read_attr(struct sched_attr __user *uattr,
  3640. struct sched_attr *attr,
  3641. unsigned int usize)
  3642. {
  3643. int ret;
  3644. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3645. return -EFAULT;
  3646. /*
  3647. * If we're handed a smaller struct than we know of,
  3648. * ensure all the unknown bits are 0 - i.e. old
  3649. * user-space does not get uncomplete information.
  3650. */
  3651. if (usize < sizeof(*attr)) {
  3652. unsigned char *addr;
  3653. unsigned char *end;
  3654. addr = (void *)attr + usize;
  3655. end = (void *)attr + sizeof(*attr);
  3656. for (; addr < end; addr++) {
  3657. if (*addr)
  3658. return -EFBIG;
  3659. }
  3660. attr->size = usize;
  3661. }
  3662. ret = copy_to_user(uattr, attr, attr->size);
  3663. if (ret)
  3664. return -EFAULT;
  3665. return 0;
  3666. }
  3667. /**
  3668. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3669. * @pid: the pid in question.
  3670. * @uattr: structure containing the extended parameters.
  3671. * @size: sizeof(attr) for fwd/bwd comp.
  3672. * @flags: for future extension.
  3673. */
  3674. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3675. unsigned int, size, unsigned int, flags)
  3676. {
  3677. struct sched_attr attr = {
  3678. .size = sizeof(struct sched_attr),
  3679. };
  3680. struct task_struct *p;
  3681. int retval;
  3682. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3683. size < SCHED_ATTR_SIZE_VER0 || flags)
  3684. return -EINVAL;
  3685. rcu_read_lock();
  3686. p = find_process_by_pid(pid);
  3687. retval = -ESRCH;
  3688. if (!p)
  3689. goto out_unlock;
  3690. retval = security_task_getscheduler(p);
  3691. if (retval)
  3692. goto out_unlock;
  3693. attr.sched_policy = p->policy;
  3694. if (p->sched_reset_on_fork)
  3695. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3696. if (task_has_dl_policy(p))
  3697. __getparam_dl(p, &attr);
  3698. else if (task_has_rt_policy(p))
  3699. attr.sched_priority = p->rt_priority;
  3700. else
  3701. attr.sched_nice = task_nice(p);
  3702. rcu_read_unlock();
  3703. retval = sched_read_attr(uattr, &attr, size);
  3704. return retval;
  3705. out_unlock:
  3706. rcu_read_unlock();
  3707. return retval;
  3708. }
  3709. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3710. {
  3711. cpumask_var_t cpus_allowed, new_mask;
  3712. struct task_struct *p;
  3713. int retval;
  3714. rcu_read_lock();
  3715. p = find_process_by_pid(pid);
  3716. if (!p) {
  3717. rcu_read_unlock();
  3718. return -ESRCH;
  3719. }
  3720. /* Prevent p going away */
  3721. get_task_struct(p);
  3722. rcu_read_unlock();
  3723. if (p->flags & PF_NO_SETAFFINITY) {
  3724. retval = -EINVAL;
  3725. goto out_put_task;
  3726. }
  3727. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3728. retval = -ENOMEM;
  3729. goto out_put_task;
  3730. }
  3731. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3732. retval = -ENOMEM;
  3733. goto out_free_cpus_allowed;
  3734. }
  3735. retval = -EPERM;
  3736. if (!check_same_owner(p)) {
  3737. rcu_read_lock();
  3738. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3739. rcu_read_unlock();
  3740. goto out_free_new_mask;
  3741. }
  3742. rcu_read_unlock();
  3743. }
  3744. retval = security_task_setscheduler(p);
  3745. if (retval)
  3746. goto out_free_new_mask;
  3747. cpuset_cpus_allowed(p, cpus_allowed);
  3748. cpumask_and(new_mask, in_mask, cpus_allowed);
  3749. /*
  3750. * Since bandwidth control happens on root_domain basis,
  3751. * if admission test is enabled, we only admit -deadline
  3752. * tasks allowed to run on all the CPUs in the task's
  3753. * root_domain.
  3754. */
  3755. #ifdef CONFIG_SMP
  3756. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3757. rcu_read_lock();
  3758. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3759. retval = -EBUSY;
  3760. rcu_read_unlock();
  3761. goto out_free_new_mask;
  3762. }
  3763. rcu_read_unlock();
  3764. }
  3765. #endif
  3766. again:
  3767. retval = __set_cpus_allowed_ptr(p, new_mask, true);
  3768. if (!retval) {
  3769. cpuset_cpus_allowed(p, cpus_allowed);
  3770. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3771. /*
  3772. * We must have raced with a concurrent cpuset
  3773. * update. Just reset the cpus_allowed to the
  3774. * cpuset's cpus_allowed
  3775. */
  3776. cpumask_copy(new_mask, cpus_allowed);
  3777. goto again;
  3778. }
  3779. }
  3780. out_free_new_mask:
  3781. free_cpumask_var(new_mask);
  3782. out_free_cpus_allowed:
  3783. free_cpumask_var(cpus_allowed);
  3784. out_put_task:
  3785. put_task_struct(p);
  3786. return retval;
  3787. }
  3788. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3789. struct cpumask *new_mask)
  3790. {
  3791. if (len < cpumask_size())
  3792. cpumask_clear(new_mask);
  3793. else if (len > cpumask_size())
  3794. len = cpumask_size();
  3795. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3796. }
  3797. /**
  3798. * sys_sched_setaffinity - set the cpu affinity of a process
  3799. * @pid: pid of the process
  3800. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3801. * @user_mask_ptr: user-space pointer to the new cpu mask
  3802. *
  3803. * Return: 0 on success. An error code otherwise.
  3804. */
  3805. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3806. unsigned long __user *, user_mask_ptr)
  3807. {
  3808. cpumask_var_t new_mask;
  3809. int retval;
  3810. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3811. return -ENOMEM;
  3812. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3813. if (retval == 0)
  3814. retval = sched_setaffinity(pid, new_mask);
  3815. free_cpumask_var(new_mask);
  3816. return retval;
  3817. }
  3818. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3819. {
  3820. struct task_struct *p;
  3821. unsigned long flags;
  3822. int retval;
  3823. rcu_read_lock();
  3824. retval = -ESRCH;
  3825. p = find_process_by_pid(pid);
  3826. if (!p)
  3827. goto out_unlock;
  3828. retval = security_task_getscheduler(p);
  3829. if (retval)
  3830. goto out_unlock;
  3831. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3832. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3833. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3834. out_unlock:
  3835. rcu_read_unlock();
  3836. return retval;
  3837. }
  3838. /**
  3839. * sys_sched_getaffinity - get the cpu affinity of a process
  3840. * @pid: pid of the process
  3841. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3842. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3843. *
  3844. * Return: 0 on success. An error code otherwise.
  3845. */
  3846. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3847. unsigned long __user *, user_mask_ptr)
  3848. {
  3849. int ret;
  3850. cpumask_var_t mask;
  3851. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3852. return -EINVAL;
  3853. if (len & (sizeof(unsigned long)-1))
  3854. return -EINVAL;
  3855. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3856. return -ENOMEM;
  3857. ret = sched_getaffinity(pid, mask);
  3858. if (ret == 0) {
  3859. size_t retlen = min_t(size_t, len, cpumask_size());
  3860. if (copy_to_user(user_mask_ptr, mask, retlen))
  3861. ret = -EFAULT;
  3862. else
  3863. ret = retlen;
  3864. }
  3865. free_cpumask_var(mask);
  3866. return ret;
  3867. }
  3868. /**
  3869. * sys_sched_yield - yield the current processor to other threads.
  3870. *
  3871. * This function yields the current CPU to other tasks. If there are no
  3872. * other threads running on this CPU then this function will return.
  3873. *
  3874. * Return: 0.
  3875. */
  3876. SYSCALL_DEFINE0(sched_yield)
  3877. {
  3878. struct rq *rq = this_rq_lock();
  3879. schedstat_inc(rq, yld_count);
  3880. current->sched_class->yield_task(rq);
  3881. /*
  3882. * Since we are going to call schedule() anyway, there's
  3883. * no need to preempt or enable interrupts:
  3884. */
  3885. __release(rq->lock);
  3886. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3887. do_raw_spin_unlock(&rq->lock);
  3888. sched_preempt_enable_no_resched();
  3889. schedule();
  3890. return 0;
  3891. }
  3892. int __sched _cond_resched(void)
  3893. {
  3894. if (should_resched(0)) {
  3895. preempt_schedule_common();
  3896. return 1;
  3897. }
  3898. return 0;
  3899. }
  3900. EXPORT_SYMBOL(_cond_resched);
  3901. /*
  3902. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3903. * call schedule, and on return reacquire the lock.
  3904. *
  3905. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3906. * operations here to prevent schedule() from being called twice (once via
  3907. * spin_unlock(), once by hand).
  3908. */
  3909. int __cond_resched_lock(spinlock_t *lock)
  3910. {
  3911. int resched = should_resched(PREEMPT_LOCK_OFFSET);
  3912. int ret = 0;
  3913. lockdep_assert_held(lock);
  3914. if (spin_needbreak(lock) || resched) {
  3915. spin_unlock(lock);
  3916. if (resched)
  3917. preempt_schedule_common();
  3918. else
  3919. cpu_relax();
  3920. ret = 1;
  3921. spin_lock(lock);
  3922. }
  3923. return ret;
  3924. }
  3925. EXPORT_SYMBOL(__cond_resched_lock);
  3926. int __sched __cond_resched_softirq(void)
  3927. {
  3928. BUG_ON(!in_softirq());
  3929. if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
  3930. local_bh_enable();
  3931. preempt_schedule_common();
  3932. local_bh_disable();
  3933. return 1;
  3934. }
  3935. return 0;
  3936. }
  3937. EXPORT_SYMBOL(__cond_resched_softirq);
  3938. /**
  3939. * yield - yield the current processor to other threads.
  3940. *
  3941. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3942. *
  3943. * The scheduler is at all times free to pick the calling task as the most
  3944. * eligible task to run, if removing the yield() call from your code breaks
  3945. * it, its already broken.
  3946. *
  3947. * Typical broken usage is:
  3948. *
  3949. * while (!event)
  3950. * yield();
  3951. *
  3952. * where one assumes that yield() will let 'the other' process run that will
  3953. * make event true. If the current task is a SCHED_FIFO task that will never
  3954. * happen. Never use yield() as a progress guarantee!!
  3955. *
  3956. * If you want to use yield() to wait for something, use wait_event().
  3957. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3958. * If you still want to use yield(), do not!
  3959. */
  3960. void __sched yield(void)
  3961. {
  3962. set_current_state(TASK_RUNNING);
  3963. sys_sched_yield();
  3964. }
  3965. EXPORT_SYMBOL(yield);
  3966. /**
  3967. * yield_to - yield the current processor to another thread in
  3968. * your thread group, or accelerate that thread toward the
  3969. * processor it's on.
  3970. * @p: target task
  3971. * @preempt: whether task preemption is allowed or not
  3972. *
  3973. * It's the caller's job to ensure that the target task struct
  3974. * can't go away on us before we can do any checks.
  3975. *
  3976. * Return:
  3977. * true (>0) if we indeed boosted the target task.
  3978. * false (0) if we failed to boost the target.
  3979. * -ESRCH if there's no task to yield to.
  3980. */
  3981. int __sched yield_to(struct task_struct *p, bool preempt)
  3982. {
  3983. struct task_struct *curr = current;
  3984. struct rq *rq, *p_rq;
  3985. unsigned long flags;
  3986. int yielded = 0;
  3987. local_irq_save(flags);
  3988. rq = this_rq();
  3989. again:
  3990. p_rq = task_rq(p);
  3991. /*
  3992. * If we're the only runnable task on the rq and target rq also
  3993. * has only one task, there's absolutely no point in yielding.
  3994. */
  3995. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3996. yielded = -ESRCH;
  3997. goto out_irq;
  3998. }
  3999. double_rq_lock(rq, p_rq);
  4000. if (task_rq(p) != p_rq) {
  4001. double_rq_unlock(rq, p_rq);
  4002. goto again;
  4003. }
  4004. if (!curr->sched_class->yield_to_task)
  4005. goto out_unlock;
  4006. if (curr->sched_class != p->sched_class)
  4007. goto out_unlock;
  4008. if (task_running(p_rq, p) || p->state)
  4009. goto out_unlock;
  4010. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4011. if (yielded) {
  4012. schedstat_inc(rq, yld_count);
  4013. /*
  4014. * Make p's CPU reschedule; pick_next_entity takes care of
  4015. * fairness.
  4016. */
  4017. if (preempt && rq != p_rq)
  4018. resched_curr(p_rq);
  4019. }
  4020. out_unlock:
  4021. double_rq_unlock(rq, p_rq);
  4022. out_irq:
  4023. local_irq_restore(flags);
  4024. if (yielded > 0)
  4025. schedule();
  4026. return yielded;
  4027. }
  4028. EXPORT_SYMBOL_GPL(yield_to);
  4029. /*
  4030. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4031. * that process accounting knows that this is a task in IO wait state.
  4032. */
  4033. long __sched io_schedule_timeout(long timeout)
  4034. {
  4035. int old_iowait = current->in_iowait;
  4036. struct rq *rq;
  4037. long ret;
  4038. current->in_iowait = 1;
  4039. blk_schedule_flush_plug(current);
  4040. delayacct_blkio_start();
  4041. rq = raw_rq();
  4042. atomic_inc(&rq->nr_iowait);
  4043. ret = schedule_timeout(timeout);
  4044. current->in_iowait = old_iowait;
  4045. atomic_dec(&rq->nr_iowait);
  4046. delayacct_blkio_end();
  4047. return ret;
  4048. }
  4049. EXPORT_SYMBOL(io_schedule_timeout);
  4050. /**
  4051. * sys_sched_get_priority_max - return maximum RT priority.
  4052. * @policy: scheduling class.
  4053. *
  4054. * Return: On success, this syscall returns the maximum
  4055. * rt_priority that can be used by a given scheduling class.
  4056. * On failure, a negative error code is returned.
  4057. */
  4058. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4059. {
  4060. int ret = -EINVAL;
  4061. switch (policy) {
  4062. case SCHED_FIFO:
  4063. case SCHED_RR:
  4064. ret = MAX_USER_RT_PRIO-1;
  4065. break;
  4066. case SCHED_DEADLINE:
  4067. case SCHED_NORMAL:
  4068. case SCHED_BATCH:
  4069. case SCHED_IDLE:
  4070. ret = 0;
  4071. break;
  4072. }
  4073. return ret;
  4074. }
  4075. /**
  4076. * sys_sched_get_priority_min - return minimum RT priority.
  4077. * @policy: scheduling class.
  4078. *
  4079. * Return: On success, this syscall returns the minimum
  4080. * rt_priority that can be used by a given scheduling class.
  4081. * On failure, a negative error code is returned.
  4082. */
  4083. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4084. {
  4085. int ret = -EINVAL;
  4086. switch (policy) {
  4087. case SCHED_FIFO:
  4088. case SCHED_RR:
  4089. ret = 1;
  4090. break;
  4091. case SCHED_DEADLINE:
  4092. case SCHED_NORMAL:
  4093. case SCHED_BATCH:
  4094. case SCHED_IDLE:
  4095. ret = 0;
  4096. }
  4097. return ret;
  4098. }
  4099. /**
  4100. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4101. * @pid: pid of the process.
  4102. * @interval: userspace pointer to the timeslice value.
  4103. *
  4104. * this syscall writes the default timeslice value of a given process
  4105. * into the user-space timespec buffer. A value of '0' means infinity.
  4106. *
  4107. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4108. * an error code.
  4109. */
  4110. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4111. struct timespec __user *, interval)
  4112. {
  4113. struct task_struct *p;
  4114. unsigned int time_slice;
  4115. unsigned long flags;
  4116. struct rq *rq;
  4117. int retval;
  4118. struct timespec t;
  4119. if (pid < 0)
  4120. return -EINVAL;
  4121. retval = -ESRCH;
  4122. rcu_read_lock();
  4123. p = find_process_by_pid(pid);
  4124. if (!p)
  4125. goto out_unlock;
  4126. retval = security_task_getscheduler(p);
  4127. if (retval)
  4128. goto out_unlock;
  4129. rq = task_rq_lock(p, &flags);
  4130. time_slice = 0;
  4131. if (p->sched_class->get_rr_interval)
  4132. time_slice = p->sched_class->get_rr_interval(rq, p);
  4133. task_rq_unlock(rq, p, &flags);
  4134. rcu_read_unlock();
  4135. jiffies_to_timespec(time_slice, &t);
  4136. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4137. return retval;
  4138. out_unlock:
  4139. rcu_read_unlock();
  4140. return retval;
  4141. }
  4142. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4143. void sched_show_task(struct task_struct *p)
  4144. {
  4145. unsigned long free = 0;
  4146. int ppid;
  4147. unsigned long state = p->state;
  4148. if (state)
  4149. state = __ffs(state) + 1;
  4150. printk(KERN_INFO "%-15.15s %c", p->comm,
  4151. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4152. #if BITS_PER_LONG == 32
  4153. if (state == TASK_RUNNING)
  4154. printk(KERN_CONT " running ");
  4155. else
  4156. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4157. #else
  4158. if (state == TASK_RUNNING)
  4159. printk(KERN_CONT " running task ");
  4160. else
  4161. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4162. #endif
  4163. #ifdef CONFIG_DEBUG_STACK_USAGE
  4164. free = stack_not_used(p);
  4165. #endif
  4166. ppid = 0;
  4167. rcu_read_lock();
  4168. if (pid_alive(p))
  4169. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4170. rcu_read_unlock();
  4171. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4172. task_pid_nr(p), ppid,
  4173. (unsigned long)task_thread_info(p)->flags);
  4174. print_worker_info(KERN_INFO, p);
  4175. show_stack(p, NULL);
  4176. }
  4177. void show_state_filter(unsigned long state_filter)
  4178. {
  4179. struct task_struct *g, *p;
  4180. #if BITS_PER_LONG == 32
  4181. printk(KERN_INFO
  4182. " task PC stack pid father\n");
  4183. #else
  4184. printk(KERN_INFO
  4185. " task PC stack pid father\n");
  4186. #endif
  4187. rcu_read_lock();
  4188. for_each_process_thread(g, p) {
  4189. /*
  4190. * reset the NMI-timeout, listing all files on a slow
  4191. * console might take a lot of time:
  4192. */
  4193. touch_nmi_watchdog();
  4194. if (!state_filter || (p->state & state_filter))
  4195. sched_show_task(p);
  4196. }
  4197. touch_all_softlockup_watchdogs();
  4198. #ifdef CONFIG_SCHED_DEBUG
  4199. sysrq_sched_debug_show();
  4200. #endif
  4201. rcu_read_unlock();
  4202. /*
  4203. * Only show locks if all tasks are dumped:
  4204. */
  4205. if (!state_filter)
  4206. debug_show_all_locks();
  4207. }
  4208. void init_idle_bootup_task(struct task_struct *idle)
  4209. {
  4210. idle->sched_class = &idle_sched_class;
  4211. }
  4212. /**
  4213. * init_idle - set up an idle thread for a given CPU
  4214. * @idle: task in question
  4215. * @cpu: cpu the idle task belongs to
  4216. *
  4217. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4218. * flag, to make booting more robust.
  4219. */
  4220. void init_idle(struct task_struct *idle, int cpu)
  4221. {
  4222. struct rq *rq = cpu_rq(cpu);
  4223. unsigned long flags;
  4224. raw_spin_lock_irqsave(&idle->pi_lock, flags);
  4225. raw_spin_lock(&rq->lock);
  4226. __sched_fork(0, idle);
  4227. idle->state = TASK_RUNNING;
  4228. idle->se.exec_start = sched_clock();
  4229. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4230. /*
  4231. * We're having a chicken and egg problem, even though we are
  4232. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4233. * lockdep check in task_group() will fail.
  4234. *
  4235. * Similar case to sched_fork(). / Alternatively we could
  4236. * use task_rq_lock() here and obtain the other rq->lock.
  4237. *
  4238. * Silence PROVE_RCU
  4239. */
  4240. rcu_read_lock();
  4241. __set_task_cpu(idle, cpu);
  4242. rcu_read_unlock();
  4243. rq->curr = rq->idle = idle;
  4244. idle->on_rq = TASK_ON_RQ_QUEUED;
  4245. #if defined(CONFIG_SMP)
  4246. idle->on_cpu = 1;
  4247. #endif
  4248. raw_spin_unlock(&rq->lock);
  4249. raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
  4250. /* Set the preempt count _outside_ the spinlocks! */
  4251. init_idle_preempt_count(idle, cpu);
  4252. /*
  4253. * The idle tasks have their own, simple scheduling class:
  4254. */
  4255. idle->sched_class = &idle_sched_class;
  4256. ftrace_graph_init_idle_task(idle, cpu);
  4257. vtime_init_idle(idle, cpu);
  4258. #if defined(CONFIG_SMP)
  4259. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4260. #endif
  4261. }
  4262. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  4263. const struct cpumask *trial)
  4264. {
  4265. int ret = 1, trial_cpus;
  4266. struct dl_bw *cur_dl_b;
  4267. unsigned long flags;
  4268. if (!cpumask_weight(cur))
  4269. return ret;
  4270. rcu_read_lock_sched();
  4271. cur_dl_b = dl_bw_of(cpumask_any(cur));
  4272. trial_cpus = cpumask_weight(trial);
  4273. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  4274. if (cur_dl_b->bw != -1 &&
  4275. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  4276. ret = 0;
  4277. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  4278. rcu_read_unlock_sched();
  4279. return ret;
  4280. }
  4281. int task_can_attach(struct task_struct *p,
  4282. const struct cpumask *cs_cpus_allowed)
  4283. {
  4284. int ret = 0;
  4285. /*
  4286. * Kthreads which disallow setaffinity shouldn't be moved
  4287. * to a new cpuset; we don't want to change their cpu
  4288. * affinity and isolating such threads by their set of
  4289. * allowed nodes is unnecessary. Thus, cpusets are not
  4290. * applicable for such threads. This prevents checking for
  4291. * success of set_cpus_allowed_ptr() on all attached tasks
  4292. * before cpus_allowed may be changed.
  4293. */
  4294. if (p->flags & PF_NO_SETAFFINITY) {
  4295. ret = -EINVAL;
  4296. goto out;
  4297. }
  4298. #ifdef CONFIG_SMP
  4299. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4300. cs_cpus_allowed)) {
  4301. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4302. cs_cpus_allowed);
  4303. struct dl_bw *dl_b;
  4304. bool overflow;
  4305. int cpus;
  4306. unsigned long flags;
  4307. rcu_read_lock_sched();
  4308. dl_b = dl_bw_of(dest_cpu);
  4309. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4310. cpus = dl_bw_cpus(dest_cpu);
  4311. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4312. if (overflow)
  4313. ret = -EBUSY;
  4314. else {
  4315. /*
  4316. * We reserve space for this task in the destination
  4317. * root_domain, as we can't fail after this point.
  4318. * We will free resources in the source root_domain
  4319. * later on (see set_cpus_allowed_dl()).
  4320. */
  4321. __dl_add(dl_b, p->dl.dl_bw);
  4322. }
  4323. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4324. rcu_read_unlock_sched();
  4325. }
  4326. #endif
  4327. out:
  4328. return ret;
  4329. }
  4330. #ifdef CONFIG_SMP
  4331. #ifdef CONFIG_NUMA_BALANCING
  4332. /* Migrate current task p to target_cpu */
  4333. int migrate_task_to(struct task_struct *p, int target_cpu)
  4334. {
  4335. struct migration_arg arg = { p, target_cpu };
  4336. int curr_cpu = task_cpu(p);
  4337. if (curr_cpu == target_cpu)
  4338. return 0;
  4339. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4340. return -EINVAL;
  4341. /* TODO: This is not properly updating schedstats */
  4342. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4343. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4344. }
  4345. /*
  4346. * Requeue a task on a given node and accurately track the number of NUMA
  4347. * tasks on the runqueues
  4348. */
  4349. void sched_setnuma(struct task_struct *p, int nid)
  4350. {
  4351. struct rq *rq;
  4352. unsigned long flags;
  4353. bool queued, running;
  4354. rq = task_rq_lock(p, &flags);
  4355. queued = task_on_rq_queued(p);
  4356. running = task_current(rq, p);
  4357. if (queued)
  4358. dequeue_task(rq, p, 0);
  4359. if (running)
  4360. put_prev_task(rq, p);
  4361. p->numa_preferred_nid = nid;
  4362. if (running)
  4363. p->sched_class->set_curr_task(rq);
  4364. if (queued)
  4365. enqueue_task(rq, p, 0);
  4366. task_rq_unlock(rq, p, &flags);
  4367. }
  4368. #endif /* CONFIG_NUMA_BALANCING */
  4369. #ifdef CONFIG_HOTPLUG_CPU
  4370. /*
  4371. * Ensures that the idle task is using init_mm right before its cpu goes
  4372. * offline.
  4373. */
  4374. void idle_task_exit(void)
  4375. {
  4376. struct mm_struct *mm = current->active_mm;
  4377. BUG_ON(cpu_online(smp_processor_id()));
  4378. if (mm != &init_mm) {
  4379. switch_mm(mm, &init_mm, current);
  4380. finish_arch_post_lock_switch();
  4381. }
  4382. mmdrop(mm);
  4383. }
  4384. /*
  4385. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4386. * we might have. Assumes we're called after migrate_tasks() so that the
  4387. * nr_active count is stable.
  4388. *
  4389. * Also see the comment "Global load-average calculations".
  4390. */
  4391. static void calc_load_migrate(struct rq *rq)
  4392. {
  4393. long delta = calc_load_fold_active(rq);
  4394. if (delta)
  4395. atomic_long_add(delta, &calc_load_tasks);
  4396. }
  4397. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4398. {
  4399. }
  4400. static const struct sched_class fake_sched_class = {
  4401. .put_prev_task = put_prev_task_fake,
  4402. };
  4403. static struct task_struct fake_task = {
  4404. /*
  4405. * Avoid pull_{rt,dl}_task()
  4406. */
  4407. .prio = MAX_PRIO + 1,
  4408. .sched_class = &fake_sched_class,
  4409. };
  4410. /*
  4411. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4412. * try_to_wake_up()->select_task_rq().
  4413. *
  4414. * Called with rq->lock held even though we'er in stop_machine() and
  4415. * there's no concurrency possible, we hold the required locks anyway
  4416. * because of lock validation efforts.
  4417. */
  4418. static void migrate_tasks(struct rq *dead_rq)
  4419. {
  4420. struct rq *rq = dead_rq;
  4421. struct task_struct *next, *stop = rq->stop;
  4422. int dest_cpu;
  4423. /*
  4424. * Fudge the rq selection such that the below task selection loop
  4425. * doesn't get stuck on the currently eligible stop task.
  4426. *
  4427. * We're currently inside stop_machine() and the rq is either stuck
  4428. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4429. * either way we should never end up calling schedule() until we're
  4430. * done here.
  4431. */
  4432. rq->stop = NULL;
  4433. /*
  4434. * put_prev_task() and pick_next_task() sched
  4435. * class method both need to have an up-to-date
  4436. * value of rq->clock[_task]
  4437. */
  4438. update_rq_clock(rq);
  4439. for (;;) {
  4440. /*
  4441. * There's this thread running, bail when that's the only
  4442. * remaining thread.
  4443. */
  4444. if (rq->nr_running == 1)
  4445. break;
  4446. /*
  4447. * pick_next_task assumes pinned rq->lock.
  4448. */
  4449. lockdep_pin_lock(&rq->lock);
  4450. next = pick_next_task(rq, &fake_task);
  4451. BUG_ON(!next);
  4452. next->sched_class->put_prev_task(rq, next);
  4453. /*
  4454. * Rules for changing task_struct::cpus_allowed are holding
  4455. * both pi_lock and rq->lock, such that holding either
  4456. * stabilizes the mask.
  4457. *
  4458. * Drop rq->lock is not quite as disastrous as it usually is
  4459. * because !cpu_active at this point, which means load-balance
  4460. * will not interfere. Also, stop-machine.
  4461. */
  4462. lockdep_unpin_lock(&rq->lock);
  4463. raw_spin_unlock(&rq->lock);
  4464. raw_spin_lock(&next->pi_lock);
  4465. raw_spin_lock(&rq->lock);
  4466. /*
  4467. * Since we're inside stop-machine, _nothing_ should have
  4468. * changed the task, WARN if weird stuff happened, because in
  4469. * that case the above rq->lock drop is a fail too.
  4470. */
  4471. if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
  4472. raw_spin_unlock(&next->pi_lock);
  4473. continue;
  4474. }
  4475. /* Find suitable destination for @next, with force if needed. */
  4476. dest_cpu = select_fallback_rq(dead_rq->cpu, next);
  4477. rq = __migrate_task(rq, next, dest_cpu);
  4478. if (rq != dead_rq) {
  4479. raw_spin_unlock(&rq->lock);
  4480. rq = dead_rq;
  4481. raw_spin_lock(&rq->lock);
  4482. }
  4483. raw_spin_unlock(&next->pi_lock);
  4484. }
  4485. rq->stop = stop;
  4486. }
  4487. #endif /* CONFIG_HOTPLUG_CPU */
  4488. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4489. static struct ctl_table sd_ctl_dir[] = {
  4490. {
  4491. .procname = "sched_domain",
  4492. .mode = 0555,
  4493. },
  4494. {}
  4495. };
  4496. static struct ctl_table sd_ctl_root[] = {
  4497. {
  4498. .procname = "kernel",
  4499. .mode = 0555,
  4500. .child = sd_ctl_dir,
  4501. },
  4502. {}
  4503. };
  4504. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4505. {
  4506. struct ctl_table *entry =
  4507. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4508. return entry;
  4509. }
  4510. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4511. {
  4512. struct ctl_table *entry;
  4513. /*
  4514. * In the intermediate directories, both the child directory and
  4515. * procname are dynamically allocated and could fail but the mode
  4516. * will always be set. In the lowest directory the names are
  4517. * static strings and all have proc handlers.
  4518. */
  4519. for (entry = *tablep; entry->mode; entry++) {
  4520. if (entry->child)
  4521. sd_free_ctl_entry(&entry->child);
  4522. if (entry->proc_handler == NULL)
  4523. kfree(entry->procname);
  4524. }
  4525. kfree(*tablep);
  4526. *tablep = NULL;
  4527. }
  4528. static int min_load_idx = 0;
  4529. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4530. static void
  4531. set_table_entry(struct ctl_table *entry,
  4532. const char *procname, void *data, int maxlen,
  4533. umode_t mode, proc_handler *proc_handler,
  4534. bool load_idx)
  4535. {
  4536. entry->procname = procname;
  4537. entry->data = data;
  4538. entry->maxlen = maxlen;
  4539. entry->mode = mode;
  4540. entry->proc_handler = proc_handler;
  4541. if (load_idx) {
  4542. entry->extra1 = &min_load_idx;
  4543. entry->extra2 = &max_load_idx;
  4544. }
  4545. }
  4546. static struct ctl_table *
  4547. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4548. {
  4549. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4550. if (table == NULL)
  4551. return NULL;
  4552. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4553. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4554. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4555. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4556. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4557. sizeof(int), 0644, proc_dointvec_minmax, true);
  4558. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4559. sizeof(int), 0644, proc_dointvec_minmax, true);
  4560. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4561. sizeof(int), 0644, proc_dointvec_minmax, true);
  4562. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4563. sizeof(int), 0644, proc_dointvec_minmax, true);
  4564. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4565. sizeof(int), 0644, proc_dointvec_minmax, true);
  4566. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4567. sizeof(int), 0644, proc_dointvec_minmax, false);
  4568. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4569. sizeof(int), 0644, proc_dointvec_minmax, false);
  4570. set_table_entry(&table[9], "cache_nice_tries",
  4571. &sd->cache_nice_tries,
  4572. sizeof(int), 0644, proc_dointvec_minmax, false);
  4573. set_table_entry(&table[10], "flags", &sd->flags,
  4574. sizeof(int), 0644, proc_dointvec_minmax, false);
  4575. set_table_entry(&table[11], "max_newidle_lb_cost",
  4576. &sd->max_newidle_lb_cost,
  4577. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4578. set_table_entry(&table[12], "name", sd->name,
  4579. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4580. /* &table[13] is terminator */
  4581. return table;
  4582. }
  4583. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4584. {
  4585. struct ctl_table *entry, *table;
  4586. struct sched_domain *sd;
  4587. int domain_num = 0, i;
  4588. char buf[32];
  4589. for_each_domain(cpu, sd)
  4590. domain_num++;
  4591. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4592. if (table == NULL)
  4593. return NULL;
  4594. i = 0;
  4595. for_each_domain(cpu, sd) {
  4596. snprintf(buf, 32, "domain%d", i);
  4597. entry->procname = kstrdup(buf, GFP_KERNEL);
  4598. entry->mode = 0555;
  4599. entry->child = sd_alloc_ctl_domain_table(sd);
  4600. entry++;
  4601. i++;
  4602. }
  4603. return table;
  4604. }
  4605. static struct ctl_table_header *sd_sysctl_header;
  4606. static void register_sched_domain_sysctl(void)
  4607. {
  4608. int i, cpu_num = num_possible_cpus();
  4609. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4610. char buf[32];
  4611. WARN_ON(sd_ctl_dir[0].child);
  4612. sd_ctl_dir[0].child = entry;
  4613. if (entry == NULL)
  4614. return;
  4615. for_each_possible_cpu(i) {
  4616. snprintf(buf, 32, "cpu%d", i);
  4617. entry->procname = kstrdup(buf, GFP_KERNEL);
  4618. entry->mode = 0555;
  4619. entry->child = sd_alloc_ctl_cpu_table(i);
  4620. entry++;
  4621. }
  4622. WARN_ON(sd_sysctl_header);
  4623. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4624. }
  4625. /* may be called multiple times per register */
  4626. static void unregister_sched_domain_sysctl(void)
  4627. {
  4628. unregister_sysctl_table(sd_sysctl_header);
  4629. sd_sysctl_header = NULL;
  4630. if (sd_ctl_dir[0].child)
  4631. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4632. }
  4633. #else
  4634. static void register_sched_domain_sysctl(void)
  4635. {
  4636. }
  4637. static void unregister_sched_domain_sysctl(void)
  4638. {
  4639. }
  4640. #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
  4641. static void set_rq_online(struct rq *rq)
  4642. {
  4643. if (!rq->online) {
  4644. const struct sched_class *class;
  4645. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4646. rq->online = 1;
  4647. for_each_class(class) {
  4648. if (class->rq_online)
  4649. class->rq_online(rq);
  4650. }
  4651. }
  4652. }
  4653. static void set_rq_offline(struct rq *rq)
  4654. {
  4655. if (rq->online) {
  4656. const struct sched_class *class;
  4657. for_each_class(class) {
  4658. if (class->rq_offline)
  4659. class->rq_offline(rq);
  4660. }
  4661. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4662. rq->online = 0;
  4663. }
  4664. }
  4665. /*
  4666. * migration_call - callback that gets triggered when a CPU is added.
  4667. * Here we can start up the necessary migration thread for the new CPU.
  4668. */
  4669. static int
  4670. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4671. {
  4672. int cpu = (long)hcpu;
  4673. unsigned long flags;
  4674. struct rq *rq = cpu_rq(cpu);
  4675. switch (action & ~CPU_TASKS_FROZEN) {
  4676. case CPU_UP_PREPARE:
  4677. rq->calc_load_update = calc_load_update;
  4678. break;
  4679. case CPU_ONLINE:
  4680. /* Update our root-domain */
  4681. raw_spin_lock_irqsave(&rq->lock, flags);
  4682. if (rq->rd) {
  4683. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4684. set_rq_online(rq);
  4685. }
  4686. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4687. break;
  4688. #ifdef CONFIG_HOTPLUG_CPU
  4689. case CPU_DYING:
  4690. sched_ttwu_pending();
  4691. /* Update our root-domain */
  4692. raw_spin_lock_irqsave(&rq->lock, flags);
  4693. if (rq->rd) {
  4694. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4695. set_rq_offline(rq);
  4696. }
  4697. migrate_tasks(rq);
  4698. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4699. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4700. break;
  4701. case CPU_DEAD:
  4702. calc_load_migrate(rq);
  4703. break;
  4704. #endif
  4705. }
  4706. update_max_interval();
  4707. return NOTIFY_OK;
  4708. }
  4709. /*
  4710. * Register at high priority so that task migration (migrate_all_tasks)
  4711. * happens before everything else. This has to be lower priority than
  4712. * the notifier in the perf_event subsystem, though.
  4713. */
  4714. static struct notifier_block migration_notifier = {
  4715. .notifier_call = migration_call,
  4716. .priority = CPU_PRI_MIGRATION,
  4717. };
  4718. static void set_cpu_rq_start_time(void)
  4719. {
  4720. int cpu = smp_processor_id();
  4721. struct rq *rq = cpu_rq(cpu);
  4722. rq->age_stamp = sched_clock_cpu(cpu);
  4723. }
  4724. static int sched_cpu_active(struct notifier_block *nfb,
  4725. unsigned long action, void *hcpu)
  4726. {
  4727. switch (action & ~CPU_TASKS_FROZEN) {
  4728. case CPU_STARTING:
  4729. set_cpu_rq_start_time();
  4730. return NOTIFY_OK;
  4731. case CPU_ONLINE:
  4732. /*
  4733. * At this point a starting CPU has marked itself as online via
  4734. * set_cpu_online(). But it might not yet have marked itself
  4735. * as active, which is essential from here on.
  4736. *
  4737. * Thus, fall-through and help the starting CPU along.
  4738. */
  4739. case CPU_DOWN_FAILED:
  4740. set_cpu_active((long)hcpu, true);
  4741. return NOTIFY_OK;
  4742. default:
  4743. return NOTIFY_DONE;
  4744. }
  4745. }
  4746. static int sched_cpu_inactive(struct notifier_block *nfb,
  4747. unsigned long action, void *hcpu)
  4748. {
  4749. switch (action & ~CPU_TASKS_FROZEN) {
  4750. case CPU_DOWN_PREPARE:
  4751. set_cpu_active((long)hcpu, false);
  4752. return NOTIFY_OK;
  4753. default:
  4754. return NOTIFY_DONE;
  4755. }
  4756. }
  4757. static int __init migration_init(void)
  4758. {
  4759. void *cpu = (void *)(long)smp_processor_id();
  4760. int err;
  4761. /* Initialize migration for the boot CPU */
  4762. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4763. BUG_ON(err == NOTIFY_BAD);
  4764. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4765. register_cpu_notifier(&migration_notifier);
  4766. /* Register cpu active notifiers */
  4767. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4768. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4769. return 0;
  4770. }
  4771. early_initcall(migration_init);
  4772. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4773. #ifdef CONFIG_SCHED_DEBUG
  4774. static __read_mostly int sched_debug_enabled;
  4775. static int __init sched_debug_setup(char *str)
  4776. {
  4777. sched_debug_enabled = 1;
  4778. return 0;
  4779. }
  4780. early_param("sched_debug", sched_debug_setup);
  4781. static inline bool sched_debug(void)
  4782. {
  4783. return sched_debug_enabled;
  4784. }
  4785. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4786. struct cpumask *groupmask)
  4787. {
  4788. struct sched_group *group = sd->groups;
  4789. cpumask_clear(groupmask);
  4790. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4791. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4792. printk("does not load-balance\n");
  4793. if (sd->parent)
  4794. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4795. " has parent");
  4796. return -1;
  4797. }
  4798. printk(KERN_CONT "span %*pbl level %s\n",
  4799. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4800. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4801. printk(KERN_ERR "ERROR: domain->span does not contain "
  4802. "CPU%d\n", cpu);
  4803. }
  4804. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4805. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4806. " CPU%d\n", cpu);
  4807. }
  4808. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4809. do {
  4810. if (!group) {
  4811. printk("\n");
  4812. printk(KERN_ERR "ERROR: group is NULL\n");
  4813. break;
  4814. }
  4815. if (!cpumask_weight(sched_group_cpus(group))) {
  4816. printk(KERN_CONT "\n");
  4817. printk(KERN_ERR "ERROR: empty group\n");
  4818. break;
  4819. }
  4820. if (!(sd->flags & SD_OVERLAP) &&
  4821. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4822. printk(KERN_CONT "\n");
  4823. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4824. break;
  4825. }
  4826. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4827. printk(KERN_CONT " %*pbl",
  4828. cpumask_pr_args(sched_group_cpus(group)));
  4829. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4830. printk(KERN_CONT " (cpu_capacity = %d)",
  4831. group->sgc->capacity);
  4832. }
  4833. group = group->next;
  4834. } while (group != sd->groups);
  4835. printk(KERN_CONT "\n");
  4836. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4837. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4838. if (sd->parent &&
  4839. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4840. printk(KERN_ERR "ERROR: parent span is not a superset "
  4841. "of domain->span\n");
  4842. return 0;
  4843. }
  4844. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4845. {
  4846. int level = 0;
  4847. if (!sched_debug_enabled)
  4848. return;
  4849. if (!sd) {
  4850. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4851. return;
  4852. }
  4853. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4854. for (;;) {
  4855. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4856. break;
  4857. level++;
  4858. sd = sd->parent;
  4859. if (!sd)
  4860. break;
  4861. }
  4862. }
  4863. #else /* !CONFIG_SCHED_DEBUG */
  4864. # define sched_domain_debug(sd, cpu) do { } while (0)
  4865. static inline bool sched_debug(void)
  4866. {
  4867. return false;
  4868. }
  4869. #endif /* CONFIG_SCHED_DEBUG */
  4870. static int sd_degenerate(struct sched_domain *sd)
  4871. {
  4872. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4873. return 1;
  4874. /* Following flags need at least 2 groups */
  4875. if (sd->flags & (SD_LOAD_BALANCE |
  4876. SD_BALANCE_NEWIDLE |
  4877. SD_BALANCE_FORK |
  4878. SD_BALANCE_EXEC |
  4879. SD_SHARE_CPUCAPACITY |
  4880. SD_SHARE_PKG_RESOURCES |
  4881. SD_SHARE_POWERDOMAIN)) {
  4882. if (sd->groups != sd->groups->next)
  4883. return 0;
  4884. }
  4885. /* Following flags don't use groups */
  4886. if (sd->flags & (SD_WAKE_AFFINE))
  4887. return 0;
  4888. return 1;
  4889. }
  4890. static int
  4891. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4892. {
  4893. unsigned long cflags = sd->flags, pflags = parent->flags;
  4894. if (sd_degenerate(parent))
  4895. return 1;
  4896. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4897. return 0;
  4898. /* Flags needing groups don't count if only 1 group in parent */
  4899. if (parent->groups == parent->groups->next) {
  4900. pflags &= ~(SD_LOAD_BALANCE |
  4901. SD_BALANCE_NEWIDLE |
  4902. SD_BALANCE_FORK |
  4903. SD_BALANCE_EXEC |
  4904. SD_SHARE_CPUCAPACITY |
  4905. SD_SHARE_PKG_RESOURCES |
  4906. SD_PREFER_SIBLING |
  4907. SD_SHARE_POWERDOMAIN);
  4908. if (nr_node_ids == 1)
  4909. pflags &= ~SD_SERIALIZE;
  4910. }
  4911. if (~cflags & pflags)
  4912. return 0;
  4913. return 1;
  4914. }
  4915. static void free_rootdomain(struct rcu_head *rcu)
  4916. {
  4917. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4918. cpupri_cleanup(&rd->cpupri);
  4919. cpudl_cleanup(&rd->cpudl);
  4920. free_cpumask_var(rd->dlo_mask);
  4921. free_cpumask_var(rd->rto_mask);
  4922. free_cpumask_var(rd->online);
  4923. free_cpumask_var(rd->span);
  4924. kfree(rd);
  4925. }
  4926. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4927. {
  4928. struct root_domain *old_rd = NULL;
  4929. unsigned long flags;
  4930. raw_spin_lock_irqsave(&rq->lock, flags);
  4931. if (rq->rd) {
  4932. old_rd = rq->rd;
  4933. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4934. set_rq_offline(rq);
  4935. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4936. /*
  4937. * If we dont want to free the old_rd yet then
  4938. * set old_rd to NULL to skip the freeing later
  4939. * in this function:
  4940. */
  4941. if (!atomic_dec_and_test(&old_rd->refcount))
  4942. old_rd = NULL;
  4943. }
  4944. atomic_inc(&rd->refcount);
  4945. rq->rd = rd;
  4946. cpumask_set_cpu(rq->cpu, rd->span);
  4947. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4948. set_rq_online(rq);
  4949. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4950. if (old_rd)
  4951. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4952. }
  4953. static int init_rootdomain(struct root_domain *rd)
  4954. {
  4955. memset(rd, 0, sizeof(*rd));
  4956. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4957. goto out;
  4958. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4959. goto free_span;
  4960. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4961. goto free_online;
  4962. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4963. goto free_dlo_mask;
  4964. init_dl_bw(&rd->dl_bw);
  4965. if (cpudl_init(&rd->cpudl) != 0)
  4966. goto free_dlo_mask;
  4967. if (cpupri_init(&rd->cpupri) != 0)
  4968. goto free_rto_mask;
  4969. return 0;
  4970. free_rto_mask:
  4971. free_cpumask_var(rd->rto_mask);
  4972. free_dlo_mask:
  4973. free_cpumask_var(rd->dlo_mask);
  4974. free_online:
  4975. free_cpumask_var(rd->online);
  4976. free_span:
  4977. free_cpumask_var(rd->span);
  4978. out:
  4979. return -ENOMEM;
  4980. }
  4981. /*
  4982. * By default the system creates a single root-domain with all cpus as
  4983. * members (mimicking the global state we have today).
  4984. */
  4985. struct root_domain def_root_domain;
  4986. static void init_defrootdomain(void)
  4987. {
  4988. init_rootdomain(&def_root_domain);
  4989. atomic_set(&def_root_domain.refcount, 1);
  4990. }
  4991. static struct root_domain *alloc_rootdomain(void)
  4992. {
  4993. struct root_domain *rd;
  4994. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4995. if (!rd)
  4996. return NULL;
  4997. if (init_rootdomain(rd) != 0) {
  4998. kfree(rd);
  4999. return NULL;
  5000. }
  5001. return rd;
  5002. }
  5003. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  5004. {
  5005. struct sched_group *tmp, *first;
  5006. if (!sg)
  5007. return;
  5008. first = sg;
  5009. do {
  5010. tmp = sg->next;
  5011. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  5012. kfree(sg->sgc);
  5013. kfree(sg);
  5014. sg = tmp;
  5015. } while (sg != first);
  5016. }
  5017. static void free_sched_domain(struct rcu_head *rcu)
  5018. {
  5019. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5020. /*
  5021. * If its an overlapping domain it has private groups, iterate and
  5022. * nuke them all.
  5023. */
  5024. if (sd->flags & SD_OVERLAP) {
  5025. free_sched_groups(sd->groups, 1);
  5026. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5027. kfree(sd->groups->sgc);
  5028. kfree(sd->groups);
  5029. }
  5030. kfree(sd);
  5031. }
  5032. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5033. {
  5034. call_rcu(&sd->rcu, free_sched_domain);
  5035. }
  5036. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5037. {
  5038. for (; sd; sd = sd->parent)
  5039. destroy_sched_domain(sd, cpu);
  5040. }
  5041. /*
  5042. * Keep a special pointer to the highest sched_domain that has
  5043. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  5044. * allows us to avoid some pointer chasing select_idle_sibling().
  5045. *
  5046. * Also keep a unique ID per domain (we use the first cpu number in
  5047. * the cpumask of the domain), this allows us to quickly tell if
  5048. * two cpus are in the same cache domain, see cpus_share_cache().
  5049. */
  5050. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  5051. DEFINE_PER_CPU(int, sd_llc_size);
  5052. DEFINE_PER_CPU(int, sd_llc_id);
  5053. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  5054. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  5055. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  5056. static void update_top_cache_domain(int cpu)
  5057. {
  5058. struct sched_domain *sd;
  5059. struct sched_domain *busy_sd = NULL;
  5060. int id = cpu;
  5061. int size = 1;
  5062. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  5063. if (sd) {
  5064. id = cpumask_first(sched_domain_span(sd));
  5065. size = cpumask_weight(sched_domain_span(sd));
  5066. busy_sd = sd->parent; /* sd_busy */
  5067. }
  5068. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  5069. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  5070. per_cpu(sd_llc_size, cpu) = size;
  5071. per_cpu(sd_llc_id, cpu) = id;
  5072. sd = lowest_flag_domain(cpu, SD_NUMA);
  5073. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  5074. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  5075. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  5076. }
  5077. /*
  5078. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5079. * hold the hotplug lock.
  5080. */
  5081. static void
  5082. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5083. {
  5084. struct rq *rq = cpu_rq(cpu);
  5085. struct sched_domain *tmp;
  5086. /* Remove the sched domains which do not contribute to scheduling. */
  5087. for (tmp = sd; tmp; ) {
  5088. struct sched_domain *parent = tmp->parent;
  5089. if (!parent)
  5090. break;
  5091. if (sd_parent_degenerate(tmp, parent)) {
  5092. tmp->parent = parent->parent;
  5093. if (parent->parent)
  5094. parent->parent->child = tmp;
  5095. /*
  5096. * Transfer SD_PREFER_SIBLING down in case of a
  5097. * degenerate parent; the spans match for this
  5098. * so the property transfers.
  5099. */
  5100. if (parent->flags & SD_PREFER_SIBLING)
  5101. tmp->flags |= SD_PREFER_SIBLING;
  5102. destroy_sched_domain(parent, cpu);
  5103. } else
  5104. tmp = tmp->parent;
  5105. }
  5106. if (sd && sd_degenerate(sd)) {
  5107. tmp = sd;
  5108. sd = sd->parent;
  5109. destroy_sched_domain(tmp, cpu);
  5110. if (sd)
  5111. sd->child = NULL;
  5112. }
  5113. sched_domain_debug(sd, cpu);
  5114. rq_attach_root(rq, rd);
  5115. tmp = rq->sd;
  5116. rcu_assign_pointer(rq->sd, sd);
  5117. destroy_sched_domains(tmp, cpu);
  5118. update_top_cache_domain(cpu);
  5119. }
  5120. /* Setup the mask of cpus configured for isolated domains */
  5121. static int __init isolated_cpu_setup(char *str)
  5122. {
  5123. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5124. cpulist_parse(str, cpu_isolated_map);
  5125. return 1;
  5126. }
  5127. __setup("isolcpus=", isolated_cpu_setup);
  5128. struct s_data {
  5129. struct sched_domain ** __percpu sd;
  5130. struct root_domain *rd;
  5131. };
  5132. enum s_alloc {
  5133. sa_rootdomain,
  5134. sa_sd,
  5135. sa_sd_storage,
  5136. sa_none,
  5137. };
  5138. /*
  5139. * Build an iteration mask that can exclude certain CPUs from the upwards
  5140. * domain traversal.
  5141. *
  5142. * Asymmetric node setups can result in situations where the domain tree is of
  5143. * unequal depth, make sure to skip domains that already cover the entire
  5144. * range.
  5145. *
  5146. * In that case build_sched_domains() will have terminated the iteration early
  5147. * and our sibling sd spans will be empty. Domains should always include the
  5148. * cpu they're built on, so check that.
  5149. *
  5150. */
  5151. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5152. {
  5153. const struct cpumask *span = sched_domain_span(sd);
  5154. struct sd_data *sdd = sd->private;
  5155. struct sched_domain *sibling;
  5156. int i;
  5157. for_each_cpu(i, span) {
  5158. sibling = *per_cpu_ptr(sdd->sd, i);
  5159. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5160. continue;
  5161. cpumask_set_cpu(i, sched_group_mask(sg));
  5162. }
  5163. }
  5164. /*
  5165. * Return the canonical balance cpu for this group, this is the first cpu
  5166. * of this group that's also in the iteration mask.
  5167. */
  5168. int group_balance_cpu(struct sched_group *sg)
  5169. {
  5170. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5171. }
  5172. static int
  5173. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5174. {
  5175. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5176. const struct cpumask *span = sched_domain_span(sd);
  5177. struct cpumask *covered = sched_domains_tmpmask;
  5178. struct sd_data *sdd = sd->private;
  5179. struct sched_domain *sibling;
  5180. int i;
  5181. cpumask_clear(covered);
  5182. for_each_cpu(i, span) {
  5183. struct cpumask *sg_span;
  5184. if (cpumask_test_cpu(i, covered))
  5185. continue;
  5186. sibling = *per_cpu_ptr(sdd->sd, i);
  5187. /* See the comment near build_group_mask(). */
  5188. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5189. continue;
  5190. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5191. GFP_KERNEL, cpu_to_node(cpu));
  5192. if (!sg)
  5193. goto fail;
  5194. sg_span = sched_group_cpus(sg);
  5195. if (sibling->child)
  5196. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5197. else
  5198. cpumask_set_cpu(i, sg_span);
  5199. cpumask_or(covered, covered, sg_span);
  5200. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5201. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5202. build_group_mask(sd, sg);
  5203. /*
  5204. * Initialize sgc->capacity such that even if we mess up the
  5205. * domains and no possible iteration will get us here, we won't
  5206. * die on a /0 trap.
  5207. */
  5208. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5209. /*
  5210. * Make sure the first group of this domain contains the
  5211. * canonical balance cpu. Otherwise the sched_domain iteration
  5212. * breaks. See update_sg_lb_stats().
  5213. */
  5214. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5215. group_balance_cpu(sg) == cpu)
  5216. groups = sg;
  5217. if (!first)
  5218. first = sg;
  5219. if (last)
  5220. last->next = sg;
  5221. last = sg;
  5222. last->next = first;
  5223. }
  5224. sd->groups = groups;
  5225. return 0;
  5226. fail:
  5227. free_sched_groups(first, 0);
  5228. return -ENOMEM;
  5229. }
  5230. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5231. {
  5232. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5233. struct sched_domain *child = sd->child;
  5234. if (child)
  5235. cpu = cpumask_first(sched_domain_span(child));
  5236. if (sg) {
  5237. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5238. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5239. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5240. }
  5241. return cpu;
  5242. }
  5243. /*
  5244. * build_sched_groups will build a circular linked list of the groups
  5245. * covered by the given span, and will set each group's ->cpumask correctly,
  5246. * and ->cpu_capacity to 0.
  5247. *
  5248. * Assumes the sched_domain tree is fully constructed
  5249. */
  5250. static int
  5251. build_sched_groups(struct sched_domain *sd, int cpu)
  5252. {
  5253. struct sched_group *first = NULL, *last = NULL;
  5254. struct sd_data *sdd = sd->private;
  5255. const struct cpumask *span = sched_domain_span(sd);
  5256. struct cpumask *covered;
  5257. int i;
  5258. get_group(cpu, sdd, &sd->groups);
  5259. atomic_inc(&sd->groups->ref);
  5260. if (cpu != cpumask_first(span))
  5261. return 0;
  5262. lockdep_assert_held(&sched_domains_mutex);
  5263. covered = sched_domains_tmpmask;
  5264. cpumask_clear(covered);
  5265. for_each_cpu(i, span) {
  5266. struct sched_group *sg;
  5267. int group, j;
  5268. if (cpumask_test_cpu(i, covered))
  5269. continue;
  5270. group = get_group(i, sdd, &sg);
  5271. cpumask_setall(sched_group_mask(sg));
  5272. for_each_cpu(j, span) {
  5273. if (get_group(j, sdd, NULL) != group)
  5274. continue;
  5275. cpumask_set_cpu(j, covered);
  5276. cpumask_set_cpu(j, sched_group_cpus(sg));
  5277. }
  5278. if (!first)
  5279. first = sg;
  5280. if (last)
  5281. last->next = sg;
  5282. last = sg;
  5283. }
  5284. last->next = first;
  5285. return 0;
  5286. }
  5287. /*
  5288. * Initialize sched groups cpu_capacity.
  5289. *
  5290. * cpu_capacity indicates the capacity of sched group, which is used while
  5291. * distributing the load between different sched groups in a sched domain.
  5292. * Typically cpu_capacity for all the groups in a sched domain will be same
  5293. * unless there are asymmetries in the topology. If there are asymmetries,
  5294. * group having more cpu_capacity will pickup more load compared to the
  5295. * group having less cpu_capacity.
  5296. */
  5297. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5298. {
  5299. struct sched_group *sg = sd->groups;
  5300. WARN_ON(!sg);
  5301. do {
  5302. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5303. sg = sg->next;
  5304. } while (sg != sd->groups);
  5305. if (cpu != group_balance_cpu(sg))
  5306. return;
  5307. update_group_capacity(sd, cpu);
  5308. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5309. }
  5310. /*
  5311. * Initializers for schedule domains
  5312. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5313. */
  5314. static int default_relax_domain_level = -1;
  5315. int sched_domain_level_max;
  5316. static int __init setup_relax_domain_level(char *str)
  5317. {
  5318. if (kstrtoint(str, 0, &default_relax_domain_level))
  5319. pr_warn("Unable to set relax_domain_level\n");
  5320. return 1;
  5321. }
  5322. __setup("relax_domain_level=", setup_relax_domain_level);
  5323. static void set_domain_attribute(struct sched_domain *sd,
  5324. struct sched_domain_attr *attr)
  5325. {
  5326. int request;
  5327. if (!attr || attr->relax_domain_level < 0) {
  5328. if (default_relax_domain_level < 0)
  5329. return;
  5330. else
  5331. request = default_relax_domain_level;
  5332. } else
  5333. request = attr->relax_domain_level;
  5334. if (request < sd->level) {
  5335. /* turn off idle balance on this domain */
  5336. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5337. } else {
  5338. /* turn on idle balance on this domain */
  5339. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5340. }
  5341. }
  5342. static void __sdt_free(const struct cpumask *cpu_map);
  5343. static int __sdt_alloc(const struct cpumask *cpu_map);
  5344. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5345. const struct cpumask *cpu_map)
  5346. {
  5347. switch (what) {
  5348. case sa_rootdomain:
  5349. if (!atomic_read(&d->rd->refcount))
  5350. free_rootdomain(&d->rd->rcu); /* fall through */
  5351. case sa_sd:
  5352. free_percpu(d->sd); /* fall through */
  5353. case sa_sd_storage:
  5354. __sdt_free(cpu_map); /* fall through */
  5355. case sa_none:
  5356. break;
  5357. }
  5358. }
  5359. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5360. const struct cpumask *cpu_map)
  5361. {
  5362. memset(d, 0, sizeof(*d));
  5363. if (__sdt_alloc(cpu_map))
  5364. return sa_sd_storage;
  5365. d->sd = alloc_percpu(struct sched_domain *);
  5366. if (!d->sd)
  5367. return sa_sd_storage;
  5368. d->rd = alloc_rootdomain();
  5369. if (!d->rd)
  5370. return sa_sd;
  5371. return sa_rootdomain;
  5372. }
  5373. /*
  5374. * NULL the sd_data elements we've used to build the sched_domain and
  5375. * sched_group structure so that the subsequent __free_domain_allocs()
  5376. * will not free the data we're using.
  5377. */
  5378. static void claim_allocations(int cpu, struct sched_domain *sd)
  5379. {
  5380. struct sd_data *sdd = sd->private;
  5381. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5382. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5383. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5384. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5385. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5386. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5387. }
  5388. #ifdef CONFIG_NUMA
  5389. static int sched_domains_numa_levels;
  5390. enum numa_topology_type sched_numa_topology_type;
  5391. static int *sched_domains_numa_distance;
  5392. int sched_max_numa_distance;
  5393. static struct cpumask ***sched_domains_numa_masks;
  5394. static int sched_domains_curr_level;
  5395. #endif
  5396. /*
  5397. * SD_flags allowed in topology descriptions.
  5398. *
  5399. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5400. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5401. * SD_NUMA - describes NUMA topologies
  5402. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5403. *
  5404. * Odd one out:
  5405. * SD_ASYM_PACKING - describes SMT quirks
  5406. */
  5407. #define TOPOLOGY_SD_FLAGS \
  5408. (SD_SHARE_CPUCAPACITY | \
  5409. SD_SHARE_PKG_RESOURCES | \
  5410. SD_NUMA | \
  5411. SD_ASYM_PACKING | \
  5412. SD_SHARE_POWERDOMAIN)
  5413. static struct sched_domain *
  5414. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5415. {
  5416. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5417. int sd_weight, sd_flags = 0;
  5418. #ifdef CONFIG_NUMA
  5419. /*
  5420. * Ugly hack to pass state to sd_numa_mask()...
  5421. */
  5422. sched_domains_curr_level = tl->numa_level;
  5423. #endif
  5424. sd_weight = cpumask_weight(tl->mask(cpu));
  5425. if (tl->sd_flags)
  5426. sd_flags = (*tl->sd_flags)();
  5427. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5428. "wrong sd_flags in topology description\n"))
  5429. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5430. *sd = (struct sched_domain){
  5431. .min_interval = sd_weight,
  5432. .max_interval = 2*sd_weight,
  5433. .busy_factor = 32,
  5434. .imbalance_pct = 125,
  5435. .cache_nice_tries = 0,
  5436. .busy_idx = 0,
  5437. .idle_idx = 0,
  5438. .newidle_idx = 0,
  5439. .wake_idx = 0,
  5440. .forkexec_idx = 0,
  5441. .flags = 1*SD_LOAD_BALANCE
  5442. | 1*SD_BALANCE_NEWIDLE
  5443. | 1*SD_BALANCE_EXEC
  5444. | 1*SD_BALANCE_FORK
  5445. | 0*SD_BALANCE_WAKE
  5446. | 1*SD_WAKE_AFFINE
  5447. | 0*SD_SHARE_CPUCAPACITY
  5448. | 0*SD_SHARE_PKG_RESOURCES
  5449. | 0*SD_SERIALIZE
  5450. | 0*SD_PREFER_SIBLING
  5451. | 0*SD_NUMA
  5452. | sd_flags
  5453. ,
  5454. .last_balance = jiffies,
  5455. .balance_interval = sd_weight,
  5456. .smt_gain = 0,
  5457. .max_newidle_lb_cost = 0,
  5458. .next_decay_max_lb_cost = jiffies,
  5459. #ifdef CONFIG_SCHED_DEBUG
  5460. .name = tl->name,
  5461. #endif
  5462. };
  5463. /*
  5464. * Convert topological properties into behaviour.
  5465. */
  5466. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5467. sd->flags |= SD_PREFER_SIBLING;
  5468. sd->imbalance_pct = 110;
  5469. sd->smt_gain = 1178; /* ~15% */
  5470. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5471. sd->imbalance_pct = 117;
  5472. sd->cache_nice_tries = 1;
  5473. sd->busy_idx = 2;
  5474. #ifdef CONFIG_NUMA
  5475. } else if (sd->flags & SD_NUMA) {
  5476. sd->cache_nice_tries = 2;
  5477. sd->busy_idx = 3;
  5478. sd->idle_idx = 2;
  5479. sd->flags |= SD_SERIALIZE;
  5480. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5481. sd->flags &= ~(SD_BALANCE_EXEC |
  5482. SD_BALANCE_FORK |
  5483. SD_WAKE_AFFINE);
  5484. }
  5485. #endif
  5486. } else {
  5487. sd->flags |= SD_PREFER_SIBLING;
  5488. sd->cache_nice_tries = 1;
  5489. sd->busy_idx = 2;
  5490. sd->idle_idx = 1;
  5491. }
  5492. sd->private = &tl->data;
  5493. return sd;
  5494. }
  5495. /*
  5496. * Topology list, bottom-up.
  5497. */
  5498. static struct sched_domain_topology_level default_topology[] = {
  5499. #ifdef CONFIG_SCHED_SMT
  5500. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5501. #endif
  5502. #ifdef CONFIG_SCHED_MC
  5503. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5504. #endif
  5505. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5506. { NULL, },
  5507. };
  5508. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5509. #define for_each_sd_topology(tl) \
  5510. for (tl = sched_domain_topology; tl->mask; tl++)
  5511. void set_sched_topology(struct sched_domain_topology_level *tl)
  5512. {
  5513. sched_domain_topology = tl;
  5514. }
  5515. #ifdef CONFIG_NUMA
  5516. static const struct cpumask *sd_numa_mask(int cpu)
  5517. {
  5518. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5519. }
  5520. static void sched_numa_warn(const char *str)
  5521. {
  5522. static int done = false;
  5523. int i,j;
  5524. if (done)
  5525. return;
  5526. done = true;
  5527. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5528. for (i = 0; i < nr_node_ids; i++) {
  5529. printk(KERN_WARNING " ");
  5530. for (j = 0; j < nr_node_ids; j++)
  5531. printk(KERN_CONT "%02d ", node_distance(i,j));
  5532. printk(KERN_CONT "\n");
  5533. }
  5534. printk(KERN_WARNING "\n");
  5535. }
  5536. bool find_numa_distance(int distance)
  5537. {
  5538. int i;
  5539. if (distance == node_distance(0, 0))
  5540. return true;
  5541. for (i = 0; i < sched_domains_numa_levels; i++) {
  5542. if (sched_domains_numa_distance[i] == distance)
  5543. return true;
  5544. }
  5545. return false;
  5546. }
  5547. /*
  5548. * A system can have three types of NUMA topology:
  5549. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5550. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5551. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5552. *
  5553. * The difference between a glueless mesh topology and a backplane
  5554. * topology lies in whether communication between not directly
  5555. * connected nodes goes through intermediary nodes (where programs
  5556. * could run), or through backplane controllers. This affects
  5557. * placement of programs.
  5558. *
  5559. * The type of topology can be discerned with the following tests:
  5560. * - If the maximum distance between any nodes is 1 hop, the system
  5561. * is directly connected.
  5562. * - If for two nodes A and B, located N > 1 hops away from each other,
  5563. * there is an intermediary node C, which is < N hops away from both
  5564. * nodes A and B, the system is a glueless mesh.
  5565. */
  5566. static void init_numa_topology_type(void)
  5567. {
  5568. int a, b, c, n;
  5569. n = sched_max_numa_distance;
  5570. if (sched_domains_numa_levels <= 1) {
  5571. sched_numa_topology_type = NUMA_DIRECT;
  5572. return;
  5573. }
  5574. for_each_online_node(a) {
  5575. for_each_online_node(b) {
  5576. /* Find two nodes furthest removed from each other. */
  5577. if (node_distance(a, b) < n)
  5578. continue;
  5579. /* Is there an intermediary node between a and b? */
  5580. for_each_online_node(c) {
  5581. if (node_distance(a, c) < n &&
  5582. node_distance(b, c) < n) {
  5583. sched_numa_topology_type =
  5584. NUMA_GLUELESS_MESH;
  5585. return;
  5586. }
  5587. }
  5588. sched_numa_topology_type = NUMA_BACKPLANE;
  5589. return;
  5590. }
  5591. }
  5592. }
  5593. static void sched_init_numa(void)
  5594. {
  5595. int next_distance, curr_distance = node_distance(0, 0);
  5596. struct sched_domain_topology_level *tl;
  5597. int level = 0;
  5598. int i, j, k;
  5599. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5600. if (!sched_domains_numa_distance)
  5601. return;
  5602. /*
  5603. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5604. * unique distances in the node_distance() table.
  5605. *
  5606. * Assumes node_distance(0,j) includes all distances in
  5607. * node_distance(i,j) in order to avoid cubic time.
  5608. */
  5609. next_distance = curr_distance;
  5610. for (i = 0; i < nr_node_ids; i++) {
  5611. for (j = 0; j < nr_node_ids; j++) {
  5612. for (k = 0; k < nr_node_ids; k++) {
  5613. int distance = node_distance(i, k);
  5614. if (distance > curr_distance &&
  5615. (distance < next_distance ||
  5616. next_distance == curr_distance))
  5617. next_distance = distance;
  5618. /*
  5619. * While not a strong assumption it would be nice to know
  5620. * about cases where if node A is connected to B, B is not
  5621. * equally connected to A.
  5622. */
  5623. if (sched_debug() && node_distance(k, i) != distance)
  5624. sched_numa_warn("Node-distance not symmetric");
  5625. if (sched_debug() && i && !find_numa_distance(distance))
  5626. sched_numa_warn("Node-0 not representative");
  5627. }
  5628. if (next_distance != curr_distance) {
  5629. sched_domains_numa_distance[level++] = next_distance;
  5630. sched_domains_numa_levels = level;
  5631. curr_distance = next_distance;
  5632. } else break;
  5633. }
  5634. /*
  5635. * In case of sched_debug() we verify the above assumption.
  5636. */
  5637. if (!sched_debug())
  5638. break;
  5639. }
  5640. if (!level)
  5641. return;
  5642. /*
  5643. * 'level' contains the number of unique distances, excluding the
  5644. * identity distance node_distance(i,i).
  5645. *
  5646. * The sched_domains_numa_distance[] array includes the actual distance
  5647. * numbers.
  5648. */
  5649. /*
  5650. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5651. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5652. * the array will contain less then 'level' members. This could be
  5653. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5654. * in other functions.
  5655. *
  5656. * We reset it to 'level' at the end of this function.
  5657. */
  5658. sched_domains_numa_levels = 0;
  5659. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5660. if (!sched_domains_numa_masks)
  5661. return;
  5662. /*
  5663. * Now for each level, construct a mask per node which contains all
  5664. * cpus of nodes that are that many hops away from us.
  5665. */
  5666. for (i = 0; i < level; i++) {
  5667. sched_domains_numa_masks[i] =
  5668. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5669. if (!sched_domains_numa_masks[i])
  5670. return;
  5671. for (j = 0; j < nr_node_ids; j++) {
  5672. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5673. if (!mask)
  5674. return;
  5675. sched_domains_numa_masks[i][j] = mask;
  5676. for (k = 0; k < nr_node_ids; k++) {
  5677. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5678. continue;
  5679. cpumask_or(mask, mask, cpumask_of_node(k));
  5680. }
  5681. }
  5682. }
  5683. /* Compute default topology size */
  5684. for (i = 0; sched_domain_topology[i].mask; i++);
  5685. tl = kzalloc((i + level + 1) *
  5686. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5687. if (!tl)
  5688. return;
  5689. /*
  5690. * Copy the default topology bits..
  5691. */
  5692. for (i = 0; sched_domain_topology[i].mask; i++)
  5693. tl[i] = sched_domain_topology[i];
  5694. /*
  5695. * .. and append 'j' levels of NUMA goodness.
  5696. */
  5697. for (j = 0; j < level; i++, j++) {
  5698. tl[i] = (struct sched_domain_topology_level){
  5699. .mask = sd_numa_mask,
  5700. .sd_flags = cpu_numa_flags,
  5701. .flags = SDTL_OVERLAP,
  5702. .numa_level = j,
  5703. SD_INIT_NAME(NUMA)
  5704. };
  5705. }
  5706. sched_domain_topology = tl;
  5707. sched_domains_numa_levels = level;
  5708. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5709. init_numa_topology_type();
  5710. }
  5711. static void sched_domains_numa_masks_set(int cpu)
  5712. {
  5713. int i, j;
  5714. int node = cpu_to_node(cpu);
  5715. for (i = 0; i < sched_domains_numa_levels; i++) {
  5716. for (j = 0; j < nr_node_ids; j++) {
  5717. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5718. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5719. }
  5720. }
  5721. }
  5722. static void sched_domains_numa_masks_clear(int cpu)
  5723. {
  5724. int i, j;
  5725. for (i = 0; i < sched_domains_numa_levels; i++) {
  5726. for (j = 0; j < nr_node_ids; j++)
  5727. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5728. }
  5729. }
  5730. /*
  5731. * Update sched_domains_numa_masks[level][node] array when new cpus
  5732. * are onlined.
  5733. */
  5734. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5735. unsigned long action,
  5736. void *hcpu)
  5737. {
  5738. int cpu = (long)hcpu;
  5739. switch (action & ~CPU_TASKS_FROZEN) {
  5740. case CPU_ONLINE:
  5741. sched_domains_numa_masks_set(cpu);
  5742. break;
  5743. case CPU_DEAD:
  5744. sched_domains_numa_masks_clear(cpu);
  5745. break;
  5746. default:
  5747. return NOTIFY_DONE;
  5748. }
  5749. return NOTIFY_OK;
  5750. }
  5751. #else
  5752. static inline void sched_init_numa(void)
  5753. {
  5754. }
  5755. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5756. unsigned long action,
  5757. void *hcpu)
  5758. {
  5759. return 0;
  5760. }
  5761. #endif /* CONFIG_NUMA */
  5762. static int __sdt_alloc(const struct cpumask *cpu_map)
  5763. {
  5764. struct sched_domain_topology_level *tl;
  5765. int j;
  5766. for_each_sd_topology(tl) {
  5767. struct sd_data *sdd = &tl->data;
  5768. sdd->sd = alloc_percpu(struct sched_domain *);
  5769. if (!sdd->sd)
  5770. return -ENOMEM;
  5771. sdd->sg = alloc_percpu(struct sched_group *);
  5772. if (!sdd->sg)
  5773. return -ENOMEM;
  5774. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5775. if (!sdd->sgc)
  5776. return -ENOMEM;
  5777. for_each_cpu(j, cpu_map) {
  5778. struct sched_domain *sd;
  5779. struct sched_group *sg;
  5780. struct sched_group_capacity *sgc;
  5781. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5782. GFP_KERNEL, cpu_to_node(j));
  5783. if (!sd)
  5784. return -ENOMEM;
  5785. *per_cpu_ptr(sdd->sd, j) = sd;
  5786. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5787. GFP_KERNEL, cpu_to_node(j));
  5788. if (!sg)
  5789. return -ENOMEM;
  5790. sg->next = sg;
  5791. *per_cpu_ptr(sdd->sg, j) = sg;
  5792. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5793. GFP_KERNEL, cpu_to_node(j));
  5794. if (!sgc)
  5795. return -ENOMEM;
  5796. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5797. }
  5798. }
  5799. return 0;
  5800. }
  5801. static void __sdt_free(const struct cpumask *cpu_map)
  5802. {
  5803. struct sched_domain_topology_level *tl;
  5804. int j;
  5805. for_each_sd_topology(tl) {
  5806. struct sd_data *sdd = &tl->data;
  5807. for_each_cpu(j, cpu_map) {
  5808. struct sched_domain *sd;
  5809. if (sdd->sd) {
  5810. sd = *per_cpu_ptr(sdd->sd, j);
  5811. if (sd && (sd->flags & SD_OVERLAP))
  5812. free_sched_groups(sd->groups, 0);
  5813. kfree(*per_cpu_ptr(sdd->sd, j));
  5814. }
  5815. if (sdd->sg)
  5816. kfree(*per_cpu_ptr(sdd->sg, j));
  5817. if (sdd->sgc)
  5818. kfree(*per_cpu_ptr(sdd->sgc, j));
  5819. }
  5820. free_percpu(sdd->sd);
  5821. sdd->sd = NULL;
  5822. free_percpu(sdd->sg);
  5823. sdd->sg = NULL;
  5824. free_percpu(sdd->sgc);
  5825. sdd->sgc = NULL;
  5826. }
  5827. }
  5828. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5829. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5830. struct sched_domain *child, int cpu)
  5831. {
  5832. struct sched_domain *sd = sd_init(tl, cpu);
  5833. if (!sd)
  5834. return child;
  5835. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5836. if (child) {
  5837. sd->level = child->level + 1;
  5838. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5839. child->parent = sd;
  5840. sd->child = child;
  5841. if (!cpumask_subset(sched_domain_span(child),
  5842. sched_domain_span(sd))) {
  5843. pr_err("BUG: arch topology borken\n");
  5844. #ifdef CONFIG_SCHED_DEBUG
  5845. pr_err(" the %s domain not a subset of the %s domain\n",
  5846. child->name, sd->name);
  5847. #endif
  5848. /* Fixup, ensure @sd has at least @child cpus. */
  5849. cpumask_or(sched_domain_span(sd),
  5850. sched_domain_span(sd),
  5851. sched_domain_span(child));
  5852. }
  5853. }
  5854. set_domain_attribute(sd, attr);
  5855. return sd;
  5856. }
  5857. /*
  5858. * Build sched domains for a given set of cpus and attach the sched domains
  5859. * to the individual cpus
  5860. */
  5861. static int build_sched_domains(const struct cpumask *cpu_map,
  5862. struct sched_domain_attr *attr)
  5863. {
  5864. enum s_alloc alloc_state;
  5865. struct sched_domain *sd;
  5866. struct s_data d;
  5867. int i, ret = -ENOMEM;
  5868. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5869. if (alloc_state != sa_rootdomain)
  5870. goto error;
  5871. /* Set up domains for cpus specified by the cpu_map. */
  5872. for_each_cpu(i, cpu_map) {
  5873. struct sched_domain_topology_level *tl;
  5874. sd = NULL;
  5875. for_each_sd_topology(tl) {
  5876. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5877. if (tl == sched_domain_topology)
  5878. *per_cpu_ptr(d.sd, i) = sd;
  5879. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5880. sd->flags |= SD_OVERLAP;
  5881. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5882. break;
  5883. }
  5884. }
  5885. /* Build the groups for the domains */
  5886. for_each_cpu(i, cpu_map) {
  5887. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5888. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5889. if (sd->flags & SD_OVERLAP) {
  5890. if (build_overlap_sched_groups(sd, i))
  5891. goto error;
  5892. } else {
  5893. if (build_sched_groups(sd, i))
  5894. goto error;
  5895. }
  5896. }
  5897. }
  5898. /* Calculate CPU capacity for physical packages and nodes */
  5899. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5900. if (!cpumask_test_cpu(i, cpu_map))
  5901. continue;
  5902. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5903. claim_allocations(i, sd);
  5904. init_sched_groups_capacity(i, sd);
  5905. }
  5906. }
  5907. /* Attach the domains */
  5908. rcu_read_lock();
  5909. for_each_cpu(i, cpu_map) {
  5910. sd = *per_cpu_ptr(d.sd, i);
  5911. cpu_attach_domain(sd, d.rd, i);
  5912. }
  5913. rcu_read_unlock();
  5914. ret = 0;
  5915. error:
  5916. __free_domain_allocs(&d, alloc_state, cpu_map);
  5917. return ret;
  5918. }
  5919. static cpumask_var_t *doms_cur; /* current sched domains */
  5920. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5921. static struct sched_domain_attr *dattr_cur;
  5922. /* attribues of custom domains in 'doms_cur' */
  5923. /*
  5924. * Special case: If a kmalloc of a doms_cur partition (array of
  5925. * cpumask) fails, then fallback to a single sched domain,
  5926. * as determined by the single cpumask fallback_doms.
  5927. */
  5928. static cpumask_var_t fallback_doms;
  5929. /*
  5930. * arch_update_cpu_topology lets virtualized architectures update the
  5931. * cpu core maps. It is supposed to return 1 if the topology changed
  5932. * or 0 if it stayed the same.
  5933. */
  5934. int __weak arch_update_cpu_topology(void)
  5935. {
  5936. return 0;
  5937. }
  5938. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5939. {
  5940. int i;
  5941. cpumask_var_t *doms;
  5942. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5943. if (!doms)
  5944. return NULL;
  5945. for (i = 0; i < ndoms; i++) {
  5946. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5947. free_sched_domains(doms, i);
  5948. return NULL;
  5949. }
  5950. }
  5951. return doms;
  5952. }
  5953. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5954. {
  5955. unsigned int i;
  5956. for (i = 0; i < ndoms; i++)
  5957. free_cpumask_var(doms[i]);
  5958. kfree(doms);
  5959. }
  5960. /*
  5961. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5962. * For now this just excludes isolated cpus, but could be used to
  5963. * exclude other special cases in the future.
  5964. */
  5965. static int init_sched_domains(const struct cpumask *cpu_map)
  5966. {
  5967. int err;
  5968. arch_update_cpu_topology();
  5969. ndoms_cur = 1;
  5970. doms_cur = alloc_sched_domains(ndoms_cur);
  5971. if (!doms_cur)
  5972. doms_cur = &fallback_doms;
  5973. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5974. err = build_sched_domains(doms_cur[0], NULL);
  5975. register_sched_domain_sysctl();
  5976. return err;
  5977. }
  5978. /*
  5979. * Detach sched domains from a group of cpus specified in cpu_map
  5980. * These cpus will now be attached to the NULL domain
  5981. */
  5982. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5983. {
  5984. int i;
  5985. rcu_read_lock();
  5986. for_each_cpu(i, cpu_map)
  5987. cpu_attach_domain(NULL, &def_root_domain, i);
  5988. rcu_read_unlock();
  5989. }
  5990. /* handle null as "default" */
  5991. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5992. struct sched_domain_attr *new, int idx_new)
  5993. {
  5994. struct sched_domain_attr tmp;
  5995. /* fast path */
  5996. if (!new && !cur)
  5997. return 1;
  5998. tmp = SD_ATTR_INIT;
  5999. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6000. new ? (new + idx_new) : &tmp,
  6001. sizeof(struct sched_domain_attr));
  6002. }
  6003. /*
  6004. * Partition sched domains as specified by the 'ndoms_new'
  6005. * cpumasks in the array doms_new[] of cpumasks. This compares
  6006. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6007. * It destroys each deleted domain and builds each new domain.
  6008. *
  6009. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6010. * The masks don't intersect (don't overlap.) We should setup one
  6011. * sched domain for each mask. CPUs not in any of the cpumasks will
  6012. * not be load balanced. If the same cpumask appears both in the
  6013. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6014. * it as it is.
  6015. *
  6016. * The passed in 'doms_new' should be allocated using
  6017. * alloc_sched_domains. This routine takes ownership of it and will
  6018. * free_sched_domains it when done with it. If the caller failed the
  6019. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6020. * and partition_sched_domains() will fallback to the single partition
  6021. * 'fallback_doms', it also forces the domains to be rebuilt.
  6022. *
  6023. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6024. * ndoms_new == 0 is a special case for destroying existing domains,
  6025. * and it will not create the default domain.
  6026. *
  6027. * Call with hotplug lock held
  6028. */
  6029. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6030. struct sched_domain_attr *dattr_new)
  6031. {
  6032. int i, j, n;
  6033. int new_topology;
  6034. mutex_lock(&sched_domains_mutex);
  6035. /* always unregister in case we don't destroy any domains */
  6036. unregister_sched_domain_sysctl();
  6037. /* Let architecture update cpu core mappings. */
  6038. new_topology = arch_update_cpu_topology();
  6039. n = doms_new ? ndoms_new : 0;
  6040. /* Destroy deleted domains */
  6041. for (i = 0; i < ndoms_cur; i++) {
  6042. for (j = 0; j < n && !new_topology; j++) {
  6043. if (cpumask_equal(doms_cur[i], doms_new[j])
  6044. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6045. goto match1;
  6046. }
  6047. /* no match - a current sched domain not in new doms_new[] */
  6048. detach_destroy_domains(doms_cur[i]);
  6049. match1:
  6050. ;
  6051. }
  6052. n = ndoms_cur;
  6053. if (doms_new == NULL) {
  6054. n = 0;
  6055. doms_new = &fallback_doms;
  6056. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6057. WARN_ON_ONCE(dattr_new);
  6058. }
  6059. /* Build new domains */
  6060. for (i = 0; i < ndoms_new; i++) {
  6061. for (j = 0; j < n && !new_topology; j++) {
  6062. if (cpumask_equal(doms_new[i], doms_cur[j])
  6063. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6064. goto match2;
  6065. }
  6066. /* no match - add a new doms_new */
  6067. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6068. match2:
  6069. ;
  6070. }
  6071. /* Remember the new sched domains */
  6072. if (doms_cur != &fallback_doms)
  6073. free_sched_domains(doms_cur, ndoms_cur);
  6074. kfree(dattr_cur); /* kfree(NULL) is safe */
  6075. doms_cur = doms_new;
  6076. dattr_cur = dattr_new;
  6077. ndoms_cur = ndoms_new;
  6078. register_sched_domain_sysctl();
  6079. mutex_unlock(&sched_domains_mutex);
  6080. }
  6081. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  6082. /*
  6083. * Update cpusets according to cpu_active mask. If cpusets are
  6084. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6085. * around partition_sched_domains().
  6086. *
  6087. * If we come here as part of a suspend/resume, don't touch cpusets because we
  6088. * want to restore it back to its original state upon resume anyway.
  6089. */
  6090. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6091. void *hcpu)
  6092. {
  6093. switch (action) {
  6094. case CPU_ONLINE_FROZEN:
  6095. case CPU_DOWN_FAILED_FROZEN:
  6096. /*
  6097. * num_cpus_frozen tracks how many CPUs are involved in suspend
  6098. * resume sequence. As long as this is not the last online
  6099. * operation in the resume sequence, just build a single sched
  6100. * domain, ignoring cpusets.
  6101. */
  6102. num_cpus_frozen--;
  6103. if (likely(num_cpus_frozen)) {
  6104. partition_sched_domains(1, NULL, NULL);
  6105. break;
  6106. }
  6107. /*
  6108. * This is the last CPU online operation. So fall through and
  6109. * restore the original sched domains by considering the
  6110. * cpuset configurations.
  6111. */
  6112. case CPU_ONLINE:
  6113. cpuset_update_active_cpus(true);
  6114. break;
  6115. default:
  6116. return NOTIFY_DONE;
  6117. }
  6118. return NOTIFY_OK;
  6119. }
  6120. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6121. void *hcpu)
  6122. {
  6123. unsigned long flags;
  6124. long cpu = (long)hcpu;
  6125. struct dl_bw *dl_b;
  6126. bool overflow;
  6127. int cpus;
  6128. switch (action) {
  6129. case CPU_DOWN_PREPARE:
  6130. rcu_read_lock_sched();
  6131. dl_b = dl_bw_of(cpu);
  6132. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6133. cpus = dl_bw_cpus(cpu);
  6134. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  6135. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6136. rcu_read_unlock_sched();
  6137. if (overflow)
  6138. return notifier_from_errno(-EBUSY);
  6139. cpuset_update_active_cpus(false);
  6140. break;
  6141. case CPU_DOWN_PREPARE_FROZEN:
  6142. num_cpus_frozen++;
  6143. partition_sched_domains(1, NULL, NULL);
  6144. break;
  6145. default:
  6146. return NOTIFY_DONE;
  6147. }
  6148. return NOTIFY_OK;
  6149. }
  6150. void __init sched_init_smp(void)
  6151. {
  6152. cpumask_var_t non_isolated_cpus;
  6153. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6154. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6155. /* nohz_full won't take effect without isolating the cpus. */
  6156. tick_nohz_full_add_cpus_to(cpu_isolated_map);
  6157. sched_init_numa();
  6158. /*
  6159. * There's no userspace yet to cause hotplug operations; hence all the
  6160. * cpu masks are stable and all blatant races in the below code cannot
  6161. * happen.
  6162. */
  6163. mutex_lock(&sched_domains_mutex);
  6164. init_sched_domains(cpu_active_mask);
  6165. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6166. if (cpumask_empty(non_isolated_cpus))
  6167. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6168. mutex_unlock(&sched_domains_mutex);
  6169. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  6170. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6171. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6172. init_hrtick();
  6173. /* Move init over to a non-isolated CPU */
  6174. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6175. BUG();
  6176. sched_init_granularity();
  6177. free_cpumask_var(non_isolated_cpus);
  6178. init_sched_rt_class();
  6179. init_sched_dl_class();
  6180. }
  6181. #else
  6182. void __init sched_init_smp(void)
  6183. {
  6184. sched_init_granularity();
  6185. }
  6186. #endif /* CONFIG_SMP */
  6187. int in_sched_functions(unsigned long addr)
  6188. {
  6189. return in_lock_functions(addr) ||
  6190. (addr >= (unsigned long)__sched_text_start
  6191. && addr < (unsigned long)__sched_text_end);
  6192. }
  6193. #ifdef CONFIG_CGROUP_SCHED
  6194. /*
  6195. * Default task group.
  6196. * Every task in system belongs to this group at bootup.
  6197. */
  6198. struct task_group root_task_group;
  6199. LIST_HEAD(task_groups);
  6200. #endif
  6201. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6202. void __init sched_init(void)
  6203. {
  6204. int i, j;
  6205. unsigned long alloc_size = 0, ptr;
  6206. #ifdef CONFIG_FAIR_GROUP_SCHED
  6207. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6208. #endif
  6209. #ifdef CONFIG_RT_GROUP_SCHED
  6210. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6211. #endif
  6212. if (alloc_size) {
  6213. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6214. #ifdef CONFIG_FAIR_GROUP_SCHED
  6215. root_task_group.se = (struct sched_entity **)ptr;
  6216. ptr += nr_cpu_ids * sizeof(void **);
  6217. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6218. ptr += nr_cpu_ids * sizeof(void **);
  6219. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6220. #ifdef CONFIG_RT_GROUP_SCHED
  6221. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6222. ptr += nr_cpu_ids * sizeof(void **);
  6223. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6224. ptr += nr_cpu_ids * sizeof(void **);
  6225. #endif /* CONFIG_RT_GROUP_SCHED */
  6226. }
  6227. #ifdef CONFIG_CPUMASK_OFFSTACK
  6228. for_each_possible_cpu(i) {
  6229. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6230. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6231. }
  6232. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6233. init_rt_bandwidth(&def_rt_bandwidth,
  6234. global_rt_period(), global_rt_runtime());
  6235. init_dl_bandwidth(&def_dl_bandwidth,
  6236. global_rt_period(), global_rt_runtime());
  6237. #ifdef CONFIG_SMP
  6238. init_defrootdomain();
  6239. #endif
  6240. #ifdef CONFIG_RT_GROUP_SCHED
  6241. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6242. global_rt_period(), global_rt_runtime());
  6243. #endif /* CONFIG_RT_GROUP_SCHED */
  6244. #ifdef CONFIG_CGROUP_SCHED
  6245. list_add(&root_task_group.list, &task_groups);
  6246. INIT_LIST_HEAD(&root_task_group.children);
  6247. INIT_LIST_HEAD(&root_task_group.siblings);
  6248. autogroup_init(&init_task);
  6249. #endif /* CONFIG_CGROUP_SCHED */
  6250. for_each_possible_cpu(i) {
  6251. struct rq *rq;
  6252. rq = cpu_rq(i);
  6253. raw_spin_lock_init(&rq->lock);
  6254. rq->nr_running = 0;
  6255. rq->calc_load_active = 0;
  6256. rq->calc_load_update = jiffies + LOAD_FREQ;
  6257. init_cfs_rq(&rq->cfs);
  6258. init_rt_rq(&rq->rt);
  6259. init_dl_rq(&rq->dl);
  6260. #ifdef CONFIG_FAIR_GROUP_SCHED
  6261. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6262. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6263. /*
  6264. * How much cpu bandwidth does root_task_group get?
  6265. *
  6266. * In case of task-groups formed thr' the cgroup filesystem, it
  6267. * gets 100% of the cpu resources in the system. This overall
  6268. * system cpu resource is divided among the tasks of
  6269. * root_task_group and its child task-groups in a fair manner,
  6270. * based on each entity's (task or task-group's) weight
  6271. * (se->load.weight).
  6272. *
  6273. * In other words, if root_task_group has 10 tasks of weight
  6274. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6275. * then A0's share of the cpu resource is:
  6276. *
  6277. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6278. *
  6279. * We achieve this by letting root_task_group's tasks sit
  6280. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6281. */
  6282. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6283. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6284. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6285. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6286. #ifdef CONFIG_RT_GROUP_SCHED
  6287. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6288. #endif
  6289. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6290. rq->cpu_load[j] = 0;
  6291. rq->last_load_update_tick = jiffies;
  6292. #ifdef CONFIG_SMP
  6293. rq->sd = NULL;
  6294. rq->rd = NULL;
  6295. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6296. rq->balance_callback = NULL;
  6297. rq->active_balance = 0;
  6298. rq->next_balance = jiffies;
  6299. rq->push_cpu = 0;
  6300. rq->cpu = i;
  6301. rq->online = 0;
  6302. rq->idle_stamp = 0;
  6303. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6304. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6305. INIT_LIST_HEAD(&rq->cfs_tasks);
  6306. rq_attach_root(rq, &def_root_domain);
  6307. #ifdef CONFIG_NO_HZ_COMMON
  6308. rq->nohz_flags = 0;
  6309. #endif
  6310. #ifdef CONFIG_NO_HZ_FULL
  6311. rq->last_sched_tick = 0;
  6312. #endif
  6313. #endif
  6314. init_rq_hrtick(rq);
  6315. atomic_set(&rq->nr_iowait, 0);
  6316. }
  6317. set_load_weight(&init_task);
  6318. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6319. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6320. #endif
  6321. /*
  6322. * The boot idle thread does lazy MMU switching as well:
  6323. */
  6324. atomic_inc(&init_mm.mm_count);
  6325. enter_lazy_tlb(&init_mm, current);
  6326. /*
  6327. * During early bootup we pretend to be a normal task:
  6328. */
  6329. current->sched_class = &fair_sched_class;
  6330. /*
  6331. * Make us the idle thread. Technically, schedule() should not be
  6332. * called from this thread, however somewhere below it might be,
  6333. * but because we are the idle thread, we just pick up running again
  6334. * when this runqueue becomes "idle".
  6335. */
  6336. init_idle(current, smp_processor_id());
  6337. calc_load_update = jiffies + LOAD_FREQ;
  6338. #ifdef CONFIG_SMP
  6339. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6340. /* May be allocated at isolcpus cmdline parse time */
  6341. if (cpu_isolated_map == NULL)
  6342. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6343. idle_thread_set_boot_cpu();
  6344. set_cpu_rq_start_time();
  6345. #endif
  6346. init_sched_fair_class();
  6347. scheduler_running = 1;
  6348. }
  6349. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6350. static inline int preempt_count_equals(int preempt_offset)
  6351. {
  6352. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6353. return (nested == preempt_offset);
  6354. }
  6355. void __might_sleep(const char *file, int line, int preempt_offset)
  6356. {
  6357. /*
  6358. * Blocking primitives will set (and therefore destroy) current->state,
  6359. * since we will exit with TASK_RUNNING make sure we enter with it,
  6360. * otherwise we will destroy state.
  6361. */
  6362. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6363. "do not call blocking ops when !TASK_RUNNING; "
  6364. "state=%lx set at [<%p>] %pS\n",
  6365. current->state,
  6366. (void *)current->task_state_change,
  6367. (void *)current->task_state_change);
  6368. ___might_sleep(file, line, preempt_offset);
  6369. }
  6370. EXPORT_SYMBOL(__might_sleep);
  6371. void ___might_sleep(const char *file, int line, int preempt_offset)
  6372. {
  6373. static unsigned long prev_jiffy; /* ratelimiting */
  6374. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6375. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6376. !is_idle_task(current)) ||
  6377. system_state != SYSTEM_RUNNING || oops_in_progress)
  6378. return;
  6379. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6380. return;
  6381. prev_jiffy = jiffies;
  6382. printk(KERN_ERR
  6383. "BUG: sleeping function called from invalid context at %s:%d\n",
  6384. file, line);
  6385. printk(KERN_ERR
  6386. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6387. in_atomic(), irqs_disabled(),
  6388. current->pid, current->comm);
  6389. if (task_stack_end_corrupted(current))
  6390. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6391. debug_show_held_locks(current);
  6392. if (irqs_disabled())
  6393. print_irqtrace_events(current);
  6394. #ifdef CONFIG_DEBUG_PREEMPT
  6395. if (!preempt_count_equals(preempt_offset)) {
  6396. pr_err("Preemption disabled at:");
  6397. print_ip_sym(current->preempt_disable_ip);
  6398. pr_cont("\n");
  6399. }
  6400. #endif
  6401. dump_stack();
  6402. }
  6403. EXPORT_SYMBOL(___might_sleep);
  6404. #endif
  6405. #ifdef CONFIG_MAGIC_SYSRQ
  6406. void normalize_rt_tasks(void)
  6407. {
  6408. struct task_struct *g, *p;
  6409. struct sched_attr attr = {
  6410. .sched_policy = SCHED_NORMAL,
  6411. };
  6412. read_lock(&tasklist_lock);
  6413. for_each_process_thread(g, p) {
  6414. /*
  6415. * Only normalize user tasks:
  6416. */
  6417. if (p->flags & PF_KTHREAD)
  6418. continue;
  6419. p->se.exec_start = 0;
  6420. #ifdef CONFIG_SCHEDSTATS
  6421. p->se.statistics.wait_start = 0;
  6422. p->se.statistics.sleep_start = 0;
  6423. p->se.statistics.block_start = 0;
  6424. #endif
  6425. if (!dl_task(p) && !rt_task(p)) {
  6426. /*
  6427. * Renice negative nice level userspace
  6428. * tasks back to 0:
  6429. */
  6430. if (task_nice(p) < 0)
  6431. set_user_nice(p, 0);
  6432. continue;
  6433. }
  6434. __sched_setscheduler(p, &attr, false, false);
  6435. }
  6436. read_unlock(&tasklist_lock);
  6437. }
  6438. #endif /* CONFIG_MAGIC_SYSRQ */
  6439. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6440. /*
  6441. * These functions are only useful for the IA64 MCA handling, or kdb.
  6442. *
  6443. * They can only be called when the whole system has been
  6444. * stopped - every CPU needs to be quiescent, and no scheduling
  6445. * activity can take place. Using them for anything else would
  6446. * be a serious bug, and as a result, they aren't even visible
  6447. * under any other configuration.
  6448. */
  6449. /**
  6450. * curr_task - return the current task for a given cpu.
  6451. * @cpu: the processor in question.
  6452. *
  6453. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6454. *
  6455. * Return: The current task for @cpu.
  6456. */
  6457. struct task_struct *curr_task(int cpu)
  6458. {
  6459. return cpu_curr(cpu);
  6460. }
  6461. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6462. #ifdef CONFIG_IA64
  6463. /**
  6464. * set_curr_task - set the current task for a given cpu.
  6465. * @cpu: the processor in question.
  6466. * @p: the task pointer to set.
  6467. *
  6468. * Description: This function must only be used when non-maskable interrupts
  6469. * are serviced on a separate stack. It allows the architecture to switch the
  6470. * notion of the current task on a cpu in a non-blocking manner. This function
  6471. * must be called with all CPU's synchronized, and interrupts disabled, the
  6472. * and caller must save the original value of the current task (see
  6473. * curr_task() above) and restore that value before reenabling interrupts and
  6474. * re-starting the system.
  6475. *
  6476. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6477. */
  6478. void set_curr_task(int cpu, struct task_struct *p)
  6479. {
  6480. cpu_curr(cpu) = p;
  6481. }
  6482. #endif
  6483. #ifdef CONFIG_CGROUP_SCHED
  6484. /* task_group_lock serializes the addition/removal of task groups */
  6485. static DEFINE_SPINLOCK(task_group_lock);
  6486. static void free_sched_group(struct task_group *tg)
  6487. {
  6488. free_fair_sched_group(tg);
  6489. free_rt_sched_group(tg);
  6490. autogroup_free(tg);
  6491. kfree(tg);
  6492. }
  6493. /* allocate runqueue etc for a new task group */
  6494. struct task_group *sched_create_group(struct task_group *parent)
  6495. {
  6496. struct task_group *tg;
  6497. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6498. if (!tg)
  6499. return ERR_PTR(-ENOMEM);
  6500. if (!alloc_fair_sched_group(tg, parent))
  6501. goto err;
  6502. if (!alloc_rt_sched_group(tg, parent))
  6503. goto err;
  6504. return tg;
  6505. err:
  6506. free_sched_group(tg);
  6507. return ERR_PTR(-ENOMEM);
  6508. }
  6509. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6510. {
  6511. unsigned long flags;
  6512. spin_lock_irqsave(&task_group_lock, flags);
  6513. list_add_rcu(&tg->list, &task_groups);
  6514. WARN_ON(!parent); /* root should already exist */
  6515. tg->parent = parent;
  6516. INIT_LIST_HEAD(&tg->children);
  6517. list_add_rcu(&tg->siblings, &parent->children);
  6518. spin_unlock_irqrestore(&task_group_lock, flags);
  6519. }
  6520. /* rcu callback to free various structures associated with a task group */
  6521. static void free_sched_group_rcu(struct rcu_head *rhp)
  6522. {
  6523. /* now it should be safe to free those cfs_rqs */
  6524. free_sched_group(container_of(rhp, struct task_group, rcu));
  6525. }
  6526. /* Destroy runqueue etc associated with a task group */
  6527. void sched_destroy_group(struct task_group *tg)
  6528. {
  6529. /* wait for possible concurrent references to cfs_rqs complete */
  6530. call_rcu(&tg->rcu, free_sched_group_rcu);
  6531. }
  6532. void sched_offline_group(struct task_group *tg)
  6533. {
  6534. unsigned long flags;
  6535. int i;
  6536. /* end participation in shares distribution */
  6537. for_each_possible_cpu(i)
  6538. unregister_fair_sched_group(tg, i);
  6539. spin_lock_irqsave(&task_group_lock, flags);
  6540. list_del_rcu(&tg->list);
  6541. list_del_rcu(&tg->siblings);
  6542. spin_unlock_irqrestore(&task_group_lock, flags);
  6543. }
  6544. /* change task's runqueue when it moves between groups.
  6545. * The caller of this function should have put the task in its new group
  6546. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6547. * reflect its new group.
  6548. */
  6549. void sched_move_task(struct task_struct *tsk)
  6550. {
  6551. struct task_group *tg;
  6552. int queued, running;
  6553. unsigned long flags;
  6554. struct rq *rq;
  6555. rq = task_rq_lock(tsk, &flags);
  6556. running = task_current(rq, tsk);
  6557. queued = task_on_rq_queued(tsk);
  6558. if (queued)
  6559. dequeue_task(rq, tsk, 0);
  6560. if (unlikely(running))
  6561. put_prev_task(rq, tsk);
  6562. /*
  6563. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6564. * which is pointless here. Thus, we pass "true" to task_css_check()
  6565. * to prevent lockdep warnings.
  6566. */
  6567. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6568. struct task_group, css);
  6569. tg = autogroup_task_group(tsk, tg);
  6570. tsk->sched_task_group = tg;
  6571. #ifdef CONFIG_FAIR_GROUP_SCHED
  6572. if (tsk->sched_class->task_move_group)
  6573. tsk->sched_class->task_move_group(tsk, queued);
  6574. else
  6575. #endif
  6576. set_task_rq(tsk, task_cpu(tsk));
  6577. if (unlikely(running))
  6578. tsk->sched_class->set_curr_task(rq);
  6579. if (queued)
  6580. enqueue_task(rq, tsk, 0);
  6581. task_rq_unlock(rq, tsk, &flags);
  6582. }
  6583. #endif /* CONFIG_CGROUP_SCHED */
  6584. #ifdef CONFIG_RT_GROUP_SCHED
  6585. /*
  6586. * Ensure that the real time constraints are schedulable.
  6587. */
  6588. static DEFINE_MUTEX(rt_constraints_mutex);
  6589. /* Must be called with tasklist_lock held */
  6590. static inline int tg_has_rt_tasks(struct task_group *tg)
  6591. {
  6592. struct task_struct *g, *p;
  6593. /*
  6594. * Autogroups do not have RT tasks; see autogroup_create().
  6595. */
  6596. if (task_group_is_autogroup(tg))
  6597. return 0;
  6598. for_each_process_thread(g, p) {
  6599. if (rt_task(p) && task_group(p) == tg)
  6600. return 1;
  6601. }
  6602. return 0;
  6603. }
  6604. struct rt_schedulable_data {
  6605. struct task_group *tg;
  6606. u64 rt_period;
  6607. u64 rt_runtime;
  6608. };
  6609. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6610. {
  6611. struct rt_schedulable_data *d = data;
  6612. struct task_group *child;
  6613. unsigned long total, sum = 0;
  6614. u64 period, runtime;
  6615. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6616. runtime = tg->rt_bandwidth.rt_runtime;
  6617. if (tg == d->tg) {
  6618. period = d->rt_period;
  6619. runtime = d->rt_runtime;
  6620. }
  6621. /*
  6622. * Cannot have more runtime than the period.
  6623. */
  6624. if (runtime > period && runtime != RUNTIME_INF)
  6625. return -EINVAL;
  6626. /*
  6627. * Ensure we don't starve existing RT tasks.
  6628. */
  6629. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6630. return -EBUSY;
  6631. total = to_ratio(period, runtime);
  6632. /*
  6633. * Nobody can have more than the global setting allows.
  6634. */
  6635. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6636. return -EINVAL;
  6637. /*
  6638. * The sum of our children's runtime should not exceed our own.
  6639. */
  6640. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6641. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6642. runtime = child->rt_bandwidth.rt_runtime;
  6643. if (child == d->tg) {
  6644. period = d->rt_period;
  6645. runtime = d->rt_runtime;
  6646. }
  6647. sum += to_ratio(period, runtime);
  6648. }
  6649. if (sum > total)
  6650. return -EINVAL;
  6651. return 0;
  6652. }
  6653. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6654. {
  6655. int ret;
  6656. struct rt_schedulable_data data = {
  6657. .tg = tg,
  6658. .rt_period = period,
  6659. .rt_runtime = runtime,
  6660. };
  6661. rcu_read_lock();
  6662. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6663. rcu_read_unlock();
  6664. return ret;
  6665. }
  6666. static int tg_set_rt_bandwidth(struct task_group *tg,
  6667. u64 rt_period, u64 rt_runtime)
  6668. {
  6669. int i, err = 0;
  6670. /*
  6671. * Disallowing the root group RT runtime is BAD, it would disallow the
  6672. * kernel creating (and or operating) RT threads.
  6673. */
  6674. if (tg == &root_task_group && rt_runtime == 0)
  6675. return -EINVAL;
  6676. /* No period doesn't make any sense. */
  6677. if (rt_period == 0)
  6678. return -EINVAL;
  6679. mutex_lock(&rt_constraints_mutex);
  6680. read_lock(&tasklist_lock);
  6681. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6682. if (err)
  6683. goto unlock;
  6684. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6685. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6686. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6687. for_each_possible_cpu(i) {
  6688. struct rt_rq *rt_rq = tg->rt_rq[i];
  6689. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6690. rt_rq->rt_runtime = rt_runtime;
  6691. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6692. }
  6693. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6694. unlock:
  6695. read_unlock(&tasklist_lock);
  6696. mutex_unlock(&rt_constraints_mutex);
  6697. return err;
  6698. }
  6699. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6700. {
  6701. u64 rt_runtime, rt_period;
  6702. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6703. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6704. if (rt_runtime_us < 0)
  6705. rt_runtime = RUNTIME_INF;
  6706. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6707. }
  6708. static long sched_group_rt_runtime(struct task_group *tg)
  6709. {
  6710. u64 rt_runtime_us;
  6711. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6712. return -1;
  6713. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6714. do_div(rt_runtime_us, NSEC_PER_USEC);
  6715. return rt_runtime_us;
  6716. }
  6717. static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
  6718. {
  6719. u64 rt_runtime, rt_period;
  6720. rt_period = rt_period_us * NSEC_PER_USEC;
  6721. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6722. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6723. }
  6724. static long sched_group_rt_period(struct task_group *tg)
  6725. {
  6726. u64 rt_period_us;
  6727. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6728. do_div(rt_period_us, NSEC_PER_USEC);
  6729. return rt_period_us;
  6730. }
  6731. #endif /* CONFIG_RT_GROUP_SCHED */
  6732. #ifdef CONFIG_RT_GROUP_SCHED
  6733. static int sched_rt_global_constraints(void)
  6734. {
  6735. int ret = 0;
  6736. mutex_lock(&rt_constraints_mutex);
  6737. read_lock(&tasklist_lock);
  6738. ret = __rt_schedulable(NULL, 0, 0);
  6739. read_unlock(&tasklist_lock);
  6740. mutex_unlock(&rt_constraints_mutex);
  6741. return ret;
  6742. }
  6743. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6744. {
  6745. /* Don't accept realtime tasks when there is no way for them to run */
  6746. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6747. return 0;
  6748. return 1;
  6749. }
  6750. #else /* !CONFIG_RT_GROUP_SCHED */
  6751. static int sched_rt_global_constraints(void)
  6752. {
  6753. unsigned long flags;
  6754. int i, ret = 0;
  6755. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6756. for_each_possible_cpu(i) {
  6757. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6758. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6759. rt_rq->rt_runtime = global_rt_runtime();
  6760. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6761. }
  6762. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6763. return ret;
  6764. }
  6765. #endif /* CONFIG_RT_GROUP_SCHED */
  6766. static int sched_dl_global_validate(void)
  6767. {
  6768. u64 runtime = global_rt_runtime();
  6769. u64 period = global_rt_period();
  6770. u64 new_bw = to_ratio(period, runtime);
  6771. struct dl_bw *dl_b;
  6772. int cpu, ret = 0;
  6773. unsigned long flags;
  6774. /*
  6775. * Here we want to check the bandwidth not being set to some
  6776. * value smaller than the currently allocated bandwidth in
  6777. * any of the root_domains.
  6778. *
  6779. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6780. * cycling on root_domains... Discussion on different/better
  6781. * solutions is welcome!
  6782. */
  6783. for_each_possible_cpu(cpu) {
  6784. rcu_read_lock_sched();
  6785. dl_b = dl_bw_of(cpu);
  6786. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6787. if (new_bw < dl_b->total_bw)
  6788. ret = -EBUSY;
  6789. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6790. rcu_read_unlock_sched();
  6791. if (ret)
  6792. break;
  6793. }
  6794. return ret;
  6795. }
  6796. static void sched_dl_do_global(void)
  6797. {
  6798. u64 new_bw = -1;
  6799. struct dl_bw *dl_b;
  6800. int cpu;
  6801. unsigned long flags;
  6802. def_dl_bandwidth.dl_period = global_rt_period();
  6803. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6804. if (global_rt_runtime() != RUNTIME_INF)
  6805. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6806. /*
  6807. * FIXME: As above...
  6808. */
  6809. for_each_possible_cpu(cpu) {
  6810. rcu_read_lock_sched();
  6811. dl_b = dl_bw_of(cpu);
  6812. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6813. dl_b->bw = new_bw;
  6814. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6815. rcu_read_unlock_sched();
  6816. }
  6817. }
  6818. static int sched_rt_global_validate(void)
  6819. {
  6820. if (sysctl_sched_rt_period <= 0)
  6821. return -EINVAL;
  6822. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6823. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6824. return -EINVAL;
  6825. return 0;
  6826. }
  6827. static void sched_rt_do_global(void)
  6828. {
  6829. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6830. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6831. }
  6832. int sched_rt_handler(struct ctl_table *table, int write,
  6833. void __user *buffer, size_t *lenp,
  6834. loff_t *ppos)
  6835. {
  6836. int old_period, old_runtime;
  6837. static DEFINE_MUTEX(mutex);
  6838. int ret;
  6839. mutex_lock(&mutex);
  6840. old_period = sysctl_sched_rt_period;
  6841. old_runtime = sysctl_sched_rt_runtime;
  6842. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6843. if (!ret && write) {
  6844. ret = sched_rt_global_validate();
  6845. if (ret)
  6846. goto undo;
  6847. ret = sched_dl_global_validate();
  6848. if (ret)
  6849. goto undo;
  6850. ret = sched_rt_global_constraints();
  6851. if (ret)
  6852. goto undo;
  6853. sched_rt_do_global();
  6854. sched_dl_do_global();
  6855. }
  6856. if (0) {
  6857. undo:
  6858. sysctl_sched_rt_period = old_period;
  6859. sysctl_sched_rt_runtime = old_runtime;
  6860. }
  6861. mutex_unlock(&mutex);
  6862. return ret;
  6863. }
  6864. int sched_rr_handler(struct ctl_table *table, int write,
  6865. void __user *buffer, size_t *lenp,
  6866. loff_t *ppos)
  6867. {
  6868. int ret;
  6869. static DEFINE_MUTEX(mutex);
  6870. mutex_lock(&mutex);
  6871. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6872. /* make sure that internally we keep jiffies */
  6873. /* also, writing zero resets timeslice to default */
  6874. if (!ret && write) {
  6875. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6876. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6877. }
  6878. mutex_unlock(&mutex);
  6879. return ret;
  6880. }
  6881. #ifdef CONFIG_CGROUP_SCHED
  6882. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6883. {
  6884. return css ? container_of(css, struct task_group, css) : NULL;
  6885. }
  6886. static struct cgroup_subsys_state *
  6887. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6888. {
  6889. struct task_group *parent = css_tg(parent_css);
  6890. struct task_group *tg;
  6891. if (!parent) {
  6892. /* This is early initialization for the top cgroup */
  6893. return &root_task_group.css;
  6894. }
  6895. tg = sched_create_group(parent);
  6896. if (IS_ERR(tg))
  6897. return ERR_PTR(-ENOMEM);
  6898. return &tg->css;
  6899. }
  6900. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6901. {
  6902. struct task_group *tg = css_tg(css);
  6903. struct task_group *parent = css_tg(css->parent);
  6904. if (parent)
  6905. sched_online_group(tg, parent);
  6906. return 0;
  6907. }
  6908. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6909. {
  6910. struct task_group *tg = css_tg(css);
  6911. sched_destroy_group(tg);
  6912. }
  6913. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6914. {
  6915. struct task_group *tg = css_tg(css);
  6916. sched_offline_group(tg);
  6917. }
  6918. static void cpu_cgroup_fork(struct task_struct *task, void *private)
  6919. {
  6920. sched_move_task(task);
  6921. }
  6922. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6923. struct cgroup_taskset *tset)
  6924. {
  6925. struct task_struct *task;
  6926. cgroup_taskset_for_each(task, tset) {
  6927. #ifdef CONFIG_RT_GROUP_SCHED
  6928. if (!sched_rt_can_attach(css_tg(css), task))
  6929. return -EINVAL;
  6930. #else
  6931. /* We don't support RT-tasks being in separate groups */
  6932. if (task->sched_class != &fair_sched_class)
  6933. return -EINVAL;
  6934. #endif
  6935. }
  6936. return 0;
  6937. }
  6938. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6939. struct cgroup_taskset *tset)
  6940. {
  6941. struct task_struct *task;
  6942. cgroup_taskset_for_each(task, tset)
  6943. sched_move_task(task);
  6944. }
  6945. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6946. struct cgroup_subsys_state *old_css,
  6947. struct task_struct *task)
  6948. {
  6949. /*
  6950. * cgroup_exit() is called in the copy_process() failure path.
  6951. * Ignore this case since the task hasn't ran yet, this avoids
  6952. * trying to poke a half freed task state from generic code.
  6953. */
  6954. if (!(task->flags & PF_EXITING))
  6955. return;
  6956. sched_move_task(task);
  6957. }
  6958. #ifdef CONFIG_FAIR_GROUP_SCHED
  6959. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6960. struct cftype *cftype, u64 shareval)
  6961. {
  6962. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6963. }
  6964. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6965. struct cftype *cft)
  6966. {
  6967. struct task_group *tg = css_tg(css);
  6968. return (u64) scale_load_down(tg->shares);
  6969. }
  6970. #ifdef CONFIG_CFS_BANDWIDTH
  6971. static DEFINE_MUTEX(cfs_constraints_mutex);
  6972. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6973. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6974. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6975. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6976. {
  6977. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6978. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6979. if (tg == &root_task_group)
  6980. return -EINVAL;
  6981. /*
  6982. * Ensure we have at some amount of bandwidth every period. This is
  6983. * to prevent reaching a state of large arrears when throttled via
  6984. * entity_tick() resulting in prolonged exit starvation.
  6985. */
  6986. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6987. return -EINVAL;
  6988. /*
  6989. * Likewise, bound things on the otherside by preventing insane quota
  6990. * periods. This also allows us to normalize in computing quota
  6991. * feasibility.
  6992. */
  6993. if (period > max_cfs_quota_period)
  6994. return -EINVAL;
  6995. /*
  6996. * Prevent race between setting of cfs_rq->runtime_enabled and
  6997. * unthrottle_offline_cfs_rqs().
  6998. */
  6999. get_online_cpus();
  7000. mutex_lock(&cfs_constraints_mutex);
  7001. ret = __cfs_schedulable(tg, period, quota);
  7002. if (ret)
  7003. goto out_unlock;
  7004. runtime_enabled = quota != RUNTIME_INF;
  7005. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  7006. /*
  7007. * If we need to toggle cfs_bandwidth_used, off->on must occur
  7008. * before making related changes, and on->off must occur afterwards
  7009. */
  7010. if (runtime_enabled && !runtime_was_enabled)
  7011. cfs_bandwidth_usage_inc();
  7012. raw_spin_lock_irq(&cfs_b->lock);
  7013. cfs_b->period = ns_to_ktime(period);
  7014. cfs_b->quota = quota;
  7015. __refill_cfs_bandwidth_runtime(cfs_b);
  7016. /* restart the period timer (if active) to handle new period expiry */
  7017. if (runtime_enabled)
  7018. start_cfs_bandwidth(cfs_b);
  7019. raw_spin_unlock_irq(&cfs_b->lock);
  7020. for_each_online_cpu(i) {
  7021. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7022. struct rq *rq = cfs_rq->rq;
  7023. raw_spin_lock_irq(&rq->lock);
  7024. cfs_rq->runtime_enabled = runtime_enabled;
  7025. cfs_rq->runtime_remaining = 0;
  7026. if (cfs_rq->throttled)
  7027. unthrottle_cfs_rq(cfs_rq);
  7028. raw_spin_unlock_irq(&rq->lock);
  7029. }
  7030. if (runtime_was_enabled && !runtime_enabled)
  7031. cfs_bandwidth_usage_dec();
  7032. out_unlock:
  7033. mutex_unlock(&cfs_constraints_mutex);
  7034. put_online_cpus();
  7035. return ret;
  7036. }
  7037. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7038. {
  7039. u64 quota, period;
  7040. period = ktime_to_ns(tg->cfs_bandwidth.period);
  7041. if (cfs_quota_us < 0)
  7042. quota = RUNTIME_INF;
  7043. else
  7044. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7045. return tg_set_cfs_bandwidth(tg, period, quota);
  7046. }
  7047. long tg_get_cfs_quota(struct task_group *tg)
  7048. {
  7049. u64 quota_us;
  7050. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  7051. return -1;
  7052. quota_us = tg->cfs_bandwidth.quota;
  7053. do_div(quota_us, NSEC_PER_USEC);
  7054. return quota_us;
  7055. }
  7056. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7057. {
  7058. u64 quota, period;
  7059. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7060. quota = tg->cfs_bandwidth.quota;
  7061. return tg_set_cfs_bandwidth(tg, period, quota);
  7062. }
  7063. long tg_get_cfs_period(struct task_group *tg)
  7064. {
  7065. u64 cfs_period_us;
  7066. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  7067. do_div(cfs_period_us, NSEC_PER_USEC);
  7068. return cfs_period_us;
  7069. }
  7070. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  7071. struct cftype *cft)
  7072. {
  7073. return tg_get_cfs_quota(css_tg(css));
  7074. }
  7075. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  7076. struct cftype *cftype, s64 cfs_quota_us)
  7077. {
  7078. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  7079. }
  7080. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  7081. struct cftype *cft)
  7082. {
  7083. return tg_get_cfs_period(css_tg(css));
  7084. }
  7085. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  7086. struct cftype *cftype, u64 cfs_period_us)
  7087. {
  7088. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  7089. }
  7090. struct cfs_schedulable_data {
  7091. struct task_group *tg;
  7092. u64 period, quota;
  7093. };
  7094. /*
  7095. * normalize group quota/period to be quota/max_period
  7096. * note: units are usecs
  7097. */
  7098. static u64 normalize_cfs_quota(struct task_group *tg,
  7099. struct cfs_schedulable_data *d)
  7100. {
  7101. u64 quota, period;
  7102. if (tg == d->tg) {
  7103. period = d->period;
  7104. quota = d->quota;
  7105. } else {
  7106. period = tg_get_cfs_period(tg);
  7107. quota = tg_get_cfs_quota(tg);
  7108. }
  7109. /* note: these should typically be equivalent */
  7110. if (quota == RUNTIME_INF || quota == -1)
  7111. return RUNTIME_INF;
  7112. return to_ratio(period, quota);
  7113. }
  7114. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7115. {
  7116. struct cfs_schedulable_data *d = data;
  7117. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7118. s64 quota = 0, parent_quota = -1;
  7119. if (!tg->parent) {
  7120. quota = RUNTIME_INF;
  7121. } else {
  7122. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  7123. quota = normalize_cfs_quota(tg, d);
  7124. parent_quota = parent_b->hierarchical_quota;
  7125. /*
  7126. * ensure max(child_quota) <= parent_quota, inherit when no
  7127. * limit is set
  7128. */
  7129. if (quota == RUNTIME_INF)
  7130. quota = parent_quota;
  7131. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7132. return -EINVAL;
  7133. }
  7134. cfs_b->hierarchical_quota = quota;
  7135. return 0;
  7136. }
  7137. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7138. {
  7139. int ret;
  7140. struct cfs_schedulable_data data = {
  7141. .tg = tg,
  7142. .period = period,
  7143. .quota = quota,
  7144. };
  7145. if (quota != RUNTIME_INF) {
  7146. do_div(data.period, NSEC_PER_USEC);
  7147. do_div(data.quota, NSEC_PER_USEC);
  7148. }
  7149. rcu_read_lock();
  7150. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7151. rcu_read_unlock();
  7152. return ret;
  7153. }
  7154. static int cpu_stats_show(struct seq_file *sf, void *v)
  7155. {
  7156. struct task_group *tg = css_tg(seq_css(sf));
  7157. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7158. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7159. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7160. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7161. return 0;
  7162. }
  7163. #endif /* CONFIG_CFS_BANDWIDTH */
  7164. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7165. #ifdef CONFIG_RT_GROUP_SCHED
  7166. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7167. struct cftype *cft, s64 val)
  7168. {
  7169. return sched_group_set_rt_runtime(css_tg(css), val);
  7170. }
  7171. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7172. struct cftype *cft)
  7173. {
  7174. return sched_group_rt_runtime(css_tg(css));
  7175. }
  7176. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7177. struct cftype *cftype, u64 rt_period_us)
  7178. {
  7179. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7180. }
  7181. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7182. struct cftype *cft)
  7183. {
  7184. return sched_group_rt_period(css_tg(css));
  7185. }
  7186. #endif /* CONFIG_RT_GROUP_SCHED */
  7187. static struct cftype cpu_files[] = {
  7188. #ifdef CONFIG_FAIR_GROUP_SCHED
  7189. {
  7190. .name = "shares",
  7191. .read_u64 = cpu_shares_read_u64,
  7192. .write_u64 = cpu_shares_write_u64,
  7193. },
  7194. #endif
  7195. #ifdef CONFIG_CFS_BANDWIDTH
  7196. {
  7197. .name = "cfs_quota_us",
  7198. .read_s64 = cpu_cfs_quota_read_s64,
  7199. .write_s64 = cpu_cfs_quota_write_s64,
  7200. },
  7201. {
  7202. .name = "cfs_period_us",
  7203. .read_u64 = cpu_cfs_period_read_u64,
  7204. .write_u64 = cpu_cfs_period_write_u64,
  7205. },
  7206. {
  7207. .name = "stat",
  7208. .seq_show = cpu_stats_show,
  7209. },
  7210. #endif
  7211. #ifdef CONFIG_RT_GROUP_SCHED
  7212. {
  7213. .name = "rt_runtime_us",
  7214. .read_s64 = cpu_rt_runtime_read,
  7215. .write_s64 = cpu_rt_runtime_write,
  7216. },
  7217. {
  7218. .name = "rt_period_us",
  7219. .read_u64 = cpu_rt_period_read_uint,
  7220. .write_u64 = cpu_rt_period_write_uint,
  7221. },
  7222. #endif
  7223. { } /* terminate */
  7224. };
  7225. struct cgroup_subsys cpu_cgrp_subsys = {
  7226. .css_alloc = cpu_cgroup_css_alloc,
  7227. .css_free = cpu_cgroup_css_free,
  7228. .css_online = cpu_cgroup_css_online,
  7229. .css_offline = cpu_cgroup_css_offline,
  7230. .fork = cpu_cgroup_fork,
  7231. .can_attach = cpu_cgroup_can_attach,
  7232. .attach = cpu_cgroup_attach,
  7233. .exit = cpu_cgroup_exit,
  7234. .legacy_cftypes = cpu_files,
  7235. .early_init = 1,
  7236. };
  7237. #endif /* CONFIG_CGROUP_SCHED */
  7238. void dump_cpu_task(int cpu)
  7239. {
  7240. pr_info("Task dump for CPU %d:\n", cpu);
  7241. sched_show_task(cpu_curr(cpu));
  7242. }